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Restoration and Reconstruction of AVHRR Images 
Stephen E. Reichenbach, Daniel E. Koehler, and Dennis W. Strelow 

Absfract-This paper describes the design of small convolution 
kernels for the restoration and reconstruction of Advanced Very 
High Resolution Radiometer (AVHRR) images. The kernels are 
small enough to be implemented efficiently by convolution, yet 
effectively correct degradations and increase apparent resolution. 
The kernel derivation is based on a comprehensive, end-to-end 
system model that accounts for scene statistics, image acquisition 
blur, sampling effects, sensor noise, and postfilter reconstruction. 
The design maximizes image fidelity subject to explicit constraints 
on the spatial support and resolution of the kernel. The kernels 
can be designed with h e r  resolution than the image to perform 
partial reconstruction for geometric correetion and other remap- 
ping operations. Experiments demonstrate that small kernels 
yield fidelity comparable to optimal unconstrained filters with 
less computation. 

T HIS paper presents an efficient spatial filter for effectively 
restoring and reconstructing images from the Advanced 

Very High Resolution Radiometer (AVHRR). Digital image 
restoration improves image quality by ameliorating degrada- 
tions, such as blurring, aliasing, and noise, that are inevitably 
introduced in the imaging process. Reconstruction defines 
image values at arbitrary locations in the spatial continuum 
and is useful for geometric correction, scaling, remapping, and 
other geometric operations. The filter described here can be 
efficiently implemented in the spatial domain (or image focal- 
plane) because the spatial support and resolution of the filter 
is explicitly constrained to a small kernel. Subject to these 
constraints, the small kernel filter both restores and recon- 
structs, maximizing image fidelity based on a comprehensive, 
end-to-end model of the imaging system. 

Digital image restoration methods, including the common 
formulation of the Wiener filter, traditionally have been based 
on incomplete discrete-inpuddiscrete-output system models 
that account only for acquisition blur and noise. References 
[I], [2] formulated the spatially unconstrained Wiener 
restoration filter based on the continuous-inpuddiscrete- 
imagelcontinuous-output (CDC) imaging model illustrated 
in Fig. 1. The CDC Wiener filter maximizes image fidelity 
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(i.e., minimizes mean square error). Filters based on this more 
comprehensive CDC model outperform traditional filters that 
are based on discreteldiscrete formulations. 

Reference [3] described the derivation of optimal spatially 
constrained restoration kernels based on this CDC model. The 
derivation of the optimal constrained kernel is consistent with 
the derivation of the unconstrained CDC Wiener filter, but 
enforces explicit implementation constraints on the spatial 
support of the kernel in the design of the filter. In practice, 
the spatially unconstrained CDC Wiener filter, described in 
[I], [2], requires significant computation because it is imple- 
mented by computing the discrete Fourier transform (DFT) 
of the image, applying the filter in the frequency domain, 
and computing the inverse DFT of the result. By constraining 
the spatial support of the kernel, restoration can be efficiently 
implemented by convolution in the spatial domain, avoiding 
the overhead of DFT computations. The computational savings 
increase with image size, so small kernel convolution is 
particularly useful with large images such as AVHRR images. 
Also, small kernel convolution is well suited for parallel 
implementation because it is local and inherently data-parallel. 

This paper presents the derivation of small kernels that not 
only restore (i.e., correct for systemic degradations), but also 
reconstruct by interpolating between pixel values. The kernel 
is constrained to a few elements, but unlike the derivation in 
[3], the kernel support can be specified to subpixel resolution 
so that the kernel restores and reconstructs beyond the Nyquist 
limit of the sampling lattice. This is particular useful for 
implementing high-fidelity resealing, remapping, and other 
geometric operations. 

Section I1 describes the CDC imaging system model and 
characterizes the model parameters for the AVHRR system 
based on the work of [4]. Section I11 presents the deriva- 
tion of the small kernels for restoration and reconstruction. 
Section IV presents restoration results for simulated AVHRR 
images generated from higher-resolution Landsat Multispectral 
Scanner (MSS) scenes and for an example AVHRR image. 
The software simulation allows precise analyses of restoration 
and reconstruction performance; the restoration of the example 
image demonstrates real-world effectiveness and supports the 
validity of the simulation. Section V analyzes the computa- 
tional and storage requirements for small kernel filters and 
postfilter reconstruction as a function of filter support size and 
resolution. 

11. END-TO-END AVHRR SYSTEM MODEL 

The end-to-end digital imaging system model in Fig. 1 is 
the basis for more effective restoration. Unlike many imag- 
ing system models, this model accounts for sampling and 
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C o n t i n u o u s  D i s c r e t e  D i s c r e t e  C o n t i n u o u s  

p Digital image 
q Filtered digital image 
r Reconstructed image 

System Functions 
h Acquisition point spread function 
e Image noise 
f Digital filter 
d Post-filter reconstruction function 

Function Notation 

Input 
Scene 

S 

TABLE I in the AVHRR is from [4 ] .  As in [4], we assume linear, 
NOTATION shift-invariant (LSI) blurring; a uniform rectangular sampling 

d Fourier transform (e.g., of s )  
8. Autocorrelation (e.g., of s) 

6 Power spectrum (e.g., of s )  
u Variance (e.g., of s )  

Normalized Coordinates 
z,y Continuous spatial coordinates 
m,n Discrete spatial coordinates 
u,v Continuous frequency coordinates 
p,v Discrete frequency coordinates 

Parameters 

A c q u i s i t i o n  
-4 a 

Acquisition Sampling Sensor Reconstruction 
P S F  Array Noise 

h Ill e 

Symbol Representation 
Image Functions 

s Ideal image of scene radiance field 

M,N Image dimensions (pixels) 
K Kernel size (number of elements) 
C Kernel support (location set) 

A,,A, Sampling intervals (unnormalized) 
0 Optical blur parameter (unnormalized) 

Instantaneous field of view (unnormalized) 
w TBT filter cutoff (unnormalized) 
K TBT phasor angle 
T Sample integration scan-distance (unnormalized) 

R,,R, Filter resolution (normalized, elements per pixel) 
x Scene mean spatial detail (normalized, cycles per pixel) 

System Measures 
SZ Mean square error 
F Fidelity 

Fig. 1. Mathematical model of the digital imaging process. 

lattice; and shift-invariant, signal-independent, additive, white 
noise. This model is neither complete nor exact, but is an 

reconstruction, components of digital imaging systems that 
are frequently ignored but that greatly affect image quality 
[ S ] .  The model consists of three components: acquisition, 
processing, and reconstruction. Acquisition is the process of 
obtaining a digital image from a continuous radiance field. 
The filter is applied to a digital image to produce an improved 
digital image. Reconstruction yields a spatially continuous 
representation from discrete values, e.g., with a display device 
for viewing or with digital processing for resampling. In a 
data and information system, the digital image p might be 
radiometrically corrected satellite data, the filtered image q 
would be a standard data product available to users, and the 
output image r would be produced by the user for a specific 
application. (The symbols used in this paper are listed in 
Table I). 

A. Acquisition 

During acquisition, a digital imaging system blurs, sam- 
ples, and quantizes. Our characterization of these processes 

adequate approximation for developing an effective restoration 
filter. 

Mathematically, the spatial-domain acquisition model de- 
fines the digital image p at discrete points on the two- 
dimensional sampling lattice identified with integer coordi- 
nates [7n. r ~ ]  

where the ideal image of the scene radiance field s is con- 
volved with the acquisition point spread function (PSF) h and 
e is the additive random noise. For notational convenience, 
the spatial coordinates ( x :  y) are normalized to the sampling 
interval in each dimension and brightness values are expressed 
on a gray-level equivalent scale. The corresponding spatial- 
frequency-domain acquisition model is 

where Y L  and u are spatial frequencies (normalized to the 
sampling frequency), p is the Fourier transform or spatial- 
frequency spectrum of the image, h is the acquisition transfer 
function, .? is spatial frequency spectrum of the scene, and i is 
the spatial frequency spectrum of the noise (which is periodic 
with the sampling frequency). Sampling causes the folding 
of the components of the spatial frequency spectrum and the 
resulting image transform p is periodic with period equal to 
the normalized sampling frequency, 1.0 in each dimension. 

The AVHRR system is a whisk-broom scanner, where the 
field is projected onto a row of detectors in a sweeping motion 
(along-scan) orthogonal to the path of the satellite (along- 
track). The optical transfer function (OTF) is the Fourier 
transform of the LSI PSF and is used to characterize ac- 
quisition blurring. In the AVHRR, the OTF differs in the 
along-scan and along-track dimensions. The OTF model in the 
along-scan dimension has four components: optics, detector, 
electronic filter, and sample integration. The OTF model in the 
along-track (or cross-scan) dimension has only the optical and 
detector components. The two-dimensional OTF model is the 
separable product of the along-scan and along-track functions. 
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TABLE 11 
AVHRR SYSTEM MODEL P ~ T E R S  (5-BAND MODELS) [4] 

The optics are modeled as 

where A, and A, are the along-scan and along-track pixel 
sampling intervals and ,B is the diameter of the blur circle ap- 
proximating the optics PSF. The ground-projected dimensions 
for the blur circle diameter P for the five channel AVHRR 
systems (including NOAA 7, 9, and 11) are given in Table 11. 
In these systems, the ground-projected dimension of A, is 
791.35 m and the ground-projected dimension of A, is equal 
to the instantaneous field of view (IFOV) < in Table 11. In 
the AVHRR, blumng caused by the optics is relatively small 
compared to the blumng caused by other components such as 
the detector. 

The detector is modeled as a rectangular function in the 
spatial domain and as a sinc function in the spatial-frequency 
domain 

where sinc(x) = sin(.rrx)/(.rrx). 
The electronic filter is a low-pass filter that reduces high- 

frequency noise with blumng in the along-scan dimension. 
The electronic filter model is a fourth-order transitional 
Butterworth-Thompson (TBT) filter 

Along-Scan Along-nack 

.-.. .... .... ... 
0.75 

- Compmite 
Optics 0.50 ------ Optics 

- - -Detector 

Spatial Requency(cycles/791.35m) Spatial Requency(cydes/ll95.36m) 

Fig. 2. AVHRR acquisition transfer functions (5 band model, channel 1). 

Along-Scan 

Optics 
- - - Detector 

Electronics 
- - - Integration 

- 1 0 1 2 3  
Pixel Units (791.35m) 

Along-Track 

- Composite 
Optics 
Detector 

0 
- 1 0 1 2 3  

Pie1 Units (1195.36m) 

Fig. 3. AVHRR acquisition point spread functions (5 band model, channel 
1). 

The composite, two-dimensional OTF is 

The composite acquisition transfer function of Band 1 of 
the 5-band AVHRR model and the individual components 
are graphed in Fig. 2. Spatial frequencies are normalized to 
the unit sampling frequency in each dimension. Note that 
although the optical component is radially symmetric, its 
blumng effect relative to the inter-pixel spacing is larger in 
the along-scan dimension than in the along-track dimension. 
In both dimensions, the detector is the most significant source 
of blumng at frequencies within the Nyquist limit (lul < 0.5 
and Ivl < 0.5). The electronics transfer function and sample 

where w controls the filter cutoff and the values n1, 62, and 
n~ are functions of a single parameter n that provides a linear 
variation in the phasorv angle [6]. With n = 0, the pole 
position is that of the Butterworth filter; with n = 1, the pole 
position is that of the Thompson filter; with n = 0.5, the pole 
is the geometric mean between the two. For the five-band 
AVHRR, w = 1502.3 m and n = 0.8, so the filter is nearer 
the Thompson filter, with more blumng and less overshoot. 
This yields n3 = 3.0256, n2 = 4.2033, and n1 = 3.0943. 

Sample integration is modeled as a one-dimensional rectan- 
gular function in the spatial domain and as a sinc function in 
the spatial-frequency domain 

integration are present only in the along-scan dimension. 
Only the magnitude of the complex-valued electronics transfer 
function is shown. (The other component transfer functions 
are real only, so the overall acquisition transfer function has 
the same imaginary component as the electronics transfer 
function.) 

The phase shift of the electronics is more effectively illus- 
trated in Fig. 3, which graphs the composite and component 
PSF's. In both the along-scan and along-track dimensions, the 
detector blumng dominates the optical blurring. As is evident 
in Fig. 3, the electronics introduces a shift of about one pixel 
in the along-scan dimension. In Section IV, the digital image is 
shifted left one pixel before processing to largely compensate 

h, (u, v) = sinc(u~/A,)  (6) for this shift introduced by the TBT filter. 
With respect to restoration, it is clear from examining the 

where r is the scan distance during the sample integration is composite transfer functions in Fig. 2, that in the along-scan 
94.2 m (ground-projected) for the five-band AVHRR systems dimension there is significant blumng, with little response 
[4]. Because the distance involved in sample integration is beyond the Nyquist limit. In the along-track dimension, there is 
small relative to the detector size and pixel spacing, scanner significant response beyond the Nyquist limit, with a response 
blur is comparatively insignificant. of about 0.6 at frequency 0.5, and a significant response 
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beyond frequency 1.0 where there is phase reversal. Restora- 
tion in the along-scan dimension is principally limited by the 
system noise with little aliasing. In the along-track dimension, 
there is less blurring to correct, but the image is degraded by 
both noise and aliasing of high-frequency spectral components. 

All digital imaging systems suffer from noise. Sources 
include random photon flux, circuit noise, and quantization. 
Here, we use an additive white noise model characterized by 
the expected variance of the noise. The signal-to-noise ratio 
(SNR) is defined as the square root of the ratio of the expected 
signal variance to the expected noise variance 

a 
SNR = 2. 

a e  

Previous measurements of AVHRR noise yield estimates for 
a, of between 0.4 and 1.5 bits on a 10 bit scale [4]. 

B. Digital Filter 

The digital filter f takes the input digital image p and 
produces a filtered digital image 4. If the digital filter has 
the same resolution as the input image, the filtered image 
also will have the same resolution as the unprocessed digital 
image. (With reference a digital image or filter, we use the 
term resolution here to mean the resolution limit imposed by 
the sampling lattice, i.e., number of elements per unit interval. 
Other factors also determine the apparent resolution of an 
end-to-end digital imaging system.) However, the digital filter 
need not have the same resolution as the input image and this 
allows for reconstructing images with finer spatial resolution 
than the input image during restoration. For example, if the 
filter is designed with twice the resolution in each dimension 
as the image (i.e., two elements per pixel in each dimension), 
then the filtered image will have twice the resolution in each 
dimension as the input image. For simplicity, we will consider 
only filters with resolution that is an integer multiple of the 
resolution of the image p. (Actually, this approach allows 
arbitrary resolution using a higher resolution and constraining 
the spatial support of the filter as described in Section 111.) 

If we define the filter f on a lattice that has R, x R, 
elements per pixel (indicating the coordinates of filter elements 
with integer indices divided by filter resolution), then the 
filtered image q is 

Of course as a practical matter, only a finite image p is 
available for processing and the spatial support of a digital 
filter must be constrained. To address these issues and to 
facilitate the use of the DFT, it is common to assume the 
scene and hence the image are periodic with period equal to 
the image size and to constrain the filter support to the size of 
the image (or smaller). This means the filtering operation is one 
of circular convolution which can be implemented using the 
DFT. The frequency-domain equation corresponding to (9) is 

q(u, v )  = f (21, v)Ij(u: v ) .  (10) 

With the filter resolution limited to R, x R, elements per 
pixel, the filter transfer function f is periodic with period 
R, x R, times the sampling frequency. With the filter 
resolution equal to a multiple of the image resolution, the 
resolution of the filtered image q is the same as that of the filter, 
and its transform q  is also periodic with period R, x Rn times 
the sampling frequency. With a periodic image and constrained 
filter, the transforms in (10) are discrete as well as periodic, 
and can be computed with the DFT. 

If the spatial support of the filter is the size of the image, the 
filter is global, and the only practical implementation for mod- 
erately sized and large images is to use a fast Fourier transform 
(FFT) to compute the image spatial frequency spectrum 6, 
multiply by the filter transfer function [as in (lo)], and compute 
the inverse Fast Fourier transform of the product. However, 
for a M x N  image, the FFT is O ( M N l g ( M N ) ) ,  and 
even for moderately sized images the FFT requires significant 
computation. Filters with small spatial support e.g., a local 
filter may be implemented more efficiently with convolution 
in the spatial domain, as in (9). Convolution for a M x N  
image and filter with K  elements is O ( K M N ) .  If K  is small, 
then convolution requires less computation; if K is large, then 
frequency-domain computation requires less computation. For 
a specific computer, one can define the break-even point for the 
support size K as a function of image size. As an approximate 
general guideline for workstation-class computers, convolution 
is more efficient if K < 2.51g(MN) [7]. Not only is small 
kernel convolution efficient, but parallel implementation is 
straightforward. 

C. Reconstruction 

Reconstruction produces a continuous image from a digital 
image. A display monitor produces a spot for each pixel 
value, effectively blumng the discrete pixel values to form 
a continuous image. Display system designs seek uniformity 
in homogeneous regions without excessive blurring of sharp 
transitions 151. A Gaussian PSF is commonly used to model the 
display spots of video monitors. Traditional digital resampling 
operations also implicitly convolve the digital image with 
a continuous reconstruction function even though the result 
is computed only at the resampled points. Nearest-neighbor 
(or sample-and-hold), bilinear, and cubic convolution [8] are 
common digital reconstruction methods that use continuous 
reconstruction PSF's. LSI reconstruction with reconstruction 
PSF d is 

The corresponding frequency-domain equation is 

where d is the reconstruction transfer function. 

D. Scene Model 

The autocorrelation of the scene is required for the filter 
derivation in Section 111. The scene autocorrelation is modeled 
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as The CDC WienerJilter f, has no constraints on the spatial 
size or limit on the resolution [I] 

@, (x ,  y )  = a,2 exp ( - d m / , )  (13) 

where the parameter z is the mean spatial detail (or correlation 
length) of the object or scene (in normalized pixel units). This 
function is the non-separable autocorrelation of a circularly 

(the "*" superscript denotes complex conjugation) where 6,,, 
symmetric Markov process and is widely used for modeling 

is the cross power spectrum of the scene and image 
scene autocorrelation [9], [lo]. The mean spatial detail x 
parameterizes the "correlation length of the autocorrelation 
function. The corresponding scene power spectrum model is 

&s,p(u, 2 ) )  = E{i(u,  v)P*(u, v ) )  
= 6,(u, v)h* (u, v).  (19) 

(I4) &p is the image power spectrum 

For the results presented in Section IV, the brightness variance &,(u, v )  = E{l$(u, v)I2} 
0; is 1024 times the noise variance a:, so as defined in (8) 
SNR = 32. Various values for the scene mean spatial detail = 2 2 6 s ( u - p , v - v ) ~ ~ ( u - p , ~ - u ) ~ 2  
3 of AVHRR scenes are considered in Section IV, but filters p=-w ,,=-w 

derived for x = 1 work fairly well for a range of spatial detail. + k ( u ,  v )  (20) 

111. DERIVATION OF THE SMALL KERNEL 

The small restoration kernel minimizes the expected mean 
square difference between,the ideal image of the scene and the 
reconstructed image, subject to constraints on spatial support 
and resolution. With reference to Fig. 1, the expected mean 
square error is 

and 6,  and 6,  are the power spectra of the scene and noise, 
respectively. 

On a digital computer, the filter resolution must be limited. 
Let the filter be limited to R, x Rn elementslpixel, with post- 
filter reconstruction function d (either for display or subsequent 
digital resampling). Then, the optimal limited-resolution filter 
f l  is 121 

where 
00 03 Reference [ l l ]  used the expected mean square error to define 

image fidelitv G(u ,  V )  = C C B,(u - p ~ m ,  v - vRn) 

S2 F = l - -  (16) x ~d(u  - pR,, v - V R , ) ~ ~  (22) 
f f P  00 w 

b(u,v)= C C ~ s , p ( ~ - / l R m , v - v R n )  
where a: is the expected (ensemble average) variance of the ll=-w "=--a 
ideal image of the scene radiance field 

For notational convenience, we assume a zero-mean scene 
process in these equations; in practice, the image mean can 
be adjusted during filtering. Fidelity is bounded by 1, with 
equality if the output image is identical to the scene radiance 
field. Mean-square-error metrics such as fidelity are intuitive, 
facilitate mathematical analyses, and may correlate better with 
performance in automated recognition and classification, but 
they do not directly correspond to human assessments of visual 
quality. While there is no general acknowledgment of a better 
objective definition of visual quality, it is possible to introduce 
ad hoc adjustments for better subjective visual quality [12]. 
The issues surrounding the utility of restoration in automated 
recognition and classification are considered in Section VI. 

The limited-resolution filter transfer function is periodic with 
R, x R, cycles/pixel. If R > 1, then this filter yields a digital 
image with increased resolution. Further reconstruction is 
required for continuous output or for arbitrary resampling, but 
with adequate resolution, the constrained filter can effectively 
implement a significant part of the reconstruction operation. 

We also constrain the spatial support of the filter to a 
small set of locations C on the lattice defined by the limiting 
resolution of the filter. The elements not in the support set 
C cannot be used in the filter; i.e., the filter is zero at these 
locations 

The integers R, and R, in the denominators of the coordi- 
nates allow the filter to have finer resolution than the image 
with R, x R, elements per pixel interval. 
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for [m/R,.n/R,] E C where a and b are the inverse 
transforms of iL and b [(in (22) and (23)l. res~ectivelv and 

Then, u and b can be computed using the inverse FFT 
algorithm. In doing this, the frequency cutoff that is used must 
be sufficiently large that relatively little error is introduced 
by truncating the spatial frequency spectra. For example, in 
Section 4, the small kernels for the AVHRR are derived using 
a cutoff of 16 times the sampling frequency. 

The expected mean square error (15) for the CDC Wiener 
filter f ,  is 

Therefore, the fidelity (16) for this filter is 

For any filter f ,  the expected mean square error is 

and the expected fidelity is 

As can be seen in (29), the CDC Wiener filter defines the 
upper bound on fidelity. 

No constrained filter or filter with limited resolution (or, for 
that matter, any filter) can be expected to restore with higher 
fidelity (smaller mean square error) than the CDC Wiener 
filter. However, for typical imaging systems, the CDC Wiener 
filter PSF has a few centrally located elements that account for 
most of the filter response and the most significant response is 
at lower frequencies, so it is reasonable to expect that optimal 
small kernel filters will perform nearly as well. 

Fig. 4. AVHRR system simulation with four conventional-reconstruction 
methods and with the CDC Wiener filter. (a) MSS scene, (b) Gaussian, (c) 
nearest-neighbor, (d) Bilinear, (e) cubic convention, (f) CDC Wiener filter f,,.. 

IV. RESULTS 

This section presents results for both simulated and actual 
AVHRR images. In Section IV-A, software simulation of 
the AVHRR system allows assessment of overall system 
performance with precision, control, and flexibility that is not 
possible with real images [13]. Section IV-B presents results 
for an actual AVHRR image. The similarity of the simulated 
image to the actual image provides a basis for confidence in 
the simulation results. 

A. Simulated AVHRR Images 

The AVHRR simulation presented here uses a 512 x 512 
MSS image as the input scene s. To simulate AVHRR ac- 
quisition, the MSS scene is blurred, sampled, and corrupted 
with additive noise as described in Section 11. The sampling 
ratio in this simulation is 16:l (16 MSS pixels to 1 AVHRR 
pixel), so the simulated AVHRR image p is 32 x 32. This 
ratio is slightly higher than the actual MSS:AVHRR sampling 
ratio, but is close enough for the purpose of the experiments 
presented here. 

Restoration with the CDC Wiener filter yields an image that 
is more similar to the scene than does display reconstruction 
or conventional interpolation. Fig. 4 pictures the results of the 
end-to-end AVHRR system simulation. Fig. 4(a) is a MSS 
Band 2 scene from central Nebraska, including the city of 
Kearney. MSS Band 2 is used as the scene for simulated 
imaging of AVHRR Band 1. An actual AVHRR Band 1 
image of this region taken within a day of this MSS image 
is presented in Section IV-B. Fig. 4(b) is the image after sim- 
ulated AVHRR acquisition, no digital filter, and reconstruction 
with a simulated display monitor using a Gaussian spot with 
root-mean-square (RMS) radius 0.5 pixels. Fig. 4(c) is the 
image after simulated AVHRR acquisition, no digital filter, 
and reconstruction with nearest-neighbor interpolation. This 
image most clearly illustrates the pixel resolution. Fig. 4(d) is 
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TABLE 111 
1.0 0.40 FDELITY FOR FOUR CONVENTIONAL RECONSTRUCTION METHODS 
0.9 AND FOR THE CDC WIENER FILER f, DESIGNED FOR 2 = 1 
0.8 
0.7 
0.6 

F 0.5 
0.4 0.34 - - - - - - - - - - 
0.3 t i  0.33 
0.2 N i  0.32 .-. ................................... 

0.1 0.31 
0.0 0.30 

0.1 1 10 0.1 1 10 
Expected scene mean spatial detail f Expected scene mean spatial detail X 

(loglo scale) (log10 scale) 

(a) (b) 

Fig. 5. Fidelity for four conventional reconstruction methods and for the TABLE IV 
CDC Wiener filter f,. (a) Expected fidelity, (b) example fidelity. FIDELITY FOR THE LIMITED-RESOLUTION (SPATIALLY UNCONSTRAINED) 

WIENER FILTER fi WITH FOUR POSTFILTER RECONSTRUCTION METHODS 

the image after simulated AVHRR acquisition, no.digita1 filter, 
and reconstruction with bilinear interpolation. Fig. 4(e) is the 
image after simulated AVHRR acquisition, no digital filter, and 
reconstruction with cubic convolution. Fig. 4(f) is the image 
after simulated AVHRR acquisition and digital restoration and 
reconstruction with the CDC Wiener filter f,. 

A great deal of detail in the original MSS scene is lost in the 
imaging process and cannot be restored, but the CDC Wiener 
filter yields a sharper image with greater detail (e.g., along the 
high contrast edge running west from the center of the city) 
than do the conventional reconstruction functions. Although 
we present images to illustrate visually the differences, we 
are primarily interested in the accuracy of the quantitative 
measures that are especially relevant in automated processing. 
With increasing volumes of data, automated processing will 
be increasingly necessary and important. 

The expected fidelity with the CDC Wiener filter is sig- 
nificantly better than with display reconstruction or conven- 
tional interpolation. Fig. 5(a) graphs the expected fidelity for 
AVHRR images with CDC Wiener restoration, cubic convo- 
lution, bilinear interpolation, nearest-neighbor interpolation, 
and Gaussian reconstruction as a function of scene mean 
spatial detail 3 [as determined by (29)l. Among the simple 
reconstruction methods, cubic convolution yields the highest 
expected fidelity and Gaussian reconstruction the lowest. This 
graph also illustrates that the spatial detail of the scene is the 
important determinant of image fidelity; for all reconstruction 
methods, if the scene detail is small relative to the sampling 
frequency then the fidelity is low and if the scene detail is large 
relative to the sampling frequency then the fidelity is high. 

The predominant effect of the actual mean spatial detail 
on actual fidelity can be seen in Fig. 5(b), which graphs the 
fidelity for the example image in Fig. 4. This is a relatively 
detailed scene with a small mean spatial detail. Therefore, 
the digital image is significantly degraded by the blurring 
and undersampling of the simulated AVHRR acquisition and 
the fidelity is low regardless of the method of restoration 
or reconstruction. Note that the performance of the CDC 
Wiener filter depends on the mean-spatial-detail parameter 
used in defining the filter. In Fig. 5(b), the abscissa indicates 
the presumed mean spatial detail presumed in the design 
of the CDC Wiener filter. (Only the CDC Wiener filter 
is a function of the presumed scene mean spatial detail. 
Bilinear interpolation and the other reconstruction methods 

CDC Wiener f, 
Cubic Convolution 
Bilinear 
Nearest-Neighbor 
Gaussian 

A. Expected fidelity (f = 1). 

Expected 
Fidelity 
8 = 1 
0.725 
0.650 
0.614 
0.599 
0.589 

Post-Filter 
Reconstruction 

Cubic Convolution 
Bilinear 
Nearest-Neighbor 
Gaussian 

B. Example fidelity (f ~3 0.25). 

Example 
Fidelity 
Z % 0.25 

0.375 
0.337 
0.321 
0.319 
0.307 

are not premised on any presumptions about the scene sta- 
tistics.) 

As expected, the CDC Wiener filter yields significantly 
better fidelity than display reconstruction or conventional 
interpolation. It can be inferred both from the mean spatial 
detail where the fidelity for the CDC Wiener filter peaks and 
from the fidelity at the peak that (13) best models the scene 
in Fig. 4 with mean spatial detail x approximately 0.2 to 0.3 
pixels. This graph also indicates that the CDC Wiener filter 
is relatively robust with respect to the mean spatial detail; 
for example, the fidelity for the filter based on x = 1 works 
nearly as well as filters based on smaller estimates of x. This is 
good because it means that the method is fairly insensitive to 
errors in estimating the scene mean spatial detail and suggests 
that a global average can be used relatively effectively for 
non-homogeneous scenes. 

The CDC Wiener filter used for Fig. 4(f) is premised on 
a mean spatial detail 3 = 1. This is a slight mismatch, 
because, as just described, the actual mean spatial detail is 
0.2 to 0.3 pixels. However, this is perhaps better indicative of 
a typical result where the mean spatial detail is misestimated 
or the global estimate is used for shift-invariant processing. 
The numeric values of the expected fidelity and example 
fidelity (with 3 = 1 presumed) are given in Table 111. (The 
example fidelity is computed using the actual mean square 
difference between the scene and processed images.) The 
limited resolution and constrained filters presented later in this 
paper are similarly robust with respect to mean spatial detail 
Z, so for the subsequent results in this paper only the numeric 
values for 3 = 1 are given. 

Table IV presents expected and example fidelity for the 
optimal limited-resolution filter fi with four different methods 

Filter Resolution 
R,,, = 4 = 1 & = % = 2 & = % = 

0.718 
0.711 
0.621 
0.717 

0.725 
0.724 
0.692 
0.724 

0.725 
0.725 
0.718 
0.725 



IEEE TRANSP LCTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 33, NO. 4, JULY 1995 

TABLE V 
FIDELITY FOR THE SMALL KERNEL FILTER f, WITH 

CUBIC-CONVOL~TION POSTFILTER RECONSTRUCTION. THE CUBIC 
INTERPOLATOR IS DEFINED FOR THE RESOLUTION OF THE FILTER 

A.  Expected fidelity (X = I) .  

Post-Filter 
Reconstruction 

Cubic Convolution 

B. Example fidelity (x - 0.25) 

Size 
(Pixels) 

3 x 3 
5 x 5 
7 x 7 

Post-Filter 
Reconstruction 

Cubic Convolution 

of postfilter reconstruction. Even for resolution limited to 
the pixel resolution, R,, = R, = 1, the optimal limited- 
resolution filter with cubic convolution, bilinear interpolation, 
or Gaussian postfilter reconstruction yields fidelity nearly as 
good as the CDC Wiener filter which has unlimited resolution. 
With nearest-neighbor postfilter reconstruction, however, the 
fidelity of the optimal limited-resolution filter is considerably 
less than for the CDC Wiener filter and is even less than 
for simple cubic convolution with no restoration. The fidelity 
with nearest-neighbor interpolation is lower because nearest- 
neighbor interpolation does a poor job of estimating values 
between pixels. The frequency domain explanation of this 
is instructive. The transfer function (or spatial frequency 
response) at normalized spatial frequencies beyond the Nyquist 
limit 5 0 . 5  is larger for nearest-neighbor interpolation than 
for the other reconstruction transfer functions. Generally, the 
system should attenuate components at these frequencies, 
but if the filter is limited to be periodic with the sampling 
frequency it cannot attenuate these components without at- 
tenuating components at frequencies less than the Nyquist 
limit. For filter resolution equal to twice the pixel resolution, 
R, = R, = 2, the fidelity with nearest-neighbor postfilter 
reconstruction method is significantly improved, although it 
is still not as good as with the other postfilter reconstruction 
methods. For filter resolution equal to four times the pixel 
resolution, R, = R, = 4, the fidelity for the optimal limited- 
resolution filter with nearest-neighbor postfilter reconstruction 
is nearly as good as for the CDC Wiener filter and the optimal 
limited-resolution filter. The other postfilter reconstruction 
methods yields fidelity nearly identical to that for the CDC 
Wiener filter. 

Table V presents expected and example fidelity for the 
small kernel filter with three different small regions of spatial 
support, 3 x 3 pixels, 5  x 5 pixels, and 7 x 7 pixels. (Note 
these are the sizes of the filter support in pixel units. The 
number of elements in the kernel is a function of both size 
and filter resolution.) Only the results for cubic-convolution 
postfilter reconstruction are given. The results for bilinear, 
nearest-neighbor, and Gaussian postfilter reconstruction are 
ordered relatively as in Table IV, with Gaussian and bilinear 
postfilter reconstruction doing not quite as well as cubic- 
convolution and with nearest-neighbor reconstruction yielding 
the lowest fidelity. Some example small kernels designed for 

Fig. 6. Result image for the Rnr = Rn = 1. 3 x 3 small kernel filter f, 
with cubic-convolution postfilter reconstruction at the filter-resolution. 

Filter Resolution 
R, = R. = 1 R, = R, = 2 R, = &, = 4 

Size 
(Pixels) 

3 x 3 
5 x 5 
7 x 7 

AVHRR image restoration and reconstruction are given in the 
Appendix. 

Even the smallest kernels with the lowest resolution per- 
form nearly as well as the CDC Wiener filter which has 
unlimited resolution and unconstrained size. Fidelity improves 
with increasing spatial support and the 7 x 7 kernels are 
large enough to nearly match the performance of the CDC 
Wiener filter. The tradeoffs between fidelity and computational 
expense associated with kernel size, resolution, and postfilter 
processing are considered in Section V. 

Fig. 6 shows the restoration of the simulated image in 
Fig. 4, for the R,, = R, = 1. 3 x 3 small kernel with 
cubic-convolution postfilter reconstruction. This image is quite 
similar to the image produced by the CDC Wiener filter shown 
in Fig. 4(Q, but the raster pattern and artifacts of subsequent 
reconstruction are more evident. As will be seen, increasing 
filter resolution decreases these artifacts. 

When we began getting the results from these experiments, 
we were surprised that in some cases, increasing the resolution 
of small kernels caused a slight reduction in fidelity. For 
example, in Table V, the expected fidelity for the 3 x 3 small 
kernel with cubic convolution postfilter reconstruction is 0.708 
for R, = R, = 1,  0.707 for R, = R, = 2, and 0.706 for 
R, = R, = 4. The same decrease is observed in the example 
image, with fidelity 0.367 for R, = R,, = 1 and 0.365 for 
R, = R, = 2. The decrease in actual fidelity might have been 
attributable to the inevitable inaccuracy of the scene power 
spectrum model, but the decrease in expected fidelity forced 
us to look for the real explanation. 

For the results in Table V, the postfilter reconstruction 
functions are designed for the resolution of the filtered image. 
For example, for resolution R,, = R, = 1 the cubic postfilter 
interpolation PSF has a 4 x 4 pixels spatial extent, for resolution 
R, = R, = 2 the cubic convolution PSF is 2 x 2 pixels, 
and for resolution R,,, = R,, = 4 the cubic convolution PSF 
is 1 x 1 pixels. Therefore, different postfilter reconstruction 
functions are used at each of the three filter resolutions. Most 
reconstruction transfer functions roll-off at about 5 0 . 5  times 
the resolution for which they are designed. This means that 
for filters with resolution R,,, = R,, = 1 there is a roll- 
off in the postfilter reconstruction transfer function at about 
f 0.5,  for resolution R, = R, = 2 there is a roll-off in the 
reconstruction transfer function at about 5 1, and for resolution 
R, = R, = 4 there is a roll-off in the reconstruction transfer 

0.708 
0.716 
0.717 

Filter Resolution 
R, = R,, = l R, = R, = 2 R, = R, = 4 

0.707 
0.718 
0.722 

0.367 
0.372 
0.373 

0.706 
0.719 
0.722 

0.365 
0.372 
0.374 

0.366 
0.372 
0.374 
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Filter Resolution 

0.719 
Cubic Convolution 

0.724 0.724 

Filter Resolution 

0.373 
0.374 

0.375 0.375 

B. Example fidelity (T % 0.25). 

Fig. 8. AVHRR system simulation with Gaussian 
CDC Wiener filter, and with three small kernel fil 
Gaussian, (c) CDC Wiener f,, (d) f, with R, = 
f, with Rm = R, = 2 and 5 x 5, (f) f, with Rm 

nxonstruction, with the 
ten. (a) MSS scene, (b) 
R, = 1 and 3 x 3, (e) 
= R n = 4 a n d 7 x 7 .  

Fig. 7. Result image for the R, = R, = 2, 5 x 5 small kernel filter f, 
with cubic-convolution postfilter reconstruction at the filter-resolution. 

function at about f 2. Typically, it is desirable to attenuate 
spatial-frequency components above the Nyquist limit of the - - 
sampling lattice, i.e., beyond f 0.5. Hence, with increasing 
filter resolution, the postfilter reconstruction function does less 
attenuation of high-frequency components, leaving the task to 
the restoration filter. The larger small-kernels are large enough 
to effectively accomplish the blurring, but the 3 x 3 kernels 
are not. 

This led us to consider using reconstruction functions de- 
signed for the pixel resolution, R, = R, = 1, regardless of 
the filter resolution. In this case, the cubic postfilter interpola- 
tion PSF has spatial extent of 4 x 4 pixels regardless of the filter 
resolution. The results of these experiments are presented in 
Table VI. The fidelity of the higher-resolution small kernels is 
better with postfilter reconstruction functions designed for the 
pixel resolution than with postfilter reconstruction functions 
designed for the filter resolution. As described above, this 
is because the postfilter reconstruction functions designed for 
the pixel resolution perform more of the desired attenuation 
of spatial-frequency components above the Nyquist limit of 
the sampling lattice. However, this is not without cost; the 
postfilter reconstruction functions designed for the pixel res- 
olution require more computation than the smaller postfilter 
reconstruction functions designed for the filter resolution. The 
computational costs are examined in Section V. 

Fig. 7 shows the restoration for a R, = R, = 2 resolution 
small-kernel with cubic-convolution postfilter reconstruction 
defined for the image resolution. The image is very similar 
to the image produced by the CDC Wiener filter shown in 
Fig. 4(f). 

Fig. 9. Actual AVHRR image with Gaussian reconstruction, with the CDC 
Wiener filter, and with the small kernel filter. (a) Gaussian, (b) CDC Wiener 
f,, (c) small kernel f,. 

Fig. 8 illustrates another AVHRR simulation. Fig. 8(a) is a 
MSS Band 1 scene from another location along the Platte River 
valley in Nebraska, but with different spatial character than the 
image in Fig. 4. Fig. 8(b) is the Gaussian spot reconstruction 
of the simulated AVHRR image and Fig. 8(c) is the CDC 
Wiener restoration. Fig. 8(d)-(f) are small kernel restorations 
with cubic-convolution postfilter reconstruction, Fig. 8(d) for 
R, = R, = 1 and 3 x 3, Fig. 8(e) for R, = R, = 2 and 
5 x 5, and Fig. 8(f) for R, = R, = 4 and 7 x 7. The fidelity 
for these images are 0.652 for Gaussian reconstruction; for 
0.687 CDC Wiener restoration; and 0.683, 0.687, and 0.687 
for the three small kernel restorations. Visually, one can see 
that the scene in Fig. 8 is not as detailed as the scene in Fig. 4. 
The fidelity indicates that (13) best models the scene in Fig. 4 
with mean spatial detail E z 1 pixel. 

B. Actual AVHRR Images 

The AVHRR image presented in Fig. 9 is of the same 
general vicinity and was taken within a day of the MSS scene 
in Fig. 4. Fig. 9(a) is a 32 x 32 AVHRR image reconstructed 
to 512 x 512 with a Gaussian PSF with RMS radius 0.5 
pixels (and no restoration). The character of this image is 
very similar to that of the corresponding simulated image 
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TABLE VII 
RELATIVE COMPIJTATIONAL AND STORAGE COSTS 

I I Filter Resolution (R,,, = R,,) I 
1 2 4 

Com~utation for 3 x 3 Filter I 9 M N  I 4 9 M N  I169MN 

~ - ~ -.--- 

I Computation for Nearest Neighbor I I I 

Computation for 5 x 5 Filter 1 2 5 M N  
Computation for 7 x 7 Filter 1 4 9 M N  
Storaee for Filtered Imaee I M N  

at ~ i t e r  Resolution' 
Computation for Bilinear at Filter 
Resolution' 
Computation for Cubic Convolution 

Computation for Nearest Neighbor 
at Image Hesolution' 
Computation for Bilinear at Image 
Resolution* I 4 M N  I 8 M N  I 16MN 
Computation for Cubic Convolution I I 

121MN 
225MN 

4 M N  

I (or Gaussian) at Image Resolution' I 8 M N  I 16MN I 32MN I 
*Assumes resampling at image resolution. 

441MN 
841MN 

16MN 

in Fig. 4(b). Note, however, that the two images are not 
geometrically registered and the scales of the two images 
differ slightly. Fig. 9(b) is restored and reconstructed with the 
CDC Wiener filter and Fig. 9(c) is restored with a R, = 
R, = 1 ,  3 x 3 small kernel with cubic-convolution postfilter 
reconstruction. The two restored images are similar to one 
another and to the restoration results for the corresponding 
simulated images in Figs. 4(f) and 6. The similarity of the 
simulated image to the actual AVHRR image indicates that 
the AVHRR simulation is a reasonable approximation and that 
the experimental assessments and the conclusions presented in 
Section IV-A are meaningful. 

There are many possible small kernels. One naturally asks: 
"Which small kernel should I use?'LJnfortunately, there is 
no single answer to this question. Generally, higher fidelity 
requires more computation, so one must either answer the 
question: "What fidelity is required?'and then choose the filter 
that delivers the desired fidelity and requires least computation, 
or answer the question: "How much computation can be 
expended?'and then choose the filter that maximizes fidelity 
within the computational limit. This task may be complicated 
by the fact that computation may be required first for filtering 
and then for postfilter reconstruction. One or both of these 
steps may be subject to processing constraints related to the 
hardware used for each step. 

Table VII illustrates the relative costs for filtering compu- 
tation, filtered image storage, and postfilter processing. This 
chart, with those in Section IV-A, makes some choices clear. 
For example, the R,  = R, = 4, 3 x 3 small kernel is more 
expensive and yields lower fidelity than the R,  = R, = 2 ,  
5 x 5 small kernel. Other cases require case-specific cost- 
benefit analysis of the tradeoffs between fidelity and cost. 

VI. CONCLUSION 

The small kernels derived in this paper efficiently and 
effectively restore AVHRR images. The approach is based on 
a comprehensive end-to-end system model, provides explicit 
control over computation via constraints on spatial support 

TABLE VIII 
EXAMPLE Rm = Rn = 1. 3 x 3 SMALL KERNELS f, 

TO BE USED WITH BILINEAR POSTFILTER RECONSTRUCTION 
AND WITH CONVOLUTION POSTFILTER RECONSTRUCTION 

and resolution, and maximizes image fidelity subject to the 
spatial constraints. The kernels can be designed with greater 
resolution than the image to perform partial reconstruction for 
geometric correction and other remapping operations. Small 
kernel convolution can be implemented in parallel for real-time 
restoration and reconstruction. Simulation results demonstrate 
that the small kernels can be nearly as effective as more 
computationally expensive unconstrained filters. 

The future utility of restoration of remote sensing data 
is more significant for automated processing than for visual 
processing. The Earth Observing System (EOS) program [14] 
will generate more data than humans can or will examine 
directly. This data is being generated primarily for auto- 

Band 1 

Band 2 

Band 3 

Band 4 

Band 5 

mated processing. Reference [IS] argues that the problems of 
restoring for subsequent visual or automated examination are 
different problems that probably have different solutions. They 
demonstrate that in controlled TM simulations, restoration can 
significantly reduce classification errors. Still, the problem 
of defining a restoration method tailored for classification 
accuracy is a difficult problem. For example, [15] reports 
better classification with what they call partial restoration in 
which the filter does not correct for detector blurring. This 
reflects the fact that the restored value is used as a measure 
for the neighborhood rather than as point measure. Such partial 
restoration is a special case of the technique that [2] call 
characteristic restoration and can be implemented with a small 
kernel [16]. As these results indicate, more research into the 
use of restoration to enhance automated processing is needed. 

APPENDIX 
EXAMPLE SMALL KERNELS 

Table VIII illustrates the R,, = R, = 1 ,  3 x 3 small 
kernels to be used with bilinear postfilter reconstruction and 
with cubic-convolution postfilter reconstruction. 

These filters are to be applied after the image is shifted 
one pixel to the 1eft.The left shift largely compensates for 
the shift introduced during acquisition (Fig. 3). The filters 
are index reversed during convolution (9). A brightness 
offset is added during filtering so that the brightness mean 
is unchanged. 

Bilinear 
0.1565 -0.4407 0.1254 

-0.7992 2.6958 -0.6383 
0.1565 -0.4407 0.1254 
0.1564 -0.4407 0.1253 

-0.7979 2.6939 -0.6370 
0.1564 -0.4407 0.1253 
0.1560 -0.4437 0.1246 

-0.7850 2.6763 -0.6240 
0.1560 -0.4437 0.1246 
0.1590 -0.4479 0.1276 

-0.8042 2.7098 -0.6426 
0.1590 -0.4479 0.1276 
0.1487 -0.4291 0.1178 

-0.7521 2.6127 -0.5926 
0.1487 -0.4291 0.1178 

Cubic Convolution ' 
0.0889 -0.2436 0.0693 

-0.5574 2.0908 -0.4238 
0.0889 -0.2436 0.0693 
0.0889 -0.2437 0.0692 

-0.5564 2.0892 -0.4227 
0.0889 -0.2437 0.0692 
0.0889 -0.2469 0.0690 

-0.5453 2.0742 -0.4115 
0.0889 -0.2469 0.0690 
0.0907 -0.2490 0.0707 

-0.5609 2.1014 -0.4267 
0.0907 -0.2490 0.0707 
0.0843 -0.2375 0.0648 

-0.5191 2.0236 -0.3867 
0.0843 -0.2375 0.0648 



REICHENBACH et al.: RESTORATION AND RECONSTRUCTION OF AVHRR IMAGES 1007 

The small kernels designed to be used with bilinear 
postfilter reconstruction perform greater sharpening than 
the small kernels to be used with cubic-convolution 
postfilter reconstruction. This is because cubic convolu- 
tion is a "sharper" reconstruction function than bilinear 
interpolation. 
The small kernel filter is nearly the same for all bands. 
This is because the AVHRR acquisition function is nearly 
the same for all bands. 
The small kernel filters sharpen more along-scan than 
along-track. This is because the AVHRR acquisition sys- 
tem introduces more blurring along-scan than along-track. 
(Fig. 2) 
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