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Abstract: Cognitive reserve (CR) shows protective effects in Alzheimer's-disease (AD) and
reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful
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diagnostic biomarker of brain changes underlying CR is not available yet. Our aim was
to develop a fully-automated approach applied to fMRI to produce a biomarker
associated with CR in subjects at increased risk of AD. We computed resting-state
global functional connectivity (GFC), i.e. the average connectivity strength, for each
voxel within the cognitive control network, which may sustain CR due to its central role
in higher cognitive function. In a training sample including 43 mild cognitive impairment
(MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR
(> median of years of education, CR+) showed increased frequency of high GFC
values compared to MCI CR- and HC. A summary index capturing such a surplus
frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R
discriminated MCI CR+ vs MCI CR-, with the area under the ROC = 0.84. Cross-
validation in an independently recruited test sample of 23 MCI subjects showed that
higher levels of the GFC-R index predicted higher years of education and an
alternative questionnaire-based proxy of CR (CRIq score), controlled for memory
performance, gray matter of the cognitive control network, age, and gender. In
conclusion, the GFC-R index that captures GFC changes within the cognitive control
network provides a biomarker candidate of functional brain changes of CR in patients
at increased risk of AD.
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ABSTRACT: 

Cognitive reserve (CR) shows protective effects in Alzheimer's-disease (AD) and reduces the 

risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic 

biomarker of brain changes underlying CR is not available yet. Our aim was to develop a 

fully-automated approach applied to fMRI to produce a biomarker associated with CR in 

subjects at increased risk of AD. We computed resting-state global functional connectivity 

(GFC), i.e. the average connectivity strength, for each voxel within the cognitive control 

network, which may sustain CR due to its central role in higher cognitive function. In a 

training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy 

controls (HC), we found that MCI subjects with high CR (> median of years of education, 

CR+) showed increased frequency of high GFC values compared to MCI CR- and HC. A 

summary index capturing such a surplus frequency of high GFC was computed (called GFC 

reserve (GFC-R) index). GFC-R discriminated MCI CR+ vs MCI CR-, with the area under 

the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI 

subjects showed that higher levels of the GFC-R index predicted higher years of education 

and an alternative questionnaire-based proxy of CR (CRIq score), controlled for memory 

performance, gray matter of the cognitive control network, age, and gender. In conclusion, the 

GFC-R index that captures GFC changes within the cognitive control network provides a 

biomarker candidate of functional brain changes of CR in patients at increased risk of AD.     
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 4 

 

INTRODUCTION: 

Cognitive reserve (CR) refers to the ability to cognitively perform relatively well in the 

presence of brain pathology (Stern, 2002, 2009). Life-time experiences - such as education 

and occupational attainment – or IQ are commonly used as proxy measures of CR (Stern, 

2009). In Alzheimer's disease (AD), higher levels of such CR proxies are associated with 

higher cognitive performance relative to the level of brain damage, such as measured by 

cerebral FDG-PET hypometabolism or impaired blood flow (Bastin et al., 2012; Boots et al., 

2015; Ewers et al., 2014; Scarmeas et al., 2003; Stern, Alexander, Prohovnik, & Mayeux, 

1992; Stern et al., 1995), grey matter atrophy (Bastin et al., 2012; Boots et al., 2015), white 

matter damage (Brickman et al., 2011), and primary pathologies including amyloid-beta (A) 

and tau (Rentz et al., 2010; Vemuri et al., 2015; Vemuri et al., 2011). These results suggest 

that higher levels of CR as measured by education and other proxies are associated with a 

higher ability to cope with brain pathology in AD.  

Compensatory functional brain changes that may underlie CR have been investigated in a 

number of task-related fMRI studies (Stern et al., 2005; Stern et al., 2008) or resting state 

fMRI studies in HC subjects (Arenaza-Urquijo et al., 2013). Task-related fMRI studies in 

MCI and AD revealed an association between increased CR proxies (education, occupation) 

and higher brain activation (Bosch et al., 2010; Solé-Padullés et al., 2009). However, task-

fMRI is often difficult to perform for cognitively impaired patients, and may thus not be 

suitable for clinical use to assess CR in AD. From a clinical point of view, a major question is 

whether simple measures of basic brain function are indicative of CR, and thus could be used 

as a marker of CR-related brain changes in AD.  The need of a biomarker of CR-related brain 

changes is urgent in view of a growing number of clinical trials that target protective brain 

mechanisms in AD, such as cognitive training or meditation (Buschert et al., 2011; Reijnders, 

van Heugten, & van Boxtel, 2013; Schultz et al., 2015; Wells et al., 2013).   
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 5 

The overall goal of the current study was to develop a neuroimaging-based diagnostic 

biomarker of functional brain changes underlying CR in subjects with mild cognitive 

impairment (MCI). We focused on resting-state global functional connectivity (GFC, also 

known as weighted degree centrality) within the cognitive control network as a measure of 

functional brain processes of CR. The cognitive control network includes major brain hubs 

with high GFC (Cole, Pathak, & Schneider, 2010), where greater GFC has been previously 

associated with higher IQ, i.e. a proxy of CR, in young subjects. In the current study, CR was 

measured by the proxy of years of education, which is the best validated CR proxy measure to 

date in AD (Stern, 2012). 

Using a cross-validation approach, we compared the frequency distribution of GFC values 

within the cognitive control network between MCI subjects with high CR (more years of 

education) to MCI with low CR (lower years of education) and HC groups. A newly 

developed summary index that detects GFC frequency differences between MCI subjects with 

low and MCI subjects with high CR, henceforth called GFC reserve (GFC-R) index, was 

tested as a predictor of years of education in an independent validation sample of MCI 

subjects. We hypothesized firstly that MCI subjects with more years of education show an 

increased number of relatively high GFC values within the cognitive control network 

compared to MCI subjects with less years of education. Secondly, we hypothesized that 

higher levels of the GFC-R index are predictive of more years of education and a second 

questionnaire based CR proxy in the validation sample of MCI subjects.  
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 6 

METHODS: 

Subjects:  

We included two independent samples each of amnestic MCI and HC subjects to cross-

validate our findings. The training sample included 24 amyloid-PET negative (A-) HC 

subjects and 43 Amyloid-PET positive (A+) patients with amnestic MCI. Amyloid PET 

status was defined based on pre-established cut-off values of global [18F] AV-45 PET 

standardized uptake value ratio (for Aß- = global AV-45 PET SUVR < 1.11) (Landau et al., 

2013). All data were downloaded from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database, freely accessible for researchers (http://adni.loni.usc.edu/). ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure and predict the progression of MCI and early AD (www.adni-info.org).  

The test sample comprised 32 HC subjects as well as 23 subjects with amnestic MCI, 

recruited between 2014 and 2015 at the memory clinic of the Institute for Stroke and 

Dementia Research (ISD) at the Klinikum der Universitaet Muenchen in Germany.  

For the ISD study, the inclusion criteria were defined as follows: 1) age > 60 years, 2) no 

signs of depression, 3) no presence or history of neurological or psychiatric disorders (except 

for MCI), 4) no presence or history of alcohol or drug abuse, 5) no diabetes mellitus, 6) no 

MRI contraindications. All subjects underwent structural MRI, resting-state fMRI and 

cognitive testing using the CERAD-Plus test battery (Luck, 2009). A subject was defined as 

HC, when reporting no subjective memory complaints and scoring within 1.5 standard 

deviations (SD) of the age, gender and education adjusted norms in all subtests of the 

CERAD-Plus battery (Luck, 2009). MCI was diagnosed according to the Petersen criteria 

(Petersen, 2004), when scoring 1.5 SD below the age, gender and education adjusted norms in 

at least one of the learning or recall subtests of the CERAD-Plus battery.  
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For the training sample (ADNI), details about the inclusion can be found online 

(https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf). Similar 

to the diagnosis of MCI in the ISD sample, MCI was diagnosed in ADNI according to the 

Petersen criteria (Petersen, 2004).  

 

Cognitive reserve and neuropsychological assessment: 

The number of years of formal education was used as a proxy for CR in both samples. In the 

test sample (ISD) we additionally used the cognitive reserve index questionnaire (Nucci, 

Mapelli, & Mondini, 2012) as a second proxy of CR. The CRIq is a standardized 

questionnaire based measure for the assessment of CR that combines information about 

education, working activity and leisure time. For neuropsychological assessments, memory 

performance was assessed using memory tests that were comparable between the ADNI and 

the ISD sample. As a measure of episodic memory performance, the total score of the 

CERAD word list learning tests was assessed in the ISD sample (Luck, 2009), and the total 

score of the Rey Auditory Verbal Learning Test (RAVLT) in the ADNI sample (Schoenberg 

et al., 2006). Both tests are designed as list-learning paradigms in which the patient is read a 

list of words by the examiner in several trials (CERAD: 10 words in 3 trials; RAVLT: 15 

words in 15 trials) and is asked to recall as many words from the list as possible after each 

trial. The total score reflects the number of words correctly remembered cumulated across 

trials. 

 

Standard protocol approvals and patient consent: 

The study at the ISD was approved by the ethics committee of the Ludwig Maximilian 

University of Munich and was conducted in accordance with the Declaration of Helsinki. All 

study participants provided written, informed consent to the study. For the ADNI-sample 

ethical approval was obtained by the ADNI investigators.  
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 8 

 

MRI acquisition: 

Training sample (ADNI): 

All MRI scans were performed on Philips 3T MRI scanners, using an 8-channel head matrix 

coil. High-resolution T1-weighted scans were acquired using a 3D MP-RAGE sequence, with 

whole brain coverage and a voxel resolution of 1 × 1 × 1.2 mm. Resting state-fMRI images 

were acquired using a single shot T2*-weighted EPI sequence collecting 140 volumes, with a 

TR of 3000 ms, a flip angle of 80° and 3.3 mm isotropic voxel resolution. Prior to the resting-

state scan, subjects were instructed to keep their eyes open.  

 

Test sample (ISD): 

All MRI scans were performed on a Siemens Verio 3T MRI scanner using a 32-channel head 

coil. For each subject a structural image was obtained using a high-resolution 3D MPRAGE 

T1-weighted sequence with 1 mm isotropic voxel resolution. Functional resting-state images 

were acquired using a T2*-weighted echo-planar imaging (EPI) pulse sequence collecting 180 

volumes with a TR = 2580 ms, flip angle = 80° and 3.5 mm isotropic voxel resolution. Prior 

to the resting-state scan the subjects were instructed to keep their eyes closed and not to fall 

asleep during the scanning procedure. Using the same field of view as the functional resting-

state images, field maps were acquired (TE = 7.38/4.92 ms, TR = 675 ms) to correct for 

susceptibility artifacts and inhomogeneity of the magnetic field during preprocessing of the 

resting-state data.  

 

Spatial normalization of MRI scans: 

The spatial normalization of the MRI scans was done separately for both samples, following 

the same protocol of image processing based on SPM 12 (Wellcome Trust Centre for 

Neuroimaging, University College London, United Kingdom: www.fil.ion.ucl.ac.uk/spm). 
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 9 

T1-weighted images were segmented into probabilistic maps of grey matter, white matter and 

cerebrospinal fluid maps through the SPM’s new-segment approach (Ashburner & Friston, 

2005). Next, the spatial normalization parameters were estimated using a high-dimensional 

diffeomorphic registration algorithm to warp each subjects’ grey matter map to a group-

specific grey matter template that was defined in an iterative procedure, as implemented in 

SPM’s DARTEL toolbox (Ashburner, 2007). Subsequently, the group-specific template was 

registered to the MNI template in order to estimate the affine transformation parameters. 

Next, the non-linear (DARTEL flow-fields) and the affine transformation parameters were 

combined and applied to the segmented grey matter maps, so that all grey matter images were 

spatially normalized to the MNI space. The spatially-normalized grey matter maps were 

averaged and binarized at a voxel value > 0.3 to create a group-specific grey matter mask for 

later fMRI functional connectivity analyses. Similarly, we averaged and binarized the 

spatially-normalized white-matter (binarized at threshold > 0.9) and cerebrospinal-fluid 

(binarized at threshold > 0.7) that were used during preprocessing of the resting-state fMRI 

data. For later extraction of grey matter volume, we created spatially normalized grey matter 

maps for each subject, that were smoothed with a 8-mm full-width at half-maximum 

(FWHM) Gaussian kernel and modulated to preserve the volume of the images. 

 

Preprocessing of resting-state fMRI: 

The preprocessing of both samples was done separately, but following the same protocol. All 

volumes were realigned to the first volume to correct for motion, coregistered to native-space 

T1-weighted images and smoothed using an 8 mm FWHM Gaussian kernel. None of the 

subjects’ motion parameters exceeded 2 mm translations or 2 degrees rotations. Unique to the 

ISD-sample, there was additional slice-timing and field map correction. Next, the DARTEL 

flow-fields and affine registration parameters that were estimated during preprocessing of the 

T1-weighted images were combined and applied to all resting-state fMRI volumes to spatially 
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 10 

normalize the images to MNI space. The spatially normalized fMRI images were further 

detrended and band-pass filtered, using a frequency band of 0.01-0.08 Hz. In a second step we 

regressed out the 6 motion parameters (3 translations, 3 rotations) and the BOLD signal 

averaged across the white matter and cerebrospinal fluid masks that were created during 

preprocessing of the T1-weighted images. 

 

Assessment of GFC: 

For each subject, GFC was determined based on the preprocessed and spatially normalized 

resting-state fMRI scans. For each voxel in the grey matter, the GFC was determined by 

computing seed-based Pearson-Moment correlations of the BOLD signal changes between the 

seed voxel and each of the other voxels within the grey matter (as defined by the customized 

grey matter mask). For each seed voxel, only Pearson-Moment correlation coefficients with r 

> 0 were retained, Fisher z-transformed and averaged across the voxels within the grey-

matter-mask space to obtain the GFC coefficient. This resulted in a 3D brain map of GFC 

coefficients for each subject. Note that we included only positive correlation coefficients for 

computing the GFC, because positive and negative correlations may cancel each other out 

when averaging the correlation coefficients. 

 

Spatial maps of resting-state networks: 

The cognitive control network covers the anterior cingulate cortex, dorsolateral prefrontal 

cortex, anterior insular cortex, dorsal premotor cortex and posterior parietal cortex (Cole, 

Bassett, Power, Braver, & Petersen, 2014; Cole et al., 2013; Cole & Schneider, 2007). For the 

current study, we determined the spatial boundaries of the cognitive control network based on 

an a-priori conducted meta-analysis in order to avoid a sample specific bias in the spatial 

definition of the network. The meta-analysis was conducted using NeuroSynth, a web-based 

tool for fully automated detection of brain activation coordinates from published task-fMRI 
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 11 

data (http://www.neurosynth.org). By entering a search term in the NeuroSynth database, 

brain activation associated with the search term entered is analyzed across studies, yielding a 

probabilistic map of brain activation related to that term (Yarkoni, Poldrack, Nichols, Van 

Essen, & Wager, 2011). For the current study, we used “cognitive control” as a search term, 

yielding a z-scored probability map based on 428 task-fMRI studies (as of September 14, 

2015). In order to obtain a reliable map of the cognitive control network we applied a false 

discovery rate corrected p-threshold of p(FDR) < 0.01 (see Fig. 1). The spatial map of the 

cognitive control network was additionally masked with the group-specific grey matter masks 

for each sample separately in order to restrict all further analyses to voxels that had a high 

likelihood of falling within the grey matter. We performed control analyses on 7 major brain 

networks (Yeo et al., 2011), to test whether a relationship between CR and GFC was specific 

to the cognitive control network. Accordingly, we downloaded the 7 network parcellations 

that are freely available online 

(ftp://surfer.nmr.mgh.harvard.edu/pub/data/Yeo_JNeurophysiol11_MNI152.zip). Again, all 7 

networks were additionally masked with the group specific grey matter masks for each 

sample. To control for potentially confounding effects of brain atrophy, we extracted the grey 

matter volume within the network masks for each subject, applied to the modulated smoothed 

and normalized grey matter images that were created during the preprocessing of structural 

MRI images.  

 

Generation of GFC index related to CR (GFC-R index): 

Study design 

Our aim was to develop a summary index to quantify GFC frequency changes within the 

cognitive control network that were associated with the CR proxy years of education in 

patients with MCI. In brief, the ADNI sample served as a training sample to create the GFC-R 

index that is related to our CR proxy education. Subsequently, we tested the validity of this 
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GFC based index as a predictor of the CR proxy years of education and the CR-questionnaire 

(CRIq) composite score in the ISD sample, which served as an independent test sample. A 

Flow diagram illustrating the individual steps to create the GFC-reserve index is shown in Fig 

2. 

 

Dichotomization of subjects according to CR 

The HC and MCI groups were each dichotomized into groups of low and high CR (CR- vs 

CR+), split at the median of years of education within the entire sample. The groups were 

dichotomized separately within the ISD (CR+: > median education = 13) and the ADNI 

sample (CR+: > median education = 16). 

 

Histogram Analysis of GFC  

For each diagnostic group (MCI vs. HC) within the CR+ and CR- subjects, we plotted a 

histogram of the GFC frequencies across voxels of the cognitive control network (Figure 2A 

& B). Visual inspection of the histograms in the training sample (ADNI) revealed, that the 

GFC histogram of the MCI CR- subjects showed an overall shift to the left of the HC 

subjects, with a decreased frequency of relatively high GFC values, but an increase of lower 

GFC values compared to the HC CR- group (Figure 2B). Conversely, the GFC histogram of 

the MCI CR+ subjects showed a shift to the right of the HC CR+ group.  

In a next step, we binned the GFC voxel values for each subject at intervals of 0.01 from z = 0 

to z = 0.6 resulting in a total of 60 bins, each containing the number of voxels (i.e. the GFC 

frequency) falling within that bin. To quantify changes in GFC frequency in MCI with respect 

to the HC group, we bin-wise subtracted each MCI CR+ subject's GFC frequencies from the 

averaged GFC frequencies in the HC CR+ group. The analogous subtraction was done for the 

MCI CR-, where each MCI subject's histogram was subtracted from the average histogram of 
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the HC CR- group. Thus, for each MCI CR group, alterations of GFC frequencies (called 

GFC-Diff, Figure 2C) were obtained according to the following equation. 

 𝐺𝐹𝐶-𝐷𝑖𝑓𝑓𝑖𝑗𝑘 =  𝐺𝐹𝐶 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝐶𝐼)𝑖𝑗𝑘 −   𝑀𝑒𝑎𝑛 𝐺𝐹𝐶 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐻𝐶)𝑖𝑘  (𝐸𝑞. 1) 

 

where, i = CR group (CR + or CR-), j = MCI subject, k = GFC bin (1-60). 

 

In bins where a MCI subject had a higher GFC frequency than the HC group, GFC-Diff 

values were positive (green shaded area in Figures 2C-E). Conversely, in bins where a MCI 

subject showed a lower GFC frequency compared to the HC group, the GFC-Diff score was 

negative (red shaded area in Figures 2C-2E). To identify GFC bins where MCI CR+ and MCI 

CR- subjects showed different GFC frequency changes, we compared GFC-Diff scores 

between the CR groups for each of the 60 bins, using two-sample t-tests with the significance 

threshold being  = 0.05 for each t-test (Figure 2D). We did not correct for multiple testing at 

this stage, since the analysis was an intermediate step, exclusively done in order to select bins 

where MCI CR- and MCI CR+ groups differed in terms of GFC-Diff.  

The results of the t-tests showed that GFC-Diff scores were greater (i.e. more positive) in 

MCI CR+ compared to MCI CR- in the range from 0.34 to 0.5, suggesting that MCI CR+ had 

significantly increased frequencies of relatively high GFC values (henceforth referred to as 

GFC-DiffCR+>CR-) relative to MCI CR- subjects. In contrast, GFC-Diff scores were increased 

in MCI CR- compared to MCI CR+ subjects in a range from 0.2 to 0.26, suggesting that MCI 

CR- subjects had a higher frequency of relatively low GFC values (henceforth referred to as 

GFC-DiffCR+<CR-) compared to MCI CR+ subjects. In order to create a subject-specific 

summary score of GFC frequency differences indicative of CR+ status, we subtracted the sum 

of GFC-Diff values in the GFC-DiffCR+<CR-from the sum of GFC-Diff values in the GFC-

DiffCR+>CR-. Finally, this differences was divided this difference by the total number of voxels 
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in the cognitive control network mask to standardize it to a range between -1 and 1 (Figure 2E 

& F, Eq. 2).  

 

𝐺𝐹𝐶-𝑅 𝑖𝑛𝑑𝑒𝑥𝑗 =  ∑ 𝐺𝐹𝐶-𝐷𝑖𝑓𝑓𝐶𝑅+>𝐶𝑅− − ∑ 𝐺𝐹𝐶-𝐷𝑖𝑓𝑓𝐶𝑅+<𝐶𝑅−𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑚𝑎𝑠𝑘      (𝐸𝑞. 2) 

where j = subject  

 

This coefficient was then used as our GFC-R index. A negative GFC-R index indicates an 

increased GFC frequency in GFC-DiffCR+<CR- and a simultaneous decrease in GFC-DiffCR+>CR-

, i.e. a MCI CR- characteristic pattern. Conversely a positive GFC-reserve indicates an 

increased GFC frequency in GFC-DiffCR+>CR- and a decreased frequency in GFC-DiffCR+<CR-, 

a pattern that was typically seen in MCI CR+. 

All steps described above were conducted also for the test sample (ISD). Supplementary 

Figure 1 is showing – equivalent to Figure 2B - the distribution of GFC voxels averaged 

across subjects within CR and diagnostic (MCI vs. HC) groups. When conducting the t-tests 

to compare the GFC-Diff values between MCI CR+ and MCI CR-, we found GFC-DiffCR+<CR- 

in a range from 0.2-0.22 (vs. 0.2-0.26 in the training sample) and the GFC-DiffCR+>CR- in a 

range from 0.29-0.41 (vs. 0.34-0.5 in the training sample). The GFC-DiffCR+<CR- fully 

overlapped between both samples, whereas the GFC-DiffCR+>CR- only partly overlapped. For 

our validation analysis, we used the GFC-DiffCR+>CR- and GFC-DiffCR+<CR- ranges derived 

from the training sample to compute the GFC-R index in the test sample. All above delineated 

steps were conducted accordingly for 7 major brain networks derived from a previous 

publication to control whether a relationship between CR and GFC was specific for the 

cognitive control network. Again, GFC-DiffCR+>CR- and GFC-DiffCR+<CR- ranges were assessed 

in the training sample and used to create the GFC-R index in the test sample. The histogram 

analysis was conducted fully-automated using in-house MATLAB scripts.  
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Statistical Analysis: 

Demographic variables were compared between groups using t-tests for continuous variables 

and χ2-test for gender.    

In order to test whether the GFC-R index differed between MCI CR+ vs. MCI CR- groups in 

the training sample, we conducted an ANCOVA, with group as the predictor, and age, gender, 

the global AV45 uptake, the grey matter volume within the cognitive control network and the 

learning score of the RAVLT as covariates. To evaluate how accurately the GFC-R index 

classified between MCI CR+ and MCI CR- subjects we performed a Receiver Operating 

Characteristic (ROC) Curve analysis. Prediction accuracy was quantified using the area under 

the curve (AUC). The 95% Confidence interval (CI) for each ROC was computed with 2000 

stratified bootstrap replicates for each ROC analysis. Equivalent models were run in the test 

sample, with the exception of AV45 PET uptake, which was not available in the ISD test 

sample. 

Lastly, we tested whether the GFC-R index predicted the CR proxies (years of education, 

CRIq) in the MCI subjects of the test sample (pooled across CR+ and CR-). To this end we 

conducted a multiple regression analysis, with the GFC–R index as a predictor of years of 

education or the CRIq, controlled for age, gender, the learning score of the CERAD and the 

total grey matter volume within the cognitive control network. For the ADNI sample, the 

association between the continuous AV-45 PET measure and GFC-R was tested in the MCI 

subjects (who were by definition of the inclusion criteria all AV-45 PET positive). We 

conducted a linear regression analysis, with AV45 uptake as independent variable and the 

GFC-R index as dependent variable, and age, gender, the RAVLT learning score and grey 

matter volume as covariates. Next, we tested whether our findings on the GFC-R for the 

prediction of years of education were specific for the cognitive control network. Thus, the 

regression analyses on GFC-R were repeated for each GFC-R index derived on the GFC 
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frequencies in one of 7 major functional brain networks (i.e. Default Mode Network (DMN), 

Visual Network, Somatomotor Network, Dorsal Attention Network (DAN), Ventral Attention 

Network (VAN), Limbic Network, Frontoparietal Network (FPAN)) (Yeo et al., 2011).  

All statistical analyses were conducted using the statistical software package R (R 

Development Core Team, 2013). Linear models were computed using the lm command in R. 

Linear model assumptions (skewness, kurtosis, heteroscedasticity) were tested using the 

gvlma function implemented in R. For all models reported, no significant ( = 0.05) 

violations of linear model assumptions were found.  

 

RESULTS: 

Demographics, cognitive measures and the mean GFC-reserve index values for the training 

and test sample are depicted in table 1.  

 

GFC Distribution: 

Figure 3 shows the spatial distribution of significant GFC values in the brain displayed in 

percentiles for the training (ADNI) and the test sample (ISD). We found a high spatial 

correspondence of significant GFC values between both samples with a correlation coefficient 

of r = 0.84, p < 0.001. The highest GFC values were observed predominantly within the 

frontal cortex, lateral parietal cortex, and areas of the medial brain surface. Those brain areas 

are known to be part of the DMN and the cognitive control network as reported previously 

(Cole et al., 2010).  

 

The GFC-reserve index is decreased in MCI CR- as compared to MCI CR+: 

MCI CR- showed significantly lower GFC-R index values than the MCI CR+ subjects in the 

training sample (F(6,36) = 16.82, p = 0.0002; see Figure 4A) and the test sample (F(5,17) = 

7.93, p = 0.0119). In an exploratory regression analysis, we tested the association between the 
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global AV45 uptake and the GFC-R index of the cognitive control network with age, gender, 

grey matter volume of the cognitive control network and the RAVLT learning score as 

covariates. The model showed no relationship between AV45 and the GFC-R index (t(37) = -

0.1482, p = 0.54).  

 

ROC analysis: 

Using a ROC analysis, we evaluated how accurate the GFC-reserve index discriminated 

between MCI CR+ and MCI CR- subjects (Figure 4B). The AUC was 0.840 with the 95% CI 

ranging between 0.72 and 0.95 within the training sample. Similarly, in the test sample, we 

found a AUC of 0.79 with the CI ranging from 0.60-0.99. 

 

The GFC-reserve index is a predictor of CR proxies in the ISD test sample: 

Using linear regression, we tested whether the GFC-R index predicted CR proxies in the test 

sample, when controlling for age, gender, the word list learning score of the CERAD battery 

and grey matter volume of the cognitive control network. For years of education, the 

regression model was significant (F(5,17) = 12.63, p = 0.00003) with an adjusted R2 of 0.72, 

showing that a higher GFC-R index significantly predicted higher years of education (t(17) = 

2.232, p = 0.039). For the CRIq score, a higher GFC-R index predicted a higher CRIq score 

(t(17) = 2.638, p = 0.173, overall model fit: F(5,17) = 4.422, p = 0.009, adjusted R2 0.44). The 

relationship between the GFC-R index and the CR proxies is illustrated in Figure 5. When 

testing the Pearson-moment correlation between the GFC-R index and our CR proxies, the 

correlation was significant for both years of education (r = 0.46, p = 0.026) and the CRIq (r = 

0.6, p =0.0024). 

 

Control analyses in other brain networks: 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 18 

In order to test, whether our findings on the prediction of years of education by GFC-R index 

were specific for the cognitive control network, we repeated the regression analysis for GFC-

R index derived from each of seven other major cortical networks (Yeo et al., 2011). For none 

of the other networks, the GFC-R index predicted years of education or the CRIq (p > 0.05, 

table 2). This suggests that the relationship between GFC changes and education is specific 

for the cognitive control network.  
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DISCUSSION: 

The first major finding of the current study was that MCI subjects with high CR (as measured 

by years of education) had an increased frequency of high GFC values within the cognitive 

control network compared to MCI subjects with lower years of education. Secondly, a newly 

derived summary measure of abnormal GFC frequencies within the cognitive control 

network, the GFC-R index, was associated with more years of education and a higher CRIq 

score, a composite measure of CR, in an independent cross-validation sample of MCI 

patients. The predictive value of GFC-R index was independent of demographic variables 

including age and gender, episodic memory performance or grey matter volume of the 

cognitive control network. These results suggest that the GFC-R index constitutes a 

biomarker candidate of CR-related functional brain changes in MCI. 

For our first major finding, MCI CR+ showed a right-ward shift of the GFC histogram to that 

in HC CR+, i.e. MCI CR+ showed an increased frequency of relatively high GFC values. In 

contrast, there was a left-ward shift of the GFC histogram in the MCI CR- group, i.e. an 

increased frequency of lower GFC values. A previous study on GFC changes in MCI reported 

decreased GFC in the frontal, parietal, and temporal cortices in MCI (J. Wang et al., 2013). 

That latter study, however, did not assess the impact of years of education on GFC 

differences. Our results extend those previous results showing that the levels of CR are an 

important modifying factor, where MCI CR- subjects show a decrease in GFC but MCI CR+ 

subjects show an increase in GFC within the cognitive control network. 

The increase in the frequency of high GFC values in MCI CR+ may reflect either pre-existing 

high levels of GFC before the development of MCI or, alternatively, a compensatory increase 

in GFC during the development of MCI. Previous studies showed that higher IQ is associated 

with higher GFC within the left frontal core region of the cognitive control network in young 

subjects (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012). Given that years of education 

and IQ are correlated (Matarazzo & Hermann, 1984), it is possible that MCI CR+ subjects 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 20 

had already higher levels of GFC before disease onset, thus possessing higher brain reserve. 

However, the fact that MCI CR+ subjects showed abnormally increased frequency of high 

GFC values when compared to HC CR+, i.e. at similarly high levels of education, suggests a 

compensatory increase of GFC in MCI. Such an interpretation of compensatory increase of 

GFC in MCI is consistent with several previous studies showing increased resting-state 

functional connectivity in MCI and AD compared to HC (K. Wang et al., 2007), that is 

attributable to higher levels of education (Bozzali et al., 2015). In summary, the MCI CR+ 

subjects show increased frequency of high GFC values within the cognitive control network, 

which probably reflects compensatory changes in MCI. 

For our second major finding, we could show in a cross-validation approach that higher levels 

of the GFC-R index are predictive of higher levels of education and CRIq in MCI and could 

well separate high vs. low education groups in MCI as shown by the ROC analysis, with an 

AUC of 0.79. Note however that sensitivity and specificity is not of primary clinical 

significance in the context of CR, which is likely to be continuously distributed. More 

importantly, the GFC-R index significantly predicted the level of CR proxies in the validation 

sample. The point prediction is difficult but clinically important as previous studies showed 

that with each additional year of education, the onset of dementia is delayed by 0.21 years 

(Hall et al., 2007) and the risk of AD dementia  is reduced (Sando et al., 2008; Stern et al., 

1994). A critical test in the future will be whether the GFC-R index predicts slower cognitive 

decline in subjects with preclinical AD or MCI as has been reported for years of education as 

a proxy of CR (Soldan et al., 2015). The advantage of using fMRI based CR biomarkers such 

as GFC-R in such prediction models is that GFC-R could be used as a measure to track CR 

changes over time. CR may be reduced as the disease progresses since brain pathology may 

eventually use up the reserve (Members et al., 2010). In contrast, proxies of CR such as 

education or occupational attainment are time-invariant.  
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We found that only the GFC-R index derived from GFC values within the cognitive control 

network but not within any of the other major resting-state networks was predictive of years 

of education or CRIq. These results suggest that frequency changes of GFC specifically 

within the cognitive control network are related to CR. These results are broadly consistent 

with previous findings showing that higher GFC of brain regions in the cognitive control 

network but not the default mode network were predictive of higher IQ in healthy subjects 

(Cole et al., 2012). A possible explanation includes that the cognitive control network has a 

unique role in the brain, such that it is highly connected with the other networks and may 

orchestrate the activation of other networks during cognitive tasks (Cole, Repovs, & 

Anticevic, 2014; Cole et al., 2013). Brain regions with increased connectedness in the brain 

have previously shown to be more resilient to targeted attacks as shown in graph theoretical 

analysis of resting state fMRI (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006). 

Higher GFC of the cognitive control network may enable to more flexibly activate different 

networks during cognitive processing (Cole et al., 2013), which in neurodegenerative disease 

may render a more flexible coping with local damage of specific neural networks, thus 

increasing CR. This will need to be tested in future combined resting-state and task-related 

fMRI studies.   

We used years of education as our primary outcome measure, i.e. the gold standard, since 

educational attainment has been recommended as the best validated indicator of cognitive 

reserve (Stern, 2012). Years of education has been tested as a CR proxy in numerous studies 

in AD (for review see (Stern, 2012)) and is  robustly associated with reduced risk of AD 

dementia across studies (Meng & D'Arcy, 2012; Valenzuela & Sachdev, 2006). Alternative 

proxy measures of CR include assessments such as occupational attainment, premorbid IQ or 

leisure activities. Since we used international cross-validation samples, equivalent measures 

of such variables were not available in both samples in the current study. However, we found 

a positive association between the GFC-R index and the CRIq (Nucci et al., 2012) an 
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alternative CR proxy that takes into account education, working and leisure activities, 

supporting criterion validity of the GFC-R index.  

A promising alternative marker of CR has been recently proposed, consisting of the residual 

episodic memory variability after accounting for brain atrophy and demographic variables 

(Reed et al., 2010; Zahodne et al., 2015; Zahodne et al., 2013). Such a measure captures well 

CR as the discrepancy between the level of cognitive performance and brain pathology, but is 

non-informative about any structural or functional brain changes that may underlie CR. The 

current biomarker captures functional brain changes of CR and would thus be complimentary 

to such memory-variance based marker or any of the standard proxy measures of CR.     

For the interpretation of the current results several caveats need to be taken into account. It is 

important to note that the GFC-R index is not a biomarker candidate of CR per se, rather it is 

a biomarker of functional brain changes that underlie CR. Ideally, the primary outcome 

parameter for the validation of the current biomarker constitute specific functional 

mechanisms that cause CR. Although several task fMRI studies have attempted to extract 

specific functional brain changes of CR in subjects with MCI and AD, no core mechanism, 

however, has yet emerged (for review see (Barulli & Stern, 2013)). Thus, more work is 

needed to disentangle the functional brain processes that underlie CR, which could then 

provide a point of reference for the validation of functional biomarkers of CR. Still, years of 

education has been validated in numerous studies as a marker of CR and may thus constitute 

the best primary outcome as a reference measures for the validation of functional biomarkers 

of CR at this point.  

It should be also taken into account that the reliability of GFC assessment is an important 

factor for the utility of GFC-R as a biomarker. Previous studies showed that GFC exhibits a 

fair to excellent test-retest reliability and its retest reliability ranks among the highest of 

resting state fMRI functional connectivity measures (Liao et al., 2013; J. H. Wang et al., 

2011). Multicenter variability of resting state fMRI is an active field of research and needs 
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still to be established for the various connectivity indices including that of GFC.  However, 

the current cross-validation of the GFC-R between completely different samples using 

different scanners and acquisition protocols suggest robustness of the current findings (Feis et 

al., 2015). Summary indices that average across large number of voxels may be more robust 

to multicenter variability that measures focusing on small ROIs (Ewers et al., 2006). Still, the 

test-retest and multicenter variability of the GFC-R index needs to be established in future 

studies. 

A strength of the current approach is the fully automated way to extract GFC frequency 

changes based on resting state fMRI. Thus, functional MRI data can be assessed without 

reliance on a task and data processing can be done without manual intervention, which 

provides a high attractiveness to be used in clinical praxis. Possible clinical applications of the 

GFC-R index as diagnostic biomarker candidate include the use outcome measure in clinical 

trials such as cognitive training, physical training that target compensatory brain mechanisms 

(Suo et al., 2016). Secondly, the GFC-R index could be used to track changes in CR during 

the progression of the disease. Future longitudinal studies may address these next steps.   
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Figure legends: 

 
Fig. 1: Meta-analytical activation map across 428 task-fMRI studies that were associated with 

search term “cognitive control” (FDR-corrected at p < 0.01) in NeuroSynth, projected on a 

brain surface. Colors indicate z-scores. 

 

Fig. 2: Analysis flow diagram, illustrating the steps of GFC-R index computation. (A) Voxel-

wise GFC is computed based on preprocessed resting-state fMRI for each subject and masked 

with the binarized cognitive control network map. (B) The GFC frequency distribution within 

the cognitive control network is plotted for groups split by diagnosis (HC & MCI) and CR 

status (CR- & CR+). (C) GFC within the cognitive control network is binned in intervals of 

0.01 for each subject. Within each CR group, the difference in GFC differences (GFC-Diff) 

between each MCI subject and the average GFC within the HCs group is are computed. 

Colored areas indicate whether MCI subjects showed lower (red) or higher (green) GFC 

frequency than the HC subjects. (D) GFC-Diff scores are compared between MCI CR+ and 

MCI CR- groups via bin-wise two-sample t-tests. (E) GFC-Diff scores are summed up across 

the selected bins for each MCI subject. In order to create a subject-specific summary score of 

GFC frequency differences indicative of CR+ status, the sum of GFC-Diff values in the GFC-

DiffCR+<CR-was subtracted from the sum of GFC-Diff values in the GFC-DiffCR+>CR-. (F)  This 

differences was divided by the total number of voxels in the cognitive control network mask 

to standardize it to a range between -1 and 1 to derive the GFC-R index for each MCI subject. 

 

Fig. 3: Distribution of significant GFC values in the brain. T-values of voxel wise one-sample 

t-tests of the GFC among the pooled HC and MCI subjects (FWE corrected at the voxel level 

tiles to facilitate visual group comparison between 

both samples.   
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Fig. 4: (A) Boxplots of the GFC-R index split by CR group for the training and the test 

sample. MCI CR- subjects show significantly lower GFC-CR values as MCI CR+ subjects in 

both samples. (B) shows the ROC curves with the specificity on the x- and the sensitivity on 

the y-axis. AUC = Area under the curve, * = p < 0.05, ** = p < 0.001 

 

Fig. 5: Scatterplot for the relationship between the GFC-R index and the CR proxies (years of 

education & CRIq) in the test sample. 

 

Supplementary Fig. 1: Shown is the distribution of GFC voxels averaged across subjects 

within CR (CR+ vs. CR-) and diagnostic (MCI vs. HC) groups for the test sample. The graphs 

are equivalent to Figure 2B of the main manuscript. 
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Tables: 

 

 

Table 1: Demographics and neuropsychological characteristics of the study samples 

subjects split by Diagnosis and CR group 

 

 
 

 
Training sample (ADNI) 

 

 HC CR-  
(n = 13) 

HC CR+  
(n = 11) 

MCI CR-  
(n = 24) 

MCI CR+  
(n = 19) 

Age (years)2 75.12 ± 5.85 74.30 ± 7.56 74.90 ± 5.87 69.10 ± 6.16 
Gender 
(female/male) 

3/10 5/6 14/10 12/7 

Education1,3 15.15 ± 1.41 18.64 ± 1.12 14.17 ± 1.58 18.58 ± 1.02 
Global AV45 
Uptake 

0.99 ± 0.45 0.98 ± 0.04  1.4 ± 0.18 1.37 0.15 

MMSE2,3  29.12 ± 0.91 27.91 ± 1.45 26.71 ± 1.63 28.16 ± 1.34 
RAVLT 
Learning1 

45 ± 13.46 43.74 ± 7.81 31.71 ± 9.40  38.70 ± 8.91 

 
Test sample (ISD) 

 
 HC CR-  

(n = 17) 
HC CR+  
(n = 15) 

MCI CR-  
(n = 13) 

MCI CR+  
(n = 10) 

Age (years) 70.17 ± 3.94 72.52 ± 6.33 77.02 ± 3.63 73.87 ± 4.23 

Gender4 
(female/male) 

13/4 5/10 11/2 8/2 

Education1,3 11.59 ± 1.33 16.6 ± 2.1 10.92 ± 1.98 17.1 ± 2.08 
MMSE1  29.53 ± 0.87 29.33 ± 0.72 25.15 ± 1.52 27.9 ± 2.33 
CERAD Word 
List Learning1 

23 2.6 24.07 3.24 13.3 2.84 18.9 3.14 

1) MCI CR+ > MCI CR- 
2) MCI CR+ < MCI CR- 
3) HC CR+ > HC CR- 
4) HC CR+ < HC CR- 
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Table 2: Control analyses of the GFC-R index as a predictor of CR proxies in major 

brain networks 

 Training sample 

(ADNI) 

Test sample (ISD) 

Functional 

Network 

GFC-Diff GFC-CR as a predictor of 

education in MCI CR+ and 

CR- pooled1 

GFC-CR as a predictor of CRIq 

in MCI CR+ and CR- pooled1 

 CR+<CR- CR+>CR- T p T p 

Cognitive 

Control  

0.2-0.26 0.34-0.5 2.232 0.039 2.638 0.017 

Default Mode  0.2-0.27 0.37-0.52 0.663 0.516 1.365 0.190 

Dorsal Attention  0.22-0.28 0.41-0.51 0.981 0.341 0.948 0.356 

Ventral 

Attention  

0.19-0.23 0.3-0.5 0.927 0.367 1.820 0.087 

Frontoparietal 0.2-0.27 0.35-0.52 1.258 0.225 1.656 0.116 

Limbic 0.25 0.36-0.46 0.566 0.579 0.562 0.582 

Visual 0.22-0.28 0.43-0.53 0.256 0.801 1.571 0.135 

Somatomotor 0.21-0.28 0.32-0.46 1.2526 0.227 0.849 0.408 

1) Models controlled for age, gender, grey matter volume of the tested 
network, CERAD Word list learning score 
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