1	Restoration increases transient storages in boreal headwater streams
2	Hannu Marttila ^{a*} , Jarno Turunen ^{b,c} , Jukka Aroviita ^b , Simo Tammela ^a , Pirkko-Liisa Luhta ^d , Timo
3	Muotka ^{c,b} , Bjørn Kløve ^a .
4	
5	^a Water Resources and Environmental Engineering Research Unit, PO Box 4300, 90014 University
6	of Oulu, Finland; hannu.marttila@oulu.fi, bjorn.klove@oulu.fi
7	^b Finnish Environment Institute, Freshwater Centre, PO Box 413, 90014 Oulu, Finland;
8	jarno.turunen@environment.fi, jukka.aroviita@environment.fi
9	^c Department of Ecology and Genetics, PO Box 3000, 90014 University of Oulu, Finland;
10	timo.muotka@oulu.fi
11	^d Metsähallitus, Parks & Wildlife Finland, Karhukunnaantie 2, 93100 Pudasjärvi, Finland; pirkko-
12	liisa.luhta@metsa.fi
13	
14	*Corresponding author at: Water Resources and Environmental Engineering Research Unit, PO Box
15	4300, 90014 University of Oulu, Finland. Telephone: +358 294 48 4393, E-mail address:

16 *hannu.marttila@oulu.fi* (H.Marttila)

17

18 Abstract

Bed siltation can drastically alter the physical conditions of headwater streams and is therefore a stressor for stream ecosystems. We studied 32 headwater streams that represented near-natural (reference) (N = 11), sediment-impacted (N = 12) or wood (N = 4) or stone-restored (N=5) streams to quantify how extensive siltation and restoration with either large woody debris (LWD) or boulder structures influence transient storage conditions. We carried out repeated stream tracer experiments, field measurements of habitat characteristics, and numerical simulations to determine the effects of siltation and restoration on total transient storage (TTS). Compared with reference streams, impacted streams had a smaller storage zone cross-sectional area (As/A) ratio and fraction of median travel time due to transient storage (F200), whereas restored streams had transient storage conditions similar to near-natural conditions. Both of the two restoration methods had positive but differing impacts on bed sediment and transient storage properties. The LWD restoration created diverse TTS conditions whereas boulder restoration decreased fine sediment cover. Addition of both LWD and boulders could thus aid the recovery of headwater streams from excessive sediment input and increase transient storage and in-stream habitat complexity.

33

34 **Keywords:** restoration, transient storage, headwaters, sedimentation, siltation, modelling

35

36 **1 Introduction**

Increased sediment deposition to stream beds from human alteration of catchment land use is a global 37 38 concern and poses a particular challenge for the restoration of headwater streams with limited 39 sediment transport capacity. Headwaters form ecotones with their terrestrial surroundings and often support unique elements of regional biodiversity (Turunen et al. 2017). Because of their intimate links 40 41 with the surrounding catchment, headwater streams are highly sensitive to anthropogenic land use stressors. While sediment transport and deposition is a natural phenomenon and is essential for many 42 stream processes, any additions to natural transport rates may alter the stream bed and hydraulic 43 conditions and, consequently, the stream biota (Jones et al. 2012). 44

The impact of increased sediment flux on stream biota is typically related to deposits rather than suspended material. Extensive sediment load reduces natural depth variation (Marttila et al. 2012) and can be a stressor for stream organisms (Louhi et al. 2011, Jones et al. 2012). Decreased depth variation reduces availability of deep pools and movement of sediments causes streambed instability. Furthermore, deposits influence transient storage processes, as well as water exchange between the storage and the main channel (Brunke and Gonser et al. 1997). In natural streams, variations in substratum and streambed morphology create diverse transient stores within the hyporheic zone and backwater areas, eddies and pools (Bencala and Walters 1983), providing habitat for benthic algae and accumulation zones for organic matter (Mulholland et al. 1994). Transient storage is also essential for solute transport and many biogeochemical processes in stream networks (DeAngelis et al. 1995).

56 Total transient storage (TTS) zones are features where water velocity is slower than in the advective flow of the main channel (Bencala and Walters, 1983). These zones, such as hyporheic 57 58 transient storage (HTS) and surface transient storage (STS) zones (e.g. side pools, eddies, vegetation, debris dams, wood material), provide shelter and refugial habitats for stream biota and are essential 59 60 for several biogeochemical processes (Johnson et al. 2016). A major benefit of woody structures is the control of local flow conveyance and shaping of the bed structure. In stream restoration, 61 estimation of transient storage properties has received limited attention, despite its potential for 62 63 measuring restoration success (Mason et al. 2012). In previous studies, Bukavestas (2007) 64 demonstrated changes in median travel times in channelized streams after restoration, whereas TTS was largely unaffected, except in reaches where backwater areas were created. Restoration has been 65 66 shown to enhance transient solute exchange (Becker et al. 2013), increase residence time (Mason et al. 2012), and extend the spatial and temporal extent of hyporheic flow paths and, consequently, TTS 67 (Smidt et al. 2015). In general, restoration alters TTS because of increased heterogeneity in flow 68 69 patterns.

Most restoration projects in Finland have targeted medium to large rivers, while headwater streams have received much less attention. Another recent development in stream restoration has been the adoption of a more holistic approach to evaluate restoration success, by accounting for both ecological, sociological and cultural services provided by stream ecosystems (Palmer et al. 2014). Nevertheless, there is still a lack of even a basic understanding of how restoration modifies the transient storage properties of streams, especially in headwaters where sediment deposits affect

transient storage conditions (Hünken and Mutz 2007). Addition of boulders and/or large woody debris 76 (LWD) are the most typically used in-stream restoration measures. Unlike natural streams, streams 77 draining forestry-impacted catchments are typically devoid of LWD (Turunen et al. 2017). Large 78 79 woody debris modifies habitat characteristics (Pilotto et al. 2014), traps sediments and organic matter 80 (Koljonen et al. 2012) and controls hyporheic-zone exchange processes (Mutz et al., 2007). 81 Therefore, the benefits of LWD for restoration have been recently acknowledged (Louhi et al. 2017). The aim of this study was to improve our currently limited understanding of the potential 82 changes in reach scale transient storage conditions caused by (i) siltation from land use and by (ii) 83 headwater stream restoration. We hypothesize TTS conditions and bed sediment conditions should 84 85 differ between i) near-pristine (reference) streams, ii) streams impacted by anthropogenic land useinduced sedimentation, and iii) streams restored with additions of either boulders or LWD. We 86 expected i) greater fine sediment accumulation in impacted streams, ii) sediment deposits to have 87 88 impaired reach-scale TTS conditions in impacted streams, and iii) that restoration measures have 89 shifted TTS conditions closer to pristine. We also examined whether transient storage modelling via solute breakthrough analysis could be a beneficial tool for evaluating restoration success, especially 90 91 in headwater streams.

92

93 2 Methods

94 **2.1 Study streams**

All the study streams lie within the mid-boreal ecoregion in north-east Finland, in the headwaters of the River Iijoki basin (total catchment area 14,191 km²) (Fig. 1). The selected streams represent typical headwater streams of the region, being circumneutral and slightly colored by dissolved organic carbon (DOC) due to high peatland cover in stream catchments. By 'headwater', we refer to first- and second-order streams by Strahler classification, varying from 0.5 to 3.5 m wide. The ground vegetation near stream channels is composed of forbs, *Sphagnum* moss, sedge (*Carex* sp.), and willow (Salix sp.) species, whereas tree stands are mixed stands of Scots pine (*Pinus sylvestris* L.), Norway
spruce (*Picea abies* Karst. (L.)), and downy birch (*Betula pubescens* Ehrh.). The geology of the region
consists predominantly of glacial fine lodgement till and esker formations, with peat in sloping or
valley fens. Long-term mean annual precipitation is 695 mm, mean air temperature 0.2°C, and mean
evapotranspiration approximately 230 mm, resulting in base flow throughout the year. Permanent
snow cover typically lasts from December to April, with snowmelt-induced spring floods in early
May.

The main anthropogenic pressure in the region generally, and also in the catchments of our 108 study streams, is forestry. Finland has a strong tradition of peatland drainage. Many peatlands, 109 110 including those in the study region, were drained by ditching during the 1960-1980s to support forest growth, resulting in extensive impacts on headwaters. Peatland drainage operations typically increase 111 inputs of sediments and nutrients to downstream water courses (Marttila and Kløve, 2010). In the 112 study region, many ditch networks in the past drained directly into a stream channel and some stream 113 sections were straightened to improve water withdrawal. While the finest sediments have flushed 114 from the stream network since drainage, sand-sized particles have deposited within the streambeds. 115 This extensive deposition has reduced water depth, decreased habitats for fish and invertebrates, and 116 covered natural stream substrates such as wooden debris and aquatic mosses (Marttila et al. 2012). 117 Drainage activity largely ceased during the 1990s but old forest drains are still being maintained in 118 economically productive areas. 119

In this study, we selected nine first-order streams that had been impacted by fine sediment accumulation and were restored 3-7 years (median: 6 years) prior to sampling. Four of the streams were restored using mainly wooden restoration structures (hereafter Res-w) to i) increase flow scour to the stream bed, and thereby potentially promote transport of deposited fine sediments, and to ii) increase TTS. The volume of added wood was on average 7 dm³ m⁻² (range: 4.7-9.1 dm³ m⁻²). Five of the streams were restored using stony structures (Res-b), consisting of boulders (\emptyset 30-50 cm),

large cobbles (Ø 10-20 cm), and gravel (Ø 3-7 cm), with the aim of increasing in-stream 126 heterogeneity. Some wood (average 3 dm³ m⁻², range: 1.3-6.7 dm³ m⁻²) was also present naturally in 127 these streams, but much less than in the wood-restored streams. Restoration focused on woody 128 structures to increase variation in water depth and enhance sortation of the settled bed sediment 129 (Tammela et al. 2010). Restoration actions were extended to the surrounding catchment to prevent 130 131 transport of additional sediment inputs from the drained areas. These actions were carried out at all sites and typically included filling of old ditches and constructing overland flow fields. Additionally, 132 we sampled 11 near-natural reference (Ref) streams with near-absence of drainage activities in their 133 watersheds, as well as 12 streams impacted (Imp; no restoration) by fine sediment deposition from 134 135 drainage. The latter streams were in a similar condition to the restored streams prior to their restoration. 136

137

138 2.2 Tracer measurements

Channel hydraulics and transient storage variations in streams were studied by injecting a 139 conservative tracer pulse (NaCl) into the stream (Stofleth et al. 2008). All tracer tests were conducted 140 during base flow conditions between August and October 2013. The selected sampling reach was a 141 300-m long section of a stream containing both riffle and pool areas, and influenced by substantial 142 sediment siltation (except reference sites). We selected study streams and reaches with similar 143 geomorphology (width:depth ratio, bankfull depth and width, and baseflow conditions, Table 1), 144 allowing a better comparison between different stream groups. In all streams, channels were well 145 146 defined, allowing us to quantify bank-full statistics. Channel gradient was on average higher in the boulder restored streams, but even then the differences were minor. The study reach was divided into 147 six 50-m sections, and cross-sections and detailed channel properties were measured for each section. 148 Five electrical conductivity (EC) data loggers (HOBO U24.001) were installed to the main flow, in 149 the middle of each cross-section (0.6 x water depth), and EC was measured at 10-s intervals. Sites for 150

logger placement were carefully selected and unmixed zones were avoided (see Becker et al. 2013). 151 A 10-min constant rate injection was added to the upper part of the study reach and EC was measured 152 until the pulse disappeared completely from the lowest cross-section location. Locations for the tracer 153 154 injection and the conductivity logger were selected based on mixing conditions in a stream so that the tracer immediately achieved laterally well mixed conditions. Furthermore, movement of the tracer 155 156 pulse was monitored with hand-held conductivity meters along the reach during the experiment to ensure constantly well-mixed conditions throughout the study reach. Suitable tracer mixing 157 conditions were also tested in a separate trial before the tracer tests, and we concluded that the tracer 158 remained well-mixed throughout the entire reach. The pulse was repeated 2-3 times to minimize 159 160 random measurement error. Each sensor was calibrated with stream water and EC values were transformed to NaCl concentrations. 161

162

163 2.2.1 Stream channel characteristics

All six cross-sections selected for the tracer experiment were measured for water depth, width, and 164 flow velocity (MiniWater®20, Schiltkecht, Switzerland), and discharge was calculated based on 165 these measurements. The cross-sections were placed at 50 m intervals and they included both riffles 166 and pools. Bankfull depth and width were estimated from stream banks using standard procedures. 167 Sediment grab samples (0-5 cm depth) were taken from five locations per cross-section using a small 168 scoop, and they were sieved for particle size distribution in the laboratory using phi intervals of 31.5 169 mm, 16 mm, 8 mm, 4 mm, 2 mm, 1 mm, 0.5 mm, 0.25 mm, 0.125 mm, 0.063 mm and <0.063 mm. 170 171 Sediment depth at each sediment sampling location was measured with a metal measuring stick pushed into the bed sediment. Fine sediment cover was estimated by placing 15 plots, each measuring 172 $0.5 \text{ m} \times 0.5 \text{ m}$, across the sampling reach. For each quadrat, we estimated visually the percentage (%) 173 of fine sediment cover. 174

177 **2.3 Data analyses**

We used a one-dimensional solute transport model (OTIS, Runkel 1998) to estimate transient storage 178 in the study streams. OTIS employs a finite-difference model to solve paired partial differential 179 equations describing solute transport in channels (see https://water.usgs.gov/software/OTIS/). The 180 181 OTIS model is commonly used in riverine environments to estimate transient storage values. Although the model only accounts for a single-storage zone, and thus cannot separate surface transient 182 storage (STS) and hyporheic transient storage (HTS) exchange, it still offers a flexible tool to estimate 183 total transient storage (TTS) change. The model calculates estimates of the storage zone cross-184 sectional area (As, m²), dispersion coefficient (D, m sec⁻²), and storage zone exchange coefficient (α). 185 We used these estimates to determine the following storage parameters: dimensionless residence time 186 (τ_R) (= TU/L, where T = As/ α A (Harvey et al. 1996), L is reach length, m, and U is flow velocity, m 187 188 s^{-1}) and the fraction of the median travel time due to transient storage F_{med} (Runkel, 2002). The F_{med} parameter reflects the interaction between advective velocity and transient storage. For the purposes 189 of comparing values of F_{med} from different streams and experiments, we used a reach length L = 200 190 191 m to standardize the values (Runkel, 2002); thus, all values reported are F_{200} .

We tested for differences between treatments in the physical stream characteristics and sediment condition responses by using generalized linear models with gaussian error distributions and identity link function. Differences from reference streams were tested using treatment contrasts, and effect sizes are reported in terms of differences of a treatment from reference streams, together with the 95% confidence interval for the differences.

197

198 **3 Results**

3.1 Bed sediment and channel characteristics

Peatland drainage has transported fine sediments into both impacted and restored streams and bed sediments in these streams were therefore dominated by sand-sized particles. Sediment size distribution (d50) did not differ between reference and impacted streams (effect size = -0.3, 95% confidence intervals (CI₉₅) = -0.8-0.06, t =-1.7, P = 0.102), and reference and boulder restored streams (effect size = -0.5, CI₉₅ = -1.0-0.04, t =-1.8, P = 0.078). Wood-restored streams had significantly finer sediments than did the reference streams (effect size = -0.6, CI₉₅ = -1.2- -0.05, t = -2.1, P = 0.043).

Fine sediment cover (%) varied from 9.3 to 100 % (20, 52, 22, and 63 % for reference, impacted, 206 boulder-restored, and wood-restored streams, respectively) (Table 1, Fig. 2). Fine sediment cover in 207 reference streams was significantly lower than in impacted (effect size = 30 % (i.e. difference in 208 percentage cover of fine sediment), $CI_{95} = 18-42$ %, t=4.9, P < 0.001) and wood-restored streams 209 (effect size = 42 %, CI_{95} = 26-60 %, t=5.0, P < 0.001), but similar to that in boulder-restored streams 210 (effect size = 2%, CI₉₅ = -13-18%, t = 0.3, P = 0.780). The boulder-restored streams had less sediment 211 cover than the impacted streams (t=-3.57, P = 0.001). LWD volume was significantly higher in 212 reference than in impacted (effect size = -0.008 m^3 , CI₉₅ = -0.012 - 0.004, t = -4.1, P < 0.001) and 213 boulder-restored streams (effect size = -0.008 m^3 , CI₉₅ = -0.013 - -0.003, t = -3.18, P = 0.004), whereas 214 it did not differ from wood-restored streams (effect size = -0.002 m^3 , CI₉₅ = -0.007-0.003, t = -0.74, 215 P = 0.465). LWD volume was significantly higher in wood-restored than in impacted streams (t = 216 2.19, P = 0.037).217

There was considerable variation between treatments in channel morphology and several key environmental variables (Table 1). The width:depth ratio was significantly higher in reference than in impacted streams (2.11) (effect size = -0.93, CI₉₅=-1.7- -0.2 t = -2.4, P = 0.022), and nearly so when reference was compared to boulder-restored streams (2.07) (effect size = -0.97, CI₉₅=-1.7- -0.2, t = -2.03, P = 0.052), whereas wood-restored streams (2.55) did not differ from reference streams (effect size = -0.48, CI₉₅=-1.5- 0.5, t= -0.945, P = 0.353) (Table 1, Fig. 2).

3.2 Transient storage modelling

Restoration did not affect dimensionless residence time (generalized linear model, P > 0.097 for all 226 comparisons) (Fig. 3a), partly because of considerable variation between streams. The As/A ratio in 227 228 reference streams was significantly higher than in impacted streams (effect size = -2.9, CI₉₅= -4.8-0.9, t = -2.92, P = 0.007) and also higher than in boulder-restored streams (effect size = -2.4, CI_{95} = -229 4.9-0.04, t = -1.93, P = 0.064), whereas reference streams and wood-restored streams did not differ 230 (effect size = -0.3, CI₉₅= -3.0-2.4, t = -0.21, P = 0.823). Boulder-restored streams did not differ from 231 232 impacted streams (t = 0.34, P = 0.738) but wood-restored streams had a slightly, albeit nonsignificantly, higher As/A than the impacted streams (t = 1.90, P = 0.069). Boulder- and wood-233 234 restored streams did not differ from each other (t = 1.36, P = 0.184).

F200 was higher in reference than in impacted streams (effect size = -0.2, CI95= -0.4 - -0.04, t = 2.42, P= 0.022), but boulder (t = 0.726, P = 0.474) and wood restored (t = 0.989, P = 0.331) streams did not show any increase in F200 compared with the impacted streams.

238

239 4. Discussion

240 **4.1 Impaired in-stream bed sediment conditions**

Extensive siltation (mean siltation depth 15 cm, max. 51 cm, $d_{50} = 0.78$ mm) following peatland forest 241 drainage operations had changed local bed conditions and decreased transient storage conditions in 242 our impacted streams. Restored streams showed lower sediment cover than the impacted streams, but 243 did not achieve the bed characteristics of pristine streams. Bed sediments in both impacted and 244 245 restored streams consisted predominantly of sand-sized particles and restoration efforts thus did not show any noticeable effect on the particle size distribution of bed sediments. This was presumably 246 caused by extensive sediment inputs (up to 51 cm siltation depth) and the streams likely need much 247 248 more time to recover from the initial drainage disturbance. The mean sediment cover in the impacted 249 streams was 52%, but up to 100% cover was observed in some streams. In reference streams, only

around 20% of the surface area was covered by fines, suggesting a substantial change in bed substrate
cover as a result of peatland drainage. While boulder restoration clearly reduced bed sediment cover,
only a few wood-restored streams had recovered to close-to-pristine bed conditions.

253

4.2 Restored sites show improved transient storage conditions

255 Our results indicate that restoration structures increase total transient storage conditions (TTS) as reflected in higher values of As/A (Fig. 3), but had no effect on the residence time. This accords with 256 Bukaveckas (2007), who also found no major effect of restoration on travel time. Restoration in our 257 case mainly involved addition of LWD structures such as underminers (Tammela et al. 2010) and 258 259 deflectors, or boulders that modify local flow conditions and bed topography. The overall mechanism for transient storage in restored reaches was most likely a combination of increased surface transient 260 storage and hyporheic transient storage zones around restoration structures. However, the OTIS 261 262 model cannot separate different transient storages and thus we cannot analyze variation between storage types. Becker et al. (2013) also observed faster transient storage exchange and increased 263 transient storage conditions in sites restored using various flow-steering structures. In our restored 264 265 streams, the main physical change was increased scouring close to the added structures and increased variation in water depth. Such local bed modification did not always result in clear impacts on the 266 reach scale but even a local reduction in fine sediments creates diversity in terms of habitat patchiness, 267 thus yielding favorable restoration outcomes. Our results emphasize the need for more intensive 268 restoration efforts in boreal headwater streams. If restoration aims to reach near-natural bed 269 270 conditions, then clearly more wood and boulder material should be added to streams that currently 271 suffer from siltation problems.

Using a larger amount of LWD resulted in a slightly higher A_s/A ratio, indicating that more wood should be added to improve transient storage conditions. In boulder-restored streams the cover of bed surface sediments generally reduced, reinforcing the importance of using multiple restoration

measures to improve both benthic and riparian habitat conditions (Turunen et al. 2017). Boulder-275 based restoration seems to be more effective than wood-based restoration at restoring benthic habitat 276 structure in sediment-stressed streams, with benefits for the recovery of in-stream biota such as 277 bryophytes and benthic invertebrates (Turunen et al. 2017). However, wood-based restoration 278 279 changes riparian plant communities towards those of natural streams, suggesting changes in riparian 280 soil moisture and flood regime (Turunen et al. 2017). Individual wooden structures (Tammela et al. 2010) may be effective for only a few meters from the structure, creating localized transient storage 281 areas. This was particularly evident in silted headwater streams with limited transport capacity. 282

Our modelled values are largely in agreement with previous studies in corresponding 283 284 environmental conditions. Values of As/A averaged 3.05±2.61 (SD), which is higher than reported for sandy (0.32 ± 0.22) or coarse-bed streams (0.47 ± 0.64) (see Stofleth et al. 2008 for a comparison). 285 However, our study streams are boreal headwater streams, where the width:depth ratio is generally 286 287 different from that of sand or gravel-bed streams (Marttila et al. 2010). Boreal, headwater streams typically have stable vertical banks that create a lower width:depth ratio and deeper water areas. The 288 parameter F₂₀₀, a useful measure of TTS for inter-site comparisons (Runkel 2002), responded 289 290 variably, but within the range of values generally reported for streams (Stofleth et al. 2008). The influence of storage properties typically tends to decrease as stream velocity increases (Runkel 2002). 291 This was also evident for the F₂₀₀ values in our data. This forms a potential source of temporal 292 variation for TTS in the OTIS model output. For this reason, we conducted our experiments during 293 294 base flow conditions and in similar stream reaches to ensure comparability across the streams. We 295 also selected our study streams so that they represent similar geomorphological properties, allowing 296 a better comparison between the groups. To our knowledge, this is the first study documenting transient storage conditions in boreal headwater streams, and thus our values cannot be directly 297 298 compared with data for other types of streams.

Our results are in agreement with previous solute transport studies in that channels with woody 299 obstructions had higher median travel times associated with transient storage (F₂₀₀) and proportionally 300 greater transient storage areas (A_s/A) (Ensign and Doyle 2005, Stofleth et al. 2008). In those studies, 301 solute retention was attributed to changes in surface storage, such as eddies, pool volumes, and 302 303 meanders, rather than retention in the hyporheic zone. In the present study, the change in surface 304 storage was indicated by a large A_s/A ratio and high storage zone exchange coefficient (α) in nearnatural and wood-restored streams. In contrast, impacted and boulder-restored streams had smaller 305 306 As/A, demonstrating the increasing influence of hyporheic zone storage in these streams. While LWD clearly influences transport of solutes, hyporheic exchange rates near the structures are too slow or 307 308 small to influence reach-scale transient storage (Sawyer and Cardenas, 2012). While our analysis could not separate between different storage types, even a small proportional increase in hyporheic 309 exchange can be ecologically and biogeochemically beneficial, as it increases habitat complexity of 310 311 the stream bed (Wondzell 2011).

Headwaters form a major proportion of stream networks and are highly connected to the 312 surrounding terrestrial environment; thus any disturbance to these small streams will also affect 313 downstream habitats (Wipfli et al. 2007). Headwater streams offer multiple ecosystem services 314 beyond local stream channels, and their protection and restoration are therefore essential for 315 maintaining the integrity of river networks (Hill et al. 2014). Adding LWD and boulders is important 316 for stream biota and also has benefits for local hydraulic conditions, thermal conditions (Sawyer and 317 Cardenas, 2012) and total transient storage conditions, as shown in this study. Moreover, the benefits 318 319 of channel restoration are not limited to the stream, but extend to the riparian zone (Hasselquist et al. 2015, Turunen et al. 2017) and to downstream areas (Alexander et al. 2007). Indeed, future restoration 320 operations, especially in headwaters, should be performed simultaneously in channels and the riparian 321 322 zones.

324 **5** Conclusions

Restoration with either wood or boulders resulted in several positive impacts on bed sediment and transient storage conditions, creating more diverse total transient storage conditions and decreasing fine sediment depth and cover. Restored sites showed a higher storage zone cross-sectional area (As/A) than impacted streams, but had no effect on residence times. LWD had a stronger effect on TTS conditions than did boulder additions, whereas boulders were more effective at reducing fine sediment cover.

These results emphasize the need to combine multiple measures in the restoration of headwater 331 streams, since different restoration methods had different effects on stream TTS and bed substrate 332 333 characteristics. Additionally, boulder vs LWD restoration have divergent impacts on stream biota (Turunen et al. 2017). The restored streams had less added wood than in pristine conditions, and we 334 recommend using more LWD in headwater stream restoration. While our study does not provide 335 direct information to guide stream managers about the optimal amount of wood to be added, previous 336 studies have suggested values exceeding 30 m³ ha⁻¹ (Louhi et al. 2017) which is still much lower than 337 what was observed by Liljaniemi et al. (2002) in historically unmodified, pristine streams in the 338 Russian Karelia. Finally, our study shows that transient storage modelling can be used to evaluate the 339 success of hydro-physical restoration. 340

341

342 Acknowledgement

We thank Eero Moilanen, Eero Hartikainen, and Matti Suanto for their generous help in selecting the study streams and Lari Tajakka and Heli Harju for field and laboratory assistance. This work was funded by the Academy of Finland (AKVA grant no 263597). We thank the two anonymous reviewers for constructive comments that helped improve the quality of this paper.

347

- 349 **References**
- Alexander, R.B., Boyer, E.W., Smith, R.A., Schwarz, G.E. & Moore, R.B. (2007). The role of
 headwater streams in downstream water quality. *Journal of the American Water Resources Association*, 43, 41–59.

Bencala, K.E. & Walters, R.A. (1983). Simulation of solute transport in a mountain pool-and-riffle
stream: a transient storage model. *Water Resources Research*, 19, 718–724.

356

Becker, J.F., Endreny, T.A. & Robinson, J.D. (2013). Natural channel design impacts on reach-scale
transient storage. *Ecological Engineering*, 57, 380–392.

359

Bukaveskas, P.A. (2007). Effects of channel restoration on water velocity, transient storage, and

nutrient uptake in a channelized stream. *Environ Sci Technol.*, 41(5),1570-6.

362

Brunke, M., Gonser, T. (1997) The ecological significance of exchange processes between rivers and
groundwater, Freshwater biology, 37, 1–33.

365

366 DeAngelis, D.L., Loreau, M., Neergaard, D., Mulholland, P.J. & Marzolf, E.R. (1995). Modelling
367 nutrient-periphyton dynamics in streams: the importance of transient storage zones. *Ecological*368 *Modelling*, 80, 149–160.

370	Ensign, S.H., & Doyle M.W. (2005). In-channel transient storage and associated nutrient retention:
371	Evidence from experimental manipulations. Limnol. Oceanogr., 50(6), 1740-1751.
372	
373	Hasselquist, E.M., Nilsson, C., Hjältén, J., Jørgensen, D., Lind, L. & Polvi, L.E. (2015). Time for
374	recovery of riparian plants in restored northern Swedish streams: a chronosequence study. Ecological
375	Applications, 25, 1373-1389
376	
377	Harvey, J.W., Wagner, B.J. & Bencala, K.E. (1996). Evaluating the reliability of the stream tracer
378	approach to characterize stream-subsurface water exchange. Water Resour. Res., 32(8), 2441 – 2451.
379	
380	Harvey, J.W. & Wagner, BJ. (2000). Quantifying hydrologic interactions between streams and their
381	subsurface hyporheic zones. In Streams and Ground Waters, Jones JA, Mulholland PJ (eds).
382	Academic Press: San Diego, CA, 3 – 44.
383	
384	Hill, B.H., Kolka, R.K., McCormick, F.H. & Starry, M.A. (2014). A synoptic survey of ecosystem
385	services from headwater catchments in the United States. Ecosystem services, 7, 106-115.
386	
387	Hünken, A. & Mutz, M. (2007). Field studies on factors affecting very fine and ultra fine particulate
388	organic matter deposition in low-gradient sand-bed streams. Hydrological processes, 21, 525-533.

390	Johnson, T.A.N., Kaushal, S.S., Mayer, P.M., Smith, R.M. & Sivirichi, G.M. (2016). Nutrient
391	Retention in Restored Streams and Rivers: A Global Review and Synthesis. <i>Water</i> , 8(16), w8040116.
392	
393	Jones, J.I., Murphy, J.F., Collins, A.L., Sear, D.A., Naden, P.S. & Armitage, P.D. (2012). The impact
394	of fine sediment on macro-invertebrates. River Res. Applic., 28, 1055-1071.
395	
396	Koljonen, S., Louhi, P., Mäki-Petäys, A., Huusko, A. & Muotka, T. (2012). Quantifying the effects
397	of in-stream habitat structure and discharge on leaf retention: implications for stream restoration.
398	Freshwater Science, 31, 1121-1130.
399	
400	Louhi, P., Ovaska, M., Mäki-Petäys, A., Erkinaro, J. & Muotka, T. (2011). Does fine sediment
401	constrain salmonid alevin development and survival? Canadian Journal of Fisheries and Aquatic
402	Sciences, 68, 1819-1826.
403	
404	Louhi, P., Vehanen, T., Huusko, A., Mäki-Petäys, A. & Muotka, T. (2017). Long-term monitoring
405	reveals the success of salmonid habitat restoration. Canadian Journal of Fisheries and Aquatic
406	Sciences, 73, 1733-1741
407	

408	Liljaniemi, P., Vuori, KM., Ilyashuk, B. & Luotonen, H. (2002). Habitat characteristics and
409	macroinvertebrate assemblages in boreal forest streams: relations to catchment silvicultural activities.
410	<i>Hydrobiologia</i> , 474, 239-251.

412 Marttila, H. & Kløve B. (2010). Dynamics of erosion and suspended sediment transport from drained
413 peatland forestry. *J. Hydrol.*, 388(3–4), 414–425.

414

Marttila, H., Tammela, S. & Kløve, B. (2012). Hydraulic geometry, hydraulics and sediment
properties of forest brooks after extensive erosion from upland peatland drainage. *Open Journal of Modern Hydrology*, 2, 59-69.

418

Mason S.J.K., McGlynn B.L., Poole, G.C. (2012). Hydrologic response to channel reconfiguration
on Silver Bow Creek, Montana. *Journal of Hydrology*, 438–439, 125-136.

421

Mulholland, P.J., Steinman, A.D., Marzolf, E.R., Hart, D.R. & DeAngelis, D.L. (1994). Effect of
periphyton biomass on hydraulic characteristics and nutrient cycling in streams. *Oecologia*, 98, 40–
47.

425

426 Mutz, M., Kalbus, E. Meinecke, S. (2007). Effect of instream wood on vertical water flux in low427 energy sand bed flume experiments. *Water Resour. Res.*, 43, W10424.

429	Palmer, M.A., Hondula, K.L. & Koch, B.J. (2014). Ecological restoration of streams and rivers:
430	shifting strategies and shifting goals. Annual Review of Ecology, Evolution, and Systematics, 45, 247-
431	269.
432	
152	
433	Pilotto, F., Bertoncin, A., Harvey, G.L., Wharton, G. & Pusch, M.T. (2014). Diversification of stream
434	invertebrate communities by large wood. Freshwater Biology, 59, 2571-2583.
435	
436	Runkel, R.L. (1998). One-Dimensional Transport with Inflow and Storage (OTIS): A Solute
100	Rumen, R.E. (1990). One Emensional Transport what miles and Storage (OTIS). It Solate
437	Transport Model for Streams and Rivers: U.S. Geological Survey Water-Resources Investigations
438	<i>Report 98-4018</i> , 73p.
439	
440	Runkel, R.L. (2002). A new metric for determining the importance of transient storage. Journal of
441	the North American Benthological Society, 21, 529–543.
442	
443	Sawyer, A.H. & Cardenas, M.B. (2012). Effect of experimental wood addition on hyporheic exchange
444	and thermal dynamics in a losing meandering stream. Water Resources Research, 48, W10537.
445	
445	
446	Smidt, S.J., Cullin, J.A., Ward, A.S., Robinson, J., Zimmer, M.A., Lautz, L.K., Endreny, T.A. (2015).
447	A Comparison of Hyporheic Transport at a Cross-Vane Structure and Natural Riffle. Groundwater,
448	53(6), 859-871

450	Stofleth, J.M., Shields, F.D. & Fox G.A. (2008). Hyporheic and total transient storage in small, sand-
451	bed streams. Hydrol. Processes, 22(12), 1885–1894.
452	
453	Turunen, J., Aroviita, J., Marttila, H., Louhi, P., Laamanen, T., Tolkkinen, M., Luhta, P-L., Kløve,
454	B. & Muotka, T. (2017). Differential responses by stream and riparian biodiversity to in-stream
455	restoration of forestry-impacted streams. Accepted to Journal of Applied Ecology
456	
457	Wipfli, M.S., Richardson, J. S. & Naiman, R.J. (2007). Ecological linkages between
458	headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood
459	down headwater channels. Journal of the American Water Resources Association, 43(1), 72-85.
460	
461	Wondzell, S.M. (2011), The role of the hyporheic zone across stream networks. Hydrol. Processes,
462	25(22), 3525–3532.
463	
464	
465	
466	

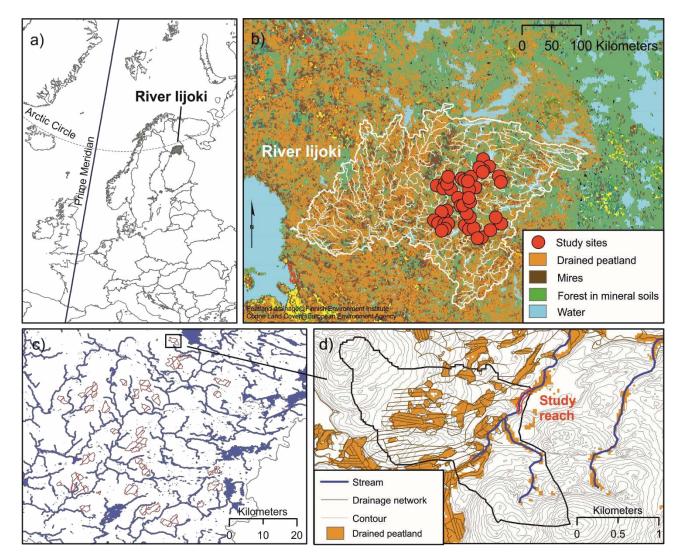
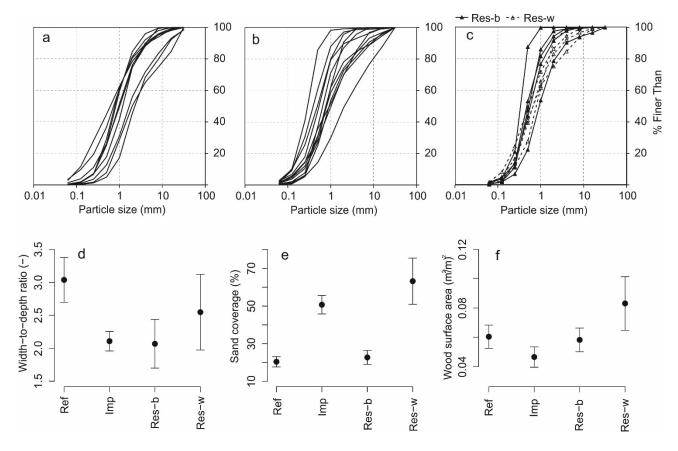



Figure 1. a) Location of the study area in Finland, and of b) study streams and c) catchments in the
River Iijoki basin. A representative study reach (the restored stream Vantunlamminoja) is also
shown (d).

471

Figure 2. Cumulative particle size distribution of bed sediments in a) reference, b) impacted, and c)
boulder-restored (Res-b) and wood-restored (Res-w) streams. Also shown are d) width-to-depth ratio,
e) sand coverage and f) wood surface area in each treatment.



Figure 3. Variation in a) dimensionless residence time (τ_R), b) As/A ratio, and c) fraction of median travel time due to transient storage (F_{200} , standardized to 200 m) in reference (Ref), impacted (Imp), boulder-restored (Res-b), and wood-restored (Res-w) streams.

Treatment	Reference	Impacted	Boulder-restored	Wood-restored
Catchment area (km ²)	3.4 ± 1.6	4.5 ± 2.2	3.7 ± 1.9	2.9 ± 1.5
Channel gradient (-)	0.0094 ± 0.01	0.0053 ± 0.005	0.007 ± 0.007	0.01 ± 0.01
Bankfull depth (m)	0.54 ± 0.12	0.65 ± 0.17	0.65 ± 0.17	0.55 ± 0.1
Bankfull width (m)	1.55 ± 0.37	1.35 ± 0.32	1.30 ± 0.45	1.29 ± 0.25
Discharge during test (L s ⁻¹)	0.98 ± 0.22	1.07 ± 0.31	1.16 ± 0.32	0.67 ± 0.19
$D(m^2 s^{-1})$	0.25 ± 0.25	0.15 ± 0.11	0.06 ± 0.05	0.03 ± 0.02
α (s ⁻¹)	$4.1 \times 10^{-4} \pm 3 \times 10^{-4}$	$2.8 \times 10^{-4} \pm 1 \times 10^{-4}$	$3.7 \times 10^{-4} \pm 2 \times 10^{-4}$	$4.9 \times 10^{-4} \pm 4 \times 10^{-4}$
Dal (-)	2.82 ± 2.62	1.36 ± 0.59	4.10 ± 5.45	1.25 ± 0.97

480 Table 1. Means and standard deviations of environmental variables for each stream group.

481 D is dispersion coefficient; α is storage zone exchange coefficient; Dal is Damkohler number.