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ABSTRACT 

Digital image restoration requires some knowledge of the degradation 

phenomena in order to attempt an inversion of that degradation. Typically, 

degradations which are included in the restoration process are those resulting 

from the optics and electronics of the imaging device. Occasionally, blurring 

caused by an intervening atmosphere, uniform motion or defocused optics is 

also included. Recently it has been shown that sampling, the conversion of the 

continuous output of an imaging system to a discrete array, further degrades 

or blurs the image. Thus, incorporating sampling effects into the restoration 

should improve the quality of the restored image. 

The system transfer function (the Fourier transform of the point spread 

function), was derived for the Landsat Multi-Spectral Scanner and Thematic 

Mapper systems. Sampling effects were included, along with the relevant optical, 

instantaneous field of view and electronic filter data, in the system analysis. 

Using the system transfer function, a least squares (Wiener) filter was 

then derived. A Wiener filter requires the ratio of the power spectra of the 

scene and noise, which is often, for simplicity, assumed to be a constant over 

frequency. The restoration method used here includes models for the power 

spectra which are based on the study of several different types of Landsat scenes. 

The Wiener filter is then inverse Fourier transformed to find a restoration filter 

which is spatially windowed to suppress ringing. Qualitative and quantitative 

evaluations are made of the restored imagery. 

Comparisons are made to the approaches taken by other investigators, 

in particular, to one who has had success restoring the same type of imagery. 

it is found that the restoration method used here compares favorably with this 

previous work. 

xi 



CHAPTER 1 

INTRODUCTION 

Image restoration is an example of what is known as an inversion prob

lem, where some physical quantity is estimated from a set of measurements. In 

particular, image restoration is an attempt to recover losses suffered in an imag

ing process due to various degradations. These degradations may be the result 

of the intervening atmosphere, imperfect optics or electronic filters, motion blur, 

discretization of the continuous scene (sampling) and ground processing. Many 

of the imaging parameters can be determined or estimated from engineering de

sign data and preliminary testing. Atmospheric effects may be modeled using 

a Monte Carlo approach. Motion blur is accounted for through a knowledge of 

the relative motion between object and imaging system, and ground processing 

is usually well documented. Sampling, the conversion of the continuous output 

of an imaging system to a discrete array, has not been an explicit component in 

previous restoration work. Sampling further degrades, or blurs, an image. Thus, 

incorporating sampling effects into the restoration should improve the quality of 

the restored image. One approach which includes sampling degradation in the 

restoration process is presented here. 

Imaging can be modeled by a convolution of the function describing 

the imaging process with one describing the scene. The convolution of two 

functions is equivalent to the product of the Fourier transforms of the functions. 

This simplification leads to the concept of a restoration "filter", a third function 

which multiplies the existing product in an attempt to recover the function 

describing the original scene. The filter chosen for this work is the Wiener filter, 

which has been very successful in one-dimensional signal processing. 

1 
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The Wiener filter, however, is derived for continuous functions. In 

particular, the Wiener filter requires certain parameters including an imaging 

system performance function called the "transfer function". One way of dealing 

with sampling is a stochastic approach in which sampling effects are accounted 

for by assuming a random distribution of point sources and averaging the overall 

system output over all possible point source locations. This results in an average 

system transfer function which can then be used in the Wiener filter. Since this 

average system transfer function is not continuous, the resulting Wiener filter 

is suboptimal in the least squares sense. However, it will be seen that using 

such a filter in image restoration leads to quite acceptable results, often even 

subjectively better results than those given by the optimal filter. 

This s1' boptimal Wiener filter is then inverse Fourier transformed to 

create a spatial filter. it is required that this spatial filter be small enough to 

be efficiently applied· to very large images. In particular, the spatial filter is 

applied to Landsat satellite images (typically consisting of 107 picture elements, 

or pixels) as part of a geometric correction procedure. The resulting images are 

sharper than images obtained using other methods. 

The theory and development of this approach to image restoration is 

described in this dissertation. Chapter 2 discusses in detail a mathematical 

model for imaging and discusses various restoration procedures including the 

Wiener filter. Chapter 3 describes the Landsat imaging sensors, and Chapter 4 

the geometric correction of these Landsat images and the use of the restoration 

filter in this context. Chapter 5 discusses sampling and its inclusion in the 

Wiener filter. Chapter 6 describes another approach which has also been applied 

successfully to Landsat images and how that approach relates to the Wiener filter 

approach. Chapter 7 covers the determination of the parameters necessary for 

---_ .... - .--.---
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the Wiener filter and other implementation issues, and Chapter 8 shows some 

qualitative and quantitative results. Finally, Chapter 9 describes some topics 

for possible future study. 



CHAPTER"2 

IMAGE RESTORATION 

An image is a representation of an object or scene which results from 

the recording of radiant energy emitted or reflect~d from the object (Andrews 

and Hunt, 1977). The object and image are often represented as continuous 

functions f(x', y') and g(x, y) which describe the distribution of light intensity 

at each point (x', y') and (x, y) in the object and image planes. A function h is 

also defined which describes the imaging process. 

There are three assumptions on which the mathematics of noncoherent 

image formation is based: Image intensity is nonnegative, it is a neighborhood 

process and it obeys the superposition principle. 

Since images are formed by the recording of radiant energy, it is rea

sonable to assume that the intensity distributions which are the object and its 

image are nonnegative, that is 

f(x', y') ~ 0 and g(x, y) ~ 0 (2.1) 

so that nonnegativity is a property of noncoherent imaging. 

A function h which describes the imaging system performance is the 

"point spread function". The point spread function describes the irradiance 

distribution at the image plane of an object which is an ideal point source. 

The point spread function of an ideal imaging system is a Dirac distribution 

(Arsac, 1966) or "delta function" (Greenberg, 1978) o(x, y), which is defined in 

the theory of distributions in terms of the integral 

f_: i: o(x - a, y - b)f(x, y)dxdy = f(a, b) (2.2) 

4 
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The ideal image of a point source would also be a point. However, realizable 

imaging systems introduce some blurring (or low pass filtering) so the intensity 

at a point in the image is a function of contributions from a neighborhood 

of points in the scene. For example, even the best optical system would be 

"diffraction limited" , preventing the image of a point source from being an ideal 

point image (Gaskill, 1978). 

Finally, image formation is usually assumed to obey the superposition 

principle under addition. The overall image intensity distribution can be thought 

of as a sum (or integral) of point sources. Summing all the point sources which 

make up the continuous image, the most general image formation equation is 

g(x, y) = I: I: h(x, y, x', y', f(x', y') )dx' dy' (2.3) 

where x, y represents coordinates in the image plane and x', y' coordinates in 

the object plane. The point spread function h describes the transformation of 

energy from object to image plane. 

A 8implifying assumption is that the function h simply weights the 

object distribution. This is the case of a linear imaging system, and Eq. (2.3) 

reduces to 

g(x,y) = i:i: h(x,y,x',y')f(x',y')dx'dy' (2.4) 

This is a linear integral equation, in particular, a Fredholm integral equation of 

the first kind. It is a Fredholm equation because the limits of integration are 

fixed and it is of the first kind because f(x', y') appears only in the integrand 

(Lovitt, 1924; Greenberg, 1978). 

Another simplifying assumption is that of shift invariance, that the 

image of a point source depends only on the intensity of the point and not on its 

location in image and object planes. In this case the image formation equation 

simplifies further to 

g(x,y) = I: I: h(x - x',y - y')f(x',y')dx'dy' (2.5) 
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which is the familiar convolution and will hereafter be denoted 

g(x, y) = h(x, y) * f(x, y) (2.6) 

If the input signal consists of a single ideal point source then Eq. (2.5) becomes 

(with 8(x, y) = 8( -x, -V) ) 

g(x,y) = i:i: h(x-x',y-y')8(x',y')dx'dy' = h(x,y) (2.7) 

These equations are' fundamental to linear system theory since they indicate that 

if the response to a impulse (delta function) i.e. the point spread function, is 

known, then the response to any input may be calculated by means of Eq. (2.6). 

The imaging systems considered herein can be assumed to be linear 

and shift invariant with little error, so that much of the theory can be developed 

using the model of Eq. (2.6). Sampling, the conversion of the continuous output 

of an imaging system to a discrete array, violates the shift invariance assumption, 

and will be dealt with separately. 

Image Restoration 

When a scene is recorded by an imaging device certain degradations 

are inevitable. These degradations may be the result of the intervening atmo

sphere, imperfect optics or electronic filters, sensor noise, discretization of the 

continuous scene and ground processing. Image restoration is an attempt to 

recover losses suffered in the imaging process due to some or all of these vari

ous degradations. If we let the original scene be represented by f (x', y'), then 

the process of recording a scene, exclusive of sampling (Park, et. al., 1984) and 

noise, for linear shift invariant systems, can be described mathematically by 

Eq. (2.6). However, all physically realizable imaging systems introduce some 

noise, i.e. some unwanted signal. Some system noise may be periodic and easily 

dealt with. But there will usually be other noise which can only be characterized 

------------------ .. _ .... - .. -._-_ .. --------_._ .... -. "-' 
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statistically. If that noise n(x, y) is additive and signal independent, the imaging 

process can be written 

g(x, y) = h(x, y) * !(x, y) + n(x, y) (2.8) 

The scene f (x', y') can no longer be perfectly restored since n( x, y) is usually 

not deterministic. 

Even without noise, image restoration is ill-conditioned (Andrews and 

Hunt, 1977; Phillips, 1962) and often even singular. In particular, if the object 

!(x',y') in Eq. (2.4) consists of the sum of two functions lI(x',y') and h(x',y') 

is orthogonal to the point spread function h over an interval [a, b] and II (x' , y') 

is not, then 

lab lab h(x,y,x',y')[II(x',y') + h(x',y')]dx'dy' 

= lab lab h(x, y,x', y')II(x', y')dx'dy' 

The existence of the orthogonal component! 2 (x', y') cannot be determined from 

the image, and the correspondence between object and image is many-to-one. 

Image restoration now becomes an attempt to find the "best" estimate 

f (x', y') of f (x', y') in some sense. This estimate is referred to as the "re

stored image". The difference of one restoration method from another is often 

determined by the way in which "best estimate" is defined. Thus, there are 

innumerable processing approaches which can produce a "restored" image, and 

there are many ways one could categorize these methods such as constrained 

vs. unconstrained, a priori vs. a posteriori, linear vs. nonlinear and recursive vs. 

nonrecursive. Image restoration methods might also be categorized according to 

fields of mathematics: linear algebra approaches, probabilistic approaches, infor

mation theory approaches and transform approaches. A representative sample 

from each of these latter categories will be given here, and comparisons made. 
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This will by no means be an exhaustive list, but only meant to give a flavor of 

what has been done. Some of these approaches fair better than others in the 

presence of noise, and implementation issues are usually also of concern. 

Linear Algebra Method 

Since in much image restoration work the concern is with digital image 

restoration, we must consider sampled imagery. That is, the continuous scene 

f(x',y') is imaged as g(x,y) which is then sampled as g8(m~x,n~y) where 

00 00 

g8(m~x, n~y) = . L L g(x, y)o(x - m~x, y - n~y) (2.9) 
m=-oon=-oo 

for a uniform sampling grid (Andrews and Hunt, 1977). This suggests modeling 

the entire imaging process as a discrete process and implementing techniques 

of linear algebra for image restoration. The discrete counterpart of continuous 

convolution, Eq. (2.5), is 

00 00 

g(m,n) = L L h(m - k,n -l)f(k,l) (2.10) 

k=-oo Z=-oo 

Or, for scenes and point spread functions with finite extent [r, Rj, 

min(Rk ,m-rp ) min(R/ ,n-rq) 

g(m,n) = L L h(m - k, n -l)f(k, l) (2.11) 

where rk ::; k ::; Rk , rz ::; 1 ::; Rz , rp ::; p ::; Rp , rq < q ::; Rq and m = 

Rk + Rp - 1, n = Rz + Rq - 1. Eq. (2.11) can be written in matrix notation as 

where 

g= 

g(r/+rq ) 

g(r/+rq+l) 

g(R/+Rq-l) 

g(R/+RQ ) 

g=Hf 

where g(O/) = 

g(rk + rp, a) 

g(rk + rp + 1, a) 

g(Rk +Rp -1,a) 
g(Rk + rp, a) 

(2.12) 
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f(n) f(rk, (3) 
f(r,+l) f(rk + 1,(3) 

f= where f({3) = 

f(R,-I) f(Rk - 1,(3) 
f(R,) f(Rk, (3) 

and 
H(rq) 0 0 0 

H(rq+l) H(rq) 0 

H(rq+l) H(rq) 

H= H(Rq-l) 

H(Rq) H(Rq-l) 

0 H(Rq) 

0 

where 

h(rp, "I) 0 0 o 

h(rp + 1, "I) h(rp, "I) 0 

h(rp + 1, "I) h(rp, "I) 

Hb) = h(Rp - 1, "I) 

h(Rp,"I) h(Rp - 1,"1) 

0 h(rp, "I) 

0 0 

for square matrices. Rectangular matrices c~n be padded with zero elements 

to make them square. This matrix formulation suggests regarding the discrete 

imaging equation, Eq. (2.11)' as a system of linear equations where it is desired 

to solve for the (image) vector f. Naively, Eq. (2.12) may be solved for f simply 

by finding the inverse of H, and multiplying 

(2.13) 

---- --_ .. ------ -------
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But there is no guarantee that H-1 exists. Even if H-1 does exist, the huge 

size of H (on the order 105xl05 for a 512-by-512 image) seems to make solution 

of Eq. (2.13) prohibitive. However, point spread function matrices are sparse 

and often highly structured (Frieden, 1979; Pratt, 1975), so that efficient com

putational techniques for the solution of Eq. (2.13) are possible. For example, 

separable imaging systems, (systems for which the two-dimensional point spread 

function is a product of two one-dimensional line spread functions), which are 

also shift invariant, have symmetric point spread function matrices. Efficient 

methods exist (Stewart, 1973; Duff, 1981; Tewarson, 1973; Reid, 1971) for solv

ing such systems, so that matrix inversion is not required. Those components 

of f which are in the null space of H, however, can never be recovered. 

Aside from this many-to-one nature of imaging, the problem with the 

discrete model of Eq. (2.12) is not, therefore, finding a feasible method of solu

tion. The problem is that for physically realizable imaging systems the model 

itself is not realistic since it does not account for noise. A more realistic discrete 

imaging equation is 

g =Hf+n (2.14) 

where n represents additive signal independent noise, an indeterministic quan

tity. The sparsity of H makes the inversion of Eq. (2.14) very unstable in the 

presence of noise, as H is usually ill-conditioned (Hunt, 1972; Phillips, 1962). 

Since for many imaging systems of interest (including those studied here) H is 

filled mostly with zeroes and small elements near the diagonal (Frieden, 1979), 

H- 1 will have very large elements that ~ill tend to enhance noise: 

(2.15) 

Many methods have been proposed to deal with this inherent instability, includ

ing smoothing methods (e. g. Phillips, 1962), iterative pseudo-inverse methods 
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(Maeda and Kazumi, 1984), iterative damped least squares methods (Maeda, 

1985) and singular value decomposition methods (Huang and Narendra, 1975; 

Sasaki and Yamagami, 1985). Major disadvantages remain even with these 

methods. The pseudo-inverse method, for example, only works when the imaging 

system is separable. Iterative damped least squares methods work on nonsepa

rable systems, but require an arbitrary parameter. Phillips' smoothing method 

has been successfully applied to image restoration (Hunt, 1973), but it also re

quires an arbitrary parameter. Other problems arise for those methods which 

do not constrain the solution f: although it is known that f is nonnegative, f 

may not be so. Methods which incorporate some constraints often give "better" 

results. 

Information Theory Method 

The maximum entropy method developed by Frieden (1972) includes 

such contraints. This method assumes that there are a fixed number of (positive 

energy) photons which must be distributed in the image (which is assumed to 

be subdivided into elemental "cells") in such a way as to be consistent with the 

image formation equation Eq. (1.5). The goal is to maximize the entropy 

N 

H= - LPnlnPn (2.16) 

n=l 

subject to the constraint Eq. (2.5), where the Pn represent the probabilities of 

infinitesimal units of intensity falling in the nth cell of the image. This method 

has been successfully applied to images of sources which can be described by 

Poisson statistics, such as astronomical images (Frieden and Wells, 1978), but 

have limited usefulness for other types of images. 

Probabilistic Method 

Other image restoration methods include viewing the whole imaging 

process as a stochastic problem, with the scene f and image g random vectors 
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which are samples from an ensemble of possible scenes and images. In this 

method, one wants to estimate the (discrete) restored image given the recorded 

image and some (statistical) knowledge about the noise; that is, to estimate f 

conditioned on knowledge of g. Bayes' rule gives the a posteriori conditional 

density 

P(fl ) = P(glf)P(f) 
g P(g) (2.17) 

Different criteria can be used in estimating f: minimum mean square error es

timates are the mean of the posterior density P{flg), maximum a posteriori 

estimates are the mode of the posterior density, and maximum likelihood esti

mates are a special case of maximum a posteriori estimates where the posterior 

density is equal to the prior density P(glf) (Hunt, 1977). Methods based on 

these criteria often give good results, but at the cost of computational efficiency 

as they often require (relatively) complex optimization algorithms (Hunt, 1977; 

Richardson, 1972). 

Filtering Method 

Finally, a method which has become very popular in image processing 

due to its success in one-dimensional signal processing (Cappellini, Constan

tinides and Emiliani, 1978) is the "filtering" method discussed below. This is 

the method used in this dissertation. 

For linear shift invariant systems the imaging equation is just the con

volution Eq. (2.8). Taking the Fourier transform of both sides of Eq. (2.8) 

results in considerable simplification since convolution in the spatial domain be

comes simply multiplication in the frequency domain (Rosenfeld and Kak, 1982; 

Champeney, 1973). The frequency domain equivalent of the imaging equation 

is 

G(u, v) = H(u, v)F(u, v) + N(u, v) (2.18) 

---- .. -- ---_ ...... _-------------_._.-------_ .. -
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where. G, H, F and N are the Fouriertransforms of g, h, f and n, respectively, 

and u and v are the frequency domain coordinates corresponding to the spatial 

coordinates x and y. The Fourier transform and its inverse are defined as 

(2.19) 

and 

(2.20) 

H(u, v) is called the "transfer function" and describes how well the imaging 

system "transfers" amplitude and phase information at different spatial fre

quencies. The equivalence of the convolution of two functions to the product 

of their fourier transforms, often called the "Convolution Theorem", is a very 

important relation which will be used repeatedly throughout this work. 

Filtering methods consist of multiplication of the image spectrum 

G(u,v) by a "filter function" M(u,v). The product is then inverse Fourier 

transformed to yield the restored image. The filtering could be performed in 

the spatial domain as well. The filter function is inverse transformed and the 

resulting "deconvolution filter" is convolved with the image to create a restored 

image. Since the convolution of two functions in one domain is equivalent to 

multiplication of the Fourier transforms of the functions in the other domain, 

these two procedures are (theoretically) equivalent. 

For example, if the transfer function H (u, v) were known, for example 

from system modeling, and the system were noiseless, then one could, in theory, 

recover f(x, y) exactly by dividing Eq. (2.18) (with N(u, v) = 0 ) by H(u, v) 

and then taking the inverse Fourier transform, resulting in 

f(x,y) = .1-1 [G(u,v)/H(u,v)] (2.21) 

In this example the term 1/ H( u, v) is the filter function and is called an "inverse 

filter". This assumes, of course, that H( u, v) is never zero. If it is the above 

_0 _________ •• _. _ •• ___ •• • •••• -------- •••• ---•• -. - ••••• - ----.-•••• --------
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expression is undefined. If it is nonzero but very small, using this inverse filter 

would result in numerical instability. (This is just the Fourier domain equiva

lent of the ill-conditioned nature of imaging previously discussed.) In practice, 

this restoration method is not usually effective anyway because it assumes the 

imaging system is noiseless, which it rarely is. For additive signal independent 

noise, taking the Fourier transform of both sides of Eq. (2.8) and dividing by 

H( u, v) results in the restoration 

F( ) 
_ G(u, v) 

u, v - _":---':-
H(u,v) 

N(u,v) 

H(u,v) 
(2.22) 

Now if IN(u,v)jH(u,v)J is very large relative to JG(u,v)jH(u,v)J, then, even in 

the case of a well behaved transfer function, the result will be considerable noise 

enhancement. Practical restoration methods must account for the inevitable 

noise present in the image. 

One way of dealing with the noise amplification effects of the inverse 

filter is to reduce the value of the filter at high spatial frequencies, because it is 

at these frequencies that the signal-to-noise is usually least and, therefore, the 

noise amplification most severe. It would be preferable if the control of noise 

amplification were automatic. Such automatic control exists in the Wiener filter 

(Helstrom, 1967). 

Wiener Filter 

In deriving the Wiener filter, the concept of a random field is useful. 

A random field is a generalization of a stochastic process, which is, in turn, a 

generalization of a random variable. Whereas a random variable is a rule for 

assigning to every outcome Wi of an experiment whose set of possible outcomes 

is W = {WI, W2,. .. , wn } a number r(wd, a random field is a rule for assigning 

to every outcome Wi a function of m variables f(Wi, Xl, X2, ... , x m ). If m = 1, 

Euclidean I-space, then f(Wi, x) is a stochastic process. For purposes of image 
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processing, it is useful to consider m = 2. Then, for example, if the underlying 

experiment is the selection of an image from a collection of images, the outcome 

Wi corresponds to the selection of the ith image. For a fixed Wi, f (Wi, X, y) is 

a two-dimensional function representing the intensity distribution which defines 

the image. 

The motivation for the Wiener filter is to try to minimize the mean 

square error between the original scene and the restored image (estimated scene): 

minimize e2 (2.23) 

where 

(2.24) 

where both object and image coordinate systems are referenced to a common 

orthogonal coordinate system (x, y). 

As previously mentioned, filtering by multiplying a filter function by the 

Fourier transform of the image is equivalent to convolving the inverse Fourier 

transform of the filter with the image itself. The Wiener filter approach is a 

linear least squares estimate: minimize the expectation in Eq. (2.24) subject to 

the constraint that the restoration j(x, y) is a linear function of the intensity 

levels in t'!le image g (x, y), i.e. 

j(x,y) = f-: i: m(x,y,x',y')g(x',y')dx'dy' (2.25) 

where m(x,y,x',y') is the deconvolution filter. For stationary random fields f 

and g Eq. (2.25) becomes a convolution (Papoulis, 1965) 

i(x, y) = i: i: m(x - x', y - y')g(x', y')dx'dy' (2.26) 

Substituting into Eqs. (2.23) and (2.24) yields 

minimize e2 
(2.27) 
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where 

e
2 

= E[(J(x,y) - i: i: m(x - x',y - y')g(x',y')dx'dy')2] (2.28) 

It can be s~lOwn (Theorem 1, Appendix A) that a function m(x, y) minimizes 

Eq. (2.28) if and only if m(x, y) satisfies 

E[(J(x,y) - i: i: m(x - x',y - y')g(x',y')dx'dy')g(xo,yo)] = 0 (2.29) 

Eq. (2.29) can also be written 

i: i: m(x - x',y - y')E[g(x',y')g(xo,'yo)]dx'dy' 

= E[f(x, y)g(xo, Yo)] (2.30) 

Or, making use of the definitions of auto- and cross-correlation (Papoulis, 1984) 

i: i: m(x - x', y - y')Rgg(x', y', xc, yo)dx'dy' = Rfg(x', y', xc, Yo) (2.31) 

where Rgg and Rfg are the image autocorrelation and the image-scene cross

correlation, respectively. Since the random fields have been assumed to be sta

tionary Eq. (2.31) reduces to 

f_: i: m(x-x', y-y')Rgg(x' -Xo, y' -yo)dx' dy' = Rfg (x' -Xo, y' -Yo) (2.32) 

which is just a convolution. Taking the Fourier transform of both sides yields 

M(u,v)Sgg(U,v) = Sfg(u,v) (2.33) 

where Sgg and Sfg are the image power spectrum and the scene-image cross 

power spectrum, respectively. For stationary random fields and assuming the 

noise and scene are uncorrelated with zero mean noise, then 

Sfg(U,v) = H*(u,v)Sff(u,v) (2.34) 
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and 

(2.35) 

Substituting Eqs. (2.34) and (2.35) into Eq. (2.33) and solving for M(u, v) yields 

the least squares or Wiener filter 

M 1 IH(u,v)12 

(u,v) = H(u,v) IH(u,v)12 + Sn(u,v)/Sj(u,v) 
(2.36) 

where Sn(u,v) = Snn(u,v) and Sj(u,v) = Sff(u,v). 

These assumptions about the stationarity of the scene and noise are 

strong and require comment. Stationarity of the scene is not usually the case, 

however, as will be discussed in Chapter 7. However, for the imaging systems 

studied here, the noise is so small that the question of stationarity is almost 

academic. As the noise Sn (u, v) approaches zero, the Wiener filter approaches 

an inverse filter, which makes no assumptions about either the scene or the noise 

statistics. 

The Wiener filter may be multiplied by the Fourier transform of the 

image and the product inverse Fourier transformed to yield the restored image, 

or the filter may be inverse transformed and the image convolved by the resulting 

deconvolution filter m(x, y) to yield the restored image. 

It is easy to show that the modulus and phase of the Wiener filter are 

M 1 [ IH(u, v)12 1 
I (u,v)1 = IH(u,v)1 IH(u,v)12 + Sn(u,v)/Sj(u,v) 

(2.37) 

and 

argM(u, v) = - arg H(u, v) (2.38) 

The Wiener filter is an inverse phase filter and a modified inverse modulus filter. 
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The Wiener filter" controls" the noise enchancement of the inverse filter 

of Eq. (2.22), since even if H(u,v) is very small or even zero for some values of 

u and v, the denominator will never be smaller than Sn (u, v) / Sx (u, v). 

Comments 

It must be pointed out that there is no single "correct" or optimum 

method of image restoration. It has been suggested (Frieden, 1979), in fact, that 

the "best" restoration method depends on the type of object originally present 

(smooth or textured, edge-type or impulse-type), the purpose of the restoration 

(edge detection, pattern recognition, spectral classification), the amount and 

kind of a priori information available (scene or noise statistics) and strength of 

the noise present. In particular, due to the many-to-one nature of imaging, the 

more a priori information incorporated into the restoration, the fewer degrees 

of freedom in the "search" toward a restored image. Other considerations are 

purely pragmatic, involving, for example, availability of computing resources. It 

has also been asserted (Hunt, 1984) that most (75%) of image restoration can be 

accomplished using the Wiener filter, and that images which are not amenable 

to Wiener filtering are often unrestorable altogether as there is often too much 

noise present in such images. 

It is also worthwhile to point out the general applicability of the math

ematics of image restoration. Image restoration is one example of a general 

inversion problem which occurs in many fields of science. Some examples in

clude indirect sensing in atmospheric physics (Twomey, 1977), x-ray (Smith, 

1984) and ultrasound (Greenleaf, 1984) tomography in medicine, determina

tion of earthquake epicenters (Jobert and Cisternas, 1978) and electromagnetic 

prospecting methods in geology (Barthes and Vasseur, 1978), and numerous 

problems related to differential equations which reduce to Fredholm equations 

(Mikhlin, 1957 and 1960). 



CHAPTER 3 

LANDSAT MULTI-SPECTRAL SCANNER 

AND THEMATIC MAPPER IMAGING SYSTEMS 

The Landsat satellites are earth resources observation systems con

ceived following the photographic observations of early Mercury and Gemini 

orbital flights to record data about the earth's surface and transmit those· data 

to ground observing stations. Their purpose was originally as a research tool, but 

they soon became an indispensable tool for natural resource management and 

environmental monitoring. The first Landsat satellite, called ERTS-A (Earth 

Resources Technology Satellite), was launched in late July of 1972. A second 

satellite was launched in late January of 1975, and the program was then re

named Landsat to distinguish it from a planned oceanographic satellite to be 

called Seasat. Since then three more Landsat satellites have been launched, a 

major change having been made in 1982 when the Thematic Mapper sensor was 

added to the payload along with the previously used Multi-Spectral Scanner. 

The Thematic Mapper provides higher spatial and radiometric resolution and a 

greater variety of spectral bands than the Multi-Spectral Scanner (Slater, 1979). 

Landsat System Descriptions 

The Landsat satellites are in "sun-synchronous" orbits so that data are 

always collected at the same local time of day over a particular geographical 

region. This provides repeatable sun illumination conditions which is desirable 

when mosaicing adjacent images and comparing yearly changes in landscape 

cover. 

19 
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Each of the first three Landsat satellites crosses over the same point on 

the earth once every eighteen days, the last two once every sixteen days. This 

repetitive coverage is obviously important for agricultural purposes, but less ob

viously is also important for geological purposes. For example, in many areas 

cloud cover obscures the view of Landsat so that frequent passes are required to 

collect adequate data. Even in areas where cloud cover is not a factor, such as 

Tucson, Arizona, important information can be gained from frequent coverage. 

In Tucson, a comprehensive analysis of the hydrogeology requires imagery from 

two different seasons: Winter imagery is useful for landform and drainage anal

ysis, while spring imagery is important because of the close association of some 

springtime vegetation with the shallow water table and areas of ground water 

discharge (Taranik, 1978). 

Both the Multi-Spectral Scanner and the Thematic Mapper are remote 

sensing instruments known as "object-plane electromagnetic scanners". Radiant 

energy from the earth is first reflected off a scanning mirror, which rotates back 

and forth in a direction orthogonal to the orbital track to provide coverage in 

the "along scan" direction; the forward motion of the spacecraft provides the 

coverage in the "along track" direction. The energy is then focused by a telescope 

through spectral filters onto an array of visible and near infrared light detectors 

at the prime focal plane and, for the Thematic Mapper, to thermal infrared 

detectors in a cooled focal plane. These detectors convert the scene energy 

into analog electrical signals which are then filtered, sampled and quantized. 

The resulting digital signal is then encoded and transmitted to ground receiving 

stations and subsequently processed. The differences in the two systems are in 

the details of each system component. 
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Detailed System Descriptions 

Both the Multi-Spectral Scanner and Thematic Mapper employ a two

mirror reflective telescope design called a Ritchey-Chretien telescope with ef

fective focal lengths of 82 cm and 244 cm, respectively (Slater, 1979; Hughes 

Aircraft Santa Barbara Research Center, 1984). 

The spectral filters determine the radiant energy frequency range 

(band) over which each detector will respond. The Multi-Spectral Scanner has 

four bands, two visible and two near infrared. (A thermal infrared band was 

also used briefly on Landsat-3.) The Thematic Mapper has seven bands, three 

visible, one near infrared, two short wavelength infrared and one thermal. A 

material on the earth's surface has specific reflectance and emission characteris

tics in each spectral band, called its "spectral signature". The sensor's spectral 

coverage defines what spectral signature will be provided by the sensor. Expe

rience with the earlier Multi-Spectal Scanner indicated the need for more bands 

to satisfy an expanding user community. The seven bands were chosen to as

sure use of Landsat Thematic Mapper data in many fields including agriculture, 

forestry, geography, geology, hydrology, meteorology and oceanography. 

The size of the detectors determine the "instantaneous field of view" , 

the ground projected dimension of the detector at nadir. This quantity is related 

to the spatial resolution of detail on the ground. However, the tradeoff is that a 

small detector leads to reduced signal-to-noise which, in turn, leads to reduced 

radiometric resolution. The instantaneous field of view for the Multi-Spectral 

Scanner is 76 meters square (Park, et. aI., 1984) and for the Thematic Mapper 

it is 30 meters square except for the thermal band for which it is 120 meters 

square (Hughes Aircraft Santa Barbara Research Center, 1984). 

The signal from the detectors is amplified and filtered. The motivation 

for filtering is to reduce the effects of aliasing, an inevitable consequence of sam

pling. The disadvantage to filtering is that electronic analog filters usually "roll 
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off" gradually starting at low frequencies, thus losing also some low frequency 

modulation transfer. The filters used in the Landsat systems are designed to 

provide as sharp a cut-off as practicable. The Multi-Spectral Scanner uses what 

is called a "Butterworth filter" and the Thematic Mapper uses a modified But

terworth called a "Goldberg filter" . 

The filtered analog signal is then sampled and quantized. In the Multi

Spectral Scanner each sample is converted to a 6-bit binary word, giving a 

resolution of 64 gray levels. In the Thematic Mapper each sample is converted 

into an 8-bit binary word, a resolution of 256 gray levels. 

System Component Transfer Functions 

Each of the system components described above can be represented by a 

point spread function (or, equivalently, a transfer function) which can be derived 

either from engineering design and test data or from post-flight evaluations. 

The optics of imaging systems are often characterized in terms of a "blur 

circle". This is commonly defined as the diameter of the circle which contains 

90 percent of the total energy from a point source input. The ground projected 

value for this diameter is 30 meters for the early three Multi-Spectral Scanners 

(Slater, 1979), 23 meters for the later two (Markham, 1985) and 35 meters for 

both the Thematic Mappers (Hughes Aircraft Santa Barbara Research Center, 

1984). The optical point spread function may then be modeled as a Gaussian 

with the blur circle diameter D as a characteristic width (Park, et. al., 1984) 

(3.1) 

The associated transfer function is also a Gaussian: 

(3.2) 

The parameter D may be calculated to result in agreement between the model 

and the blur circle. It has been assumed that the spread and transfer functions 

----.-_ •.. ---- -------- ------_._. 
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of the optics are separable and symmetric, a valid assumption for high quality 

imaging systems. 

Light arriving at the focal plane of the telescope is transferred by fiber 

optics to the individual detectors in the case of the Multi-Spectral Scanner, and 

falls directly on the detectors in the case of the Thematic Mapper. If these fibers 

are assumed to be spatially uniform in their light transmission characteristics 

and the receiving detectors are assumed to be square, then the detector point 

spread function is a two-dimensional square with width and length equal to the 

detector dimension w, 

{
I, 

hd(X, y) = 
0, 

IXI ::; ~, Iyl < ~ 
elsewhere 

The corresponding transfer function is (Champeny, 1983) 

H ( ) 
sin 1J"UW sin 1J"VW 

d U,V = ------
1J"U 1J"V 

(3.3) 

(3.4) 

The electronic filters used in both Landsat systems are critical to the 

overall system response. These filters, unlike the other components of the sys

tem, introduce a nonlinear phase shift into the output of the system. The 

transfer function of the Butterworth filter used in the Multi-Spectral Scanner is 

given by 
1 

HB(U) = 1 + 2i(u/uc) - 2(u/uc)2 - i(u/ucP 
(3.5) 

where U c is a "cutoff" frequency (Markham, 1984; 1985). This filter is only 

effective in the along scan direction. It does not effect the data along track 

because the effective scanning velocity in that direction is slower by several 

orders of magnitude than the scan velocity of the mirror (Markham, 1985). 

This transfer function can be decomposed into magnitude and phase 

(3.6) 

(3.7) 
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Eq. (3.7) indicates the nonlinear phase response of the Butterworth filter. This 

results in an asymmetric spread function along scan, as can be seen in Figure 1. 

The transfer function of the Goldberg filter used in the Thematic Map

per, also only effective along scan, is given by (Markham, 1984; 1985) 

1 1 

HG(u) = (i(u/u"d + 1) 1 - (U/U2)2 + 2Li(u/U2) 
(3.8) 

where Ul and U2 are cutoff frequencies and L is a damping ratio. The magnitude 

and phase of this filter with L = 0.5 (Markham, 1985) are 

(3.9) 

(3.10) 

This filter also has a nonlinear phase response resulting in the asymmetric spread 

function along scan shown in Figure 2. (The along track spread functions are 

similar to those for the Multi-Spectral Scanner.) 

The filtered analog signal is sampled and quantized by an A/D con

verter. The time interval over which th,e signal is sampled, the "integration 

time", is 80 nanoseconds for the Multi-Spectral Scanner, which corresponds to 

a blur of less than 0.5 meters in the along scan direction (Slater, 1979). The 

Thematic Mapper does not integrate but uses a "track and hold" operation. The 

effective integration time for this operation is not available in the engineering 

reports; it is assumed to be small. The integration time for the Landsat scanners 

could be modeled as a linear along scan blur, but it is so small as to usually be 

considered negligible and ignored. The effect of sampling will be discussed in 

Chapter 5. However, it should be noted that the sample interval (or pixel width) 

is not necessarily the same as the instantaneous field of view. In the case of the 

Multi-Spectral Scanner, for example, the along scan samples correspond to over

lapping instantaneous fields of view (thus the data is "oversampled"), while the 

--- ---------
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along track samples are not quite contiguous relative to the instantaneous field 

of view. Finally, error due to quantization can be modeled statistically, but this 

effect has not been included in this study. 

These linear system components together with sampling combine to 

yield a net instantaneous field of view which is larger than that due to the 

detector alone. The effective instantaneous field of view is the spatial dimen

sion equivalent to half a cycle of the spatial frequency where the modulus of 

the system transfer function falls to 0.5. The line spread function width at 

half the maximum is a comparable measure in the spatial domain (Markham, 

1985). For the Thematic Mapper the effective instantaneous field of view has 

been estimated as 32 to 33 meters along track and 36 meters along scan, exclud

ing sampling effects, (Markham, 1985) or 40.8 to 48.6 meters square, including 

sampling effects, (Schowengerdt, et. al., 1985a) and for the later Multi-Spectral 

Scanners as 70 to 75 meters along track and 79 to 82 meters along scan, exclud

ing sampling, (Markham, 1985) or 65 meters along track and 77 meters along 

scan for the earlier systems, excluding sampling (Park, et. al., 1984). 

The overall system transfer functions for each Landsat system (exclusive 

of sampling) can be found by cascading the transfer functions of the linear 

components. 

or, assuming separability, 

H(u) = Ho(u)Hd(U)Hf(u) along scan 

H(v) = Ho(v)Hd(v) along track 

(3.11) 

(3.12) 

(Figures 3 and 4), where H f denotes either of the electronic filters, and then 

incorporating sampling effects as discussed in Chapter 5. Important information 

about the actual performance of the system can only be gained, however, by in

flight experiments. 
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In-Flight Evaluation 

Recall that with the assumption of linearity, the response of a system 

is characterized completely by its point spread function h(x, y) which describes 

the output of the system to a point source input. With the added assumption 

of shift invariance, the point spread function is independent of the location 

of the point in the object field, and the output to any arbitrary input is the 

two-dimensional convolution of the input with the point spread function. The 

direct measurement of the two-dimensional point spread function is generally 

not feasible, due to the inability to get sufficient energy concentrated at a point 

source. What is generally measured are one-dimensional sections of the two

dimensional point spread function, called "line spread functions". A line spread 

function hz (x) is the response of the system to an infinitely narrow line source 

and is defined as 

hz(x) = i: h(x,y)dy (3.13) 

If the system is further assumed to be separable, then 

h(x, y) = hll (X)hZ2(y) (3.14) 

the two-dimensional point spread function is the product of two one-dimensional 

line spread functions, one along track and one along scan. 

Attempts to characterize the in-flight Landsat line spread functions 

require the availability of line sources on the surface of the earth. These line 

sources cannot be arbitrarily narrow because contrast must be maintained in 

the image, where "contrast" here is defined as the ratio of object gray level 

(intensity) to background gray level. At the same time, a source must be narrow 

compared to the width of the line spread function to qualify as a "line source". 

A suitable source for the Thematic Mapper is the San Mateo Bridge over the 

south end of San Francisco Bay (Schowengerdt, et. aI., 1985b). The contrast 
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between bridge and water is high, the bridge is straight over most of its extent, 

and it is close enough to the water to minimize projected shadows. It is 18.3 

meters wide, compared to 30 meters for the instantaneous field of view of the 

Thematic Mapper. The bridge is at an angle of 30° to the scan direction of 

the sensor, so that the bridge has a sampling phase associated with it (Chapter 

5). Thus, measurements made using this data are, in effect, an average of the 

sampled system performance functions, sampling being an important effect not 

accounted for in the engineering reports. 

The modulation transfer function for the Thematic Mapper was mea

sured in the direction orthogonal to that of the bridge (Schowengerdt, et. al., 

1985b). The modulation transfer function, the modulus of the Fourier transform 

of the one-dimensional point spread function, describes how the system modifies 

the amplitude of the various spatial frequency components of an input to the 

system. The line spread function which resulted from this study was wider than 

that acquired from the engineering design and test data. This is because, when 

measuring system response functions from images, the effects of atmospheric 

blurring, sampling and ground processing are being included in the data. It was 

found that this resulted in an average effective instantaneous field of view of 40 

to 49 meters, larger than that measured for the imaging and electronics system 

alone. These results have been verified by others (e. g. Malaret, et. al., 1985) 

who also concluded that the overall resolution is less than that which the optics 

and electronics alone would dictate. 

----_ .. _------



CHAPTER 4 

GEOMETRIC RESAMPLING AND RESTORATION 

The most important aspect of the ground processing of Landsat data 

is geometric manipulation. These geometric corrections usually require a two

dimensional "warping" of the image to compensate for geometric distortions in 

the image so that the image can be registered to a map or another image. The 

typical approach is to try to model the continuous scene that was sampled to 

form the image, and to interpolate pixel gray level (intensity) values at the 

intermediate locations required to form an image with the desired geometric 

characteristics. The particular interpolator used is an important issue, as the 

interpolator acts as an added convolution, or blurring, of the image. Using 

a restoration-derived interpolator would act to sharpen, rather than blur, the 

image. 

Geometric Rectification 

Numerous sources contribute to the distortion of unprocessed data 

which make geometric rectification necessary. These distortions can be grouped 

into two categories, those which are consistent over time and can be corrected in 

a systematic manner and those which are unpredictable and must be corrected 

using mathematical distortion models. 

Predictable Distortions 

The most obvious distortion which falls into the first category is that 

due to the curvature of the earth. This appears as an apparent spreading of the 

image off nadir. 
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A non-unity aspect ratio (ratio of pixel width to height) is introduced 

by the along scan oversampling of the Multi-Spectral Scanner relative to the 

along track direction. The aspect ratio is one for the Thematic Mapper. 

Other distortions in this category result from the fact that data is sam

pled equally spaced in time, not space. The design of the Landsat Multi-Spectral 

Scanner also results in nonlinear motion of the oscillating mirror as it sweep~ 

west to east due to its deceleration and acceleration at the ends of each sweep. 

(Data is not acquired during the east to west retrace.) This results visually in 

an apparent compression or stretching of the image at the ends of each scan line 

(Van Wie and Stein, 1977). Distortion also is introduced from one scan line to 

the next due to the relative velocity of the spacecraft to a rotating earth. The 

Landsat satellites travel south (on the daylight side of the earth) in nonpolar 

orbits and scan from west to east. The rotation of the earth causes each suc

cessive mirror sweep to begin further to the west. The resulting distortion is 

proportional to the cosine of the latitude, and is greatest at the equator. The 

Multi- Spectral Scanner senses six scan lines in each of four bands at each mirror 

sweep. The visual effect of this combined with the earth's rotation is for the 

image to be skewed in a step-wise fashion. This six-scan-per-mirror-sweep de

sign also causes band-to-band misregistration with respect to observed ground 

positions. 

Finally, small time delays between the readout of each of the six sensors 

give rise to small displacements between each of the six scan lines due to the 

movement of the scan mirror during this time (Van Wie and Stein, 1977). 

All these sources of distortion are well understood and predictable and 

can be mathematically modeled. Furthermore, they will occur in every Landsat 

image so that all such distortions can be "systematically" corrected. 

----- -_._----- --. ---- - -- -----
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Unpredictable Distortions 

Among the causes of unpredictable distortions is variation in the space

craft attitude - yaw, roll and pitch. Yaw, rotation of the spacecraft about the 

vertical axis from it to the earth's center, causes the angle between the scan 

direction and the orbit to deviate from 90° and looks visually like an overall 

skew in the image. Roll, rotation of the spacecraft about its velocity vector (or 

longitudinal axis), appears in the image as an apparent stretching or shrinking, 

much like the distortion due to the nonlinear mirror velocity. Finally, pitch, the 

rotation of the spacecraft about the remaining orthogonal axis, changes the effec

tive instantaneous field of view resulting in radiometric, rather than geometric, 

distortion (Gillespie, 1980). 

Also included in this category are indeterministic variations in the 

spacecraft velocity, which result in distortion both within and between scan 

lines, changes in altitude, and ephemeris variation which results from variations 

in the location of the spacecraft with respect to the ground with each successive 

pass over a given region (Kashet and Sawchuk, 1983). 

All of these sources of distortion, while also well understood and mod

eled, do not occur in every image or to the same extent between those images 

in which they do occur. Thus, such corrections need special treatment. 

Geometric Rectification Implementation 

Most of these distortions are essentially one-dimensional and can be 

corrected by rectifying the data in the along scan direction only (Friedmann, 

1981). Some, such as skewing caused by the earth's rotation and spacecraft 

yaw, can be compensated for by simply adding an increment to the sample 

position of each scan line since such errors can be thought of as misalignment of 

the pixels in the vertical direction (Gillespie, 1980). Other corrections require 

interpolation or "res amp ling" . 
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Geometric Registration 

Registration to a specific map projection requires a two-dimensional 

"warping" of the entire image. For example, the data is often registered to a 

standard cartographic projection such as the Universal Transverse Mercator map 

projection, a cylindrical projection used by the United States Geological Survey 

and in the United States military mapping program, as well as by other na

tions (Van Wie and Stein, 1977; Robinson, 1960). (Other commonly used map 

projections include the Hotine Oblique Mercator and the Polar Stereographic 

projection (Slater, 1979).) For the merging of data from different sensors, it is 

important that all the data be registered to the same map to yield satellite inde

pendent images (Friedmann, 1981). In other cases it might be desired to register 

one image to another taken of the same area at another time. This "multi

temporal" data is used to detect any changes that had occurred (Lillestrand, 

1972). In each case the goal is to change the geometry of the image so that 

features are found in the same location in image and map or from one image to 

the other. Warping of the data to fit a map is also often called "rectification", 

although it is actually a distortion of the data to fit a map and not the removal 

of distortion. 

Resampling 

One possible method for geometric correction is to first perform recti

fication of the predicted distortions in the along scan direction, then perform 

l'ectification of the variable distortions along with registration in both dimen

sions. There are two ways in which this 'can be accomplished. The location of 

the pixels can be changed, or the original pixel grid can be retained and each 

pixel assigned a new gray level (intensity) value. The latter approach is the one 

usually taken, and is called "resampIing". The motivation is to try to model 

the continuous scene that was sampled to form the image, and to resample this 



36 

model at the intermediate pixel locations required to form an image with the 

desired geometric characteristics. Both registration and the along scan recti

fication can be performed by resampling, but for the former, since the cause 

of the distortions is not known precisely, there is the need to use an empirical 

distortion model. 

Geometric rectification and registration thus takes place in two steps: 

Determination of a projection function which will transform the geometry of the 

image to that of the map, thus reconstructing a (model) continuous image, and 

interpolation of the image gray levels to determine the correct gray level values 

to assign to the pixels. 

For the "systematic corrections" , the displacement of the sampling grid 

is known from prior knowledge of the distortions introduced in the imaging pro

cess. For the variable distortions and registration, a displacement function must 

first be found. First match points or "ground control points" whose locations 

are known precisely are located in both image and map. Such points often cor

respond to features like road or railway intersections. Location of these points 

may be done manually or digitally using cross-correlation techniques. The num

ber, location and distribution of these control points is the most important step 

in the registration process (Shlien, 1979), since the accuracy of the registered 

image depends directly on the accuracy of these points. 

Once the control points are identified, a bivariate polynomial surface 

may be used to model the geometry of the scene in the area between the control 

points. Often the image is broken up into quadrilaterals or triangular patches 

with the control points defining the vertices and a separate polynomial surface 

fit to each subimage. Alternatively, a single global polynomial may be used if 

the distortions are sufficiently smooth. A typical transformation is a polynomial 

of the form 
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(4.1) 

where (x, y) are coordinates for the original image and (x', yl) are for the map 

(Schowengerdt, 1983). Higher order polynomials may be used, however, it has 

been shown (Lillestrand, 1972) that little is gained by using polynomials of order 

greater that three, and much is lost by using high order polynomials (greater 

than five) since the surface then tends to follow noise. 

This projection function defines a continuous image estimate (model). 

Once that model has been determined, it can be evaluated at the desired grid 

locations. It is necessary to determine the "best" gray levels to assign to the new 

pixel locations, given the set of samples from the original image. The problem 

then is to determine an appropriate interpolation or resampling function. 

Nearest. Neighbor 

A straightforward approach might be simply to choose as the new gray 

level value that of the pixel nearest the one being interpolated. This "nearest 

neighbor" approach can be implemented quickly and efficiently and preserves 

the radiometric fidelity of the image. However, it can lead to position errors of 

up to ±1/2 pixel and result in a blocked appearance in the final image. 

Bilinear Interpolation 

A second approach is to assign a gray level value to the new pixel 

location which is a bilinear interpolation of the nearest four pixel gray levels. 

Figure 5 illustrates a bilinear interpolator. 

Cubic Convolution 

If the function describing the scene intensity distribution f(x, y) is band 

limited, that is, its spectrum F(u, v) is such that F(u, v) = 0 when lui ~ U c or 

------- -------
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Ivl > ve , and sufficiently sampled (i. e. at a sampling rate at least twice per 

period for the highest frequency present in the signal), then f(x, y) can be recon

structed exactly from convolution with a (sin(7rx)/7rx) x (sin(7rY)/7rY) function. 

(Proof in Appendix A.) It is impossible to implement this ideal interpolator nu

merically because of its infinite extent. Moreover, the function f (x, y) is known 

only over a finite extent. If the interpolator were truncated, this would intro

duce ringing in the reconstructed f(x, V), the familiar artifact referred to as 

Gibbs phenomenon. Thus a piecewise cubic polynomial of limited extent which 

approximates the sin (7rx) /7rX is usually implemented (typically using look-up 

tables, Appendix B). It is given, in one dimension, by (Park and Schowengerdt, 

1983) 

{

(a + 2)lx13 - (a + 3)lx1
2 + 1 

r(x) = ~lxl3 - 5alxl 2 + 8alxl - 4a 
Ixl < 1 

1 ::; Ixl < 2 

otherwise 

(4.2) 

This interpolation function is commonly known as "parametric cubic convolu

tion" and has several important features. It is even, zero for all Ixl ;?:: 2, Iyl ;?:: 2, 

has continuous slope for all x, reconstructs the original image samples exactly 

and reproduces exactly a constant image. 

Resampling as Convolution 

All of these interpolators act as an added convolution, or blurring, of 

the image, which has important implications for the frequency content of the 

image. Since convolution in the spatial domain is equivalent to multiplication 

in the frequency domain, the form of the Fourier transform of these interpola

tors can modify significantly the spectrum of the image. Figure 6 shows these 

interpolators and their Fourier transforms. From these figures it is seen that 

nearest neighbor, which is equivalent to convolution with a rectangle function 

and bilinear interpolation, which is equivalent to convolution with a triangle 

function (Shlien, 1979) both suppress the higher frequencies leading to loss of 
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resolution in the reconstructed image. The parametric cubic convolution in

terpolator preserves higher frequencies, but with a = -1 exhibits ringing near 

edges. 

Using a restoration filter as the interpolator would boost, rather than 

suppress, those frequencies which had already undergone some suppression in 

the imaging process. The idea is to use a restoration filter as the interpolator to 

account for blurring that had already occurred, rather than to introduce more 

blurring (high frequency suppression) in the image. 

EROS Data Center Implementation 

At the Earth Resources Observation System (EROS) Data Center in 

Sioux Falls, South Dakota, Landsat Multi-Spectral Scanner images are rectified 

and registered using a two-pass method. The images are first resampled in the 

along scan direction to account for the systematic corrections, then they are 

resampled a second time in both directions for registration to maps or other 

images. In the past, cubic convolution with a = -1, or more recently with 

a = -1/2 (Park and Schowengerdt, 1983), has been the resampling method of 

choice. Landsat Thematic Mapper images, on the other hand, are resampled for 

systematic corrections using cubic convolution before arrival at EROS, so that 

use of the restoration kernel can only occur in the registration process. 

Resampling for restoration using the software developed as part of this 

dissertation has been successfully implemented at EROS for both Landsat scan

ners. Examples are shown in Chapter 8. Ideally, the restoration kernel should 

include a term which would account for the second res amp ling pass using cu

bic convolution, but it presently does not. This, and other modifications to be 

discussed in Chapter 9, would be logical extensions of this work. 



CHAPTER 5 

\VIENER FILTER FOR SAMPLED IMAGING SYSTEMS 

Much engineering system analysis is based on assumptions of linearity 

and shift invariance. Eq. (2.5), often the defining equation for system analysis, 

can also be the defining equation for combined linearity and shift invariance 

(Brown, 1962). Eq. (2.5) is a realistic representation of many types of sys

tems (Gaskill, 1978), but it also has very attractive mathematical qualities. In 

particular, Eq. (2.5) represents spatial convolution, which reduces to simple mul

tiplication in the Fourier domain. Furthermore, if a system is made up of several 

linear shift invariant components, the overall transfer function of the system is 

simply the product of the transfer functions of the individual components. 

Most discussions of image restoration assume linearity and shift invari

ance of the imaging system, and, furthermore, that both the object and its image 

are continuous. However, many modern imaging devices, including the Landsat 

Multi-Spectral Scanner and Thematic Ma.pper, are "sampled" systems. That is, 

the continuous output of the electronic sensors is sampled and digitized before 

being coded and transmitted to the ground. 

The importance of including the effect of sampling in the system anal

ysis was pointed out by Park, et. aI. (1984) in a study of sampling effects for 

the Landsat Multi-Spectral Scanner. It was shown that the effect of sampling 

is to increase the average amount of blurring in the image, especially in the 

along track direction. Sampling increases the effective instantaneous field of 

view from 77 m to 86 m along scan and from 65 m to 122 m along track. Thus, 

incorporation of sampling into the system transfer function, and therefore into 
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the restoration procedure, should improve the restored image since another blur

ring effect has been removed. 

Sampled systems are not shift invariant. The output of a sampled 

system resulting from a point source input will depend not only on the intensity 

of the point source but also on its location with respect to the sampling grid. 

The output of a point source located precisely on a sample point will be different 

from one located, for instance, between two sample points. 

This "sample scene phasing" has an important effect on the derivation of 

the system's transfer function. The mathematical function describing sampling 

cannot be simply cascaded (multiplied) with the other system element transfer 

functions to produce an overall system transfer function, because the process of 

cascading transfer functions depends on the assumptions of linearity and shift 

invariance of the component functions. 

The major contribution of the present research is the explicit inclusion 

of sampling degradation in the design of the Wiener filter for restoration. 

Stochastic Approach to Sampling 

One way of dealing with this sampling phenomenon is a stochastic ap

proach (Park, et. al., 1984) in which sampling effects are accounted for by as

suming a random distribution of point sources and averaging the overall system 

output over all possible point source locations. This results in an average sys

tem transfer function, or in the spatial domain, an average system point spread 

function. This averaging is necessary because one does not know the exact dis

tribution of the point sources in the scene. If one did then restoration would be 

pointless since the original scene would already be known! 

The procedure used by Park, et. al., is to derive a shift variant sampled 

system point spread function hs (x, Yi s, t), which is then averaged over all ran

domly located input point sources. The sampling of the continuous output of 
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the imaging (sub )system results in a sampled image which can be represented 

mathematically by 

gs(x, y) = [f(x, y) * h(x, y)] L L S(x - m, Y - n) (5.1) 
m n 

where both the object and image are referenced to a common orthogonal coor

dinate system. 

The system response to a single point source input is important because 

it defines the system response to any input (Gaskill, 1978). 

hs(x, Yi s, t) = [h(x - s, Y - t)] L L S(x - m, Y - n) (5.2) 
m n 

where the notation indicates that the system is shift variant. The point spread 

function h (exclusive of sampling) represents an image formation system whose 

output from a point source input depends only on the intensity of the point 

source and not on its location in the object plane. The parameters sand t 

locate the point source with respect to the sampling grid. The effect of adding 

sampling, represented by the double sum in Eq. (5.2), is to make the overall 

system point spread function hs lose that invariance. The output to a point 

source input now depends both on its intensity and its location. 

If the parameters sand t are assumed to be random variables having a 

uniform distribution (that is, a point source is equally likely to be located any

where with respect to the sampling grid), then an average system point spread 

function ha(x,y) can be found (Park, et. aI., 1984) by adding (or integrating) 

the system point spread function over all possible point source locations. This 

results in 

ha(x,y) = fal fal hs(X,Yis,t)dsdt (5.3) 

where the periodicity of the sampling grid has been used to restrict 0 ~ s ~ 1, 

o ~ t ~ 1. Using the assumption of the linearity of the imaging system (exclusive 
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of sampling) together with the linearity of averaging and the fact that sand t 

are assumed to be uniformly distributed yields 

ha(x, y) = (r(x - ~, y - ~) * h(x, y)) L L o(x - m, y - n) (5.4) 
m n 

where 

1 1 {I 0 <x < 1,0 < y < 1 
r(x--

2
,y--2)= 0 

elsewhere 
(5.5) 

Taking the Fourier transform of Eq. (5.4) yields the average system transfer 

function, including sampling, 

Ha(u,v) = T(u,v)e- 7r (u+v)i (5.6) 

where 

T( ) =LL(- )m+n sin ?T(u-m)sin7r(v-n)H( - -) 
u, v 1 ( ) ( ) u m, v n 7ru-m 7rv-n 

m n 

(5.7) 

The infinite series represents the inevitable consequence of periodic 

replication caused by sampling (Brigham, 1974). Because of this replication, 

Ha(u,v) is periodic while H(u,v) is not, resulting in false information at fre

quencies beyond 0.5 cycles/pixel, the "Nyquist frequency". 

The effect of sampling on the overall system transfer function is illus

trated, in Figure 7, which shows the modulus of the transfer functions of both 

Landsat systems with and without sampling. The figure shows an increased 

suppression of the higher frequencies (corresponding to fine detail in an image) 

in the sampled case. The effect of sampling, then, is to further degrade the 

image. 

This average sampled system transfer function, Eq. (5.6), which ac

counts for the combined effects of imaging and sampling, may be used in the 

Wiener filter Eq. (2.36) resulting in 

M(u v) = _ 1 IHa(u,v)12 
, Ha(u,v) IHa(u,v)12 + Sn(u,V)/S,(u,v) 

(5.8) 

-----_. ---- --_. __ .. _-----------.--_._--_._-
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As described in Chapter 2, the Wiener filter is derived for continuous 

functions and is that filter which minimizes the mean square error between the 

original scene and the restored image (estimated scene). Using the average 

system transfer function Ha(u, v) in the Wiener filter results in a suboptimal 

filter, in the least squares sense, since H a (u, v) is not continuous. A Wiener filter 

which has been optimized for sampled imaging systems was derived by Huck, et 

al. (1985) and is given by 

Ms(u,v) = 

ISf(u, v) 12 H>f< (u, v) X 

1/{ISf(U,v)H(u,v)1 2 + L L ISf(U - m,v - n)H(u - m,v - n)12 
(m,'~)f(O,O) 

+ (Sn(U, V))2}. (5.9) 

This filter is shown in Figure 8 along with the filter of Eq. (5.8) for scene and 

noise statistics typical of Landsat imagery as discussed in Chapter 7 (in partic

ular, for a variance of 400 and a correlation length of 5). For such statistics, 

the filter of Eq. (5.9) corresponds to the continuous Wiener filter of Eq. (2.36) 

(i. e., differs only in the 7th decimal place), since for these statistics the dou

ble sum in the denominator is negligable relative to the other terms there. (If 

the scene power spectrum contained a great portion of its power above 0.5 cy

cles/pixel, this would not be the case.) The effect of using the suboptimal 

Wiener filter is to shift the enhancement toward lower frequencies, that is, to 

those frequencies which have not been aliased. It could be argued that this 

corresponds to less enhancement of the fine detail in the image, but it could 

also be argued that this leads to less noise enhancement, noise also being a high 

frequency component. Indeed, although the mean squared error will, on the 

average, be greater for the suboptimal filter restorations, we will see in Chapter 

8 that the subjective image quality will be improved. 
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Separability of the Wiener Filter 

In modeling object-plane scanners, such as the Multi-Spectral Scanner 

and the Thematic Mapper, the average system point spread function is separable 

since the acquisition of data for these systems in inherently bi-directional (Fried

mann, 1981). Each of the two components of the system point spread function 

then corresponds to the system line spread function hli in the corresponding 

direction i, and the average point spread function is given by 

ha(x,y;s,t) = i: h l1 (x;,s)d,s i: hZ2(y;t)dt (5.10) 

The separable version of the Fourier transform of Eq. (5.10) has been 

implemented in modeling the transfer functions for the Landsat imaging systems. 

The two-dimensional Wiener filter has also been treated as a separable filter 

given by 

(5.11) 

and 

(5.12) 

This is only an approximation, since although Ha(u,v) is separable, that is, 

Ha(u,v) = Hadu)Ha2(V), and assuming S(u,v) is separable, it does not follow 

that M(u,v) is separable. 

It is easy to show that the Wiener filter of Eq. (5.8) is not separable, 

even when those functions which make it up are separable: Assume that M( u, v) 
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is separable, M(u,v) = Ml(U)M2(V). Then 

H~I(U) H~2(v) 
-

Hal(U)H~du) + Snl(u)/Sfl(U) Ha2(V)H~2(v) + Sn2(v)/Sfdv) 

1 IHa(u,v)12 

Ha(u,v) IHa(u,v)12 + Sn(u,v)/Sf(u,v) + P(u,v) 

where the "cross terms" P(u, v) are given by 

Thus, only if the value of these cross terms are negligible compared to 

IHa(u, v) 12 + Sn(u, v) / Sf(u, v), can the two-dimensional Wiener filter be consid

ered (approximately) separable. Fortunately, the signal-to-noise ratios typically 

encountered in Landsat data are high enough so that this is indeed the case. In 

particular, 

IH ( )1
2 + Sn(u,v) = IH ( )121H ()12 + Snl(U) Sn2(V) 

a U,V S () al U a2 V S () S () f U,V fl U f2 V 

Sn2(V) Snl(U) 
> IHa1 (u)1 Sf2(V) + IHa2(V)1 Sf1(u) 

<= (IHa,(U)1
2 

- ~;:1:~) (IHa2(V)1
2 

- ~;~1:~) > 0 

1 () 1

2 Sni(W) 
¢=> Hai W > Sfi(W) where i = 1 or 2, W = u or v (5.13) 

For the signal-to-noise ratios typical of Landsat imagery and for values of u and 

V less than about 0.5 cycles, Eq. (5.13) does indeed hold, since IHai(U)12 does 

not fall below a value of about 0.1 and Sni(W)/Sfi(W) is usually about 0.01. 
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Comments 

It should be pointed out that because one can never (even theoretically) 

restore the continuous scene because of aliasing, some of the information is 

forever lost. The goal, th<;;n, is to boost those frequencies which correspond to 

fine detail which have been suppressed by the low pass filtering effect of the 

system transfer function and thus sharpen fine details in the image. Since the 

effect of sampling is to further degrade or blur the image, adding sampling to 

the system transfer function· in the Wiener filter should sharpen that detail even 

more. The inherent spatial variance of the system response is not removed by a 

spatially invariant Wiener filter, however, and remains in the restored image. 



CHAPTER 6 

COMPARISON TO PREVIOUS WORK 

As described in Chapter 4, when it is required that an image be geo

metrically corrected, it is usually necessary to interpolate pixel intensity (or 

gray level) values for positions intermediate to those for which the data is given. 

At each line and sample coordinate of the corrected image, the location in the 

original (input) image from which the correct~d (output) image pixel value will 

be extracted is given by a set of transformation equations. The coordinates 

of the pixel location in the input image found in this way will not, in general, 

correspond to actual pixel locations in the input image. Thus a set of interpo

lation equations must be developed for determining the pixel intensity value to 

be assigned to the "new" pixel in the output image. 

As pointed out by several authors, among them Dye, (1975 and 1981), 

many interpolation rules are equivalent to an additional convolution which re

duces the spatial resolution of the geometrically corrected image. To reduce such 

effects, Dye combines the system point spread function and the resampling point 

spread function into a synthesized point spread function which approximates an 

ideal (desired) point spread function in a least. squares sense. Dye's synthesized 

point spread function has been successfully implemented at the Environmental 

Research Institute of Michigan (ERIM) in Ann Arbor. Dye's approach will be 

explained (since work for ERIM is proprietary a .detailed description of Dye's 

work was never published) as will the relation between his approach and the 

Wiener filter. 
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Description of Dye's Approach 

Consider the following image model, 

y=Ax+n 
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(6.1) 

where x is a vector representing the (original) scene radiance, A is a matrix 

describing the system point spread function at each pixel, n represents additive 

signal independent noise and y is the resulting data (image) vector. All of these 

vectors can be thought of as samples from an ensemble of random vectors having 

the following properties: 

E[n] = 0, E[xn T] = E[nx T] = 0 

so that the noise n has zero mean and the scene x and noise n are assumed to 

be uncorrelated. Scene and noise correlation matrices will be defined as follows: 

Now consider applying a resampling process with the desired result of estimating 

the data values that might have been attained from a synthesized point spread 

function positioned at the desired output pixel locations. The result of this 

resampling process is 

z=Bx (6.2) 

where B is a matrix representing the synthesized point spread function posi

tioned correctly on the desired output grid. The exact nature of B can be 

chosen in such a way as to alter the spatial resolution of the output data, i. e. 

the synthesized point spread function may be designed to be different from the 

original system point spread function. For restoration, B = I, thus Dye's ap

proach is a more general approach than simple restoration. The derivation will 

be continued in this more general way, and B set equal to I at the end for 

comparison to the Wiener filter. 
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Now we estimate the desired result z by an operator C on the data 

vector y, 

z=Cy 

or z = CAx+Cn 

We want to choose C so as to minimize the mean squared error, 

If we let e = z - z then 

But 

Thus 

minimize 

C 

E[eTe] = E[ei + e~ + ... + e~] 

E[e~l 

E[eTe] = E[ei + e~ + ... + e~l 

= E[eil + E[e~l + ... + E[eil 

= Tr(E[eeTJ) = E[Tr(eeT)l 

) 

(6.3) 

(6.4) 

(6.5) 

where "Tr" indicates the trace of a matrix. The significance of Eq. (6.5) is that 

now we may minimize equivalently the mean squared error given in Eq. (6.4) or 

. the expectation of the trace given in Eq. (6.5), whichever is easier. That is, 

minimize 

C 

minimize 

C 
(6.6) 

-----._- ._--_ .. 



But 

E[Tr(eeT)] = E[Tr((z - z)(z - z)T») 

= E[Tr((Bx - CAx - Cn)(Bx - CAx - Cn)T») 

= E[Tr(Bxx TB - Bxx T A TCT _ Bxn T C T - CAxx TB T 

+ CAxxT ATCT + CAxnTCT 
- CnxTBT 

+ CnxT ATCT + CnnTCT)] 
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Using E[Tr(M)] = Tr(E[MJ) where M is any matrix and E[xnT ] = 0 = E[nxT ] 

yields 

E[Tr(eeT)] = Tr(E[BxxTB]- E[BxxT ATC T] 

- E[CAxxTBT] + E[CAxxT A TCT] + E[Cnn TCTJ) 

= Tr(E[BRxBT - BRxA TCT 

- CARxBT + CARxA TCT + CRnCTJ) (6.7) 

since E[MxxTN] = ME[xxT]N for any matrices M and N and by definition 

E[xxT ] = Rx and E[nnT] = Rn. 

Now we want to minimize Eq. (6.7) with respect to C. Taking the 

derivative of this matrix equation (Graybill, 1983) with respect to C and setting 

the result equal to zero, 

- 2BRxA T + C(ARxA T + Rn) = 0 

where the fact that Rx and Rn are symmetric, i. e. RJ = Rx and R; = R n, 

has been used. Solving for C gives 

(6.8) 

the expression for C which gives the best estimate in the mean squared sense 

for approximating the original scene. 

---------
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Relation to Wiener Filter 

It has been shown that in order to minimize the mean squared error 

between a desired image z = Bx and its estimate z, where we have only a noisy 

image of the scene y = Ax + n, the required transformation matrix C which 

must be applied to the image y is given by 

where A is the imaging system point spread function, B the desired point spread 

function, Rx the scene autocorrelation matrix and Rn the noise autocorrelation 

matrix. When B = I, the identity matrix, then the transformation is the usual 

restoration, which is to find the best estimate of the original scene x. 

Several assumptions are usually made at this point before implemen

tation of the restoration is attempted. In particular, it is usually assumed that 

pixels in an image possess correlation only over some finite distance and that 

interpixel correlation depends only on the distance between two pixels and not 

on the actual locations of the pixels, i.e. stationarity (Andrews and Hunt, 1977). 

These assumptions result in a symmetric Toeplitz matrix (Grenander and Szego, 

1958), a symmetric band matrix for which all the elements on the principal diag

onal are identical and all the elements on the ith lower sub diagonal are equal to 

the corresponding elements on ith upper sub diagonal , i. e. if the elements of the 

matrix are tij then tmn = tpq whenever m - n = p - q. Assuming this structure 

for the correlation matrices Rx and Rn is equivalent to assuming a stationary 

variance for the image (to be discussed in Chapter 7). Frequently Rx and Rn 

are approximated by scalar matrices such as 0-;1 and o-~I, where 0-
2 represents 

variance (see for example Dye, 1975 and 1982). Such an approximation is not 

optimal (Trussell and Hunt, 1978), however, and a better restoration can be 

expected when more structure is introduced (again, see Chapter 7). 

--"._-_._---------_ .. _------
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The major disadvantage of attempting to implement Eq. (6.8) directly is 

the necessity of a matrix inversion on a matrix which is frequently ill-conditioned, 

and perhaps even singular (Andrews and Hunt, 1977). That is, small pertur

bations of the elements in the original matrix may lead to large changes in its 

inverse. If the matrix to be inverted were diagonal, however, its inverse would 

be simply another diagonal matrix whose elements were the reciprocals of the 

diagonal elements of the original matrix. (Diagonalizing an ill-conditioned ma

trix doesn't make it well-conditioned, but it does accentuate exactly where the 

problems occur, thus making them more manageable.) Thus, we want to di

agonalize A, B, Rx and Rn since sums, products and transposes of diagonal 

matrices are also diagonal. 

If we make the assumptions necessary for A, B, Rx and Rn to be block 

circulant, (a circulant matrix is one for which each row is a one element shift of 

the previous row with "wraparound", and the first row is the shift of the last) 

then these matrices can easily be diagonalized by applying to them the discrete 

Fourier transform. In what follows it is shown that these matrices can be made 

block-circulant. 

Circulant Point Spread Function Matrices 

For the sake of illustration, consider a one-dimensional convolution of 

two discrete functions given by h(0),h(I),h(2) and 1(0),/(1),/(2),/(3). For 

discrete convolution j one function is inverted and the second multiplied by it 

with the products summed as the second is moved over the first. Discrete 

convolution of the sampled functions given in this example yields 



g(O) = h(O)f(O) 

g(l) = h(O)f(l) + h(l)f(O} 

g(2) = h(0)f(2} + h(l}f(l) + h(2)f(0) 

g(3) = h(0)f(3) + h(l)f(2) + h(2)f(l) 

g(4) = h(l)f(3) + h(2)f(2) 

g(5) = h(2)f(3) 

or, in matrix notation, 

g(O) h(O) 0 0 0 

g(l) h(l) h(O) 0 0 ctO») g(2) h(2) h(l) h(O) 0 1(1) 
g(3) -

0 h(2) h(l) h(O) f(2) 
g(4) 0 0 h(2) h(l) f(3) 
g(5) 0 0 0 h(2) 

This matrix can be extended to be made circulant as follows: 

g(O) h(2) h(l) h(O) 0 0 0 

g(l) 0 h(2) h(l) h(O) 0 0 

g(2) 0 0 h(2) h(l) h(O) 0 

g(3) -
0 0 0 h(2) h(l) h(O) 

g(4) h(O) 0 0 0 h(2) h(l) 
g(5) h(l) h(O) 0 0 0 h(2) 
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0 

0 

f(O) 
f(l) 
f(2) 
f(3) 

It is easy to see how this can be generalized to any sized discrete functions h 

and f for one-dimensional convolution. 

For two-dimensional discrete convolution, y = Hx, the usual case with 

images, if the object and image are written as column vectors x and y as de

scribed in Chapter 2, then we may write 
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[Ho] 0 0 
Yo 

[HI] [Ho] 
Xo 

YI Xl 

YJ-I [HJ- I ] [Ho] 0 XJ-I 

YJ 
[HJ-I] 0 [Ho] 

XJ 

YJ+M-I 
[HJ-d 

XM-I 
0 0 

where Xi and Y i are the ith columns of the scene and image, respectively, stacked 

as columns to form the vectors X and y, and [Hi] is a band matrix similar to the 

one-dimensional H matrix discussed above. Each [Hi] may be extended to be 

circulant, as in the one-dimensional example (Andrews and Hunt, 1977). Thus 

the point spread function for two-dimensional convolution may also be made to 

be block circulant. 

Circulant Correlation Matrices 

The correlation matrices Rx and Rn are symmetric for stationary ran

dom processes since E[XiXJ] = E[xjxl']' where Xi and Xj are the ith and jth 

column partitions of the ordered vector x. In particular, Rx is of the form 

Rx= 

[Ro,o] 

[RI,o] 

[RO,N-I] 

[RN-I,N-d 

where [Rij] = [Rji] and [Rii] is diagonal. Blocks off the diagonal describe the 

correlation of rows in the image matrix separated by a distance of Ii - J'I pixels. 

Covariance matrices C x and C n may be defined in an analogous fashion 

by removing the means x: 

---~------
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Often, pixels in an image possess correlation only over some finite distance. 

Then 

[Co,o] [CO,d-l] 0 o 

o ...... 

where each component matrix also has band structure. If, furthermore, the 

interpixel correlation depends only on the distance between two pixels and not 

on the actual location of the pixels (stationary second-order statistics) then C x 

is block Toeplitz. Such matrices may easily be made circulant (Andrews and 

Hunt, 1977). 

However, approximating Cx by a circulant matrix is not the same as 

approximating Rx by a circulant matrix since 

(6.9) 

Three cases need to be considered: Case I: A zero mean process. Since x is a 

vector of samples from an scene, positivity makes this case an impossibility and 

so it will not be considered further. Case II: A constant mean process. If it is 

assumed as part of the initial model that the underlying random process of the 

scene is stationary, then this case applies and 

Rx = C x + additive constant (6.10) 

Case III: The mean is not a constant, that is, the scene model is assumed to be 

nonstationary. This is the case where an adaptive filter would be used and this 

case cannot be analyzed using the methods described here. 
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For this analysis it will be assumed that the scene is a sample from a 

stationary (constant mean) process. Let 

(6.11) 

and perform the operations as though the data were zero mean to which a 

constant bias has been added. This bias must be accounted for later, but can 

be ignored for the purposes of the immediate derivation. 

Note that this discussion is only of concern for Rx. Since the noise is 

assumed to be zero mean, then Rn = C n with no difficulty. 

Thus it has been shown that Rn = C n can be made block circulant 

and, with certain assumptions, so can Rx (= C x). 

Diagonalization of Circulant Matrices 

It will now be shown how circulant matrices can be diagonalized using 

the discrete Fourier transform. 

Consider a general circulant matrix C given by the following: 

( e(O) 
c(l) c(2) e(N -1)) 

C = C(N,-I) c(O) c(l) c(N - 2) 

c(l) c(2) c(3) c(O) 

Let W = e(2rri/N) then , 

for k =0,1,2, ... ,N - 1 (6.12) 

Consider the equation which results from multiplying the elements of the first 

row of the circulant matrix C by powers of Wand adding them to get, 

'x(k) = c(O) + c(I)Wk + c(2)W2k + ... + c(N - I)W(N-l)k 
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By repeatedly multiplying this equation by wk, using Eq. (6.12) and rearrang

ing, we get the following sequence of equations 

"\(k)Wk =c(N - 1)+ c(O)Wk +c(1)W2k+ ... +c(N - 2)W(N-l)k 

..\(k)",2k =c(N - 2)+ c(N - 1)Wk+c(0)W2k+ .. . +c(N - 3)W(N-l)k 

If we now represent these Wk multipliers in a vector 

then the above set of equations can be compactly written in matrix form as 

"\(k)w(k) = CW(k) (6.13) 

Thus the eigenvectors of Care w(O), w(l), ... ,w(N -1) and the corresponding 

eigenvalues are ..\(0), ..\(1), ... ,..\(N - 1). The eigenvectors may be written in a 

matrix W whose columns are the eigenvectors, i. e. 

W = (w(O) w(l) ... w(N - 1)) (6.14) 

and the eigenvalues as a diagonal matrix whose elements are the eigenvalues 

A= 

..\ (0) 

o 

o 

..\(1) 

o 

(6.15) 

"\(N - 1) 

Since the N-by-N matrix C has N linearly independent eigenvectors (Hunt, 

1971), or alternatively N distinct eigenvalues, C can be diagonalized by the use 

of a similarity transformation whose columns are the eigenvectors of C (Strang, 

.. -- .. ---- ------------ ---~~----
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1980). The resulting diagonal matrix will be the matrix whose diagonal elements 

are the eigenvalues of C. Thus 

w-Icw = A (6.16) 

The matrix W-:I represents the discrete Fourier transform. 

The more familiar form of the discrete Fourier transform is its series 

form: 
N-I 

F(k) = :2:: f(m)e-(27rimk/N) k= 0,1, ... ,JV-l (6.17) 
m=O 

Writing this out for each value of k yields 

F(O) =f(O)+ f(l) " + + f(N -1) 

F(I) =f(O)+ f(l)e- 27ri/ N + + f(JV _1)e- 2(N-l)7ri/N 

F(2) =f(O)+ f(l)e- 47ri/N + + f(N - l)e-,4(N-I)7ri/N 

F(JV - 1)=f(O)+ f(l)e- 27ri(N-l)/N + + f(N - l)e- 27ri(N-l)2/N 

Writing this set of equations in matrix form yields 

F(O) 1 1 1 1 f(O) 

F(I) 1 Wo W2 W N- I f(l) 0 
W 2?N-l) F(2) 1 W 2 W4 f(2) - 0 0 0 

F(JV - 1) 1 wf- I W 2(N-I) 
0 

W(N-I) 
0 

f(JV - 1) 

where Wo = e- 27ri/N. Denote this matrix W- I
. Due to the periodicity of (Wo)k, 

w-I _ WkX l(modN) 
(k,l) - 0 (6.18) 

with k, [ = 0,1,2, ... ,JV -1 where W-;;/ denotes the k, [th element of W- 1
. For 
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example, with N = 8 

1 1 1 1 1 1 1 1 

1 WI W2 W 3 W4 W5 W6 W 7 

1 W2 W4 W6 1 W2 W4 W6 

W- 1 = 1 W3 W6 WI W 4 W7 W2 W 5 

1 W4 1 W4 1 W4 1 W4 

1 W5 W 2 W7 W4 WI W6 W3 

1 W6 W4 W 2 1 W6 W4 W2 

1 W7 W6 W5 W4 W3 W2 WI 

The matrix W-l is unitary, that is the inner product of anyone column (row) 

with the conjugate of any other column (row) is zero unless the two columns 

(rows) are identical. 

N-l {N 
~ W- 1 (W- 1)* = L.J ms mt 0 
m=O 

So its inverse is (W- 1)-1 = ((W- 1)*)T/N. 

s=t 

s =j:. t 

Thus a matrix has been found which diagonalizes a circulant matrix 

and that matrix is the discrete Fourier transform. Furthermore, it has been 

shown that this matrix is unitary so that its inverse is easy to find. 

Derivation of the Wiener Filter 

We now have at our disposal all the mathematical machinery necessary 

to derive the Wiener filter from the least-squares restoration method given in 

Eq. (5.8). The procedure is as follows: 

From C = BRxA T (ARxA T + Rn) -1 do the following: 

Step 1. Make all relevant matrices block .circulant using the methods outlined 

above. Step 2. Diagonalize each block circulant matrix using the discrete Fourier 

transform. In particular, for B, R x , A and R n , now block circulant, let 

A=WDAW- 1
, 

Rx = WDxW- 1
, 

B=WDB W- 1
, 

Rn = WDnW- 1 
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Substituting into Eq. (6.8) with B = I (restoration) yields 

where for the complex matrices the transpose becomes the conjugate transpose. 

The result has been denoted F, for "filter". The diagonal elements of DA, 

Dx and Dn are the discrete Fourier coefficients of the corresponding circulant 

matrices. They can also be written in series notation as 

M-l N-l 

H(u, v) = L L h(m, n)e-(27ri(mu+ntJ)/NM) 

m=O n=O 
M-l N-l 

Sx(u, v) = L L cx(m, n)e-(27l"i(mu+ntJ)/NM) 

m=O n=O 
M-l N-l 

Sn(u, v) = L L cn(m, n)e-(27l"i(mu+nu)/NM) 

m=O n=O 

where H( u, v) is the system transfer function (the Fourier transform of the point 

spread function), Sx(u,v) is the power spectrum of the scene and Sn(u,v) is the 

power spectrum of the noise. 

Since the Fourier transform matrix W- 1 is unitary and the point spread 

function matrix is real, AT = (A ",)T so that 

A = WDA W- 1 ==> 

Thus we have 

F( ) 
_ Sx(u,v)H"'(u,v) 

u,v - ) 
H(u,v)Sx(u,v)H"'(u,v + Sn(u,v) 

or 

F 1 IH(u,v)1
2 

(u,v) = H(u,v) IH(u,v)12 + Sn(u,v)/Sx(u,v) 

---_ .. __ ._--.- -
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which is just the Wiener filter. 

Thus, by diagonalizing the matrix C of Eq. (6.8) (Dye, 1977 and 1982) 

using the discrete Fourier transform, one derives the Wiener filter. 

Discussion 

The Wiener filter approach is equivalent mathematically to Dye's ap

proach, Eq. (6.8), with Dye's synthesized point spread function B the identity 

matrix (restoration). The Wiener filter approach, however, avoids many of the 

pitfalls of Dye's approach. 

Computationally, the matrix operations of Eq. (6.8) are not required; 

in particular, many of the issues involving matrix inversion are avoided. Using 

the fast Fourier transform one need only compute the discrete Fourier trans

forms of the image and the components of the restoration matrix C, invert the 

diagonalized matrix to find the "filter", multiply the Fourier transform of the 

image by the filter to obtain the Fourier transform of the estimate of the scene 

Z, then compute the inverse Fourier transform of that product. 

Using this approach, a solution can be found for which there is no 

associated ill-conditioned behavior. If H( u, v) is very small or even zero for some 

values of u and v, the denominator will never be smaller than Sn(u, v)/ S:z;(u, v). 

Thus, as long as Sn(u, v)/ S:z;(u, v) is nonzero, even though the point spread 

function matrix A may be singular, a restored image can still be generated 

using this "frequency domain" approach. 

If the system is noiseless, Sn (u, v) = 0, then the Wiener filter reduces to 

the inverse filter. If, on the other hand, the signal is absent, S:z; (u, v) = 0, then 

the Wiener filter equals zero and the restored image is zero. This is reasonable 

since one does not expect to restore a nonexistant image. 



CHAPTER 7 

RESTORATION FILTER DETERMINATION 

Implementation of the Wiener filter given by Eq. (2.36) or Eq. (5.8) 

requires knowledge of the scene and noise power spectra Sf (u, v) and Sn (u, v). 

Frequently the ratio Sn (u, v) / Sf (u, v) is taken to be a constant, (Rosenfeld and 

Kak, 1982; Andrews and Hunt, 1977). However, better results can be expected if 

more information about signal and noise statistics is included. Toward this end 

models have been proposed for these quantities and their parameters measured 

for Multi-Spectral Scanner images. 

The use of the power spectrum in the Wiener filter is valid for a station

ary random process. However, studies of images indicate that this assumption is 

not valid for images of natural scenes (Trussel and Hunt, 1978; Hunt, 1980). The 

statistics of the scene may vary widely over the image. To account for this, one 

would need an adaptive filter, one which changed its parameters with the statis

tical variations encountered in the image. However, for reasons of mathematical 

tractability it is desirable to employ stationary image models. Such models 

work quite well in image restoration (Hunt, 1980), the major drawbacks being 

the possibility of under-restoring high frequency information (such as edges) 

and over-restoring low frequency regions (resulting in noise enhancement). The 

restoring filter parameters are chosen to yield an acceptable tradeoff between 

these effects. 

Scene Autocorrelation Model 

A simple mathematical model of an image might consist of a sequence of 

rectangular pulses of randomly determined height (corresponding to pixel gray 
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levels) and random duration (corresponding to the sizes of objects in the image). 

For such a model it can be shown ( PapouIis, 1984) that the corresponding 

autocorrelation function is of the forin of a first order Markov model which is 

given by 

(7.1) 

where (J is the standard deviation of the image gray levels. Studies of image auto

correlation data have been performed for several types of images in conjunction 

with the development of methods for image data compression (Kretzmer, 1952; 

O'Neal, 1966; Huang, 1965). These studies indicate that this is indeed an 

excellent model for a wide variety of scanned pictorial data (Franks, 1966; Habibi 

and Wintz, 1971). The first order Markov function is rotationally symmetric, 

but not separable. For reasons of computational efficiency and mathematical 

tractibility the Markov process is often assumed to be separable having the 

form 

(7.2) 

where 1/a and lib are the data correlation half-widths in two orthogonal direc

tions (e. g. Hunt, 1980; Franks, 1966). This is the model we have used. With 

this autocorrelation model the corresponding model power spectrum is 

S( ) 4aba
2 

(7.3) 
U,V = (a2 + (211"u)2)(b2 + (211"v)2) 

which is also separable. 

To measure a and b several 32-by-32 scene "windows" were taken from 

a (geometrically uncorrected) Landsat Multi-Spectral Scanner Washington D.C. 

image (ID# 84039218152). These windows were chosen to have different scene 

homogeneity characteristics. The autocorrelation of each window was then found 

by computing digitally the inverse Fourier transform of the power spectrum of 

the window. The parameters a and b were determined by fitting the model of 

Eq. (7.2) to the data. 

------._--- .. ------_._---- -.-- ---
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Using the separability of the system's point spread function, the 32-by-

32 pixel window autocorrelation data were studied for the along scan and along 

track directions separately, similarly for each band. This resulted in eight values 

for the correlation half-width parameter, one for each band along scan and along 

track, To reduce the number of image dependent parameters in the Wiener filter, 

it was hoped that a single, average, correlation half-width parameter could be 

fixed for the entire image. Only the variance would then need to be specified for 

a particular image. Figures 9 and 10 indicate that this is reasonable; the Wiener 

filter is relatively insensitive to the choice of correlation length compared to its 

sensitivity to the variance. The autocorrelation models used for the along scan 

and along track directions in each band are, then, given by: 

Ri(X) = O"ie-a;!xl + mi i = 1,2; 3,4 

Ri(Y) = O"ie-bdyl + mi i = 1,2,3,4 (7.4) 

where the variable x indicates the along scan direction, y the along track di

rection, the subscript i the band number, and mi the local image grey level 

mean. 

The correlation half-width parameters were found as follows. We con

sider the along scan direction only, the along track procedure being analogous. 

First, the mean was subtracted from the data, the result scaled, and the natural 

logarithm of the scaled result used in a linear least squares fit. The new data 

set is 

Wk = In(s(dk - m)) (7.5) 

where d is "raw" autocorrelation data, m the mean and s = 0"/ (dmax - m). The 

scale factor s was used to fix the y-intercept of the linear fit, i. e. the image 

variance, since it is only the correlation half-width that is of interest. That is, 

we want to find only the one parameter a (or b). Taking the natural logarithm 
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of (R(x) - m) and choosing x ~ 0 leaves 

In(a) - ax (7.6) 

We want to minimize the expected value of the sum of the squares between the 

new (scaled) data and this model, that is 

n 

minimize E = :L:(Wk -Ina + aXk)2 

k=l 

(7.7) 

Taking the derivative of E with respect to a, setting it equal to zero and solving 

for a gives 

This was calculated for all the data sets giving the range of values shown in 

Table 1 of Figure 11. (As the variance (contrast) increased across the bands, 

the value inside the logarithm often was less than or equal to zero and that 

data had to be abandoned. This resulted in a loss of usable data for band 4 

especially. ) 

The scaled data was plotted along with the linearized model and the 

residuals (differences between model and data) were also calculated and plotted. 

These residuals indicated that a better fit to the data might be made with a 

quadratic model. Thus a fit to a model of the form 

(7.9) 

was attempted (similarly for the along scan direction.) This time the minimiza

tion problem is 

n 

minimize E = :L:(Wk -Ina + alx~ + a2xk)2 

k+l 

----------------------_._--

(7.10) 



Table 1. Correlation Half-Widths for Test Windows 

Band 1 Band 2 Band 3 Band 4 

scan track scan track scan track scan track 

.456 .238 .192 .220 .124 

.421 .743 .468 .264 .457 

.249 .515 .323 .309 

.183 .392 .178 .367 .307 .699 

.373 .136 .644 

.260 .452 .214 .335 

.477 .219 .444 .251 .507 .305 

.228 .255 .447 

.271 .310 

.200 .200 .326 

.705 .339 .329 .321 

Table 2. Average Correlation Half-Widths in Pixels 

Band 1 Band 2 Band 3 Band 4 

along scan 6.10 5.35 7.09 7.41 

along track 4.29 4.33 5.40 4.37 

Figure 11. Pixel Correlation Parameters 
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Again the constant term is dropped in order to match the y-intercept with the 

data. This time the derivatives of E with respect to both al and a2 are required, 

solving these for al and a2 results in the linear system 

This system was solved numerically for all the along scan band 1 test windows 

and the second order coefficients al were found to be in the range 10-3 to 10-2
. 

It was felt that such a small contribution would not affect the restoration, so 

that refinement was abandoned. 

Since it is desired to have a correlation half-width parameter which is 

the best fit over the whole image, that is for the average of the image statistics, 

the range of values found using the above procedure was then used as the range 

within which could be found the best parameter for the average of the data 

sets. The autocorrelation data was averaged together and the parameter which 

best fit this average was found. This time autocorrelation data, scaled as before 

to fix the y-intercept, was fit with the exponential model. No logarithms were 

taken and so there was no problem with nonpositive values appearing inside the 

logarithm. The choice of parameter was made based on the lowest root mean 

square error between the average data and the model. These results are shown 

in Table 2 of Figure 11. If one chooses to use one value of a for all the four bands 

along scan and one value of b for all bands along track, the average correlation 

half-widths would be 

6.38 pixels or 370 meters along scan 

4.56 pixels or 371 meters along track 

These values apply to correlation half-widths of the Landsat Multi

Spectral Scanner images, which are degraded recordings of the scenes, and not 

to the scenes themselves. That is, the scene correlation half-width is not really 
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being measured, but rather the-image correlation half-width. The image is the 

convolution of the scene with the system point spread function. So the auto

correlation function of the image is the convolution of the autocorrelation of 

the scene with the autocorrelation of the imaging system. That is, for complex

valued functions g, hand f, if g(x, y) = h(x, y) * f(x, y), then Rgg(x, y) = 

Rif(x, y) * Rhh(X, y). This is easily proved: The power spectra corresponding 

to the correlations Rgg , Rff and Rhh satisfy (Papoulis, 1984) 

Sgg(U, v) = Sf f(u, v) IH(u, v) 12 

= Sff(u,v)H+(u,v)H(u,v) 

Taking the Fourier transform of both sides and using the relation that 

.r-1 [H+(u,v)] = h+(-x,-y) (Gaskill, 1978) yieids 

Rgg(x,y) = Rff(x,y) * [h+(-x,-y) * h(x,y)] 

= Rff(x, y) * Rhh(X, y) 

For convolution, the half-widths of the functions to be convolved add approx

imately to the half-width of the resulting function (Gaskill, 1978). The next 

step, then, is to correct for the imaging system. 

The autocorrelation for the line spread functions were computed and 

their half-widths found to be 

1.10 pixels or 63.8 meters along scan 

0.42 pixels or 34.2 meters along track 

The larger correction in the along scan direction is due to the electronic filtering 

of these data and the smaller pixel size, as described in Chapter 3, whereas 

the along track data is not filtered. Using these values to correct the image 

correlation half-widths yields the scene correlation half-widths: 



5.28 pixels or 306 meters along scan 

4.14 pixels or 337 meters along track 
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These correlation half-widths agree well with previous work (Craig, 

1979; Lahart, 1979; Shlien, 1979) indicating a total correlation length of 10 

pixels, twice the average half-width. Because these values are scene parame

ters, the imaging system effects having been removed, they may be used in the 

Wiener filter for restoration of imagery from both Landsat systems. 

Noise Autocorrelation 

A major source of noise in photoelectronic imaging systems is random 

thermal noise in the circuits which acquire and process the incoming signal. 

Thermal noise, due to the random motion of thermally excited free electrons 

in electronic circuits, is usually described by a zero mean Gaussian probability 

density function with a uniform ("white") power spectrum (Davenport, 1958), 

so called because the contribution to the variance is the same at any frequency, 

or "white". In practice, it is sufficient for the noise to be white over the region 

of interest, in particular, from zero frequency up to the Nyquist frequency. 

Furthermore, it can be shown (Papoulis, 1984) that for a zero-mean 

random process such as noise, the area under the power spectrum of a signal, 

i. e. its total power, is equal to the variance of the corresponding signal. 

(7.11) 

For the noise power spectrum, then, we have assumed white Gaussian noise with 

a variance of one grey level (Schowengerdt, 1983) and used the relation between 

power spectrum and variance to set 8 n = 1.0 for the region of interest. This 

value is verified by principal components analysis (Appendix C) performed on 

several representative Landsat images. 
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Windowing 

From the restoration filter calculated using the Wiener filter one can 

derive the restoration (or deconvolution) line spread function by taking the fil

ter's inverse Fourier transform. The resulting restoration line spread function 

will have significant side lobes due to the multiplication of it by a rectangle 

function which is implicit when using a finite set of data, (Figure 12). If ap

plied directly to an image, this restoration filter would result visually in ringing 

at object edges and in considerable noise enhancement. For this reason it is 

advisable to apply a "window" function to the line spread function which acts 

to reduce the side lobes while keeping the main lobe relatively unchanged. A 

trade-off must be made, as any decrease in the side lobes, while reducing ringing 

and noise enhancement, will also reduce the amount of restoration obtainable. 

Many criteria have been proposed for the proper window to use which 

will give the "best" results (Rabiner, 1971; Frieden, 1974; Rabiner and Gold, 

1975; Hamming, 1983). The user first decides on a criterion and expresses it 

as a positive number such that poorer window designs have larger numbers 

associated with them. Then the window parameters are adjusted to make this 

number as small as possible. The criterion is user defined and always heuristic. 

Windowing in the spatial domain is equivalent to convolution in the fre

quency domain, so that any modification of the restoration line spread function 

has an effect on the frequency response of the restoration filter. If the spatial 

window is too abrupt, then in the frequency domain the result will be the famil

iar Gibbs phenomenon in which there is significant overshoot at high frequencies 

which may result in objectionable visual artifacts in the restored image. If the 

window is too smooth, then in the frequency domain there will be a loss of power 

at all frequencies resulting in loss of resolution in the restored image. A choice 

of window which results in a good tradeoff of these factors is the Hanning or 

l' 
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Von Han window (Hamming, 1983). The Hanning window is of the form 

w(x) = { ~1/2)(1 + cos(1rx/r)) Ixl < r 
otherwise 
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(7.12) 

where r is the half-width of the window. This window was applied to the restora

tion line spread function resulting from the Wiener filter discussed previously. 

Various values for r were used, and the resulting windows multiplied by the 

restoration line spread function. The Fourier transform of the windowed spread 

fucntions were taken, and the area under the curves above the folding frequency 

(0.5 cycles/pixel) calculated for each value of To A typical area vs. frequency 

curve can be found in Figure 13. The best value for r is assumed to be the 

one that minimizes this side lobe power. It is seen from the figure that there is 

often no absolute minimum. However, as the window size increases other effects 

come into play which can be seen from a study of restored edge profiles, to be 

discussed in Chapter 8. In such cases, a tradeoff must be made. 

Figure 14 shows the increase in high frequency modulation obtainable 

from the restoration. This figure includes the system transfer function, restora

tion filter without windowing and their product. It also shows the increased 

modulation obtainable from windowing. (However, attempting to increase this 

modulation too much by decreasing the window size will result in increased 

ringing and noise enhancement.) 

This attempt to minimize the power under the side lobes of the Fourier 

transform of the restoration line spread function was verified by another crite

rion, maximizing the amount of restoration (slope of edge) to be described in 

Chapter 8, to optimize the spatial window width. It was determined that kernel 

sizes of 6-by-6 coefficients are appropriate for restoration of Landsat images. 
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CHAPTER 8 

QUANTITATIVE AND QUALITATIVE RESULTS 

Several tests were made in order to verify the parameters used in the 

Wiener restoration filter and to illustrate the improvement obtained with a 

restoration technique over the usual resampling techniques described in 

Chapter 4. 

Edge Profile Restorations 

The image of a simple edge was studied in order to verify the best 

value to assign to T of the Hanning window of Eq. (7.12), which is especially 

important in cases where the side lobe power as a function of T did not have 

an absolute minimum. This edge image was simply a two gray level 256-by-256 

image half of which was assigned the gray level 60 and the other the gray level 

190. The image was blurred using the line spread functions which model each 

of the Landsat imaging systems, then subsampled to the pixel interval of the 

appropriate system in order to simulate an edge image for that system. The 

resulting (blurred, subsampled) edges were then resampled using a restoration 

line spread function derived from Eq. (5.8), with different Hanning window half

width values. 

The amount ofrestoration which occurred could be measured by looking 

at the slope of the restored edge, a perfect edge having infinite slope. Thus 

the "restoration" in these terms is maximized when this slope is maximized. A 

typical edge slope vs. window size relation is shown in Figure 15. As the window 

size increases, the slope and so the amount of restoration increases. However, it 

does so very slowly after an intermediate half-width as shown in Figure 15. 
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Furthermore, the amount of ringing at the edge becomes objectionable for larger 

values of T-

In the case of first three Multi-Spectral Scanners, two restored edge 

profiles are shown in Figure 16, which compares the profiles for large and small 

window sizes. Figure 17 shows a comparison of a restored edge to one resam

pled using cubic interpolation with a = -1. The slope of the restored edge is 

significantly steeper than that of the resampled edge, indicating a sharpening of 

this feature in the case of restoration. 

It should be noted that the slope of the restored edge was not used 

as a windowing criterion, as it is image dependent. That is, the restoration 

of this edge depends on the location of the edge with respect to the sampling 

grid, as discussed in Chapter 5. The edge slope was only used to support the 

optimization of the "side lobe power" criterion discussed in Chapter 7. 

This phase dependence can be accounted for by shifting the edge by 

incremental amounts corresponding to, say, 1/8th of a pixel, and a comparison 

can be made between the restored edge and the cubic convolved edge. This was 

done, the errors between the original edge (scene) and these resampled edges are 

shown in Figure 18. It is clear that the mean square error for the restored edge 

is less than that for the cubic convolved edge, and, for this particular image, less 

yet when sampling is included. 

Delta Function Approximation 

As discussed in Chapter 2, a perfect imaging system would have a Dirac 

delta function for its point spread function. Thus, one measure of the restoring 

ability of the restoration point spread function is how close the net point spread 

function, the imaging point spread function convolved with the restoration point 

spread function, approximates a delta function. This convolution was studied 

for various window sizes and it was found that the value of T which gave the 

,----------------------------_._----------------_.-
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closest approximation to a delta function (in terms of the width of the curve and 

the minimization of side lobes) was a value of T which corresponds to a kernel 

size of about 5. The resulting convolution, for the Multi-Spectral Scanner, is 

shown in Figure 19. 

Simulation Tests 

A third test was made using a high resolution aerial image which was 

digitally magnified in three ways: using bilinear interpolation, cubic convolution 

and the restoration filter. The results are shown in Figure 20. The restored 

image (lower right) is clearly sharper than the images magnified with bilinear 

interpolation (upper right) and cubic convolution (lower left), although there is 

some noise enhancement which is apparent in the relatively homogeneous region 

of the water. 

As a more quantitative test, the high resolution aerial image was dig

itally degraded using the known system point spread function of the Thematic 

Mapper, then subsampled to the instantaneous field of view of that system and 

resampled using cubic convolution and the restoration filter. The mean square 

error between the original aerial image and the restored and resampled images 

were calculated. The error between the original and the image resampled using 

cubic convolution was 8.92 gray levels. The error between the original and a 

restored image (without sampling) using a constant signal-to-noise ratio in the 

Wiener filter was 8.46 and, when the Lorentzian model was. used in the Wiener 

filter, the error reduced further to 8.45. However, when the effect of sampling 

was included in the Wiener filter, (i.e. Eq. (5.8) was used as opposed to Eq. 

(2.36)) the mean square error actually increased again, to 8.76 for a constant 

signal-to-noise and to 9.27 when the Lorentzian model was used. This may cor

respond to an increase in contrast which results from the added boosting of hi~h 

frequencies with the inclusion of sampling as shown in Figure 20. 

------ "--'--



89 

TAU - GO 
.028 

.026 

.024 

.022 

.020 

.018 

.016 

.014 

.012 

.010 

.oca 

.006 

.004 

.002 

0 

-.002 

-.004 

J 

1 
-.006 

0 100 200 300 400 700 8()O 900 1000 1100 

Figure 19. Net Spread Function Delta Function Approximation: System 

x Restoration. 



90 

Figure 20. Qualitative Comparison of Interpolation Methods. 

Clockwise from uppGr left: Aerial image, simulated Landsat image, 
restored image, cubic convolved image. 

--------._-_ .... __ ._-------_. ---
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White Sands Missile Range Target 

Finally, the restoration was tested on a man-made "target" located at 

the White Sands Missile Range in White Sands, New Mexico. The target consists 

of an array of black tar 15-by-15 meter squares laid out on the highly reflective 

white sands of the Missile Range. They are spaced so that each target falls at a 

different inter-sample position with respect to the Thematic Mapper sampling 

grid (Schowengerdt, et. al., 1985bj Rauchmiller and Schowengerdt, 1986). Fig

ure 21 compares the· effeGts of interpolation and restoration for the res amp ling 

of this Thematic Mapper image. The restoration improves the contrast of the 

dark squares against the light background relative to the bilinear (upper left) 

and cubic interpolated (upper right) images. Further contrast improvement in 

seen when the effect of sampling is included in the restoration (lower right) as 

compared to when it is not included (lower left). 

Conclusions 

All the tests reinforce the notion that restoration does, indeed, improve 

(i. e. sharpen) the processed images over other resampling techniques typically 

used. The subjective improvement, however, seems to be greater than objective 

measures such as mean square error might indicate. This result, however, has 

been observed by many other investigators (e. g. Ruhns, 1975): lower mean 

square error does not always correspond to visual improvement. 

---_ .. -- .. _-----
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Figure 21. Comparison of Interpolation Methods on Real Landsat Images. 

Clockwise from upper left: Bilinear interpolation, cubic convolution, 

restored including sampling, restored without sampling. 

--=----------------------_ .. -_ .... _-- . -----------_._ .... _-



CHAPTER 9 

TOPICS FOR POSSIBLE FUTURE STUDY 

Several issues have been encountered during the undertaking of this 

research which have not been pursued, but which shoui<t"be mentioned as they 

are potential areas for future study. These topics will be discussed now. 

Double Resampling 

The EROS Data Center employs a two-pass resampling for the geomet

ric rectification and registration of images. For Multi-Spectral Scanner data this 

is done at their option. But for Thematic Mapper data this is forced upon them 

as that data has already been resampled in the along scan direction before be

ing acquired by the Data Center. Since resampling can be viewed as an added 

convolution or blurring of the data, as discussed in Chapter 4, this two-pass 

procedure degrades the image that much more. 

There are two ways in which this can be avoided. One is to resample the 

data just once, that is, perform all the geometric corrections, both rectification 

and registration, in one pass. The second is to add a term to the restoration 

filter which accounts for the effect of prior resampling. In the latter case, the 

resampling transfer function may be considered as another component in the 

overall system, so that the "system" now includes some ground processing. The 

system transfer function is then 

lls(u,v) = lla(u,v)llr(u,v) (9.1) 

where II a (u, v) is the average system transfer function described in Chapter 5, 

llr(u, v) is the transfer function associated with the interpolator chosen for the 

res amp ling as described in Chapter 4, and lls(u,v) is the overall system 
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transfer function which now accounts for the imaging system, sampling and 

ground processing. 

At the time this research was being carried out j EROS had not yet 

decided which method to pursue, so that an implementation study was not 

included in this research. 

Pre-Restoration 

The idea of adding the resampling interpolator transfer function to the 

overall system transfer function suggests another intriguing possibility, to pre

restore for anticipated degradations. In particular, terms can be included in the 

overall system transfer function which will account for all the ground processing 

including degradations introduced by the display media (CRT, photographic 

printing or screening, lithography). It is even conceivable to restore for the 

human visual system, which acts as a band-pass filter with a circularly symmetric 

transfer function given by (Hunt, 1975) 

He(u) = V (1 + 0.005u2 )e-(u/50.0)2 for 0 ~ u ~ 100 cy /dist (9.2) 

where the units cy/dist (cycles per unit distance) depend on the viewing dis

tance. This transfer function is determined by experimentation, and would vary 

from one individual to another. 

Gray Level Quantization 

The variation in light intensity from a scene is continuous, and therefore 

the potential number of gray levels in an image is infinite. Thus, the number 

of distinct output values from Landsat analog sensors is so large as to require a 

quantization strategy before encoding. 

A quantizer is a mapping from an essentially continuous domain to a 

domain consisting of a limited number of integers. These integers become the 

values that are then encoded and transmitted (or stored). 

--------
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A one-dimensional quantizer may be defined as follows: Let u E mn 

represent the brightness, contrast, or other quantity associated with a picture 

element. Divide mn into a finite set of K subintervals, bins, or decision re

gions /);.do, /);.d 1 , ••• , /);.dk, where /);.do = (-oo,d1], /);.dk-l = (dk-l, +00) and 

/);'di = (di' di+l] for i =1= O,K -1. If u lies in the interval /);.di , then u is mapped 

to a quantization level qi, i E [0, K - 1]. The quantity qi is the quantized value 

associated with u. If all the subintervals /);.di, i =1= 0, K -1 are of the same width, 

then the quantizer is a uniform quantizer. Nonuniform quantizers allow /);'di to 

vary. 

Quantization is an irreversible procedure; given an output value, one 

cannot, in general, determine its corresponding input value. (For this reason it 

is the major source of error in image data compression.) 

The mean squared error between the input value u and its associated 

quantized value qk for the case when u is uniformly distributed over the bins or 

decision regions /);.dk is given by 

(9.3) 

If u is not uniformly distributed within the bins then the squared error (qk - u)2 

must be weighted by the probability density function p( u) and 

l
dk +1 

e = (qk -u)2p(u)du 
dk 

(9.4) 

and the total quantizer error becomes a weighted average of these terms. In 

particular, to find a quantizer which minimizes the mean squared error for a 

given number K of quantization levels, one must minimize 

K+l

1
dk + 1 

2::= (qk - u)2p(u)du 
k=O dk 

(9.5) 

Ideally, a quantizer would be used which minimizes this error Eq. (9.5) in some 

sense. Much research has been done on finding such a quantizer (e. g. Panter 

-----_ ... --- . 
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and Dite, 1951; Max, 1960; Roe, 1964; Wood, 1969) for various assumptions 

about the uniformity of the decision regions l:l.dk, the number of quantization 

levels K (or quantization regions in N-space) and the form of the density function 

p( u). Less effort has been expended on restoring the effects of the quantization. 

One major effort (Ruhns, 1975), however, models the scene as an N-

dimensional random vector x = (Xl x2 

the quantized scene as the vector Y k = (YI Y2 

Xn ) T and the restored value of 

Yn ) T. Then minimizing 

the error between scene and restoration given by 

K-I 

L f w(x - Yk)p(x)dx 
k=O J Rk 

(9.6) 

where Rk represent the N-dimensional decision regions corresponding to the 

one-dimensional decision regions l:l.dk above, and w is any weighting function, 

(one possibility being the mean-square error criterion of ~q. (8,5)), yields the 

restored vector 
IR xp(x)dx 

Y k = --;;-.::...k -.,....-:--:--

IRk p(x)dx 
(9,7) 

This quantity was evaluated by Ruhns for several types of scene statistics. It 

was shown that a decrease in mean square error was obtained in all simulations, 

but a corresponding subjective improvement in image quality was not always 

observed. 

Another approach is to treat quantization as a source of noise and in

clude it in the noise-to-signal term in the Wiener filter. For K = 2b quantization 

intervals from 0 to gmax, where gmax = g + 6CTg is typically chosen (Oppenheim 

and Schafer, 1975), and where g is the mean gray level and CTg the standard 

deviation, an Q can be found such that 

gmax = ag where a> 1 (9.8) 

Then for b large enough, greater than about 5 or 6, it can be shown (Oppen

heim and Schafer, 1975) that the quantization noise within an interval is well 

---- - ----- ----------
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approximated by a uniform probability distribution. Thus the root mean square 

quantization noise nq is given by 

where l:J.di is the width of the interval. 

l:J.di = ag /2 b
, 

(9.9) 

For a uniform quantizer, where 

(9.10) 

Quantization effects might be accounted for in this way in the Wiener filter 

restoration approach, but based on Huhns' study, it might be wise to first de

termine if the payoff would be worth the effort. 



APPENDIX A 

THEOREMS 

Theorem 1: A function m(x, y) minimizes Eq. (2.28) if and only if 

m(x, y) satisfies 

E[(f(x,y) - i: f_: m(x - x',y - y')g(x',y')dx'dy')g(xO,yo)] = 0 (A.1) 

for all points (x, y) and (xo, Yo) in the xy-plane, and where g(x, y) is defined 

as in Eq. (2.8). 

Proof: Suppose m(x,y) satisfies Eq. (A.l). Then it will be shown that 

any other choice m' (x, y) for the deconvolution filter will result in a larger mean 

square error than that given by Eq. (2.28). 

Let e,2 be the mean square error Eq. (1.28) with m'(x, y) for m(x, y): 

e,2 = E[(f(x,y) - f-: i: m'(x - x',y - y')g(x',y')dx'dy')2] (A.2) 

It will now be shown that e,2 is minimized when m'(x', y') = m(x', y'). Eq. (A.2) 

can be written 

E[(f(x,y) - f-: i: m(x - x',y - y')g(x',y')dx'dy' (A.3) 

+ i: f-: (m(x - x',y - y') - m'(x - x',y'- y'))g(x', y') dx'dy') 2] 

or 

e
2
. + E[i: i: (m(x - x', y - y') - m'(x - x', y - y'))g(x', y')dx'dy')2] 

+ 2E[(f(x, y) - i: i: m(x - x', y - y')g(x', y')dx'dy') (AA) 

x (i: i: (m(x - x',y - y') - m'(x - x',y - y'))g(x',y')dx'dy')] 
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The second term of Eq. (A.4) is always nonnegative. The third term is zero 

by assumption (Eq. A.l) since by changing the variable of integration in the 

second integral from (x', y') to (xo, Yo) and interchanging the integration with 

expectation yields 

2[: f_: E[(f(x,y) -I: [: m(x - x',y - y')g(x',y')dx'dy') (A.5) 

X g(xo, yo)](m(x - xc, y - Yo) - m'(x - xc, y - yo))dxodyo 

which is zero. Thus ef2 ~ e2
• 

Conversely, if m(x, y) minimizes Eq. (2.28) then m(x, y) satisfies 

Eq. (A.l). This result follows immediately from the Orthogonality Principle 

(Gardner, 1986). 0 

Theorem 2: If the function describing the scene intensity distribution 

f(x, y) is band limited, that is, its spectrum F(u, v) is such that F(u, v) = 0 when 

lui > U e or Ivl ~ ve , and sufficiently sampled (i. e. at a sampling rate at least 

twice per period for the highest frequency present in the signal), then f(x, y) can 

be reconstructed exactly from convolution with a (sin(1I"x)j1I"x) x (sin(1I"y)j1I"Y) 

function. 

Proof: Suppose F(u,v) = l[f(x,y)], where F(u,v) is band-limited. If 

f(u, v) is sampled, so that 

m=+oo n=+oo 

fs(x,y) = L L 8(x - m,y - n)f(x,y) (A.6) 
m=--oo n=-oo 

m=+oo n=+oo 

= L L f(m,n)8(x - m,y - n) (A.7) 
m=-oo n=-oo 

Then 
m=+oon=+oo 

F8(U,V) = L L F(u - m,v - n) (A.8) 
m=-oon=-oo 



So that 

where 

So that 

F(u,v) = U(U,V)F8(U,V) 

( ) { 
1 lui < ~, Ivl < ~ 

U u,v = 
o elsewhere 

f(x,y) = .1-1[U(u,v)F8(u, v)] 

= .1-1[U(U,V)] * .1-1[Fs (u,v)] 

sin(27rx) sin(27rY) f ( ) 
= * s X,y 

27rX 27rY 

Thus, the original scene f(x, y) is reconstructed exactly. 0 
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APPENDIX B 

TABLE LOOK-UP RESTORATION KERNEL 

In actual implementation of any resampling procedure, computational 

efficiency usually demands that the interpolation weights are kept in a look-up 

table rather than calculated at each use. The question then arises: How big 

should the look-up table be to guarantee a certain accuracy? 

Currently, much resampling is done using a cubic convolution interpo

lator. This method is well understood and documented, and the interpolator 

can be written in closed form, as in Eq. (4.2). Thus, the equation describing 

cubic interpolation can be coded into the resampling routine, and an interpo

lation weight calculated at each step. Alternatively, a table of weights can be 

generated in which the weight used for an intermediate value is the nearest, 

say, 1/32nd interval value. The difference between the data resampled using the 

look-up table and that using the "continuous" equation can be computed and 

an error between the two found. 

A line profile through one band of a typical Landsat Multi-Spectral 

Scanner image was taken and interpolated values found by calculating the ap

propriate weight at each step using the cubic convolution equation directly. Then 

interpolated values were found by using look-up tables of various sizes and the 

results compared. 

Figure 22 shows the root mean squared error between the resampled 

image profile using the interpolation equation directly and using look-up tables 

of various sizes .. In particular, it shows that as the size of the look-up table 

increases, the error decreases. This is as expected, since an infinite look-up 

table would be equivalent to calculating the weights directly. (Actu.ally, finite 

101 

-------- --- ---- --" 



'02 

.6 

.5 . Cubic convolution resampllng a=-1 

·4 

.. 
0 .. .. 
III .3 
III .. 
IV 
:I 
D' 
III 

C 
IV 
III 

.2 

E 
.... 
0 
0 
a: 

.1 

olo------~20-----==4:0::::::6:0::::::8;O::::::1;O~O:::::1~2~O::==~14~O~~~ 16;'O~ 
Points per pixel 

Figure 22. Effect of Look-up Table Size on Resampling Error. 

---------------------- -~-



103 

machine precision would make the two comparable far short of infinity.) It is 

seen that after about 32 points per pixel in the look-up table, the added precision 

would probably not be worth the added effort. 

It is impossible to do the same comparison using the restoration coef

ficient values, because the restoration line spread function is not available in a 

closed form which could be used for comparison. However, based on these stud

ies of the cubic convolution interpolator it is felt that 32 points per pixel is also 

appropriate for restoration resampling because restoration functions resemble 

closely a cubic-type function. This is the size of the look-up table used at the 

EROS Data Center. 



APPENDIX C 

PRINCIPAL COMPONENT ANALYSIS 

Many imaging processes result in a high degree of correlation among 

picture elements (pixels). For example, the bands of a Landsat multispectral 

image are highly correlated (Schowengerdt, 1983). A transformation may be 

performed on the data which produces relatively uncorrelated data. There are 

several such transformation techniques which may be employed depending on 

the particular situation. 

In general, the best transformation would be one that results in sta

tistically independent variables. However, this requires knowledge of the joint 

density function of all the pixels. Using linear transformations, the best one can 

do is to produce uncorrelated coefficients (Wintz, 1972). 

A particular linear transformation which has found wide application 

in image processing is the principal component transformation (also called the 

Karhunen-Loeve, Hotelling or eigenvector transformation). This transformation 

takes advantage of the statistical redundancy in an image. 

An n-dimensional random vector x is selected. This random vector x 

could represent the "stacked" image or the spectral intensities associated with 

each image point. The random vector x may, without loss of generality, be 

represented as a linear combination of linearly independent column vectors ai 

which span the space containing x: 

n 

X = Ay = LYiai 
i=l 

(C.4) 

an), det(A) #- 0, and y is also an n-dimensional 
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random vector. If it is also assumed that A is orthogonal, i.e. A-I = AT, then 

y=ATx ==> (C.S) 

The n-dimensional random vector y can be thought of as a vector of 

weights, each of which multiplies one of the basis vectors, which are then added 

to equal x. An estimate x(k) of x occurs when only k < n components of yare 

used. In particular, one could estimate x by replacing the omitted components 

of y by preselected constants: 

k n 

x(k) = LYiai + L biai (C.6) 
i=1 i=k+l 

The difference between the estimated and true vectors can be thought of as an 

error, 
n 

e = x - x(k) = L (Yi - bi)ai (C.7) 
i=k+l 

The mean squared value of e may be chosen to measure the effectiveness of 

the estimate, and the bi's chosen to minimize this mean squared error. Linear 

mean square estimation theory applied to this problem results in the optimum 

choice for the constants bi as bi = E[Yi], the mean values of the "weights" (Pa

poulis, 1984). These optimum constants depend on the transformation matrix 

as follows, 

bi = iii = a[ E[x] = a[x 

The mean squared error e 2 (k) is then 

n 

e2 (k) = E[eTe] = L (Yi - ili)(Yi - ili)T 
i=k+l 

n 

= L aT E[(x - x)(x - x)T]ai 
i=k+l 

n 

= L a[Cxai 
i=k+l 

--_.----- --- ------------------- ------- -

(C.8) 

(C.9) 
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where the fact that a'f ai = oii has been used. But E[(x - x) (x - x) T] = C x is 

the covariance matrix associated with x, its diagonal elements are the variances 

of the components of x, which are always nonnegative. Since the off-diagonal 

elements are the covariances of the components Xi and xi, C x is symmetric for 

stationary random processes. 

If the basis vectors ai are chosen as the eigenvectors of Cx, that is if 

Cxai = Aiai, then since a'fai = Oi,., Ai = a'fCxai. It follows that 

n 

e 2 (k) = L Ai (C.10) 
i=k+l 

The mean squared error can be minimized by ordering the eigenvalues so that 

Thus, if a component y,; is deleted, the mean squared error increases by Ai. 

By deleting components corresponding to the smallest eigenvalues, the mean 

squared error is minimized. 

When this transformation is applied to multispectral images, the re

sulting principal compo~ent images are uncorrelated and ordered by decreasing 

gray level variance, since the eigenvalues Ai are the variances of the principal 

components. If variance is considered a measure of information content, then 

the transformation optimizes the redistribution of variance in that the entropy 

defined over the data variance distribution is minimized. In particular, it can 

be shown (Watan;:tbe, 1965) that 

- L Ak log Ak < - L Pi log Pi 

k 

(C.lI) 

where Pi = o} / L: oj and where the or's are the variances of the original spectral 

bands. Thus, the result of the principal component transformation is twofold: 

(1) The removal of the correlation that was present between the spectral bands 

--------.-.-.---~ .. - .-
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of the original image and (2) the creation of a new set of images for which fewer 

of the component images contain more of the total variance. 

A principal component transformation is typically performed on a noisy 

image z = x + n. If the noise is represented by a vector n whose elements 

are assumed to be uncorrelated, zero mean and identically distributed random 

variables, then the associated covariance matrix C n is given by 

where O'~ is the noise variance. Then for additive signal independent noise 

and 

Czai = (Cx + Cn)ai 

= (Cx + O'~I)ai 

= (Ai + O'~)ai 

Thus each eigenvalue of the noisy image is the sum of the eigenvalue of the 

noiseless image with the variance of the noise. Since An ~ 0 for correlated data 

(Ready and Wintz, 1973), this indicates a method of estimating the noise in 

correlated data: 

The principal component transformation was performed on several 

Landsat scenes and the value of the nth eigenvalue taken as the variance of 

the noise for each image. The results are shown in Table 3 of Figure 23. These 

values, which range between 1 and 2 gray levels, verify the value of 1.0 used for 

the noise variance as' discussed in Chapter 7. 

---_._--_ ... -.- .. ----------------- .. _-_ .. 
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Table 3. Eigenvalues from Principal Components 

Test Image 1 Test Image 2 Test Image 3 Test Image 4 

5.77 287 46.9 199 

2;87 5.88 4.66 21.2 

1.92 2.14 1.87 2.41 

1.32 1.95 1.43 2.01 

Figure 23. Principal Component Eigenvalues 

---- -.. --------- -
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