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Recently, studies based on time-varying functional connectivity have unveiled brain states

diversity in some neuropsychiatric disorders, such as schizophrenia andmajor depressive

disorder. However, time-varying functional connectivity analysis of resting-state functional

Magnetic Resonance Imaging (fMRI) have been rarely performed on the Autism Spectrum

Disorder (ASD). Hence, we performed time-varying connectivity analysis on resting-state

fMRI data to investigate brain statesmutation in ASD children. ASD showed an imbalance

of connectivity state and aberrant ratio of connectivity with different strengths in the whole

brain network, and decreased connectivity associated precuneus/posterior cingulate

gyrus with medial prefrontal gyrus in default mode network. As compared to typical

development children, weak relevance condition (the strength of a large number of

connectivities in the state was less thanmeansminus standard deviation of all connection

strength) was maintained for a longer time between brain areas of ASD children, and

ratios of weak connectivity in brain states varied dramatically in the ASD. In the ASD, the

abnormal brain state might be related to repetitive behaviors and stereotypical interests,

and macroscopically reflect disruption of gamma-aminobutyric acid at the cellular level.

The detection of brain states based on time-varying functional connectivity analysis of

resting-state fMRI might be conducive for diagnosis and early intervention of ASD before

obvious clinical symptoms.

Keywords: fMRI, autism, time-varying, functional connectivity, brain state, divergence

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a lifelong developmental disorder. Children with ASD
cannot perform normal social communication, and are characterized by repetitive behaviors and
stereotypical interests. Previous studies indicated that impairments in the ASDmight reflect deficits
in brain network and connectivity (Minshew and Williams, 2007; Vissers et al., 2012; Abbott et al.,
2015).

In the neuroimaging analysis, deficits in connectivity have been found to be related to clinical
symptoms and behavioral performance in the ASD. Underconnectivity and overconnectivity have
been detected in functional connectivity analysis of ASD. In the studies about ASD based on
working memory, executive functioning, and response inhibition tasks, the underconnectivity
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of frontal-posterior connections supported the theory that
malfunction of circuitry with underconnectivity could cause
deficits in integration of information in the brain at cognitive
level (Just et al., 2004; Koshino et al., 2005; Just et al., 2007;
Kana et al., 2007). In the resting-state studies, overconnectivity
was found to be associated with ASD symptom severity (Keown
et al., 2013). In the network analysis of ASD, underconnectivity
disturbed the integration of network and overconnectivity
damaged the segregation of network (Abbott et al., 2015).
Integration within brain networks and segregation between them
played an important role in the functional brain maturation
(Dosenbach et al., 2010). And in the development (from
childhood to early adulthood) of brain, negative function
connectivities associated with right superior temporal cortex
were increased (Kelly et al., 2009).

Recently, dynamic network analysis was introduced in studies
of functional connectivity to identify brain connectivity states.
Dynamic network analysis could reveal functional connectivity
variability during a scan period, which might be impossible
in the traditional network analysis of fMRI data. Dynamic
network analysis has found some time-varying characteristics
of brain connectivity based on fMRI data during a scan
period (Liu and Duyn, 2013; Allen et al., 2014; Monti et al.,
2014; Yu et al., 2015). Relevant studies have indicated that
metastable states identified by dynamic networks corresponded
to stages of consciousness (Calhoun et al., 2014). In addition,
dynamic network analysis promoted knowledge of actual sub-
network interactions and separation strategies of brain regions
(Allen et al., 2014; Yang et al., 2014). In previous studies,
dynamic network analysis showed that connectivity state could
be shifted in humans with long-term training and experience,
such as taxi drivers (Shen et al., 2016). Childhood and
adolescence were key stages of brain maturation, and cognitive
function networks showed dynamic reorganization in brain
maturation (Uddin et al., 2011). And in the development of
adolescence, dynamics of brain state was the basis of the
development of executive function (Medaglia et al., 2015).
ASD might induce deviation of reorganization process from
the normal process, and influence connectivity state. In
addition, changes of connectivity state in the ASD were
less drastic between the resting-state and the tasking-state as
compared to typical development (TD) children (Uddin et al.,
2015).

Previous functional connectivity fMRI studies showed that
overconnectivity and underconnectivity were the major forms
of abnormal connectivity in the ASD. To the best of our
knowledge, the relationship between connectivity strength and
time-varying functional connectivity states in the ASD based on
fMRI has not yet been reported.We hypothesized that ASD could
influence time-varying functional connectivity states through
affecting distribution of connectivity strength and influence
the connectivities related to social function. To investigate the
influence of ASD on brain connectivity states, we performed
group independent component analysis (GICA) and dynamic
network analysis on fMRI data of ASD and TD children.
GICA can extract spatial distribution of functional regions in
the brain.

TABLE 1 | Demographic information of the participants.

TD ASD P-value

N 44 31 -

Age (Mean± SD) 12.46± 3.1 11.51± 2.64 0.1693

Gender Male Male –

Handedness Right Right –

Handedness Score (Mean± SD) 62.07± 22.82 63.52± 23.88 0.7914

FIQ Score (Mean± SD) 113.14± 12.32 112.52± 15.87 0.8495

ADI-R Social Total A (Mean± SD) – 18.77± 4.66 –

ADI-R Verbal Total BV (Mean± SD) – 15.26± 3.84 –

ADI RRB Total C (Mean± SD) – 5.74± 2.61 –

ADI R Onset Total D (Mean± SD) – 2.94± 1.34 –

ADOS Module – 3 –

ADOS Total (Mean± SD) – 11.52± 4.41 –

ADOS Communication (Mean± SD) – 3.41± 1.74 –

ADOS Social (Mean± SD) – 8.11± 3.04 –

ADOS Stereo Behavior (Mean± SD) – 2.67± 1.95 –

ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation

Schedule; Subjects evaluated by ADOS module 4 were excluded when we calculated

mean and SD of ADOS scores.

2. MATERIALS AND METHODS

2.1. Participants and Functional MRI Data
Acquisition
Data of participants were obtained from open accessed dataset
collected by NYU Langone Medical Center, a collection site of
Autism Brain Image Data Exchange I(ABIDE I) (Di Martino
et al., 2014). The site includes 79 (7.1–39.1 years) ASD and 105
TD (6.5–31.8 years) children. The criteria of included subjects
are:

(1) male
(2) scores of full intelligence quotient (FIQ, estimated by

the fourth subtests of the Wechsler Abbreviated Scale of
Intelligence, WASI-IV) above 85

(3) right-handedness
(4) aged 7–18 (not including 18 years old)

TD children were matched with ASD children for age, gender,
handedness, FIQ score, and head motion (P-values of the rigid
6 using two-sample t-test were 0.7654, 0.8762, 0.2053, 0.6026,
0.5831, and 0.6601, respectively). The detailed demographic
information of participants is presented in Table 1. BOLD fMRI
data of each participant were acquired with a whole-brain echo
planar imaging (EPI) sequence and interleaved slice acquisition
(TR = 2 s, TE = 15ms, flip angle = 90◦, slice thickness =

4mm, FoV = 240mm, 180 volumes) on a 3T Allegra scanner.
Data collections were approved by local IRB of the site, and all
data were anonymized. More detailed information is available at
http://fcon_1000.projects.nitrc.org/indi/abide/.

2.2. Data Preprocessing
Resting-state fMRI raw data were preprocessed by Data
Processing Assistant for Resting-State fMRI (DPARSF)
(Chao-Gan and Yu-Feng, 2010) based on Statistical Parametric
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Mapping (SPM8). The procedure of preprocessing included
removal of first 10 image volumes, realignment, time-slicing
and head motion correction, normalization into Montreal
Neurological Institute (MNI) standard space, and spatially
smoothened by a full-width at half-maximum of 6 mm. All
image volumes were aligned to the first volume for each
participant in the realignment. In the head motion correction,
head motion parameters were estimated according to Friston
24-Parameter Model (Friston et al., 1996). In the normalization,
fMRI data were spatially normalized to the MNI EPI template.

2.3. Independent Component Analysis
Independent component analysis was performed on the
preprocessed fMRI data by GIFT v3.0a using Infomax

algorithm (Bell and Sejnowski, 1995), and the order of ICA
model was 100. Before performing ICA algorithm, fMRI data
dimension reduction was performed by Principal Component
Analysis (PCA). The reliability of independent components
(ICs) was evaluated by repeating the algorithm 25 times in
ICASSO (Himberg and Hyvärinen, 2003). According to spatial
distribution of ICs in previous studies (Allen et al., 2014), 54
ICs in seven sub-networks were kept for the following analysis.
The seven sub-networks were subcortical (SC), auditory (AU),
visual (VIS), somatomotor (SM), cognitive control (CC), default
mode (DM), and cerebellar (CB) networks (Figure 1). The other
components were related to movement or physical according
to their spatial distributions, so they were not included in this
study.

FIGURE 1 | Spatial distribution of components used to construct time-varying networks and seven subnetworks in the covariance matrix. (A) Spatial

distributions of components involved in the same subnetwork were in a solid line box and spatial distributions of the same components were in a dotted line box. In a

dotted line box, colors of regions corresponded to ICs. (B) Subnetworks were labeled by solid line boxes and corresponding texts in a covariance matrix of a state.

The number of the components in the matrix has been labeled in the figure (11, 67, 42, 5, 10, 23, 26, 28, 43, 51, 16, 17, 21, 25, 30, 39, 50, 56, 61, 62, 76, 79, 31,

35, 37, 38, 44, 48, 52, 57, 58, 59, 65, 70, 71, 78, 81, 82, 85, 89, 96, 33, 40, 54, 63, 69, 73, 80, 83, 84, 92, 27, 29, and 55).
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2.4. Calculation of Time-Varying
Connectivity and K-Means Clustering
The selected ICs were defined as regions of interest (ROIs) to
construct the networks. Linear, quadratic, and cubic trends of
the time courses extracted according to the ROIs were removed,
and six realignment parameters were regressed out. Then, the
regressed time courses were depicted by 3DDESPIKE to remove
the outliers, and filtered with a high cutoff frequency of 0.15 Hz
according to the previous study (Allen et al., 2014).

Time-varying functional connectivity was calculated based
on segmented time courses in 148 windows created by a

tapered window [a rectangle (width = 22 TRs) with a Gaussian
(=3 TRs)] sliding in steps of 1 TR. By calculating Pearson’s
correlation coefficient (functional connectivity) of all possible
ROI pairs in the same sliding window, we constructed covariance
matrices (54 × 54) of each subject. In addition, we used the

graphical LASSO (a shrinkage and selection method for linear

regression) to evaluate the log-likelihood of covariance matrices,

and regularized matrices after evaluating with L1-norm penalty

to control sparsity (Friedman et al., 2008).

To determine the connectivity states, covariance matrices of
ASD and TD were clustered by k-means clustering algorithm

FIGURE 2 | Matrices of all states at k = 2 to 8 and clustered centroid matrices with significantly different MDTs (p < 0.05). K was the number of clusters in

k-means clustering. This figure showed all centroids of states at k = 2 to 8 and centroid matrices with significantly different MDTs at k = 13, 14, and 18. MDTs of some

states (marked with stars) in the figure were significantly different when values of k were 3 (T = 2.1733,p = 0.0330 < 0.05), 5 (T = 2.1247,p = 0.0370 < 0.05), and

8 (T = 2.2591,p = 0.0269 < 0.05). T- and p-values were calculated by two-sample t-test. In addition, state matrices with significantly different MDTs were marked

with star when k were 13 (T = 2.6400,p = 0.0101 < 0.05), 14 (T = 2.3359,p = 0.0222 < 0.05), and 18 (T = 2.0610,p = 0.0429 < 0.05).
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TABLE 2 | Percentages for three types of connectivity in all clusters of different k-values with significantly different MDTs.

Cluster number (k) Percentage of 1 Percentage of 2 Percentage of 3

(weak connectivity) (strong connectivity)

ASD NC ASD NC ASD NC

3

0.5967 0.6687 0.3275 0.2720 0.0757 0.0591

0.7063 0.6661 0.2598 0.2738 0.0338 0.0600

0.5059 0.6618 0.3073 0.2782 0.1866 0.0599

5

0.4896 0.6593 0.2876 0.2796 0.2226 0.0610

0.6784 0.6512 0.2758 0.2809 0.0457 0.0678

0.7085 0.6704 0.2596 0.2716 0.0318 0.0579

0.5566 0.6695 0.3424 0.2666 0.1008 0.0638

0.6196 0.6691 0.3041 0.2795 0.0761 0.0512

8

0.5285 0.6675 0.3368 0.2740 0.1345 0.0584

0.6573 0.6590 0.2933 0.2764 0.0493 0.0645

0.4531 0.6531 0.2585 0.2817 0.2883 0.0651

0.6296 0.6597 0.3180 0.2722 0.0522 0.0680

0.7198 0.6758 0.2518 0.2698 0.0282 0.0542

0.7018 0.6500 0.2513 0.2801 0.0468 0.0697

0.6216 0.6587 0.2970 0.2864 0.0813 0.0547

0.5290 0.7002 0.3089 0.2605 0.1620 0.0391

Bold percentages were of weak connectivity in clusters with significantly different MDTs at different k-values.

based on Manhattan distance. Clustered centroid matrices were
covariance matrices of connectivity states. We used gap, elbow
and Calinski Harabasz to estimate the optimal cluster number.
However, optimal cluster number of these methods was two and
this was improper. So clustering was performed at k = 2 to 20,
and repeated 150 times per k-value. The effectiveness of the states
in the ASD and NC was determined upon the span of states in
windows number. In this study, reliable state in the ASD and
NC covered at least 10 windows; otherwise, state (covered < 10
windows) was unreliable. Mean dwell time (MDT) was calculated
at each k-value. MDT was the average number of windows that
were continuous on the time distribution and classified as the
same state, representing the duration of each state.

2.5. Statistical Analysis
Two-sample t-test was used to compare the MDTs of ASD and
TD children. To detect the differences of connectivity in each
connectivity state, subjects with effective state were included in
the two-sample t-test for the median covariance matrices of each
state. In each k-value, median covariancematrices were identified
by Manhattan distance priority and tested with the two-sample
t-test, with a threshold (p < 0.001) to identify connectivities
with differences. Times of different connectivity at each state
for all k-values were aggregated. Connectivity with frequency of
occurrence ≥ 5 times was included in the results.

2.6. Connectivity Strength Discretization
The absolute values of connectivity strength in all covariance
matrices for all k-values were divided into three levels (1, 2,
and 3) by discretization method based on average and standard
deviation of TD (0.1828 ± 0.1363) and ASD (0.1698 ± 0.1322)

separately. In this study, the connectivity of first level was defined
as weak connectivity and last level as strong connectivity. We
calculated the percentages for three types of connectivity in all
clusters to determine changes in the number of connectivity with
different strength in the ASD.

3. RESULTS

Significant differences in theMDTs were found when the k-values
of k-means clustering were 3, 5, 8, 13, 14, and 18. Functional
connectivity of ASD children showed weak connectivity for a
longer time as compared to TD children according to the T-
values. Figure 2 shows detailed information of the clustered
centroid matrices with significantly different MDTs. Table 2

shows the percentage of three connectivity strength levels at
k-values with significantly different MDTs. The clusters with
maximum ratio of weak connectivity were with significantly
different MDTs when k was 3, 5, and 8. However, unreliable
clusters existed when k-values were > 8. Figure 3 shows
means and standard deviations of percentages for three types of
connectivity when k-values were from 2 to 8. Figures 3, 4 indicate
less means of weak connectivity in the ASD as compared to TD.
Figure 4 also shows that the fluctuation range of percentages for
three types of connectivity in the ASD was greater as compared
to TD.

The information of abnormal connectivities is presented in
Table 3, and the ICs connected by these connectivities are shown
in Figure 5,Table 4. The ICs were distributed in cognitive control
(ICs: 35, 37, 48, 52, 57, 71, 78, 82), visual (ICs: 25, 30, 50, 56), and
default mode (ICs: 40, 83) networks. These ICs mainly involved
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FIGURE 3 | Means and standard deviations of percentages for three types of connectivity at k-values from 2 to 8.

TABLE 3 | The abnormal connectivities with ≥ 5 times recurrence in the

ASD.

No. Related Frequency of Increase or

components of occurrence decrease

1 30, 48 10 Increase

2 37, 57 10 Increase

3 25, 71 6 Increase

4 52, 78 6 Decrease

5 35, 50 5 Decrease

6 40, 83 5 Decrease

7 56, 82 5 Decrease

MOG.L, CUN.L, frontal lobe (ORBinf.L, IFGoperc.R, MFG.R,
and SFGmed.L), right temporal lobe (STG.R and ITG.R), ROL.R,
FFG.R, CAL.L, INS.R, and PCUN/PCG in spatial distribution.

4. DISCUSSION

The connectivity state in the brain is flexible, which might
correspond to diversity of human cognitive functions. Brain
connectivity state could change with maturity of the brain,
environmental stimulus, and some developmental disorders. And
cognitive and behavioral flexibility have been found decreased in
the ASD. Also, damages in the connectivities within and between
sub-networks (such as default mode, salience, and executive
control networks) have been detected in the studies of atypical

connectivity patterns and maturation of the ASD (Washington
et al., 2014; Abbott et al., 2015).

In the current study, we used time-varying connectivity
analysis to detect the impairments of connectivity states in
the ASD at resting state. MDTs of brain states with weaker
connectivity were abnormal in the ASD (Figure 2). Also, ratios of
connectivity with different strengths changed more drastically in
the ASD (Figures 3, 4). Drastic changes of connectivity strength
might mask task-evoked connectivity changes, and make the
brain states undifferentiated (Rubenstein and Merzenich, 2003;
Uddin et al., 2015).

In our study, ASD showed more divergent connectivity
strength of brain state than TD (Table 2, Figure 2). In the brain,
cognitive function depended on connections of specific brain
areas. For example, social cognition was related to the prefrontal
cortex, the precuneus/posterior cingulate, the hippocampus,
the anterior temporal lobes, the posterior superior temporal
sulcus and temporo-parietal junction, the fusiform gyrus, the
left inferior frontal gyrus, and the anterior insula (Gotts et al.,
2012). Hence, some task-evoked functional connectivities were
consistent. Based on the consistency, cognitive function state
of the brain could be distinguished by whole-brain connectivity
patterns (Shirer et al., 2012). Under the same cognitive function,
brain states of ASD might diverge from TD due to the disturbed
convergence of functional connectivity in the ASD. Also, atypical
connectivity patterns of response inhibition were found in
previous studies (Kana et al., 2007; Daly et al., 2014).

The abnormal connectivity states may be macroscopical
reflection of the excitatory/inhibitory imbalance at the cellular
level (Thatcher et al., 2009; Coghlan et al., 2012). In the ASD,
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FIGURE 4 | Scatter diagrams of percentages for three types of connectivity at k-values from 2 to 8. K was the number of clusters in the clustering process.

Level 1, level 2, and level 3 represented three types of connectivity.

stereotypical behavior was found to be related to abnormal
gamma-aminobutyric acid (GABA) signaling (Chao et al.,
2010). A previous study reported that increased inhibition or
decreased excitation at the cellular level might be noise for
brain spontaneous activity measured by fMRI, and interfere
with neural synchronization of brain in the ASD (Dinstein
et al., 2011). The disrupted excitatory/inhibitory balance in the
nerve cells might result in disruption of the connectivity on the

macro scale, because functional connectivity is a measure of the
synchronization between discrete brain regions (Dinstein et al.,
2011). In addition, increased connectivity between subcortical
and cortical cortices from fMRI studies have been observed
as well as decreased ratio of GABA to creatinine in the
cerebellum and the primary sensory and motor cortices in the
ASD (Gaetz et al., 2014; Rojas et al., 2014; Cerliani et al.,
2015). The locations of abnormal connectivity and disrupted
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FIGURE 5 | Spatial distribution of independent components linked by abnormal connectivities. The connectivity between independent components in each

panel occurred more than five times. (A) Red-left cuneus (IC 30), blue-right inferior frontal gyrus: orbital part (IC 48); (B) Red-right superior temporal gyrus (IC 37),

blue-right rolandic operculum (IC 57); (C) Red-left middle occipital gyrus (IC 25), blue-right insula (IC 71); (D) Red-right middle frontal gyrus (IC-52), blue-right inferior

temporal gyrus (IC 78); (E) Red-inferior frontal gyrus: orbital part (IC 35), blue-left calcarine sulcus (IC 50); (F) Red-left superior middle frontal gyrus (IC 40),

blue-precuneus/posterior cingulate gyrus (IC 83); (G) Red-right fusiform gyrus (IC 56), blue-left middle frontal gyrus (IC 82).

GABA signaling were consistent, which might indicate that the
abnormal brain activities resulted from aberrant GABA signaling
in the ASD. Aberrant connectivity status in fMRI might play an
important role in the diagnosis of ASD without obvious clinical
symptoms.

In the ASD, several cognitive circuits in the brain were
aberrant, such as circuits related to visual control, working
memory, inhibitory control, emotion processing, face
recognition, etc. Some aberrant connectivities in the ASD

were connected to social brain, which were the discrete brain
regions dominating social cognition (Frith and Frith, 2007; Gotts
et al., 2012). In our results, ASD showed decreased connectivity
between posterior and frontal regions in DMN (PCUN/PCG
and SFGmed.L, Figure 5F). The decreased connectivity was
also associated with social deficits, and hampered the ability
to maintain a conversation, make eye contact, and perform
the pragmatics of language (Assaf et al., 2010; von dem Hagen
et al., 2013). In addition, abnormal connectivities in the ASD
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TABLE 4 | Peak values distribution of the independent component spatial maps.

Independent Component Peak MNI coordinate Peak intensity (z-score) Brain regions

X Y Z

25 −27 −96 3 11.3693 Left middle occipital gyrus (MOG.L)

30 0 −81 15 10.9039 Left cuneus (CUN.L)

35 −48 21 −6 11.0173 Left inferior frontal gyrus, orbital part (ORBinf.L)

37 54 −21 3 9.7456 Right superior temporal gyrus (STG.R)

40 −3 54 3 11.3276 Left superior frontal gyrus, medial (SFGmed.L)

48 54 21 33 8.7204 Right inferior frontal gyrus, opercular part (IFGoperc.R)

50 0 −99 6 10.4117 Left calcarine fissure and surrounding cortex (CAL.L)

52 33 57 3 11.2562 Right middle frontal gyrus (MFG.R)

56 18 −78 −9 9.7335 Right fusiform gyrus (FFG.R)

57 57 3 3 9.5117 Right rolandic operculum (ROL.R)

71 39 −6 6 9.1991 Right insula (INS.R)

78 21 −72 54 7.2923 Right inferior temporal gyrus (ITG.R)

82 −36 51 9 13.4001 Left middle frontal gyrus (MFG.L)

83 −3 −63 15 10.8304 Precuneus / Posterior cingulate gyrus (PCUN/PCG)

were also found in and between cognitive control (ORBinf.L,
IFGoperc.R, INS.R, MFG, STG.R, ITG.R, and ROL.R) and visual
networks (left middle occipital gyrus, left cuneus, left calcarine
sulcus, and right fusiform gyrus) in our results. The anterior
cingulate cortex, ventrolateral prefrontal cortex, dorsolateral
prefrontal cortex, and parietal cortex were associated with
cognitive control (Solomon et al., 2014). In the human brain,
V1 of visual cortex lies in calcarine sulcus, and motion area of
visual cortex is located in the inferior temporal sulcus (Orban
et al., 2004). Fusiform gyrus was a key region in face recognition
and other social functions (Haxby et al., 2000; Liu et al., 2015).
Moreover, CUN was related to control of visual attention and
refreshing information in working memory (Makino et al., 2004;
Roth and Courtney, 2007; Souliéres et al., 2009). Our results
showed decreased connectivity related to visual network in the
ASD (Figures 5A,C,E,G). In addition, several studies indicated
that frontal lobe and right anterior insula played an important
role in inhibitory control (Cai et al., 2014; Daly et al., 2014;
Shafritz et al., 2015). Our results showed significantly abnormal
connectivities linked to medial prefrontal cortex (MPFC) and
superior temporal gyrus in the ASD (Figures 5B,D), whichmight
be related to aberrant activation levels in these brain regions
and abnormally implicit emotion processing in the ASD (Kana
et al., 2016). These results showed that abnormally activated
brain regions induced by tasks might be aberrant at resting-state,
which might display targeted behavior modification in the ASD
before clinical symptoms.

The disruption of excitation and inhibition balance at
connectivity or circuit level might contribute to clinical
symptoms in the ASD. Time-varying connectivity analysis in
resting-state fMRI can identify the influence of excitation
and inhibition balance on whole brain connectivity state, and
abnormal connectivity at resting-state in the ASD. However,
underlying pathological mechanisms of ASD relied on the
study of neurotransmitters in neurons, and relationship between

abnormal connectivity and cognitive function might hinder
tasking-state neuroimaging and electrophysiological study. In
addition, the volume or scan time of samples was relatively
small in this study. Prolonging the scan time could capture more
accurate metastable states and data dependence of the method
affected the universal application of the conclusion. Our study
might reflect some characteristics of time-varying functional state
in the ASD and the differences of connectivity states in dynamic
network analysis between ASD and TD groups might suggest the
imbalance between excitation and inhibition.
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