
Restless Temporal Path Parameterized Above
Lower Bounds
Philipp Zschoche !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Abstract
Reachability questions are one of the most fundamental algorithmic primitives in temporal graphs—
graphs whose edge set changes over discrete time steps. A core problem here is the NP-hard Short
Restless Temporal Path: given a temporal graph G, two distinct vertices s and z, and two
numbers δ and k, is there a δ-restless temporal s-z path of length at most k? A temporal path is a
path whose edges appear in chronological order and a temporal path is δ-restless if two consecutive
path edges appear at most δ time steps apart from each other. Among others, this problem has
applications in neuroscience and epidemiology. While Short Restless Temporal Path is known
to be computationally hard, e.g., it is NP-hard for only three time steps and W[1]-hard when
parameterized by the feedback vertex number of the underlying graph, it is fixed-parameter tractable
when parameterized by the path length k. We improve on this by showing that Short Restless
Temporal Path can be solved in (randomized) 4k−d|G|O(1) time, where d is the minimum length
of a temporal s-z path.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases temporal graphs, fixed-parameter tractability, above-lower-bound paramet-
erization

1 Introduction

Susceptible-Infected-Recovered. These are the three states of the SIR-model—a canonical
spreading model for diseases where recovery confers lasting resistance [6, 31, 39]. Here, an
individual is at first susceptible (S) to get a certain disease, can devolve to be infected (I),
and ends up resilient after recovery (R). We study one of the most fundamental algorithmic
questions in this model: given a set of individuals with a list of physical contacts over
time, and two individuals s and z, is it possible to have a chain of infections from s to z?
As the timing of the physical contacts is crucial in this scenario, we use a temporal graph
G := (V, (Ei)τi=1) consisting of a set V of vertices and an edge set that changes over discrete
time steps described by a chronologically ordered sequence (Ei)τi=1 of edge sets over V .
A temporal path is a path whose edges appear in chronological order. In particular, a
sequence P := ((ei, ti))mi=1 of time-edges from E(G) :=

⋃τ
i=1 Ei × {i} is a temporal s-z path

of length m if (
⋃m
i=1 ei, {ei | i ∈ [m]}) is an s-z path (no vertex is visited twice) and ti ≤ ti+1

for all i ∈ [m− 1]. If we construct a temporal graph where the vertices are individuals and
an edge e ∈ Et represents a physical contact of two individuals at time step t, then a chain
of infections is represented by a temporal path. However, not every temporal path yields a
potential chain of infections, as an infected person might recover before the next individual
is met. To represent infection chains in the SIR-model by temporal paths, we restrict the
waiting time at each intermediate vertex to a prescribed duration—that is, the time until
an individual becomes resilient after infection. These temporal paths are called restless. In
particular, the temporal s-z path P is δ-restless if ti ≤ ti+1 ≤ ti+ δ for all i ∈ [m−1]. Hence,
restless temporal paths model infection transmission routes of diseases that grant immunity
upon recovery [29]. Other applications of restless temporal paths appear in the context of
delay-tolerant networking with time-aware routing tables [13], and in the context of finding
signaling pathways in brain networks [41]. Consider Figure 1 for an illustration of a temporal

ar
X

iv
:2

20
3.

15
86

2v
1

 [
cs

.D
S]

 2
9

M
ar

 2
02

2

mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600

2 Restless Temporal Path Parameterized Above Lower Bounds

s

a

e

c

b z
2

1

4

224

4 61, 5

Figure 1 An illustration of a temporal graph with vertices s, a, b, c, d, e, and z. The labels on the
edges denote at which time steps the edges are present. The time-edges of a 2-restless temporal
s-z path in this temporal graph are marked by thick (green) edges. In fact, this is the only 2-restless
temporal s-z path in this temporal graph, as we cannot visit a vertex twice and two consecutive
time-edges have to be at most two time steps apart.

graph with a 2-restless temporal s-z path.
The central problem of this work is as follows.

Short Restless Temporal Path
Input: A temporal graph G, a source vertex s ∈ V , a destination vertex z ∈ V , and

integers δ, k ∈ N.
Question: Is there a δ-restless temporal s-z path in G of length at most k?

Casteigts et al. [13] showed that Short Restless Temporal Path is NP-hard even
if δ = 1, τ = 3, every edge appears only once, and the underlying graph has a maximum
degree of six. Moreover, they showed that it is W[1]-hard when parameterized by the distance
to disjoint paths of the underlying graph1.

Hence, Short Restless Temporal Path is presumably not fixed-parameter tractable
when parameterized by a wide range of well-known parameters of the underlying (static)
graph, e.g., feedback vertex number, pathwidth, or cliquewith. However, Short Restless
Temporal Path is fixed-parameter tractable when parameterized by k or the treedepth of the
underlying graph or the feedback edge number of the underlying graph [13]. Thejaswi et al. [41]
showed that for every p ∈ R with 0 < p < 1 there is a randomized O(2kk|G|δ log(k · 1/p))-time
algorithm for Short Restless Temporal Path that has a one-sided error probability of
at most p. More precisely, if the algorithm returns yes, then the given instance I of Short
Restless Temporal Path is a yes-instance, and if the algorithm returns no, then the
probability that I is a yes-instance is at most p. They conducted experiments on large
synthetic and real-world data sets and showed that their algorithm performs well as long as
the parameter k is small. For example, one can solve Short Restless Temporal Path
with k ≤ 9 and a temporal graph with 36 million time-edges in less than one hour with
customary desktop hardware. On the data set used in the experiments, k seems to be the
only useful parameter for which we know that Short Restless Temporal Path is fixed-
parameter tractable; all other known parameters (i.e., timed feedback vertex number [13],
treedepth of the underlying graph, and feedback edge number of the underlying graph) are
too large to be eligible in practice [41]. Hence, the current algorithms are not satisfactory
when it comes to computing long restless temporal paths in real-world temporal networks.

The parameter k of Short Restless Temporal Path can be seen as the solution size
and is thus a natural and well-motivated parameter from a parameterized algorithmics point

1 That is, the minimum number of vertices we need to remove from a graph such that the remaining
graph consists of a set of vertex-disjoint paths.

Philipp Zschoche 3

of view. However, as we observed before, FPT-algorithms regarding the solution size are
not necessarily practical, e.g., if all solutions are large. To address this problem, one can
investigate parameterizations above guaranteed lower bounds [4, 8, 14, 27, 28, 33, 34]: that is,
the difference between the smallest size of a solution and a guaranteed lower bound for the
solution size. In the case of Short Restless Temporal Path, three lower-bounds for k
seem particularly interesting:
The distance from s to z: The minimum length of an s-z path in the underlying graph.
The temporal distance from s to z: The minimum length of a temporal s-z path.
The δ-restless temporal distance from s to z: The minimum length of a δ-restless tem-

poral s-z walk. Herein, a sequence W := ((ei, ti))mi=1 of time-edges is a temporal s-z walk
of length m if the edges (ei)mi=1 induce an s-z walk and ti ≤ ti+1 for all i ∈ [m − 1].
Moreover, W is δ-restless if m = 1 or ti+1 − ti ≤ δ.

Note that the length of a δ-restless temporal s-z path is at least the minimum length of
a δ-restless temporal s-z walk which is in turn at least the minimum length of a temporal
s-z path which is again at least the minimum length of an s-z path in the underlying graph.
For the sake of brevity, we say for an instance (G, s, z, δ, k) of Short Restless Temporal
Path that the δ-restless temporal distance from s to z, the temporal distance from s to z,
or the distance from s to z is k + 1 if there is no δ-restless temporal s-z walk, no temporal
s-z path, or no s-z path in the underlying graph, respectively.

Unfortunately, a closer look at the NP-hardness reductions of Casteigts et al. [13] reveals
that, unless P=NP, there is not even a |G|f(k−dr)-time algorithm for Short Restless
Temporal Path, where dr is the δ-restless temporal distance from s to z and f is a
computable function.

Our contributions. We show that Short Restless Temporal Path can be solved in
randomized 4k−d|G|O(1) time, where d is the temporal distance from s to z. To the best
of our knowledge, this is the first above-lower-bound FPT-algorithm on temporal graphs.
More precisely, we show that for every p ∈ R with 0 < p < 1 there is a randomized O(4` ·
`2|G|3δ log(k/p`))-time algorithm for Short Restless Temporal Path with a one-sided
error probability of at most p, where ` := k − d and d is the temporal distance from s to z.
The main technical contribution behind this is a geometrical perspective onto temporal
graphs which seems applicable to other temporal graph problems when parameterized above
the temporal distance between vertices. In the resulting algorithm, the only subroutine with
a super-polynomial running time is the algorithm of Thejaswi et al. [41] that we employ to
find δ-restless temporal path of length at most 2(k − d) + 1. In fact, this subroutine can be
replaced by a deterministic algorithm of Casteigts et al. [13]—this leads to a 2O(k−d)|G|3δ-time
deterministic algorithm for Short Restless Temporal Path. The running time overhead
induced by our technique is O(|G|2`) in the deterministic case and O(|G|2` log(k/`p)) if we
use the algorithm of Thejaswi et al. [41], where ` := k − d and d is the temporal distance
from s to z. The overhead with the randomized algorithm is larger as we need that the
error probability of several calls of the randomized algorithm accumulate to p. Although the
running time overhead of our technique is is slightly larger with the randomized algorithm of
Thejaswi et al. [41] because a faster overall running time.

Further related work. In the literature, waiting time constraints are studied from various
angles. Himmel et al. [7] studied a variant of restless temporal paths where multiple visits of
vertices are permitted, i.e., restless temporal walks. In contrast to restless temporal paths,
they showed that such walks can be computed in polynomial time. Pan and Saramäki [40]

4 Restless Temporal Path Parameterized Above Lower Bounds

empirically studied the correlation between waiting times of temporal paths and the ratio
of the network reached in spreading processes. Akrida et al. [1] studied flows in temporal
networks with “vertex buffers”, which however pertains to the quantity of information that a
vertex can store, rather than a duration.

Algorithmic reachability questions are one of the most thriving research topics in temporal
graphs. Bui-Xuan et al. [11] and Wu et al. [42] studied the computation of temporal paths
that satisfy certain optimality criteria and show that shortest, fastest, and foremost temporal
path can be computed in polynomial time. In the temporal setting, reachability is not an
equivalence relation among vertices and the reachability relation between vertices is not even
transitive—this makes many problems computationally harder than their counterpart on
static graphs. Michail and Spirakis [36] studied the NP-hard question of whether a temporal
graph contains a temporal walk that visits each vertex at least once. This problem remains
computationally hard even if the underlying graph is a star [3, 12]. If the underlying graph is
connected at each time step and the walk can only contain one edge in each time step, then
a fast exploration is guaranteed [21, 23, 22]. However, on these so-called always-connected
temporal graphs, the decision problem remains NP-hard, even if the underlying graph has
pathwidth two [10]. Kempe et al. [30] studied whether there are k vertex-disjoint temporal
paths between two given vertices. While the classical analogue of this on static graphs
is polynomial-time solvable, it becomes NP-hard in the temporal setting. Moreover, this
problem remains NP-hard on a single underlying path, when we are looking for a set of
temporal paths which is only pairwise vertex-disjoint at any point in time [32]. Furthermore,
the related problem of finding small separators in temporal graphs becomes computationally
hard [25, 30], even on quite restricted temporal graph classes [25]. Bhadra and Ferreira [9]
showed that finding a maximum temporally connected component is NP-hard. Furthermore,
a temporal graph may not have a sparse spanner [5], and computing a spanner with a
minimum number of time-edges is NP-hard [2, 35].

Related to spreading processes, Enright et al. [19, 20], Deligkas and Potapov [16], and
Molter et al. [38] studied restricting the set of reachable vertices via various temporal graph
modifications—all described decision problems are NP-hard in rather restricted settings.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respectively. By
R, Q, and Z we denote the real numbers, rational numbers, and the integers, respectively.
Moreover, [a, b] := {i ∈ Z | a ≤ i ≤ b}, [n] := [1, n], R+ := {x ∈ R | x ≥ 0}, and Q+ :=
{x ∈ Q | x ≥ 0}. We denote by log(x) the ceiling of the binary logarithm of x (dlog2(x)e),
where x ∈ R.

Let (ai)ni=1 := (a1, a2, . . . , an) be a sequence of length n and let (bi)mi=1 be a sequence of
length m. We denote by x ∈ (ai)ni=1 that there is an i ∈ [n] such that x = ai. We denote
by (ai)ni=1 ⊆ (bi)mi=1 that (ai)ni=1 is a subseqence of (bi)mi=1. That is, there is an injective
function σ : [n] → [m] such that ai = bσ(i) for all i ∈ [n] and σ(i) < σ(j) for all i, j ∈ [n]
with i < j. Moreover, for a set S, we denote by (ai)ni=1 \ S the subsequence of (ai)ni=1 where
an element ai is removed if and only if ai ∈ S, for all i ∈ [n]. Appending an element x to
sequence (ai)ni=1 results in the sequence (ai)n+1

i=1 , where an+1 = x.
A randomized (Monte-Carlo) algorithm has additionally access to an oracle that, given

some number n ∈ N, draws a value x ∈ [n] uniformly at random in constant time. A
(randomized) algorithm with error probability p is a randomized algorithm that returns the
correct answer with probability 1 − p. For a finite alphabet Σ and a language L ⊆ Σ∗, a

Philipp Zschoche 5

(randomized) algorithm for L with a one-sided error probability p is a randomized algorithm
that returns for every input x ∈ Σ∗ either yes or no, and one of the following is true:

If yes is returned, then x ∈ L with probability 1. If no is returned, then x ∈ L with
probability p.
If yes is returned, then x 6∈ L with probability p. If no is returned, then x 6∈ L with
probability 1.

We refer to Mitzenmacher and Upfal [37] for more material on randomized algorithms. If it
is not stated otherwise, then we use standard notation from graph theory [17]. Graphs are
simple and undirected by default.

Temporal graphs. A temporal graph G := (V, (Ei)τi=1) consists of a set of vertices V (G) := V

and a sequence of edge sets (Ei)τi=1. The number τ is the lifetime of G. The elements of
E(G) :=

⋃
i∈[τ] Ei × {i} are called the time-edges of G. We say that time-edge (e, t) ∈ E(G)

has time stamp t and is in time step t. The graph (V,Ei) is called layer i of temporal
graph G, for all i ∈ [τ]. The underlying graph of G is the (static) graph (V,

⋃τ
i=1 Ei). For

every v ∈ V and every t ∈ [τ], we denote the appearance of vertex v at time t by the
pair (v, t). For a time-edge ({v, w}, t) we call the vertex appearances (v, t) and (w, t) its
endpoints. We assume that the size of G is |G| := |V |+

∑τ
i=1 max{1, |Ei|}, that is, we do

not assume to have compact representations of temporal graphs. For a vertex set X ⊆ V

of a temporal graph G := (V, (Ei)τi=1), we denote by G[X] the temporal graph (X, (E′i)τi=1),
where E′i := {e ∈ Ei | e ⊆ X}. Moreover, we denote the temporal graph G without the
vertices X by G −X := G[V \X]. For a time-edge set Y , we denote by G \ Y the temporal
graph where V (G \ Y) := V (G) and E(G \ Y) := E(G) \ Y .

The set of vertices of the temporal path P = (ei = ({vi−1, vi}, ti))mi=1 is denoted by V (P) =
{vi | i ∈ [m] ∪ {0}}. We say that P visits the vertex vi at time t if t ∈ [ti, ti+1], where i ∈
[m − 1]. The departure (or starting) time of P is t1 and the arrival time of P is tm. A
(δ-restless) temporal s-z path of length m in a temporal graph G is a shortest (δ-restless)
temporal s-z path if each temporal s-z path in G is of length at least m.

A solution of an instance (G, s, z, δ, k) of Short Restless Temporal Path is a δ-restless
temporal s-z path of length at most k in G.

Parameterized complexity. Let Σ be a finite alphabet. A parameterized problem L is
a subset L ⊆ Σ∗ × N0. The size of an instance (x, k) ∈ Σ∗ × N0 is denoted by |x| and
usually we have that |x|+ k ∈ O(|x|). An instance (x, k) ∈ Σ∗ × N0 is a yes-instance of L
if and only if (x, k) ∈ L (otherwise it is a no-instance). A parameterized problem L is
fixed-parameter tractable (in FPT) if there is an (FPT-)algorithm that decides for every
input (x, k) ∈ Σ∗ ×N0 in f(k) · |x|O(1) time whether (x, k) ∈ L, where f is some computable
function only depending on k. By slightly abusing the FPT-terminology, we sometimes say
that a parameterized problem is fixed-parameter tractable even if the FPT-algorithm has
a constant one-sided error probability. A parameterized problem L is in XP if for every
input (x, k) one can decide in |x|f(k) time whether (x, k) ∈ L, where f is some computable
function only depending on k.

The parameterized analogous of NP and NP-hardness are the W-hierarchy

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

and W[t]-hardness, where t ∈ N ∪ {P} and all inclusions are conjectured to be strict. If
some W[t]-hard parameterized problem is in FPT, then FPT=W[t]. We refer to Flum and
Grohe [24], Downey and Fellows [18], and Cygan et al. [15] for more material on parameterized
complexity.

6 Restless Temporal Path Parameterized Above Lower Bounds

3 The Algorithm

In this section, we show that Short Restless Temporal Path can be solved in 4k−d ·
|G|O(1) time with a constant one-sided error probability, where d is the minimum length of a
temporal s-z path. More precisely, we show the following.

I Theorem 1. For every p ∈ R with 0 < p < 1, there is a randomized O(4` ·`2|G|3δ log(k/p`))-
time algorithm for Short Restless Temporal Path, where ` := k−d and d is the minimum
length of a temporal s-z path. If this algorithm returns yes, then the given instance is a
yes-instance. If this algorithm returns no, then with probability of at least 1− p the given
instance is a no-instance.

The proof of Theorem 1 is deferred to the end of this section. In a nutshell, we use
a prudent dynamic programming approach where we only check for δ-restless temporal
paths whose length is upper-bounded by 2(k − d) + 1 and then puzzle them together to
ultimately find a δ-restless temporal s-z path, where d is the minimum length of a temporal
s-z path. To detect δ-restless temporal paths of some given length, we employ the algorithm
of Thejaswi et al. [41].

I Proposition 2 ([41]). For every p ∈ R with 0 < p < 1 there is a randomized O(2k ·
k|G|δ log(k · 1/p))-time algorithm that takes as input a temporal graph G, two vertices s, z,
and two integers δ, k. If the algorithm returns yes, then there is a δ-restless temporal s-z path
of length exactly k in G. If the algorithm returns no, then with probability at least 1− p there
is no δ-restless temporal s-z path of length exactly k in G.

In our algorithm, Proposition 2 can be replaced by any algorithm to find δ-restless temporal
paths of length k. For example, with the deterministic 2O(k) · |G|δ-time algorithm of
Casteigts et al. [13] instead of Proposition 2, we would end up with a 2O(k−d) · |G|3δ-time
algorithm for Short Restless Temporal Path that is deterministic. The precise running
time overhead induced by our technique is O(|G|2(k − d)) time if we use a deterministic
algorithm instead of Proposition 2 and O(|G|2(k − d) log(k/(k−d)p)) with Proposition 2. The
running time overhead with the randomized algorithm is larger as we need that the error
probability of several calls of the randomized algorithm accumulate to p. Although the
running time overhead of our technique is is slightly larger with the randomized algorithm of
Thejaswi et al. [41] because a faster overall running time.

For many algorithms based on dynamic programming, we have that the best-case running
time is not better than the worst-case running time. In our case, we will realize that for
sparse real-world graphs it seems that the caused overhead stays below the worst case.

In Section 3.1, we set up the geometric perspective on temporal graph based on the
temporal distance between vertices. This might be of independent interest, as the ideas
seem to be transferable to other problems where an above-lower-bound parameterization by
shortest temporal paths is possible. In Section 3.2, we design a dynamic program to solve
Short Restless Temporal Path in 4k−d · |G|O(1) time, where d is the minimum length
of a temporal s-z path. In Section 3.3, we finally prove Theorem 1.

3.1 Geometric Perspective on Temporal Graphs Based on Shortest
Temporal Paths

In this section, we present the key ideas of the algorithm behind Theorem 1. To this end, we
need some notation. Let G := (V, (Ei)τi=1) be a temporal graph with two distinct vertices
s, z ∈ V (G) and δ, k ∈ N. We define the distance function dG : V (G)× [τ]→ N0 ∪ {∞} which

Philipp Zschoche 7

maps a vertex v ∈ V (G) and time t ∈ [τ] to the length of a shortest temporal v-z path in G
that departs at a time at least t. If such a temporal path does not exist, then dG(v, t) =∞.
We drop the subscript G if it is clear from the context.

Intuitively, we now arrange all vertex appearances (v, t) in the plane where the x-axis
describes the distance (via temporal paths) of v to z at time t and the y-axis describes the
time. Thus, (v, t) gets the point (d(v, t), t). Consider Figure 2 for a moment. We want
to visualize a temporal s-z path P in this figure. To this end, we say that P visits vertex
appearance (v, t) if P visits v in time step t. Hence, we can depict a temporal path P by
connecting the vertex appearances which are visited by P in the visiting order. Note that
no temporal v-z path or walk moves downwards. Moreover, among all temporal v-z paths
that depart at a time of at least t, the shortest of them move with each time-edge further
towards z (i.e., to the left). For example, the dotted line in Figure 2 depicts the trajectory of
a shortest temporal s-z path with a departure time t. The temporal path departs at time t
and arrives at time τ . This is not the case for a shortest δ-restless temporal s-z path P—such
a temporal path can move to the right or stay at the same point while visiting multiple
vertices. For example, the solid (blue) line in Figure 2 depicts the trajectory of a shortest
δ-restless temporal s-z path. Let ` := k − d(s, 1). A crucial observation now is that if P
moves “too far” to the right or stays for “too long” at the same spot in the x-axis while
visiting multiple vertices, then P would be too far away from z (in terms of temporal paths
distance) such that P cannot be of length at most k. This will lead us to the observation
that for at least every (2` + 1)-st vertex v which is visited by P (at time t), the vertex
appearances (v, t) has the following separation property:
(i) each vertex appearance (u, t′) that P visits before v (hence, v 6= u) is to the right of

(v, t) and thus further away from z than (v, t), and
(ii) each vertex appearance (u, t′) that P visits after v (hence, v 6= u) is to the left of (v, t)

and thus closer to z than (v, t).
Moreover, we will observe that two consecutive vertex appearances which have this separation
property, have a similar distance to z—the distances differ by at most `+ 1. In Figure 2,
these special vertex appearances are at the left-top and right-bottom corners of each gray
area. Our dynamic program tries to guess these vertex appearances and then constructs
for each gray area in Figure 2 a temporal graph that contains the δ-restless path from the
right-bottom corner to the left-top corner of this area. Since we know that these δ-restless
temporal paths have length at most 2`+ 1, we can use the algorithm developed in the last
section to find them.

Another crucial observation we are going to make is that two δ-restless temporal paths
from the right-bottom corner to the left-top corner of two distinct gray areas in Figure 2
cannot visit the same vertex (except for their endpoints). This is the case because the
distance of a vertex v to z can only increase as time goes by. Thus, if we find for each gray
area in Figure 2 a δ-restless temporal path from the right-bottom corner to the left-top
corner, then this gives us a δ-restless temporal s-z path. Henceforth the details follow.

Before we describe the dynamic programming table in Section 3.2, we define the temporal
graph that contains all (shortest) δ-restless paths in a gray area of Figure 2. To this end, we
first define sets containing all vertex apperances of such a gray area. For vertex appearances
(a, t), (b, t′) ∈ V (G)× [τ], we define

Ab,t
′

a,t := {(w, t∗) ∈ V (G)× [τ] | d(b, t′) < d(w, t∗) < d(a, t), t∗ ∈ [t, t′]} and

Ab,t
′

:= {(w, t∗) ∈ V (G)× [τ] | ∞ > d(w, t∗) > d(b, t′), t∗ ≤ t′} .

Now, the temporal graph Gb,t
′

a,t for the gray area between (a, t) and (b, t′) with t ≤ t′ is defined

8 Restless Temporal Path Parameterized Above Lower Bounds

dG

time

(z, 1)

(z, τ)

(s, 1)

(s, τ)

(s, t)

(s, ts)

(z, tz)

(b, t′)

(a, t)

Gb,t′

a,t

≤ `+ 1

Figure 2 Illustration of the idea behind the dynamic programming table which is used to show
Theorem 1. The y-axis describes the time. The x-axis describes the distance to z (via temporal
paths). In this plane, a vertex appearance (v, t) gets the position (d(v, t), t). The positions of the
vertex appearances of s are on the dashed line. A shortest (non-δ-restless) temporal s-z path that
departs at time t is depicted by the dotted line. The trajectory of a shortest δ-restless temporal
s-z path which departs at time ts and arrives at time tz is depicted by the solid (blue) line. Each
gray area depicts a temporal subgraph which we use to compute δ-restless paths from the vertex
appearance on the right-bottom corner to the vertex appearance on the left-top corner, e.g., the
temporal graph Gb,t′

a,t .

by

E
(
Gb,t

′

a,t

)
:=
{

({v, u}, t∗) ∈ E(G)
∣∣∣ (v, t∗), (u, t∗) ∈ Ab,t

′

a,t

}
∪
{

({a, v}, t) ∈ E(G)
∣∣∣ (v, t) ∈ Ab,t

′

a,t

}
∪
{

({v, b}, t∗) ∈ E(G)
∣∣∣ t′ − δ ≤ t∗, (v, t∗) ∈ Ab,t′a,t ∪ {(a, t)}

}
and

V
(
Gb,t

′

a,t

)
:=
{
v ∈ V (G)

∣∣∣ ∃(e, t∗) ∈ E (Gb,t′a,t

)
: v ∈ e

}
.

For the gray area containing s we have to adjust the definition of the corresponding temporal
graph slightly. To this end, we define Gb,t′ with

E
(
Gb,t

′
)

:=
{

({v, u}, t∗) ∈ E(G)
∣∣∣ (v, t∗), (u, t∗) ∈ Ab,t

′
}

∪
{

({v, b}, t∗) ∈ E(G)
∣∣∣ t′ − δ ≤ t∗, (v, t∗) ∈ Ab,t′} and

V
(
Gb,t

′
)

:=
{
v ∈ V (G)

∣∣∣ ∃(e, t∗) ∈ E (Gb,t′) : v ∈ e
}
.

In the forthcoming section, we will use these definitions to solve Short Restless Temporal
Path.

Philipp Zschoche 9

3.2 The Dynamic Programming Table
In this section, we describe the table T which we are going to use for the dynamic programming,
and show its correctness.

Intuitively, the table T has for each vertex appearance (u, t′) an entry, and if this entry
contains a number p <∞, then p is the length of the shortest δ-restless temporal s-u path
that only visits vertex appearances which are, in Figure 2, below and to the right of (u, t′).

Let I := (G, s, z, δ, k) be an instance of Short Restless Temporal Path, where
k = d(s, 1) + `. For all (u, t′) ∈ V (G) × [τ] such that there is an e ∈ Et′ with v ∈ e, we
define T as follows. If d(s, 1)− d(u, t′) ≤ `, then

T [u, t′] :=

0, if u = s;
`′, if u 6= s and `′ ∈ [2`] is the length of a

shortest δ-restless s-u path in Gu,t′ ;
∞, otherwise.

(1)

If d(s, 1)− d(u, t′) > `, then

T [u, t′] := min

{∞} ∪
T [v, t] + `′

∣∣∣∣∣∣∣∣∣
t ∈ [t′], e ∈ Et, v ∈ e, where

d(v, t) > d(u, t′) ≥ d(v, t)− `− 1
and `′ ∈ [2`+ 1] is the length of a
shortest δ-restless v-u path in Gu,t

′

v,t

 (2)

In the end, we will report that I is a yes-instance if and only if there is a t ∈ [τ] such that
T [z, t] ≤ k. We will show the correctness of this in the following lemmata. We start with the
backwards direction.

I Lemma 3. Let (G, s, z, δ, k) be an instance of Short Restless Temporal Path. If
T [z, tz] ≤ k < ∞ (defined in (1) and (2)), then there is a δ-restless temporal s-z path of
length at most k in G.

Proof. We show by induction on the distance to z that if T [u, t′] = k′ <∞, then there is a
δ-restless s-u path of length k′ in Gu,t′ which arrives at u at some time step in [t′ − δ, t′].

Note that all temporal s-u paths in Gu,t′ arrive at some time in [t′− δ, t′]. By (1), for each
vertex appearance (u, t′) with d(s, 1)− d(u, t′) ≤ ` the induction hypothesis is true—this is
our base case.

Now let (u, t′) be a vertex appearance with T [u, t′] = k′ <∞. Assume that for all vertex
appearances (v, t) with d(v, t) > d(u, t′) we have that if T [v, t] = k′′ < ∞, then there is
a δ-restless temporal s-v path of length k′′ in Gv,t which arrives at v at some time step
in [t − δ, t]. Since T [u, t′] = k′, we know by (2) that there is a vertex appearance (v, t)
with T [v, t] = k′′, t ≤ t′, and d(v, t) > d(u, t′). Moreover, there is a δ-restless temporal
v-u path P2 in Gu,t

′

v,t of length `′ = k′−k′′. By the definition of Gu,t
′

v,t , P departs at time t and
arrives at some time in [t′ − δ, t′]. By assumption, there is a δ-restless temporal s-v path P1
of length k′′ in Gv,t which arrives at v at some time step in [t− δ, t]. We now append the
time-edges of P2 to the time-edges of P1 and claim that the resulting time-edge sequence P
is a δ-restless temporal s-u path of length k′ which arrives at u at some time in [t′ − δ, t′].
Observe that P is a δ-restless temporal s-u walk of length k′ = k′′ + `′, as

P1 is δ-restless, of length k′′, and arrives at v at some time t∗ ∈ [t− δ, t], and
P2 is of length `′ and departs at time t.

10 Restless Temporal Path Parameterized Above Lower Bounds

Moreover, the arrival time of P is the same as the arrival time of P2.
It remains to show that P does not visit a vertex twice. To see this, we show that V (Gv,t)∩

V (Gu,t
′

v,t) = {v}. This will complete the proof, since we know that V (P1) ⊆ V (Gv,t),
V (P2) ⊆ V (Gu,t

′

v,t), P1 ends at vertex v, and P2 starts at vertex v. By definition, we have
that v ∈ (V (Gv,t) ∩ V (Gu,t

′

v,t)). Assume towards a contradiction that there is a vertex w ∈
(V (Gv,t) ∩ V (Gu,t

′

v,t)) \ {v}. Then, there must be time steps t1, t2 such that (w, t1) ∈ Av,t ∪
{(u, t′)} and (w, t2) ∈ Au,t

′

v,t . Note that d(w, t1) > d(v, t) > d(w, t2) and hence each temporal
w-z path in G that departs not earlier than t1 is longer than a shortest w-z path in G that
departs not earlier than t2. This is a contradiction because t1 ≤ t ≤ t2. J

To show the forward direction of the correctness, we introduce further notation. Recall
from the definition of the dynamic programming table T in (1) and (2) that ` = k − d(s, 1).
Assume the input instance I is a yes-instance. Thus there is a δ-restless temporal s-z path
P = (({vi−1, vi}, ti))ki=1 of length at most d(s, 1) + ` in G. Let s = v0, v1, . . . , vk = z be the
order in which P visits the vertices in V (P). For simplicity, let t0 := 1 and tk+1 := tk. For
all i ∈ [0, k], we say that vi is a distance separator if
(i) d(vi, ti+1) < d(vj , tj+1) for all j ∈ [0, i− 1], and
(ii) d(vi, ti+1) > d(vj , tj+1) for all j ∈ [i+ 1, k].

Before we show the forward direction of the correctness of the dynamic programming
table T , we show that P visits a distance separator on regular basis.

I Lemma 4. For all i ∈ [0, k] there is a j ∈ [0, 2`] such that vi+j is a distance separator.

Proof. We show this statement with a reverse induction on the length of P . As z is clearly
a distance separator, the claim is true for all values in [max{0, k − 2`}, k]. This is the base
case of our induction.

Let k − 2` > 0 and let i ∈ [0, k − 2`− 1] and assume that for all i′ ∈ [i+ 1, k] there is a
j′ ∈ [0, 2`] such that vi′+j′ is a distance separator. Let n ∈ [i′, k] be the smallest possible
number such that vn is a distance separator. Let f ∈ [k] be the smallest possible number
such that d(vf , tf+1)− d(vn, tn+1) = `+ 1. Note that if such an f does not exist, then the
claim is true. Hence, we assume that such an f exists. Note that f ≤ i, otherwise n is not
the smallest possible number.

We now show that n− f ≤ 2`+ 1. Assume towards a contradiction that the temporal
vf -vn path contained in P has length n− f > 2`+ 1. This is a lower bound for the length of
P . We get the following.

d(s, 1)− d(vf , tf+1) + 2`+ 1 + d(vn, tn+1) < k = d(s, 1) + `

=⇒ d(vn, tn+1)− d(vf , tf+1) + `+ 1 < 0
=⇒ `+ 1 < d(vf , tf+1) + d(vn, tn+1)

This is a contradiction to d(vf , tf+1)− d(vn, tn+1) = `+ 1.
Next, we show that, between vf and vn−1, P must visit a distance separator. Assume

towards a contradiction that vn−j′′ is not a distance separator, for all j′′ ∈ [n− f]. Hence,
for all p ∈ [d(vn, tn+1) + 1, d(vf , tf+1)], there are two distinct q, r ∈ [f, n − 1] such that
d(vr, tr+1) = d(vq, tq+1) = p. Since [d(vn, tn+1)+1, d(vf , tf+1)] = `, we get by the pigeonhole
principle that the temporal vf -vn path contained in P has length n − f > 2` + 1—a
contradiction. J

Finally, we are set to show the forward direction.

Philipp Zschoche 11

I Lemma 5. Let (G, s, z, δ, k) be an instance of Short Restless Temporal Path. If
there is a δ-restless temporal s-z path in G of length at most k with arrival time tk, then
T [z, tk] ≤ k (defined in (1) and (2)).

Proof. Let P = (({vi−1, vi}, ti))ki=1 be a shortest δ-restless temporal s-z path of length at
most k = d(s, 1) + ` in G. Let s = v0, v1, . . . , vk = z be the order in which P visits the
vertices in V (P). For simplicity, let t0 := 1 and tk+1 := tk. Moreover, let m be the number
of distance separators visited by P and let σ : [m]→ [0, k] be an injective function such that
vσ(i) is the i-th distance separator which is visited by P (from s to z), for all i ∈ [m]. Note
that, the vertex vσ(i) is the i-th distance separator visited by P and thus σ(i) also describes
the length of the δ-restless temporal s-vσ(i) subpath contained in P .

We now show that for all i ∈ [m] we have that T [vσ(i), tσ(i)+1] ≤ σ(i). If σ(1) = 0, then s
is a distance separator and the claim is clearly true, see (1). Otherwise, by Lemma 4, we
have σ(1) ≤ 2`. Hence, P contains a δ-restless temporal s-vσ(1) path of length σ(1) ≤ 2`
which is contained in Gvσ(1),tσ(1)+1 . Thus, T [vσ(1), tσ(1)+1] ≤ σ(1).

Now assume that for some i ∈ [2,m] we have that T [vσ(i−1), tσ(i−1)+1] ≤ σ(i − 1).
Observe that tσ(i−1)+1 ≤ tσ(i)+1 and that d(vσ(i−1), tσ(i−1)+1) > d(vσ(i), tσ(i)+1). By
Lemma 4, we have that σ(i) − σ(i − 1) ≤ 2` + 1 and that the δ-restless temporal vσ(i−1)-
vσ(i) path Q contained in P is of length σ(i) − σ(i − 1) ≤ 2` + 1. As all of the at most
2` vertices in V (Q) \ {vσ(i−1), vσ(i)} are not distance separators, we have by the pigeon-
hole principle that d(vσ(i−1), tσ(i−1)+1) − d(vσ(i), tσ(i)+1) ≤ ` + 1. Moreover, note that
Q in Gvσ(i),tσ(i)+1

vσ(i−1),tσ(i−1)+1
, because vσ(i−1) and vσ(i) are distance separators. Hence, by (2),

we have that T [vσ(i), tσ(i)+1] ≤ T [vσ(i−1), tσ(i−1)+1] + σ(i) − σ(i − 1) ≤ σ(i), as we have
T [vσ(i−1), tσ(i−1)+1] ≤ σ(i− 1) by assumption.

Since z = vk, we have that k is the only number in [0, k] with d(vk, tk+1) = 0. Hence, vk
is the last distance separator and thus σ(m) = k. Finally, by our induction, we have that
T [z, tk+1] ≤ k. J

3.3 Putting the Pieces Together
In this section, we finally show Theorem 1. Towards this end, we first show that we can
compute all necessary values of our distances function d(·, ·) in linear time.

I Lemma 6. Given a temporal graph G := (V, (Ei)τi=1) and a vertex z, one can compute
in O(|G|) time the value d(v, t), for all v ∈ V and t ∈ [τ] where v is not isolated in the
graph (V,Et).

Proof. We will construct a directed graph D where each arc have either weight zero or one
such that the weight of a shortest z-vt path equals the value of d(v, t), for all v ∈ V and
t ∈ [τ] where v is not isolated in the graph (V,Et). Then, a slightly modified breadth-first
search will do the task.

We compute the set V of non-isolated vertex appearances. That is, V := {(v, t) ∈
V (G)× [τ] | ∃e ∈ Et : v ∈ e}. Note that this can be done in O(|G|) time and that |V| ≤ 2|G|.
Now we are ready to define D by

V (D) := {z} ∪ {vt | (v, t) ∈ V}
E(D) := {(vt, ut), (ut, vt) | (v, t), (u, t) ∈ V and u 6= v} ∪

{(vt2 , vt1) | vt1 , vt2 ∈ V (D) and t2 = min {t | (v, t) ∈ V and t > t1}} ∪
{(z, zt) | zt ∈ V (D) and t = max{t′ | (z, t′) ∈ V}}.

12 Restless Temporal Path Parameterized Above Lower Bounds

Now all arcs in {(vt, ut), (ut, vt) | (v, t), (u, t) ∈ V and u 6= v} get weight one, while all
the other arcs get weight zero. Note that the V (D) + E(D) ∈ O(|G|) and that D can be
constructed in O(|G|) time. Observe that for every temporal v-z path P in G with departure
time t there is a z-vt path in D whose accumulated edge-weight equals the length of P . Hence,
if we know the minimum edge-weight of the paths from z to all vertices in D, then we also
know the value d(v, t), for all v ∈ V and t ∈ [τ] where v is not isolated in the graph (V,Et).
Thus, we employ a breadth-first search that starts at z and only explores an arc of weight
one of there is currently no arc of weight zero which could be explored instead. At each
vertex vt ∈ V (D) we store the edge-weight d(v, t) of the path from z to this vertex. Hence,
the overall running time of this procedure is O(|G|) time. J

Finally, we are set to show Theorem 1: For every p ∈ R with 0 < p < 1, there is a
randomized O(4` · `2|G|3δ log(k/p`))-time algorithm for Short Restless Temporal Path,
where ` := k − d and d is the minimum length of a temporal s-z path. If this algorithm
returns yes, then the given instance is a yes-instance. If this algorithm returns no, then with
probability of at least 1− p the given instance is a no-instance.

Proof of Theorem 1. Let I := (G, s, z, δ, k) be an instance of Short Restless Temporal
Path. We perform the following. First, we compute the set V of non-isolated vertex
appearances. That is, V := {(v, t) ∈ V (G) × [τ] | ∃e ∈ Et : v ∈ e}. Note that this
can be done in O(|G|) time and that |V| ≤ 2|G|. By Lemma 6, we compute d(v, t) for
all (v, t) ∈ V in O(|G|) time. We may assume that there is a temporal s-z path in G and
that a shortest of them has length at most k, otherwise I is clearly a no-instance. We
set ` := k − d(s, 1) = k − d(s, t), where t = min{t′ ∈ [τ] | (s, t′) ∈ V}. Note that table T ,
defined in (1) and (2), has O(|G|) entries—one for each element in V . To compute one entry
in T , we consider at most O(|G|) other entries in T and for each of them we have to check at
most 2`+ 1 times whether a temporal graph of size O(|G|) has a δ-restless temporal path
of length `′ ∈ [2` + 1] between two distinct vertices. We answer each of these checks by
Proposition 2 with a one-sided error probability of at most p′ in O(4` · `|G|δ log(` · 1/p′)) time.
How we set the error probability p′ will be determinate in a moment.

We say that I is a yes-instance if and only if there is a (z, t) ∈ V such that T [z, t] ≤ k.
If Proposition 2 reports yes, then with probability one, there is such a δ-restless temporal
path in question. Hence, by Lemma 3, if our overall algorithm reports yes, then I is a
yes-instance—the error probability is zero in this case. If our overall algorithm reports no,
then the probability that I is a yes-instance shall be at most 1− p. By Lemma 5, it remains
to determine p′. Recall from Lemma 4 that a δ-restless temporal s-z path P of length at
most k visits at least every 2`+ 1 vertices one distance separator. Hence, we can identify at
most dk/d`+1/2ee ∈ O(k/`) vertex appearances which are visited by P and thus O(k/`) calls of
the algorithm behind Proposition 2 such that if these calls are answered correctly then this
causes our overall algorithm to report yes, as T [z, t] ≤ k for some t ∈ [τ]. Hence, there is
a p′ ∈ O(p /̀k) such that we have an error probability of at most p in the case our overall
algorithm answers no. Thus, we can compute all entries of T in O(4` · `2|G|3δ log(k/p`)) time,
where ` := k − d and d is the minimum length of a temporal s-z path. J

On a more practical note, one can observe that in order to compute one entry for vertex
appearances (u, t) of table T , we only consider table entries of vertex appearances which are
close to (u, t) in terms of the distance d(·, ·). Thus, for temporal graphs that are nowhere
dense in terms of d(·, ·), it seems reasonable that the presented dynamic programming
technique does not induce a quadratic running time, in terms of the temporal graph size, on
top of running time of Proposition 2. For example in contact networks where mass events

Philipp Zschoche 13

are prohibited. Moreover, a δ-restless temporal path of length k has a time horizon of at
most (k − 1)δ. Hence, with an overhead of O(τ) one could guess the departure time t of the
δ-restless s-z path and discard all time-edge (e, t′) with t′ < t or t′ > t+ (k − 1)δ + 1. This
potentially decreases the parameter k − d and thus the exponential part of the running time
substantial, where d is the minimum length of a temporal s-z path.

4 Conclusion

We showed that Short Restless Temporal Path admits fixed-parameter tractability
for parameters below the solution size k. In particular, we showed that Short Restless
Temporal Path can be solved in 4k−d · |G|O(1) time with a one-sided error probability of
at most 2−|G|, where d is the minimum length of a temporal s-z path. In the corresponding
algorithm, we have only one subroutine with a super-polynomial running time: an algorithm
to find a δ-restless temporal path of length at most 2(k − d) + 1. Moreover, this is also the
only subroutine that has a non-zero error probability.

We believe that our algorithmic approach opens new research directions to advance
further:

First, we wonder how good our algorithm performs in an experimental setup comparable
to the one of Thejaswi et al. [41].
Second, one could study in detail the temporal subgraphs on which we employ Proposi-
tion 2. In principle, Proposition 2, could be replaced with any other algorithm for Short
Restless Temporal Path. Do these specific temporal subgraphs admit structural
properties which are algorithmically useful?
Third, we believe that our geometric perspective presented in Section 3.1 can be applied
to other temporal graph problems. In particular, for temporal graph problems which ask
for specific temporal paths, e.g., temporal paths that obey certain robustness properties
[26], or temporal paths that visit all vertices at least once [21, 22, 36] parameterized by
the temporal diameter, that is, the length of the longest shortest temporal path between
two arbitrary vertices.

References
1 Eleni C. Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G. Spirakis.

Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46–60,
2019. doi:10.1016/j.jcss.2019.02.003.

2 Eleni C. Akrida, Leszek Gąsieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of
optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,
2017. doi:10.1007/s00224-017-9757-x.

3 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos L. Raptopoulos.
The temporal explorer who returns to the base. Journal of Computer and System Sciences,
120:179–193, 2021. doi:10.1016/j.jcss.2021.04.001.

4 Noga Alon, Gregory Z. Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving
MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):638–655, 2011. doi:10.1007/
s00453-010-9428-7.

5 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on Auto-
mata, Languages, and Programming (ICALP), volume 55 of Leibniz International Proceedings
in Informatics, pages 149:1–149:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.ICALP.2016.149.

6 Albert-László Barabási. Network Science. Cambridge University Press, 2016.

https://doi.org/10.1016/j.jcss.2019.02.003
https://doi.org/10.1007/s00224-017-9757-x
https://doi.org/10.1016/j.jcss.2021.04.001
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.4230/LIPIcs.ICALP.2016.149

14 Restless Temporal Path Parameterized Above Lower Bounds

7 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient
computation of optimal temporal walks under waiting-time constraints. Applied Network
Science, 5(72):1–26, 2020. doi:10.1007/s41109-020-00311-0.

8 Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours is
fixed-parameter tractable. SIAM Journal on Discrete Mathematics, 33(4):2326–2345, 2019.
doi:10.1137/17M1148566.

9 Sandeep Bhadra and Afonso Ferreira. Computing multicast trees in dynamic networks and
the complexity of connected components in evolving graphs. Journal of Internet Services and
Applications, 3(3):269–275, 2012. doi:10.1007/s13174-012-0073-z.

10 Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal
graphs of small pathwidth. Information Processing Letters, 142:68–71, 2019. doi:10.1016/j.
ipl.2018.10.016.

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(2):267–285, 2003. doi:10.1142/S0129054103001728.

12 Benjamin M. Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In
Proceedings of the 32st International Workshop on Combinatorial Algorithms (IWOCA),
volume 12757 of Lecture Notes in Computer Science, pages 107–121. Springer, 2021. doi:
10.1007/978-3-030-79987-8_8.

13 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:
10.1007/s00453-021-00831-w.

14 Robert Crowston, Michael R. Fellows, Gregory Z. Gutin, Mark Jones, Eun Jung Kim, Fran
Rosamond, Imre Z. Ruzsa, Stéphan Thomassé, and Anders Yeo. Satisfying more than half
of a system of linear equations over GF(2): A multivariate approach. Theory of Computing
Systems, 80(4):687–696, 2014. doi:10.1016/j.jcss.2013.10.002.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by
delaying. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pages
9810–9817, 2020. doi:10.1609/aaai.v34i06.6533.

17 Reinhard Diestel. Graph Theory, volume 173. Springer, 5 edition, 2016. doi:10.1007/
978-3-662-53622-3.

18 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

19 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. Journal of Computer and System
Sciences, 119:60–77, 2021. doi:10.1016/j.jcss.2021.01.007.

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability
in temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021. doi:
10.1016/j.jcss.2020.08.001.

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.

22 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two
moves per time step make a difference. In Proceedings of the 46th International Colloquium
on Automata, Languages, and Programming (ICALP), volume 132 of Leibniz International
Proceedings in Informatics, pages 141:1–141:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.141.

23 Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal
graphs. In Proceedings of the 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 117 of Leibniz International Proceedings in Informatics,

https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1137/17M1148566
https://doi.org/10.1007/s13174-012-0073-z
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1007/978-3-030-79987-8_8
https://doi.org/10.1007/978-3-030-79987-8_8
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1016/j.jcss.2013.10.002
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1609/aaai.v34i06.6533
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.4230/LIPIcs.ICALP.2019.141

Philipp Zschoche 15

pages 36:1–36:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.MFCS.2018.36.

24 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006. doi:10.1007/3-540-29953-X.

25 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020. doi:10.1016/j.tcs.2019.03.031.

26 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in
temporal graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects
of Computer Science (STACS), Leibniz International Proceedings in Informatics. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. To appear.

27 Gregory Z. Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover problem
parameterized above and below tight bounds. Theory of Computing Systems, 48(2):402–410,
2011. doi:10.1007/s00224-010-9262-y.

28 Gregory Z. Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permutation
constraint satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. Journal of Computer and System Sciences, 78(1):151–163, 2012. doi:
10.1016/j.jcss.2011.01.004.

29 Petter Holme. Temporal network structures controlling disease spreading. Physical Review E,
94.2:022305, 2016. doi:10.1103/PhysRevE.94.022305.

30 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
doi:10.1006/jcss.2002.1829.

31 William Ogilvy Kermack and Anderson G. McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 115(772):700–721, 192o7. doi:10.1098/rspa.1927.0118.

32 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: Temporally disjoint paths. In Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 4090–4096. International Joint
Conferences on Artificial Intelligence Organization, 2021. doi:10.24963/ijcai.2021/563.

33 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999. doi:10.1006/jagm.1998.0996.

34 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. Journal of Computer and System Sciences, 75(2):137–153, 2009. doi:
10.1016/j.jcss.2008.08.004.

35 George B Mertzios, Othon Michail, and Paul G Spirakis. Temporal network optimization
subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019. doi:10.1007/
s00453-018-0478-6.

36 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.

37 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

38 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization:
Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 202 of Leibniz International Proceedings
in Informatics, pages 76:1–76:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.MFCS.2021.76.

39 Mark E J Newman. Networks. Oxford University Press, 2018.
40 Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal

networks. Physical Review E, 84(1):016105, 2011. doi:10.1103/PhysRevE.84.016105.
41 Suhas Thejaswi, Juho Lauri, and Aristides Gionis. Restless reachability problems in temporal

graphs. CoRR, abs/2010.08423, 2020.

https://doi.org/10.4230/LIPIcs.MFCS.2018.36
https://doi.org/10.4230/LIPIcs.MFCS.2018.36
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1103/PhysRevE.94.022305
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.24963/ijcai.2021/563
https://doi.org/10.1006/jagm.1998.0996
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.4230/LIPIcs.MFCS.2021.76
https://doi.org/10.1103/PhysRevE.84.016105

16 Restless Temporal Path Parameterized Above Lower Bounds

42 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016. doi:10.1109/TKDE.2016.2594065.

https://doi.org/10.1109/TKDE.2016.2594065

	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Geometric Perspective on Temporal Graphs Based on Shortest Temporal Paths
	3.2 The Dynamic Programming Table
	3.3 Putting the Pieces Together

	4 Conclusion

