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Abstract

Chronic cannabis use can cause cognitive, perceptual and personality alterations, which are 

believed to be associated with regional brain changes and possible changes in connectivity 

between functional regions. This study aims to identify the changes from resting state functional 

magnetic resonance imaging scans. A two-level multi-voxel pattern analysis was proposed to 

classify male cannabis users from normal controls. The first level analysis works on a voxel basis 

and identifies clusters for the input of a second level analysis, which works on the functional 

connectivity between these regions. We found distinct clusters for male cannabis users in the 

middle frontal gyrus, precentral gyrus, superior frontal gyrus, posterior cingulate cortex, 

cerebellum and some other regions. Based on the functional connectivity of these clusters, a high 

overall accuracy rate of 84–88% in classification accuracy was achieved. High correlations were 

also found between the overall classification accuracy and Barrett Barrett Impulsiveness Scale 

factor scores of attention and motor. Our result suggests regional differences in the brains of male 

cannabis users that span from the cerebellum to the prefrontal cortex, which are associated with 

differences in functional connectivity.
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Introduction

The principal psychoactive constituent in the commonly used drug cannabis, Δ9-

tetrahydrocannabinol (THC) (Gaoni and Mechoulam, 1971), affects the brain via the 

activation of central cannabinoid-1 receptors (CB1Rs) (Devane et al., 1988; Pertwee et al., 

2010). The CB1R is one of the most abundant G-protein coupled receptors in the central 

nervous system (Egertova and Elphick, 2000; Eggan and Lewis, 2007; Glass et al., 1997; 

Corresponding author: H Cheng, Department of Psychological and Brain Sciences, Indiana, University, 1101 E 10th St, Bloomington, 
IN 47405, USA., hucheng@indiana.edu. 

Conflict of interest
The authors declare that there is no conflict of interest.

HHS Public Access
Author manuscript
J Psychopharmacol. Author manuscript; available in PMC 2015 May 11.

Published in final edited form as:
J Psychopharmacol. 2014 November ; 28(11): 1030–1040. doi:10.1177/0269881114550354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Herkenham et al., 1990; Pertwee, 1997, 1999; Tsou et al., 1998). Given the widespread 

distribution of CB1Rs in the mammalian brain, it is of increasing interest to fully understand 

their mechanism of action.

In the cerebral cortex, the CB1R (through the binding of either endogenous or exogenous 

cannabinoids), presynaptically inhibits the release of gamma-aminobutyric acid (GABA) 

(Ali and Todorova, 2010; Bacci et al., 2004; Bodor et al., 2005; Eggan et al., 2007, 2010; 

Foldy et al., 2006; Hill et al., 2007; Katona et al., 2000). It therefore appears that CB1Rs 

function as molecular “brakes,” regulating the timing and release of GABA, and thus the 

overall balance of excitatory and inhibitory neurotransmission (Abbott and Chance, 2005; 

Farkas et al., 2010; Haider et al., 2006). Chronic cannabinoid administration, which is 

known to cause down-regulation of CB1Rs in both animals and humans (Hirvonen et al., 

2011; Sim-Selley et al., 2006; Villares, 2007), may induce an imbalance in excitatory versus 

inhibitory tone, which could account for the cognitive, perceptual and personality alterations 

observed in chronic cannabis users (Fridberg et al., 2010; Ranganathan and D’Souza, 2006; 

Sewell et al., 2010).

This neural balance at a systems level in humans could be manifested by structural and task-

related functional changes of the brain (Batalla et al., 2013). For example, it has been shown 

that heavy cannabis use is able to induce changes in brain structures such as the 

hippocampus, precentral gyrus, fusiform gyrus and cerebellum (Cousijn et al., 2012; 

Matochik et al., 2005; Yücel et al., 2008), and alter brain functions in various regions such 

as the medial and dorsal parietal cortex, dorsal lateral prefrontal cortex, parahippocampus, 

anterior cingulate cortex, insula, cerebellum, middle frontal regions, precuneus, lingual 

gyrus, precentral gyrus, cingulate gyrus, superior frontal gyrus and inferior frontal gyrus 

(Bolla et al., 2005; Chang et al., 2006; Hester et al., 2009; Jager et al., 2007; King et al., 

2011; Schweinsburg et al., 2008, 2010; Van Hell et al., 2009; Wesley et al., 2011). As a 

result it may influence affective and cognitive operations. For example, in a go/no-go 

response inhibition task administered by Hester et al., cannabis users showed a significant 

deficit in awareness of commission errors. A significant difference in the blood oxygenation 

level dependent (BOLD) response was observed in the anterior cingulate cortex, right insula, 

bilateral inferior parietal, and middle frontal regions (Hester et al., 2009).

Most of the functional neuroimaging studies in chronic cannabis users employed an 

activation task. While a specific task may evoke differential brain activation or functional 

connectivity strength in cannabis users and controls, as demonstrated by previous studies 

(Behan et al., 2013; Harding et al., 2012; Schweinsburg et al., 2008, 2010; Van Hell et al., 

2009; Wesley et al., 2011), task-related differences can be due to a number of factors 

including individual differences in cognitive ability and strategy use. An alternative 

approach is to examine brain function when no specific tasks are involved, or the study of 

the resting state. A recent study comparing resting functional magnetic resonance imaging 

(fMRI) data in 36 subjects with several thousand activation maps from 30,000 subjects from 

the BrainMap database showed that functional networks associated with a particular 

cognitive task are also highly connected at rest (Smith et al., 2009). Therefore, the use of 

resting state connectivity in the study of chronic cannabis use should reveal similar affected 

regions/networks. Furthermore, exploring connectivity at rest may provide further 
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information regarding the nature of the relationship between chronic cannabis use and 

differences in the neural system; for example, it is not clear whether specific regions are 

significantly affected by chronic cannabis use or whether a collection of regions within a 

network is affected and therefore a better indication of heavy cannabis use.

Recently, resting state fMRI data has drawn increasing interest as a way to identify 

biomarkers for different brain disorders and diseases (Broyd et al., 2009, Collin et al., 2011, 

Damoiseaux, 2012, Johnson et al., 2012). Resting fMRI may be particularly useful in the 

study of drug-abuse and psychiatric populations, as there are no task demands, thus ruling 

out confounds related to behavioral performance. Only recently has resting fMRI been used 

to explore the brain differences related to cannabis use. One such study revealed two 

elements within the fronto-temporal network related to cannabis use: the middle frontal 

gyrus related to high cannabis use and the middle temporal gyrus related to low cannabis use 

(Houck et al., 2013). Another resting state fMRI study of adolescent cannabis users found 

increased fractional amplitude of low-frequency fluctuations in the cannabis-dependent 

population in various regions including superior parietal gyrus, superior frontal gyrus, 

inferior frontal gyrus, inferior semilunar lobe of the cerebellum, and the inferior temporal 

gyrus (Orr et al., 2013). Furthermore, higher correlation scores between bilateral inferior 

parietal lobules and the left cerebellum was reported for cannabis users in both task and 

resting state fMRI (Behan et al., 2013).

Most studies of the resting state fMRI signal have been focused on analysis in the temporal 

domain, or exploring the coherence of brain activity among different brain regions when no 

specific task is involved. Another way of exploring resting brain function is pattern analysis, 

which has been used to extract particular spatial patterns as mental representations that can 

be modulated by cognitive states due to external stimuli or intrinsic disorders. For instance, 

multi-voxel pattern analysis (MVPA) has been successfully applied in classifying patterns of 

fMRI activation evoked by various categories of visual objects and classifying subjects with 

mental diseases from normal controls (Cox and Savoy, 2003, Meier et al., 2012). Because 

MVPA uses multiple voxels, the sensitivity is higher than single-voxel-based analysis. For 

example, a recent study applying MVPA in resting state fMRI (rfMRI) data identified a 

number of regions showing distinctive activity patterns in heroin-dependent individuals 

from normal controls (Zhang et al., 2011). The method employed non-negative matrix 

factorization (NMF) to extract the spatial feature of each voxel from the time courses of its 

neighbors and run voxel-based support vector machine (SVM) on a total number of 25 

subjects. Compared to other methods such as principle component analysis or independent 

component analysis, NMF is believed to produce more meaningful dimension reduction of 

the data and reduce intrinsic noise and is therefore well suited for processing fMRI data 

(Anderson et al., 2013; Lohmann et al., 2007). Despite the small sample size, their findings 

agree with other studies using different approaches.

There are two key steps in MVPA: feature selection and classifier training. Feature selection 

involves selecting voxels or regions to be included in the analysis and constructing features 

based on the spatial and temporal information of the voxels, and classifier training uses 

some models to extract relations between patterns and experimental conditions. MVPA can 

then be applied on a new pattern to predict which condition that pattern is associated with.
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The purpose of the present study was to explore rfMRI network differences in chronic 

cannabis users. This was done by examining the distinctive brain activity patterns of rfMRI 

using MVPA in a group of carefully screened, heavy cannabis users and controls. The study 

utilized rfMRI to focus on BOLD activation during non-goal directed activity. SVM-based 

MVPA was applied on neighbors of each voxel in the gray matter to identify the regions that 

were distinctive between cannabis users and normal controls. In order to validate the 

findings of the MVPA analysis, mean accuracy of all the voxels for each cannabis user 

subject was used to regress against tetrahydrocannabinol (THC) metrics and some behavior 

data. In addition, pair-wised correlation of mean time courses of each identified region was 

computed to characterize the functional connectivity between these regions, which was then 

used as new features for further MVPA analysis to test the accuracy rate of classifying a 

single subject into either group.

Methods

Participants

Twenty five adult male volunteers participated in this study (13 controls (CTL group); 12 

cannabis users (CB group)). Subjects were recruited using posted announcements in the 

local community. After providing a complete description of the study to all participants, 

written and verbal informed consent was obtained. Demographic data are presented in Table 

1. The research protocol was approved by the Indiana University–Purdue University 

Indianapolis Human Subjects Review Committee. Participant data were de-identified to 

protect confidentiality, and all participants were compensated $10 per hour for their 

participation. Cannabis users who reported past use of three or more non-cannabis illicit 

substances, reported use of an illicit substance other than cannabis within three months prior 

to their study participation, or who met criteria for a non- cannabis-related Diagnostic and 

Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) psychopathology were 

excluded from the study to minimize the influence of those variables on the results. As in 

previous studies, participants were excluded if they reported the consumption of more than 

14 alcoholic drinks (196 g of alcohol) per week during the past month, or more than five 

drinks (70 g of alcohol) in one single occasion (Fridberg et al., 2010; Skosnik et al., 2006, 

2008).

Formal inclusion criteria were the following: (a) for the CB group: current cannabis 

consumption at the rate of at least once per week during the past month, no other illicit 

substance use during the past three months, and no DSM-IV diagnosis of Axis I or II 

disorders except cannabis abuse or dependence; (b) for the CTL group: no history of illicit 

substance use and no history of psychiatric illness (Axis I or II); (c) for all participants: age 

18 years or older, completion of high school education, and no history of cardiovascular 

disease, disorders of hearing, neurological disease, learning disability, or head injury 

resulting in loss of consciousness. Subjects in the cannabis group were required to abstain 

from cannabis use for at least 12 h prior to their participation in the study to eliminate 

possible acute cannabis effects during imaging. The American National Adult Reading Test 

(ANART) was used as a measure of pre-morbid intellectual ability. This is based in part on 

the premise that pronunciation of irregular words is unaffected in many clinical disorders, 
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and that performance is highly correlated with general intellectual ability (Grober and 

Sliwinski, 1991, O’Carroll et al., 1992). The Perceptual Aberration Scale (PAS) (Chapman 

et al., 1978) and Schizotypal Personality Questionnaire (SPQ) (Raine, 1991) were used to 

assess schizotypal personality characteristics. The Barratt Impulsiveness Scale (BIS), a 

widely used self-report assessment of impulsivity (Patton et al., 1995, Stanford et al., 2009), 

yielded measures of attentional, motor, and nonplanning impulsiveness.

The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I; First et al., 2002) 

and a locally developed drug-use questionnaire based on a timeline follow-back approach 

were used to ascertain current and past diagnoses for substance abuse and dependence, as 

well as current and past cannabis consumption patterns. Measures of frequency, quantity, 

and density of cannabis consumption were determined via the SCID-I and questionnaire for 

the past three months, past month, and past week prior to the test session as described 

previously (Fridberg et al., 2010; Skosnik et al., 2006, 2008, 2012). Age of first use and total 

years of use were also determined. Urine screens (Q10-1, Proxam) were administered 

immediately preceding scanning in order to corroborate self-reports from the drug 

questionnaire and clinical interview. The Q10-1 kit screens for cannabis (THC-COOH; 50 

ng/mL sensitivity), opiates, amphetamines, cocaine, ecstasy (MDMA), tricyclic 

antidepressants, phencyclidine, benzodiazepines, methamphetamines, and barbiturates. A 

portion of the urine was aliquoted and stored in opaque tubes at −80°C for later quantitative 

determination of levels of THC, THC-COOH, and OH-THC.

Urinalysis

THC-COOH—The samples were analyzed by gas chromatography-mass spectrometry (GC-

MS). The method employs a basic hydrolysis step that frees THC-COOH (but not THC) 

from its glucuronide conjugate. Samples were run using a 0.10 mL aliquot size. Duplicate 

calibrators (1.0 mL with both THC-COOH and THC) were at 0.1, 0.5, 1.0, 2.5, 5, 10, 25, 50 

and 100 ng/mL. Due to sample dilution, the THC-COOH calibration curve ranged from 5–

1000 ng/mL. Duplicate 1.0 mL (with both THC-COOH and THC) quality control samples 

(QCs) were included at 1.5, 5 and 80 ng/mL. Triplicate 0.1 mL dilution QCs were included 

at 150 ng/mL.

THC and OH-THC—Samples were analyzed by GC-MS. Aliquots (1.0 mL) were 

pretreated with β-glucuronidase for 18 h at 37°C. Samples were then extracted along with 

the calibrators (0.5–100 ng/mL) and QCs used in the THC-COOH batch described above.

Creatinine—Creatinine was determined using a microplate colorimetric test based on the 

Jaffe reaction where picric acid reacts with creatinine to form a colored product. Samples 

were diluted 20-fold (0.025 mL plus 0.475 mL water). Duplicate 0.5 mL calibrators were 

run at 2, 4, 6, 8, 10, 12 and 15 mg/dL. Due to sample dilution, the calibration range was 40–

300 mg/dL. Triplicate diluted QCs were included at 25 and 100 mg/dL. Samples outside the 

calibration range were repeated using a smaller or larger dilution as needed. THC and THC-

COOH concentrations were normalized by creatinine levels to account for differing levels of 

urine dilution across subjects (THC/Cr and THC-COOH/Cr, respectively).
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Imaging data acquisition and analysis

Data acquisition—During the resting state scans participants were instructed to lie with 

their eyes open and relax, but not to fall asleep. All magnetic resonance imaging (MRI) 

scans were acquired using a Siemens Tim Trio 3.0-T scanner (Erlangen, Germany) with 32-

channel head coil. Subject head motion was minimized with restraining foam pads provided 

by the manufacturer. Gradient-recalled echo planar imaging (EPI) was used to capture 175 

volumes. Interleaved acquisition of 35 axial 3.8 mm slices covering the whole brain were 

captured using 2500 ms repetition time (TR), 30 ms echo time (TE), 220 mm field of view 

(FOV), 70° flip angle, and a 128×128 image matrix resulting an in-plane resolution of 1.72 

mm. High-resolution T1-weighted MRI volumes were acquired sagittally using the 3D MP-

RAGE sequence with the following parameters: 256×256 image matrix with 160 slices, 

1×1×1 mm3 voxels, TE=2.67 ms, TR=1800 ms.

Preprocessing—The resting state EPI volumes were motion corrected in FSL (http://

fsl.fmrib.ox.ac.uk/fsl), with all image aligned with the 100th image volume. Relative/

absolute translational and rotational motion was extracted from the motion correction output 

(Van Dijk et al., 2012). All images were normalized to the standardized Montreal 

Neurological Institute (MNI) T1 template, during which co-registration of each subject’s 

high-resolution T1 weighted image to their mean functional EPI was used for improved 

accuracy. Segmentation was performed on the MNI 2 mm resolution image using FSL 

segmentation tool FAST to obtain a probabilistic gray matter image with intensity between 

0–1. We used 0.01 as the threshold to set a gray matter mask for subsequent pattern 

extraction. A voxel-wised searchlight with 6 mm radius was applied on the normalized 

images within the gray matter (Kriegeskorte et al., 2006). According to Kriegeskorte et al., a 

searchlight of 4–5 mm radius is optimal or near-optimal. Because the analysis was restricted 

to gray matter, we relaxed the radius to 6 mm, and found that the number of voxels ranged 

from 2–123, and the average number of voxels within gray matter was 90, close to the value 

of 81 that corresponds to a searchlight of 5 mm without gray matter masking. A searchlight 

radius of 5 mm resulted in an average of 61 voxels within gray matter. For each voxel, a 2D 

spatial temporal pattern was obtained and represented by an m×n matrix, with m the number 

of voxels in the searchlight sphere and n the number of image volumes. A bandpass filter 

between 0.01 Hz and 0.1 Hz was applied to the time dimension, followed by non-negative 

matrix factorization performed in Matlab (Mathworks, Natick, Massachusetts, USA), and 

the largest component was used as the representative pattern of that voxel.

MVPA—MVPA analysis was performed on two levels using a linear support vector 

machine classifier. First, SVM analysis was run on a voxel basis, using the spatial pattern of 

the neighboring voxels to find clusters that differentiate the two groups; because this one is 

based on the resting state activity of each region we called it local MVPA. Second, MVPA 

was applied on the functional connectivity between the widespread clusters identified in the 

local MVPA analysis; we called it connectivity-based MVPA. For local MVPA, the feature 

space was chosen to be the 1D representative pattern containing intensities of m voxels. We 

used the -Matlab tools from LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). Because 

coil sensitivity can be different for each scan and each subject due to different head position 

and brain size, the signal intensity varies between subjects. To reduce the effect of signal 
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intensity, the voxel-wised pattern was rescaled between 0–1 for each subject. Then for each 

voxel, we labeled the normal controls as 1 and the cannabis users as −1. The regularization 

coefficient was chosen to be 1. We adopted the leave-one-out scheme to evaluate the 

accuracy rate of classifying the subject to a corresponding group on each voxel. Each time, 

one subject (either control or cannabis user) was set apart, the remaining data was treated as 

training data. After SVM was run on the training data set, we classified the left-out subject 

based on the training. If the classification agrees with the true value, the accuracy rate was 

set to 1; if not, the accuracy rate was 0. This process was applied to each subject, resulting in 

a total of 25 accuracy values with either 0 or 1. Then we assigned each voxel the average 

accuracy rate to obtain an image of correct prediction. We further applied an accuracy 

threshold of greater than 0.70 and the cluster size threshold of greater than 81 voxels 

(number of voxels corresponding to searchlight radius of 5 mm). Then we obtained a map 

with regions differentiating normal controls and cannabis users. We pick 0.70 as the 

threshold for two reasons: first, it is reasonably high; second, the resultant clusters are not 

too few. This is consistent with previous applications of the method (Zhang et al., 2011).

The pipeline of the data processing for local MVPA is illustrated in Figure 1. After 

obtaining the map of distinct clusters with accuracy rate higher than 70%, connectivity-

based MVPA was performed by using the functional connectivity between the distinct 

regions as new features. The purpose was to determine whether the distinct regions from 

local MVPA can be used as a biomarker to distinguish the two groups. First, the mean time 

course within each cluster was computed for the 25 subjects from the normalized 

unsmoothed data. Quadratic detrending was then applied on the mean time course, followed 

by regression of whole brain mean signal of white matter and mean signal of cerebrospinal 

fluid. The resultant signal was band-pass filtered in the range of 0.01 Hz – 0.1 Hz. The 

functional connectivity was calculated as cross-correlation of the processed mean time 

courses. The functional connectivity can be represented by an adjacent matrix with each 

identified cluster the node and inter-cluster connectivity the edge. The SVM was run on the 

edge weights (i.e. connectivity strengths) using the leave-one-out scheme. To test the 

robustness of the method, different thresholds were set from 0–0.25 to remove the weak or 

negative edges.

Additionally, behavioral measures were correlated with the MVPA results for the cannabis 

group. This was done to determine whether the overall classification accuracy of the SVM 

algorithm on cannabis users varies as a function of these measures. Therefore, by averaging 

the accuracy rate over all the voxels in the thresholded map, a mean accuracy rate was 

obtained for each subject that to some degree characterizes the probability of that subject 

being a cannabis user. The correlation between the mean accuracy value and behavior 

measurements was then examined. There are many behavioral measurements. We only 

selected those that were significantly different from the control group, which included total 

SPQ, PAS, BIS-Attention, BIS-Motor. We also investigate the relation between the mean 

accuracy value and age of onset for cannabis use. To investigate the relation between the 

accuracy rate and THC usage, a THC classification index (TCI) was assigned to each 

cannabis user based on their urine THC-COOH/creatine ratio. The index was calculated by 

fitting the THC-COOH/creatine ratio to the logistic function shown in Equation 1 to obtain a 

quantity that characterizes the degree to which a subject belongs to the CB group.
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(1)

For positive C (THC-COOH/creatine ratio) and parameter α, the output is a number between 

0.5–1. We adjusted the parameter α so that the mean value of L from all 12 subjects is equal 

to the mean accuracy rate. We call the output L of the corresponding logistic function TCI. 

The correlation between the mean accuracy rate and TCI was then calculated.

Results

Behavioral and cannabinoid metabolite data

Demographic data for both participant groups are shown in Table 1. Nine of the 12 cannabis 

participants met DSM-IV criteria for cannabis abuse or dependence. In order to examine the 

veracity of participants self-reported recency of cannabis use, correlation coefficients were 

calculated examining the relationship between number of joints smoked in the past week and 

urinary cannabinoid levels. In order to control for urine dilution, metabolite levels were 

normalized to urinary creatinine levels. Both THC (r=0.721, p<0.008) and its active 

metabolite OH-THC (r=0.664, p<0.02) correlated significantly with number of joints in the 

past week, while the inactive THC metabolite THC-COOH (r=0.38, p<0.22) did not, thus 

providing corroboration of the self-reported cannabis use data. There is no significant 

difference in the head motion parameters.

Local MVPA analysis

Several regions were identified that distinguish the CB and CTL groups with high 

confidence in SVM pattern analysis on the resting state fMRI time series. The regions 

showing difference between the two groups with classification accuracy rate >70% are 

displayed on a 3D rendered brain in Figure 2. Eleven clusters distributed in the cerebrum 

and cerebellum were found to distinguish between the cannabis users and normal controls in 

the SVM analysis (see Table 2). Because there is no smoothing in the preprocessing, the 

voxels in the clusters are not smooth clusters. The clusters were located in the precentral 

gyrus, middle frontal gyrus, cingulate gyrus, superior frontal gyrus, posterior cingulate, 

inferior frontal gyrus, inferior temporal gyrus/fusiform gyrus, and cerebellum. The 

corresponding locations in 2D axial slices are shown in Figure 3. From Table 2, the volume 

of the region was in the order of 100 mm3. The mean accuracy rate is very close for each 

region, ranging from 75.2–77.4%. No bilateral symmetry of the regions was observed except 

for the middle frontal gyrus.

The scatter plots depicting the correlation between some behavior measures and mean 

accuracy rate from SVM are shown in Figure 4. The mean accuracy rate was highly 

correlated with BIS-Motor with a correlation coefficient of 0.76 and p value of 0.004, and 

was correlated with BIS-Attention with a correlation coefficient of 0.44 and p value of 0.15. 

A trend of positive relationship between age of onset and mean prediction rate is also 

exhibited: the correlation coefficient is 0.29 if including all subjects, and the correlation 

coefficient is 0.44 if excluding a possible outlier, for which age of onset is 11 years. The 

urine THC-COOH/Creatinine ratio ranged from 0.0343–3.147. The THC classification 
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indices derived from the THC-COOH/Creatinine ratio was between 0.519–0.999. The 

correlation coefficient between the two was 0.46 with p value=0.13. There was little 

correlation between mean accuracy rate and total SPQ (r=0.09) or between mean accuracy 

rate and PAS (r= −0.05).

Connectivity-based MVPA analysis

The mean functional connectivity between the regions for two groups is shown as an 

adjacent matrix in Figure 5(a) and 5(b). Because we are only interested in the inter-cluster 

connectivity, the diagonal of the matrix was set to zero. The mean connectivity strength 

ranged from −0.05 to 0.40. The difference of connectivity shown in Figure 5(c) connectivity 

indicates that CB group tends to have higher connectivity strength than CTL group. Among 

all the connectivity, the cingular gyrus showed strongest connectivity with MFG1 and 

PCG2. The precentral gyrus, middle frontal gyrus, and post cingulate cortex tended to have 

stronger connectivity with other distinct regions compared to other nodes. It is also noted 

that the connectivity strength fluctuated substantially from subject to subject, as indicated by 

the matrix of standard deviation (Figure 5(d)). The standard deviation is comparable to the 

difference of connectivity strength between the two groups.

Accuracy rate higher than 80% in classifying a subject as a cannabis user or not was 

obtained when using the connectivity strengths as feature space for SVM analysis. The high 

accuracy rate is very stable against thresholding. Table 3 lists accuracy rates at different 

thresholding criteria. The overall accuracy rate was 84% if all the edges in the adjacent 

matrix were used in SVM, corresponding to a 55 dimensional feature space. The accuracy 

rate varied between 84–88% as the dimension of the feature space dropped from 55 to 14 at 

different thresholds. In all conditions, the accuracy of classifying CB group or CTL group 

was consistently above 83%.

Among all the inter-cluster connectivity, some showed significant difference (p<0.05 from 

two-sample t-test without correction for multiple comparisons) between the CTL group and 

the CB group. The CB group showed higher connectivity strength in five pairs, (PCG1, 

MFG2), (PCG1, SFG), (MFG1, CGG), (CGG, SFG), and (IFG, FSG).

Discussion

We have demonstrated that a two-level MPVA can be used to classify cannabis users from 

normal controls. The first level MVPA works on a voxel basis and identifies regions for the 

input of a second level MVPA, which works on the functional connectivity between these 

regions. We found a high overall accuracy rate of 84–88% in predicting whether a single 

subject is a cannabis user, and this rate is significantly higher than by chance, which is 50%. 

The high accuracy rate was consistent across different thresholds, making the accuracy rates 

unlikely to be due to the randomness of the algorithm. The high accuracy rate suggests local 

changes may occur in the brains of cannabis users that span from the cerebellum to the 

prefrontal cortex and that local change may also lead to differences in functional 

connectivity.
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The two MVPA methods are complementary. The feature space of local MVPA is extracted 

from spatiotemporal information of voxel neighbors while in the connectivity-based MVPA, 

the feature space is the correlation of the time courses of various regions. The advantage of 

the two-level analysis is that the connectivity-based global level is a confirmation of 

findings from the local level. All the clusters identified in this study lie in disparate regions 

across the brain and they all have shown differences between CTL and CB groups in 

previous structural and functional studies. For example, regions such as the medial and 

dorsal parietal cortex, dorsal lateral prefrontal cortex, cerebellum, middle frontal regions, 

precentral gyrus, cingulate gyrus, superior frontal gyrus and inferior frontal gyrus have all 

been found previously to be associated by cannabis use (Chang et al., 2006; Matochik et al., 

2005; Orr et al., 2013; Schweinsburg et al., 2008; Van Hell et al., 2009; Wesley et al., 2011). 

For instance, the superior frontal gyrus region identified by Orr et al. (2013) using rfMRI 

procedures is similar to the SFG reported here.

One region in particular coincides with the findings from a structural study of the same 

subjects using diffusion tensor imaging and network analysis (Kim et al., 2011); the 

posterior cingulate cortex (PCC) showed altered local network organization. The PCC is 

considered a key region in the default mode network (DMN) and is thought to sustain a 

sense of self-consciousness and is engaged in self-referential mental thoughts during rest 

(Buckner and Carroll, 2007; Cavanna and Trimble, 2006). In addition to the local structural 

network differences in the PCC, Kim et. al. (2011) also observed global network differences 

between CTL and CB groups – differences in the normalized clustering coefficient and 

network efficiency. These differences suggest that cannabis user subjects have differences in 

the capacity to perform local processing and that the transfer of information across the brain 

may be less efficient. These structural network differences appear to be analogous to the 

local changes in multiple regions widely distributed throughout the brain, changes that are 

shown here examining resting state brain function and connectivity.

Other drug studies using resting state fMRI also revealed similar regions that exhibit 

differences between drug users and normal controls. In a recent study of adolescent cannabis 

users, altered resting-state connectivity was found in the superior frontal gyrus, right 

superior parietal gyrus, and the cerebellum in the cannabis users compared to non-users (Orr 

et al., 2013). Another study showed greater activity and functional connectivity for high risk 

adolescent cannabis users than low cannabis users in left middle frontal gyrus (Houck et al., 

2013). The greater activity for high cannabis users is in line with our findings of significant 

higher connectivity strengths for five pairs of clusters. The PCC and insula have also been 

found to be two critical regions showing differences in the strength of functional 

connectivity (Pujol et al., 2013). In the study of heroin addiction using SVM, regions found 

include orbitofrontal cortex, medial frontal cortex, inferior frontal cortex, superior frontal 

cortex and cingulate gyrus. Also, Wei and colleagues observed decreased functional 

connectivity in the PCC and the medial prefrontal cortex in a sample of heroin users (Wang 

et al., 2010). More recently, Chanraud et al. (2011) showed that resting state low frequency 

fMRI signals in the posterior cingulate and cerebellum were less synchronized in alcoholics 

than in controls, indicative of decreased functional connectivity. A study of concurrent 

MDMA and cannabis users also showed smaller task-induced deactivations of the DMN 

compared to healthy participants (Roberts and Garavan, 2010). It appears that 
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hypoconnectivity between brain regions of the DMN might be a common characteristic of 

substance-seeking individuals. While speculative, this decrease in temporal coherence and 

hypoactivity of the DMN may represent a neural correlate of altered self-referential 

processing and increased impulsivity (disinhibition), both commonly observed 

characteristics in substance seeking individuals (De Wit, 2009; Newlin and Renton, 2010).

Our results show higher correlation or functional connectivity strength between several 

clusters for the CB group. This might be due to a general cannabis-related hyperconnectivity 

between brain regions as revealed by task fMRI and rfMRI in spite of different regions 

selected in these studies (Behan et al., 2013; Harding et al., 2012). Another interesting 

finding here is the correlation between prediction accuracy and behavioral measures. As 

shown in the scatter plots in Figure 4, a reasonably strong correlation between mean 

accuracy rate from SVM and BIS-scores of motor impulsivity was found. In other words, 

individuals with higher BIS-motor scores were better classified using these regions than 

those with lower scores. THC has been found previously to impact psychomotor functioning 

(Dumont et al., 2010; Ranganathan and D’Souza, 2006). Also in a study exploring motor 

processing during a maze task, Weinstein et al. (2008) found that THC resulted in increased 

activation of areas involved in the coordination and planning of movement. Interestingly, 

here regions linked to motor processing (the precentral gyrus, and the cerebellum) as well as 

control, including motor control (the middle frontal and anterior cingulate cortex) were all 

found to accurately classify cannabis users. The finding that classification accuracy was 

higher for those with higher scores (the CB group had higher scores, on average, than the 

CTL group) may suggest that MVPA may be sensitive to these motor differences.

Despite many findings that were consistent in general with previous studies, we did notice 

some discrepancies. The exact location of the distinct regions was slightly different from 

those reported earlier (Houck et al., 2013; Orr et al., 2013). For example, the middle frontal 

gyrus identified in our study is more anterior than that reported by Houck et al.; the inferior 

temporal lobe is in the opposite hemisphere as reported by Orr et al. The positive correlation 

between age of onset and mean prediction rate shown in Figure 4(c) was in line with 

previous findings that age of onset is associated with structural and functional changes 

(Gruber and Yurgelun-Todd, 2005, Harding et al., 2012), however the effect was not 

significant. Also the correlation between duration of cannabis use and mean prediction rate 

failed to reach significance. These differences could be attributed to the analysis method, the 

small sample size, and large variability of cannabis use.

There are several limitations to the current study. First, the cross-sectional design of the 

study precludes the ability to ascertain the precise cause and effect relationships. Hence, it 

remains unclear whether the observed results were due to the residual effects of THC, 

cannabis withdrawal, long-term cannabis exposure (e.g. CB1R downregulation), or 

premorbid neurodevelopmental and/or personality differences predisposing individuals to 

use cannabis. Second, while cannabis use rates where very high for each of the subjects in 

the cannabis group, 3/12 of the subjects did not meet criteria for cannabis abuse/dependence. 

Thus, the slight heterogeneity of the group could have affected the between group analysis. 

Third, there were a relatively small number of subjects, and our analysis of the relationship 

between the behavior and the accuracy rate of SVM in the distinctive regions was 

Cheng et al. Page 11

J Psychopharmacol. Author manuscript; available in PMC 2015 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exploratory in nature. Lastly, there is some freedom in running the SVM algorithm such as 

varying the regularization parameter. How to optimize the SVM algorithm with different 

number of features and signal-to-noise ratios needs further investigation. These limitations 

could be addressed in future rfMRI studies examining the effect of both acute and chronic 

cannabinoid exposure utilizing a larger sample of human participants.

Lastly, it should be noted that motion is a potential confound that can have an impact on 

connectivity data. Motion introduces more noise and creates unwanted coherence of the time 

course. While there are ways to reduce motion effects, examination of motion prior to 

analysis and setting strict exclusion criteria are extremely important. We were very sensitive 

to the issue of motion here and ensured that there were no significant differences between 

groups and kept the movement for any participant included in the analysis low (within 0.6 

mm).
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Figure 1. 
Schematic drawing the data processing pipeline for local multi-voxel pattern analysis 

(MVPA) analysis. NMF: non-negative matrix factorization; SVM: support vector machine; 

GM: gray matter.
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Figure 2. 
Results of local multi-voxel pattern analysis (MVPA) analysis of resting state functional 

magnetic resonance imaging (fMRI) data displayed on 3D rendered brain showing distinct 

clusters between cannabis users and normal controls.
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Figure 3. 
Results of local multi-voxel pattern analysis (MVPA) analysis of resting state functional 

magnetic resonance imaging (fMRI) data displayed on 2D slices showing 11 clusters with 

corresponding brain regions. CBM: cerebellum; CGG: cingulate gyrus; FSG: fusiform 

gyrus; IFG: inferior frontal gyrus; MFG: middle frontal gyrus; PCC: posterior cingulate 

cortex; PCG: precentral gyrus; SFG: superior frontal gyrus.
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Figure 4. 
Scatter plots between some behavior measurements and mean accuracy rate from support 

vector machine (SVM) of all the voxels in the map of Figure 2 for cannabis users. Only 

behavior measurements with significant difference between the two groups were selected, 

including (a) Barratt Impulsiveness Scale (BIS)-Attention, (b) BIS-Motor, and (c) age of 

onset of cannabis use; (d) is tetrahydrocannabinol (THC) classification index (TCI) based on 

THC-COOH/creatine ratio.
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Figure 5. 
Mean functional connectivity between the eleven distinct regions is represented by an 

adjacent matrix for (a) cannabis users (CB group) and (b) controls (CTL group). The 

diagonal elements were set to zero to exclude self-connectivity. Higher overall connectivity 

strength was observed for the CB group, as indicated by their difference (c). The 

corresponding standard deviation of connectivity between each pair of distinct regions 

across all subjects is shown in (d). CBM: cerebellum; CGG: cingulate gyrus; FSG: fusiform 

gyrus; IFG: inferior frontal gyrus; MFG: middle frontal gyrus; PCC: posterior cingulate 

cortex; PCG: precentral gyrus; SFG: superior frontal gyrus.

Cheng et al. Page 21

J Psychopharmacol. Author manuscript; available in PMC 2015 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cheng et al. Page 22

Table 1

Demographic, substance use, and characteristics of study participants.

Characteristics

Group, mean±SD p value

Cannabis users (n=12) Controls (n=13)

Age (years) 19.33±0.98 21.62±3.84 0.06

Education (years) 12.75±0.75 13.92±1.88 0.09

Sex (% male) 12 (100%) 13 (100%)

Handedness (% right) 11 (93%) 13 (100%)

Drinks/week (g) 78.17±74.43 23.69±65.26 0.06

Cigarettes in past week 1.54±2.66 0 <0.05

PAS 2.08±1.98 0.62±1.19 <0.03

Total SPQ score 12.58±9.92 5.46±5.77 <0.04

ANART score 13.58±9.92 14.58±4.96 0.59

BIS: Attention 12.08±3.53 9.38±2.10 <0.03

BIS: Motor 15.25±2.77 12.62±2.40 <0.02

Age of first use (years) 16.00±2.26 N/A

Duration (years) 3.33±2.39 N/A

Use in past week (joints) 12.83±10.93 N/A

Relative translational head motion (mm) 0.055±0.037 0.046±0.015 0.51

Relative rotational head motion (mm) 0.038±0.016 0.039±0.020 0.91

Absolute translational head motion (mm) 0.19±0.15 0.31±0.32 0.24

Absolute rotational head motion (mm) 0.17±0.13 0.29±0.32 0.25

ANART: American National Adult Reading Test; BIS: Barrett Impulsiveness Scale factor score; N/A: not applicable; PAS: Perceptual Aberration 
Scale; SD: standard deviation; SPQ: schizotypal personality questionnaire.
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Table 2

Name of distinct regions between cannabis users and normal controls from local multi-voxel pattern analysis 

(MVPA) analysis. The Montreal Neurological Institute (MNI) coordinates and cluster size of the regions are 

also listed.

Regions Abbreviation MNI coordinates Cluster size Accuracy

Precentral gyrus PCG1 (R) (14, −30, 64) 82 75.5%

Middle frontal gyrus MFG1 (L) (−44, 2, 52) 84 76.9%

Cingulate gyrus CGG (−8, 6, 48) 118 77.1%

Middle frontal gyrus MFG2 (L) (−42, 26, 40) 102 76.7%

Middle frontal gyrus MFG3 (R) (26, 34, 40) 91 76.6%

Precentral gyrus PCG2 (L) (−60, −12, 38) 83 75.6%

Superior frontal gyrus SFG (R) (30, 52, 16) 101 76.3%

Posterior cingulate cortex PCC (R) (18, −68, 8) 127 75.4%

Inferior frontal gyrus IFG (L) (−18, 20, −20) 100 77.4%

Fusiform gyrus FSG (L) (−58, −16, −26) 87 76.0%

Cerebellum CBM (R) (28, −74, −38) 115 75.2%

R: right; L: left.
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