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Restoration of Blurred Star Field Images 
by Maximally Sparse Optimization 

Brian D. Jeffs, Member, IEEE, and Metin Gunsay 

Abstract-In this paper we address the problem of removing 
blur from, or sharpening, astronomical star field intensity im- 
ages. A new approach to image restoration is introduced which 
recovers image detail using a constrained optimization theoretic 
approach. Ideal star images may be modeled as a few point 
sources in a uniform background. It is therefore argued that 
a direct measure of image sparseness is the appropriate opti- 
mization criterion for deconvolving the image blurring function. 
A sparseness criterion based on the 1, is presented and candi- 
date algorithms for solving the ensuing nonlinear constrained 
optimization problem are presented and reviewed. Synthetic and 
actual star image reconstruction examples are presented which 
demonstrate the method’s superior performance as compared 
with several standard image deconvolution methods. 

I. INTRODUCTION 

LUR in long exposure astronomical star images may be B due to atmospheric turbulence, misfocus, poor telescope 
tracking, finite aperture size, or other optical distortion effects. 
This blurring operation in incoherent intensity images may 
be modeled as the two dimensional convolution of a point 
spread function (usually low pass in spatial frequency) with 
the uncorrupted true image. If the point spread function is 
known, or may be estimated, then image resolution may be 
improved by any of many published deconvolution techniques 
[1]-[8]. However, due to the typically low pass nature of the 
blurring function, observation noise, and the ill posed nature 
of the problem, a unique “best” solution is not possible in 
general, and the type of solution obtained from any given 
algorithm is highly dependent on its underlying (explicit or 
implicit) objective function. 

We postulate that ideal star images are inherently sparse 
in nature, that is they are dominated by a constant flat field 
background intensity level with a small percentage of image 
pixels containing star intensity information. This image model 
justifies using a maximally sparse optimization criterion in 
the reconstruction algorithm, which in turn enables dramatic 
improvement in resolution. We adopt the following linearized 
image degradation model 

I = H g = q  - (1.1) 

where 
the sampled 2-D degraded image, 

is the observation vector obtained by row scanning 
is the uncorrupted image 
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vector, H is the block Toeplitz matrix representing the row 
scanned convolutional blur point spread function, and 7 is the 
additive observation noise vector. H is assumed known and 
can be modeled by sampling a standard atmospheric blurring 
function [9], or estimated from nearby isolated stars. 

The restoration problem is cast as one of linear inequality 
constrained nonlinear minimization 

ming(.?:) X such that IHg - 5 g,.?: 2 0 (1.2) 
- 

where the constraint vector 5 represents our observation un- 
certainty due to additive noise 77 and possible error in our 
knowledge of the point spread function. The inequality ( 5 )  
indicates the element by element relationship between vectors 
IHg - bl and 5. The solution, 2, is constrained to be non- 
negative since we are dealing with intensity images from an 
incoherent imaging system. 

There are in general an infinite number of admissible solu- 
tions which are consistent with the observed degraded image 
and satisfy the constraints of (1.2). The choice of objective 
function, g(&),  is key to controlling the form of the solution 
image, .?:. The more common objectives, / 2  vector norm, en- 
tropy, etc., yield unacceptably “smooth” results which often do 
not achieve maximum improvement in image resolution [ 101. 
12 minimization, as implemented in algorithms such as the 
Algebraic Reconstruction Technique (ART) [3], finds the min- 
imum length vector .?: that satisfies the inequality constraints, 
and in doing so typically distributes energy throughout most 
of the image pixcls. Though maximum entropy reconstruction 
has been proposed for astronomical image restoration [4], 
[5] ,  the underlying assumption in entropy maximization is 
that the solution image should be as uniformly distributed as 
possible, consistent with the observed data. This too can have 
a low-pass filter effect, distributing energy among many pixels. 
Representing isolated stars requires significant high spatial 
frequency content and implies that the restoration process 
should localize image energy into sharp high resolution peaks, 
rather than distributing energy. Some authors have presented 
techniques which do emphasize sharpness, or high frequencies, 
but these methods often do not take full advantage of the 
truly sparse nature of star fields 121, 161, 171, 181. Section V 
contains experimental results which demonstrate the improved 
resolution of the proposed algorithm as compared to minimum 
norm, maximum entropy, and CLEAN [6] restoration for star 
field images. 

Our prior knowledge that the desired image is sparse sug- 
gests that the appropriate objective function is a direct measure 
of solution sparseness. The restoration problem may then be 
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restated as, “find the solution E which has the fewest possible 
nonzero elements and satisfies [ H g  - bl 5 g.” To this end, we 
propose an objective, g ( g )  = Z:Lllrt[P. which is related to 
the 1, , and which will be shown to be an excellent sparseness 
metric when 0 < p < 1. Equation (1.2) may then be expressed 
as 

A- 

niin g ( g )  = x ( ~ ~  )” 
r - 

7 = 1  

such that 

IHr - bl I r. 

0 < p < l .  2>0 ~ 

In the following section we justify this choice of g ( g )  as a 
sparseness measure and develop the theory for 1, quasi-norm 
sparse optimization. In Section 111 we discuss algorithms for 
approximate and global solutions to (1.3). Section IV contains 
a discussion comparing the underlying objective functions for 
the proposed approach and the well-known CLEAN algorithm. 
It is shown that CLEAN is suboptimal for star field images. 
Section V presents experimental results of deblurring both 
synthetic and actual star field images. 

11. MAXIMALLY SPARSE STAR 
RECONSTRUCTION WITH 1, QUASINORMS 

This section develops an argument for using 1, s as the 
objective function in optimal star deblurring. Two different 
classes of optimization problems are considered: Deterministic 
star deblurring, and an estimation theoretic approach. For the 
deterministic interpretation we begin with the assumption that 
our underlying true image is maximally sparse as defined 
above and that the restored image should maximize some 
direct measure of sparseness while controlling reconstruction 
error. Applying these assumptions leads to a deterministic non- 
linear optimization formulation. In the probabilistic approach 
we view both the true star image and observation noise as 
random fields and use Bayesian estimation theory to recover 
the star image. A class of probability density functions is 
identified which provide a good model for the prior distribution 
of the true star image. Maximum a posteriori estimators 
for this image under two different noise distributions are 
developed. It is notable that both deterministic and estimation 
theoretic interpretations of star deblurring are shown to imply 
the suitability of 1, quasi-norm optimization and lead to a 
problem of the form of (1.3). 

As with all image models, we cannot expect that the 
maximally sparse assumption is accurate in all possible blurred 
star images. Although we have not encountered the situation 
in practice, it is possible that a true star could be lost in the 
reconstruction due to the sparseness criterion. In such a case, 
however, the solution with fewer stars would be as consistent 
with the observed data as the true image, and the sparseness 
criterion resolves the ambiguity. When equally valid solutions 
exist (i.e., each satisfying the inequality constraint of (1.3) 
containing different numbers of isolated points, the sparseness 

criterion favors the solution with fewest stars since there is no 
evidence to the contrary. 

A. Deterministic Optimization Formulation 

The most obvious measure of image sparseness is a simple 
count of the nonzero pixels. Since we have modeled stars as 
point sources, this corresponds to a count of the number of 
stars resolved in the restored image. This may be accomplished 
with an objective, f ( . r ) ?  based on the indicator function: 

i= l  

1. .r7 # 0 
0. ,rt = 0 ’  1(r7) = 

f(.r) is not well suited as an objective function in an 
optimization algorithm and does not permit any control over 
the degree of sparseness desired [11]. It is discontinuous in 
the regions of interest (where any .E ,  goes to zero), and has 
a gradient of zero everywhere else, thus making it useless for 
gradient descent techniques. g(z) as defined above achieves 
an equivalent measure of sparseness without some of these 
difficulties. To demonstrate this, consider the unit ball surfaces 
in R2 space for the 1 ( ~ 1 ( 1 ,  = ( C ~ = = l [ r , [ P ) l / P  as shown in Fig. 1 
for different values of p .  For p 2 1 we have the conventional 
I ,  vector norm. The linear constraints in (1.3) form a convex 
set, and it is well known that within convex constraints, a 
local minimum of [[SI 11,. p 2 1, is a global optimum. Many 
efficient gradient descent algorithms exist for solving such 
problems [12]. Of particular interest are the cases for values 
of p = 1.2 .  and x, corresponding to linear, least squares, and 
minimax objective functions, which form the basis of many 
widely used optimization procedures. However these methods 
do not achieve sparse results for an underdetermined problem 
of the form of (1.2). 

For 0 < p < 1. [lg[1lp is only a . Over R”, l[gIl~, is neither 
convex nor concave, contains many strong local minima and 
presents a difficult optimization problem. Large values of p 
result in smooth solutions, however, as p -+ 0 the solutions 
tend to become more “spiky,” or sparse [13]. The reason for 
this can be seen in Fig. 1. As p 4 0. the unit ball curves 
approach the ~ 1 . ~ 2  axes, which is exactly where the unit 
ball surface lies for the indicator function of (2.1). We may 
therefore identify minimum order optimization as a special 
case of generalized 1, optimization. g(g) = ( I1gIllp)P, thus 

This suggests that we may use (at least in the limiting 
case) g ( g )  from (1.3) for sparse optimization. We have shown 
elsewhere that if the set of feasible solutions to the constraint 
equation of (1.3) are bounded in magnitude, then there is a 
finite p0 > 0 such that for all 0 < p 5 po any solution to 
(1.3) is in fact maximally sparse [11]. p need not approach 
zero to achieve sparse results. The utility of this observation 
is that for p finite, g ( g )  eliminates some of the handicaps of 
using f ( g )  in an optimization algorithm while still yielding 
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Fig. 1 

Fig. 2. Comparison of gaussian and generalized p-Gaussian data (a) 
One-sided gaussian random field, (T = 1. (b) One sided gpG random field, 
1) = 0.3. (T = 1. Note the similarity of (b) to a star field image. 

Unit balls of the I ,  norm for various p .  Note that as 1) approaches 
0, the unit ball approaches the axes. 

a maximally sparse solution. g ( 7 )  is continuous everywhere 
and differentiable except at the coordinate axes where some 
xi = 0. We may also adjust the desired sparseness of the 
solution by varying p in the range p0 5 p 5 1. 

B. Estimation Theoretic Formulation 

In this section a probabilistic model is adopted with an 
assumed prior distribution on 7 which is well suited to describe 
a sparse star image as a random field. Bayesian estimation 
techniques are then applied to develop the maximum a poste- 
riori estimate for a given noise distribution. It is then shown 
that this leads to an estimator which is closely related to the 
deterministic optimization approach developed above. 

The generalized p Gaussian (gpG) probability density func- 
tion, also known as the Box-Tiao distribution, defines a 
family of distributions which can be used to characterize non- 
Gaussian sample data, and in particular sparse or spiky data 
produced by a heavy tailed distribution. The gpG densities 
were introduced by Subbotin [14] in 1923, and used by Miller 
and Thomas [15] in 1972 for modeling non-Gaussian noise in 
detection theory. McDonald has shown how this parametric 
family includes many well known symmetric probability den- 
sity functions [16]. The univariate density is defined for shape 
parameter p ,  mean p, and variance o2 as 

where r() is the gamma function. For p = 2 and p = 
1 this yields the familiar Gaussian and double exponential 
distributions respectively, and as p + cx we have a uniform 
distribution. 

By adjusting the shape parameter, p ,  we may produce a 
close match to the statistics of a remarkably wide range of 
sampled data distributions [ 131, [ 161. For the problem at hand, 

the primary range of interest is 0 < p < 1. Fig. 2 shows 
a comparison between synthesized independent Gaussian and 
gpG data (with p = 0.3).  The data are presented as 2-D 
random fields (images) with the pixel intensity corresponding 
to the absolute value of the random sample. Note that the 
gpG data is clearly a better model for an unblurred star image 
and that for this small p .  the sequence is much more “spiky,” 
containing primarily small values with a few large outlying 
spikes. This sparse data is consistent with our view of how 
noisy samples from a maximally sparse source should appear. 
Indeed, several authors report excellent data modelling using 
low order gpG distributions [13], [17]-[19]. 

We shall adopt a stochastic model for unblurred star images 
in which the pixel intensity prior distribution is independent 
and identically distributed, one sided gpG with 0 < p < 1. 
Outlying samples correspond to single pixel stars. Statistical 
independence from pixel to pixel is appropriate for this model 
since stars are randomly placed point sources and spatial 
correlations in the desired true image are negligible. A minor 
modification of the gpG function is required to accommodate 
one sided data needed to model intensity images with only 
nonnegative values 

We now formulate maximum a posteriori (MAP) estimates of 
the N element image vector IC, given the M element observed 
image vector 4 for two different noise distributions (see (1.1) 
for the image observation model). 

Case I :  Uniform iid noise 

i.e., :c is distributed iid, zero mean, one sided gpG, 0 < p < 1 

which yields the conditional density 

I 0 otherwise 
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The MAP estimate of g is then 

LhlAP = inaxfx(3:14) = ini~xf~(b1x)fs(3:) 
X - - 

0, otlierwise. 

Ignoring constants and taking the logarithm (2.7) 

&I-\P = inin 

which corresponds exactly with the I ,  optimization problem 
of (1.3). 

It may be argued, however, that uniformly distributed noise 
is atypical. We therefore consider the more realistic case of 
Gaussian noise. 

I T ,  I p  such that 14 - HgJ 5 5 arid s, 2 0 
- 

7 

(2.8) 

Case 2: Gaussian noise 

f s ( T )  = gpG(0, of, 
f,,(v) = N(O,o:). iid, white zero mean Gaussian 

which leads to the following MAP estimate of q 

by MAP estimation with gpG distributed star images corrupted 
by blur and Gaussian noise. The results presented above 
provide justification for an I ,  quasi-norm approach to star 
deblurring and demonstrate a duality between deterministic 
sparse optimization and optimal parameter estimation for 
distributions which are likely to produce sparse 7. 

111. ALGORITHMS FOR SPARSE STAR DEBLURRING 

Though the star deblurring problem has been expressed 
in a conventional constrained nonlinear optimization form, 
(1.3) presents a difficult problem from an algorithmic point 
of view. Since g(Z)  is not convex, simple gradient search 
techniques will not locate a global minimum. We believe, in 
fact, that sparse optimization belongs to the class of “N-P 
hard” problems, which cannot in general be solved exactly in 
polynomial time (i.e., in a number of iterations that can be 
expressed as a polynomial of order N for an N-dimensional 
problem.) Thus algorithm design must be directed toward 
methods with faster average performance, or which find good 
approximations of the exact global solution. We will discuss 
three methods which take this approach and have proven 
effective in various applications. Both the 1, Simplex Search 
and simulated annealing methods have proven effective for 
star image deblurring. The collapsing polytopes method is 
discussed in Section 111-C as a point of reference as to why ex- 
isting global concave minimization algorithms are ineffective 
for high dimensionality problems like image restoration. 

T t  2 0 A .  The I,, Simplex Search Algorithm 

In previous work we have shown that solving (1.3) is 
equivalent to solving the following problem involving linear + ( $ ) p  

llb - Hzl12 lT21~.}’. 2 0. 
2 

(2.10) equality constraints [11], [20]. 

= min 

‘V 

rriing(z) = C(x.), Equation (2.10) is difficult at best to solve directly. Rather, 
one may express this as a constrained minimization by using 
known (or estimated) noise statistics (0;)  to specify a confi- 
dence region about our solution. An upper bound, consistent 
with our uncertainty due to noise, is set on the first term of 
(2.10) and then 7 is adjusted to minimize the second term. The 
resulting constrained optimization problem is easily shown to 
be 

2 
z = 1  

such that 

‘Hz = b, 0 < p < l ,xz  2 0 

where 

1 

‘ H Z  [ H  H I  0 0 [!::I min 12, 1, 
X - 

? - 

such that - .x E R”’,s+.z- E Rnr.b E R“‘.‘H: ( 2 M )  x ( N  + 2 M )  

~ ~ 4 - H 7 ~ ~ 2 1 E , 2 z > 0 . 0 < ~ ) <  1 .  (2.11) 

With U; known, we may specify E to give a fixed probability, 
a? that the true H g  lies within a distance E from 6, i.e., select 
E such that 

- 2 is then the.most sparse vector that maps into this confidence 
region given by the hypersphere of radius 6 .  

Though (2.1 1) involves a quadratic constraint rather than 
the linear inequality constraints of (1.3), clearly use of g ( r )  = 
C ; ’ ~ , ( , T ~ ) ~  as the optimization criterion of choice is indicated 

1 is the M x A4 identity matrix, s+ and 3- are, respectively, 
slack and surplus variables as commonly employed in linear 
programming [12], but are not included in the computation of 
g(z) or in the final solution for 3:. 

Since g(z) is concave over zi 2 0 ,  the solution to (3.1) 
must lie at an extreme point of the constraint set [11], [20]. 
These extreme points are called basic feasible solutions, and 
are defined as any x which satisfies H z  = b , z i  2 0, and 
contains at most M nonzero elements. This observation has 
tremendous significance since there are only a finite number of 
basic feasible solutions. Unfortunately, this set is prohibitively 
large and grows as the factorial of N .  The algorithms presented 
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here and in the following section are essentially schemes for 
searching the set of basic feasible solutions in an efficient 
manner to find the optimal solution using something less than 
an exhaustive search. The problem structure suggests that 
an algorithm similar to the simplex method used for linear 
programming (LP) may be effective. This is the basis for the 
algorithm presented here, which is essentially the same as an 
approach due to Barrodale and Roberts [21], and which we 
have called the 1, simplex search. 

A basic feasible solution may be computed by partitioning 
'FI 

[AID] = 'Ft. whereA E R2"1x2X1 (3.2) 

multiplying the constraint of (3.1) by A-' leads directly to a 
basic solution ZB 

[IIA-'D]s = A-'b,zB = [A-'b. 0. . . . OIT.  (3.3) 

Any choice of 2M columns from H for whichA is non- 
singular is acceptable for a solution Z B .  The variables z, 
associated with columns of A are termed basic variables, and 
A the basis. As in the standard LP simplex algorithm, program 
iterations consist of "pivoting" a column from D into the basis, 
and the appropriate column from A out of the basis into D to 
compute a new basic solution adjacent to the previous one. At 
the ith step of successive pivot operations we will designate 
A, as the basis for the current partitioning of 'R, and ZB, the 
corresponding basic solution. Two solutions, X B ,  , and ZB, . 
are said to be neighbors, or adjacent solutions, if one pivot is 
required to move between them (or equivalently if A, differs 
from A, in only one column.) The set of all neighbors of ZB, 
is denoted by N ( z s , ) .  The utility of the simplex algorithm 
is that we need not recompute A-' explicitly with each pivot 
but may use a simple algebraic operation, identical to an LP 
pivot, directly on (3.3) [12]. 

Locating a sparse solution is accomplished by selecting 
leaving and entering columns such that g(z) is reduced with 
each pivot. The sequence of iterations produces a series of 
solutions with monotonically decreasing cost. The algorithm 
terminates when all surrounding adjacent solutions are of 
higher cost than the current one. Note that selection of pivots 
and computation of the cost are handled differently than in LP. 

The steps of the 1, simplex search algorithm are as follows: 
i = 0, find any initial basic feasible solution to (3.1) 
ZB, = [A-lb, 0, . . . O I T .  (e.g., the LP phase I solution), 
Compute the cost, 9 ( 2 B , ) ,  for all bounded Z B ,  E 

If no adjacent solution is of equal or lower cost, ter- 
minate, optimum found. Otherwise, if any lower-cost 
solutions exist, select one and pivot to it. Otherwise, 
perform an anticycling procedure to pivot to an equal 
cost solution [12]. 
Increment i and set Z B ,  to the new solution. 
Repeat 2) through 4) to termination. 

N ( z B ?  1. 

This algorithm has been demonstrated in several different 
applications to produce excellent approximations to the op- 
timally sparse solution, but due to the nonlinearity of the 
cost function, g ( g ) .  it may terminate before a true global 

optimum is located. Results do, however, compare favorably 
with existing algorithms for sparse star field image restoration 
and such other diverse applications as sparse beamforming 
array design, seismic deconvolution, and neuromagnetic image 
reconstruction [11], [20]. 

B. Simulated Annealing for Star Deblurring 

The I ,  Simplex search algorithm described above is very 
efficient; however, when global optimality is of paramount 
concern, other more computationally intensive methods are 
required. Simulated annealing has been shown to be successful 
for this class of problem, but requires significant computer 
resources. This section presents the detail of applying sim- 
ulated annealing to the star reconstruction problem. Another 
global optimization algorithm which we have investigated, the 
collapsing polytopes method, is discussed in the following 
section. 

Stochastic relaxation, or simulated annealing as it is often 
called, has been used by a number of authors in recent years 
for a wide range of nonlinear combinatorial optimization 
problems of high dimension [22]-[24]. The 1, simplex search 
is readily adapted to a simulated annealing algorithm. Here 
the choice of which adjacent solution to pivot to (step 3 in the 
1, Simplex Search) is not always based on strict reduction 
of the cost, g(z). A degree of randomness is introduced 
in the choice so that less sparse solutions may occasionally 
be chosen in a given iteration. The degree of randomness 
is gradually reduced according to an "annealing schedule" 
until the algorithm stabilizes at the globally optimum solution. 
Selection of an appropriate annealing schedule is a tradeoff 
between the required computation time to reach termination, 
and the degree of solution sparseness. 

The Metropolis algorithm [23], [24] as used for a simu- 
lated annealing starfield restoration is described below. The 
following notation is used: K,  = IN(zB,)I is the cardinality 
of N ( ~ B , ) .  which is a count of the number of neighbors to 
Z B ,  . K,,,,, = max K,. 

Simulated Annealing 1, Simplex Algorithm Description: 
1) / 1 0, find any initial basic feasible solution to (3.1) 

2) Select a candidate solution, z b , ,  to pivot to according 
XB, = [A-'b, 0. . . . O I T .  

the the probability: 

3 )  a g  = g(zB,) - g(ZB,),with g ( . )  as described in (1.3) 
4) If Ag 5 0, then zg,+l = z ~ , g o  to step 8). 
5) Generate an independent uniformly distributed random 

6) If T 5 rxp( ?), then Z B , + ~  = Z B , ,  go to step 8). 

7) ZB,+1 = zB,. 
8) 7 = 7 + 1, If z > max. iterations, terminate, otherwise 

9) Go to 2). 

variable T - U(O.l). 

update T, according to the annealing schedule. 
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This algorithm produces a strongly ergodic Markov chain and 
converges to the global optimum in the limit, provided the 
annealing schedule is of the form [24] 

basic solution of the original unaugmented problem. Since the 
polytope face on y = 0 is a convex set, if its lowest cost vertex 
is a basic solution to (3.1), it must be the global solution for 
the concave cost function g(z). 

g(z)  as defined above is not usable in the collapsing 
polytopes algorithm because of exterior point evaluations 

where is any Parameter 5 5 x, is a where J ,  < 0. The 1, quasi-norm is not concave over both 
constant which, though noncritical, is generally chosen to be positive and negative values of T .  This problem was overcome 
proportional to the number of states in the system. by introducing a new objective function, c(z), to approximate 

asymptotic convergence, and yet the set of basic feasible a good 
solutions is finite, this algorithm is of practical importance only 
if its finite time behavior yields improved solutions over the 
deterministic simplex search. Mitra et al. analyzed the finite 
time behavior of the algorithm, and computed a bound for 

cost [24]. For a finite sequence, the terminal result is not 
guaranteed to be the lowest cost solution in the sequence 
due to the random search. Therefore, truncated procedures can 
improve performance by maintaining memory storage of the 
lowest cost solution achieved up to the current iteration. This 
storage is updated only when the current result is better than 
all previous points in the sequence. Our experiments verify 
that the truncated sequence Produces improved results Over 
the deterministic 1, simplex search. 

C. Collapsing Polytopes Method 

Equation (3.1) describes a system which belongs to the 
class of linearly constrained concave minimization problems 
which have received significant attention in the literature 
of operations research. Many related algorithms have been 
proposed which produce exact global concave minimizations 
using exterior point search techniques, and which are on 
average more efficient than an exhaustive search. Since these 
appear to be the only known finite, efficient methods for exact 
solutions they should clearly be investigated. We have im- 
plemented and evaluated one of the more promising methods 
[25] representative of this group for its applicability to star 
deblurring. 

The Falk and Hoffman collapsing polytopes algorithm is 
a finite procedure which solves a sequence of related lin- 
ear programming problems by pivoting operations [25].  It 
is guaranteed to terminate at the true global solution and 
incorporates a procedure which efficiently eliminates the need 
to search much of the feasible region. The algorithm is often 
significantly more efficient than an exhaustive search, though 
this is not guaranteed, and cases can be contrived for which 
no improvement is realized. 

The approach of this algorithm is to extend the dimensional- 
ity of (3.1) by augmenting 2 with a single additional variable, 
y. The feasible solution set for the augmented problem is in 
R2”+1 space, while the feasible set for the original problem 
(3.1) is the 2N dimensional hyperplane in this space described 
by y = 0. A polytope in R2”+l is formed which encloses the 
original solution space in one of its faces, which is in the plane 
y = 0. This polytope is iteratively collapsed by a geometric 
procedure to more closely bound the original solution space 
until its lowest cost vertex in the plane y = 0 corresponds to a 

Y 
= ‘3 l q2>  ” ’  (3.4) T, = 

log ( 2  + 720 + l), 

Since the annealing algorithm exhibits only g(z) which is concave Over the entire space, and still provides 
of sparseness Over nonnegative : 

exp ( E , )  - exp (--,) 
exp (z,) + exp ( -Kc , )  ‘ 

2, > 0 

2, 5 0. 
(3.6) d.1 = 

(1 + the deviation between the optimal cost and the finite time 
7 -  { 2  

F~~ a = 1 this function is recognized as the hyperbolic 
tangent. F~~ becomes large, this function 
approaches the indicator function which, as discussed above, 
is an obvious of sparseness. 

T~ evaluate the algorithm it shall be compared with the 
2,Simplex Search. This comparison is, however, difficult and 
can only provide insight rather than an exact ordering since 
the convergence criteria are different for each algorithm and 
one is a global method, while the other provides approxi- 
mately optimum solutions. Also, no exact analysis is available 
on the expected number of iterations for either algorithm. 
Both approaches, however, use linear system extreme Point 
combinatorial searches by Pivoting operations. 

The CollaPsing PolYtoPes algorithm, as compared with the 
1,SimPlex Search, was found to be Prohibitively complex and 
costly for star deblurring for the following reasons: 

1) The order of the system to be solved is significantly 
increased. Positivity constraints must be explicitly in- 
cluded in the system equations. The tableau created for 
the 1, Simplex Search is of dimension (2M) x ( N  + 
2M + 1) (see (3.1)), while for collapsing polytopes the 
system is (2M + N )  x (2N + 2M + 1). Computations 
per pivot are increased by a factor of approximately 
N 2 .  while the number of basic feasible solutions, and 
potentially the number of iterations, is increased at a 
factorial rate. 

2) Computational overhead per iteration is significantly 
increased. The search procedure requires maintenance 
of two sorted lists of all basic solutions previously 
evaluated. Each iteration involves pivoting to an adja- 
cent solution, a list search, creation of list entries, and 
traversal of a tree structure by solving a new nested 
linear sub program of order (2M + N )  x (2N + 2M + 1). 
The 1, Simplex Search on the other hand requires only 
a single pivot per iteration. 

3) Memory usage is significantly increased. Both the in- 
creased problem dimensionality and the lists add to 
memory requirements. Each list entry requires 2(N + 
2M) + 4 bytes of storage, and at least one entry is 
added per iteration. List growth alone can prohibit large 
problems encountered in star deblurring. 

> 0 and as 
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maximally sparse solution. This part of the algorithm could be 
applied to the 1, Simplex Search for a good initial “guess.” 

Iv. COMPARISON WITH THE CLEAN ALGORITHM 

Perhaps the most widely accepted algorithm for incoher- 
ent star field deblurring is CLEAN, introduced in 1974 by 
Hogbom [6]. It has been used successfully for deconvolving 
atmospheric blur and imaging system point spread functions 
in optical telescopy, and has been widely used in radio 
telescopic image reconstruction. A CLEAN iteration consists 
essentially of locating the peak blurred image intensity value, 
then subtracting a scaled copy of the known point spread 
function, centered on the peak, from the image. This process 
is repeated until the peak in the residual image is below 
a predetermined error tolerance limit. This process has also 
been called “iterative beam subtraction” when the point spread 
function corresponds to the beam response pattern of a radio 
telescopic antenna array. The “cleaned” image consists of 
nonzero values only in the locations corresponding the peaks 
which were processed [6], [26]. 

This procedure has similarities with the 1, simplex search. 
Both methods are “designed” to operate on sparse sources, 
that is when the true image consists largely of blank sky 
[6], [26]. In fact, if this model is inappropriate, neither 
method may yield acceptable results. Since CLEAN iterations 
terminate when restored image error drops below a specified 
limit, it may also be cast in the form of the constrained 
optimization of (1.2). CLEAN, however, was proposed as 
an ad hoc procedure, with no optimization theoretic basis. 
Although it clearly sharpens processed images, it is unclear 
what underlying implicit objective function, y(z), is active. 

It has more recently been shown that the underlying ob- 
jective in CLEAN approximates 11 minimization [26]. A 
“cleaned” image minimizes the sum of pixel intensities within 
the error constraints 

,v 
inin 2, 

z 
- i = l  

such that 

IH: - bl 5 g. 2, 2 0. (4.1) 

This is readily seen as a special case of the 1, optimization 
provided by the I ,  simplex search. For example, Stark points 
out the enhanced resolution and generally sparse results in 
images restored by solving a system equivalent to (4.1) [ 2 ] .  11 

(c) 

Fig. 3. Synthetic star pair image of 20x20 pixels (a) unblurred image. (b) 
Point spread function (c) Blurred and noisy image used for processing. 

minimization however cannot in general achieve the maximally 
sparse result. We have shown that solutions continue to be 
more sparse as p decreases from 1 to some P O ,  at which time 
(2.1) yields the maximally sparse result [ l l ] .  Thus CLEAN, 
having been designed to recover a true image consisting a 
few stars in a blank sky, can fall short of its stated objective. 
In the following section we present an example where the I, 
simplex search outperforms CLEAN and restores resolution 
with fewer extraneous artifacts. 

V. RESULTS 

In this section we present experimental results of star field 
image restoration using the 1, simplex search. Figs. 3 and 4 are 
from a synthetic image case and give a performance compar- 
ison between the 1, simplex search, algebraic reconstruction 
technique (ART), maximum entropy, and CLEAN reconstruc- 
tions. Figs. 5 and 6 demonstrate sparse reconstructions from 
actual telescopic star images. 

Fig. 3(a) shows the original ideal image of a synthetic star 
pair in a black background. Both stars have equal intensity of 
1.0 and are located at pixels (9, 9) and (1 1, 11) respectively in 
the 20 x 20 pixel image. The 39 x 39 pixel point spread shown 
in Fig. 3(b), a 2-D Gaussian function with a standard deviation 
of 1.5 pixels, is used to blur the image. Fig. 3(c) presents the 
final corrupted image truncated to 20 x 20 pixels with the 
blurred star pair and additive Chi-squared distributed noise 
(one degree of freedom). The noise is statistically independent 
pixel to pixel and was generated by squaring Gaussian samples 
with a standard deviation of ,0125. 
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(a) (b) (c) ( 4  
Fig. 4. Reconstructions of Figure 4(c). using three algorithms: (a) Minimum norm using the ART with relaxation parameter X = 0.2 and mean square 
error residual at convergence of 0.00353. (b) Maximum entropy using multiplicative ART with relaxation parameter X = 0.2 and mean square error 
residual at convergence of ,00345. (c) CLEAN with error threshold f = 0.02. (d) I ,  Simplex with 11 = 1 / S  and error threshold E = 0.02. Note 
the correct resolution and placement of stars in (d). 

(e) 
Fig. 5.  Reconstruction of a binary star near globular cluster M67. Resolution is 1.5 arcsecondsipixel. (a) Resolved image under good seeing conditions. 
(b) Blurred image. (c) Expanded view of the star pair used in processing. (d) Estimated point sprcad function from a nearby star. (e) 1, Simplex 
restoration of the processed region. 

The results of various reconstruction methods as applied to 
Fig. 3(c) are presented in Fig. 4. A minimum norm reconstruc- 
tion using the ART algorithm [3] is shown in Fig. 4(a). This 
algorithm produces the minimum energy image consistent with 
the observed data. The algorithm incorrectly adds structure 
(concentric rings, etc.) which is not present in the original 
image. The maximum entropy result shown in Fig. 4(b) was 
generated with a multiplicative ART algorithm [3] ,  and clearly 
demonstrates the “maximally smooth” characteristics of this 
type of reconstruction. Note that the individual stars are 
not resolved. Fig. 4(c) shows that CLEAN resolves isolated 
stars but incorrectly places a bright star midway between the 
true locations, and then two stars more widely separated to 

reduce the residual error. This behavior is typical of CLEAN 
whenever blurring is sufficient to smear objects into a single 
intensity peak. Fig. 4(d) demonstrates the superiority of the 1, 
Simplex method which resolved the two stars perfectly. The 
absolute pixel error threshold, 6,  used in both the CLEAN and 
1, Simplex reconstructions was 0.02. 

Fig. 5 demonstrates reconstruction of a blurred binary star 
from an actual telescope image. Fig. 5(a) and 5(b) shows a star 
grouping near globular cluster M67 under excellent and poor 
viewing conditions, respectively. Note how the upper right 
binary star is resolvable in Fig. 5(a), while in 5(b) it is blurred 
by atmospheric turbulence to the point of exhibiting a single 
intensity peak. The “boxed” region of Fig. 5(b) indicates the 
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(a) (b) (c) ( 4  

Fig. 6. Reconstruction of a star group seen in selected area 110 as cited in [24]. Image is from CWRU/NOAO observatory with a 36/24 Burrel Schmidt 
telescope having 2.1 arcsecondsipixel resolution. (a) Star group under more favorable viewing conditions. (b) 20 x 20 blurred image which is processed. (c) 
estimated point spread function from a nearby star. (d) Reconstructed image using I ,  Simplex search with 11 = 1/6.  and error threshold 6 = 0.3. 

portion of this image which was processed for reconstruction, 
and is shown in expanded view in Fig. 5(c). The point spread 
function estimate (Fig. 5(d)) used in deconvolving the image 
is a neighboring isolated star. Fig. 5(e) shows the result of 
the 1, Simplex algorithm. A n  interesting feature is the two 
adjacent pixels which represent the right star in the binary. 
We speculate that the star’s true position was a point between 
the two pixels, thus the algorithm smeared the energy between 
the two bins. In this example, the sharper optical image of Fig. 
5(a) serves as a “ground truth” frame of reference to confirm 
that the reconstruction of the blurred region is in fact correct. 
This may lend confidence in applying the method to blurred 
images where the true underlying star field is unknown. 

Reconstruction of a second example star group (see Landolt 
[27] for sky coordinates) is presented in Fig. 6. This case 
includes blurring from atmospheric turbulence, motion due to 
improper telescope tracking, and misfocus. The first image 
(Fig. 6(a)) was taken with a shorter exposure time under 
somewhat better conditions and shows several resolved stars as 
well as an elongated cluster in the lower right which contains 
an indeterminate number of stars. Fig. 6(b) contains the image 
which was processed and exhibits blurring of some of the stars 
which are resolved in Fig. 6(a). The point spread function 
taken from a nearby isolated star (Fig. 6(c)) has an interesting 
structure like an elongated “donut” due to misfocus an tracking 
error. Note that this structure can also be seen in the blurred 
image. In Fig. 6(d) we see the results of the 1, Simplex method. 
It places stars where we expected for the blurred isolated stars 
and it determined that there are two main stars in the elongated 
cluster as well as a third dimmer star placed slightly above 
them. 

VI. CONCLUSION 

The above examples demonstrate that maximally sparse 
restoration is a promising approach for star deblurring. It 
is ideally suited to cases where only point sources, and 
no distributed objects, exist in the true image field. In any 
restoration problem, the form of a restored image is highly 
dependent on the objective function (explicit or implicit) 
underlying the algorithm which is used. The commonly- 
invoked criteria (least squares, maximum entropy, etc.) impose 

a smoothing operation on the solution image. One may argue 
that when a sparse source image model is used, the only 
justifiable objective is a measure of sparseness. The 1, Sim- 
plex Search is a practical maximally-sparse algorithm, and 
outperforms CLEAN, ART, and maximum entropy methods 
in cases of severe blurring. Though this algorithm yields good 
approximations of the maximally sparse solution which are 
acceptable for star image resolution enhancement, it does 
not assure location of the global optimum. For cases which 
require a global optimum, we have shown how simulated 
annealing can be applied to the simplex search. Though this 
is computationally intensive, it does produce superior results. 
The collapsing polytopes method was evaluated as typical 
of published concave minimization algorithms which seem 
applicable to this problem, but was found to be extremely 
impractical for high dimensionality problems found in image 
restoration. 
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