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Abstract. In previous papers we proposed methods and software for the restoration of images provided by Fizeau interfer-
ometers such as LINC-NIRVANA (LN), the German-Italian beam combiner for the Large Binocular Telescope (LBT). It will
provide multiple images of the same target corresponding to different orientations of the baseline. Therefore LN will require
routinely the use of multiple-image deconvolution methods in order to produce a unique high-resolution image. As a conse-
quence of the complexity of astronomical images, two kinds of methods will be required: first a quick-look method, namely a
method that is computationally efficient, allowing a rapid overview and identification of the object being observed; second an
ad hoc method designed for that particular object and as accurate as possible. In this paper we investigate the possibility of using
Richardson-Lucy-like (RL-like) methods, namely methods designed for the maximization of the likelihood function in the case
of Poisson noise, as possible quick-look methods. To this purpose we propose new techniques for accelerating the Ordered
Subsets - Expectation Maximization (OS-EM) method, investigated in our previous papers; moreover, we analyze approaches
based on the fusion of the multiple images into a single one, so that one can use single-image deconvolution methods which
are presumably more efficient than the multiple-image ones. The results are encouraging and all the methods proposed in this
paper have been implemented in our software package AIRY.
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1. Introduction

In previous papers (Bertero & Boccacci 2000a,b; Correia
et al. 2002; Carbillet et al. 2002) we developed methods
and software for the deconvolution of multiple interferomet-
ric images of the same astronomical target. Moreover, our
group has produced the software package AIRY (Astronomical
Image Reconstruction in interferometrY) of which version 2.0
is now available (see http://dirac.disi.unige.it and
http://www.arcetri.astro.it/caos). This tool can be
applied to Fizeau interferometers such as the beam combiner
for LBT, denoted as LINC-NIRVANA (Lbt INterferometric
Camera and Near-InfraRed/Visible Adaptive iNterferometer
for Astronomy). LBT will consist of two 8.4 m mirrors on a
common mount, with a spacing of 14.4 m between their cen-
tres, so that a maximum baseline of 22.8 m will be available.
First light of the telescope is scheduled for September 2004,
second light for November 2005 while the first interferometric
light is foreseen for mid 2006.

The interferometric technique used in LN will provide di-
rect imaging with the resolution of a 22.8 m telescope in the
direction of the baseline and of a 8.4 m telescope in the orthog-
onal direction. Since resolution is not uniform over the field,
several images of the same scientific object must be acquired

with different orientations of the baseline and they must be rou-
tinely processed (deconvolved) to get a unique image with the
resolution of a 22.8 m telescope.

Two different kinds of deconvolution methods may be
needed:

– quick-look methods, computationally efficient even if not
always very accurate, to be routinely used for a preliminary
view of the target just after data acquisition;

– ad hoc methods, designed for specific classes of astronom-
ical objects, which can be computationally expensive but
must be accurate as far as possible for all the objects in a
given class.

Therefore the processing of LN images will in general require
two steps: the first, based on a quick-look method, is intended
to identify the specific features of the particular object the as-
tronomer is observing; the second consists in the use of the
ad hoc method which has been designed for the objects with
those specific features.

An example of a quick-look method is provided by the
so-called Tikhonov regularization (Bertero & Boccacci 1998,
2000a), which is basically a Wiener filter. More accurate,
even if less efficient, is the OS-EM method, proposed by
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Hudson & Larkin (1994) for emission tomography and ex-
tended to LBT-imaging in Bertero & Boccacci (2000b), which
provides the same accuracy as the RL method (Richardson
1972; Lucy 1974), but with a considerable reduction in com-
putational cost. On the other hand ad hoc methods could be
designed for specific objects such as objects with a very high
dynamic range (an example is the model of a young binary pro-
posed by Carbillet et al. 2002), or unresolved compact objects
(an example is the method, proposed by Correia et al. (2002)
and validated by Anconelli et al. (2005), for super-resolving
binary systems) or others.

In any case computational efficiency is important for the
processing of LN images. The first detector will cover a field
of about 10′′ in K band, with a pixel size of about 5 mas, so
that it will produce images of about 2000 × 2000 pixels. The
processing of these images is not a terrible task. But, since the
AO-system of LN provides a uniform correction over a field
of 2′, it is reasonable to expect that even broader images will
be available in the future. For this reason we are interested in
increasing the efficiency of RL-like algorithms.

We consider two approaches: the first consists in improv-
ing the efficiency of the OS-EM algorithm by means of a tech-
nique which allows a reduction of the number of iterations,
without a significant increase of the computational cost of a
single iteration; the second consists in the combination of the
multi-images provided by LN into a single one. One of these
approaches has been recently proposed by Vio et al. (2004).
It is obvious that, in such a case, the computational cost of
one iteration is that of a single image. However this is true
also for the OS-EM method so that the comparison of the effi-
ciency of all these methods is uniquely based on the compari-
son of the number of iterations required for getting the optimal
restoration.

In Sect. 2 we propose our method for OS-EM accelera-
tion while in Sect. 3 we analyze a number of single-image ap-
proaches. In Sect. 4 we present numerical experiments intended
to both evaluate possible acceleration factors and to compare
the efficiency and accuracy of multi-image and single-image
methods. The results are encouraging, as we discuss in Sect. 5.

2. The accelerated version of the OS-EM algorithm

In this paper N × N arrays are denoted by bold letters. Let us
assume that we have p images acquired with LN, correspond-
ing to p different orientations of the baseline and denoted by
g1, g2, ..., gp. Then, if g j(m, n), ( j = 1, .., p) is the value of one
of these images at pixel m, n, according to the model proposed
by Snyder et al. (1993) for images acquired with a CCD cam-
era, we can write:

g j(m, n) = gobj, j(m, n) + gback, j(m, n) + r j(m, n), (1)

where: gobj, j(m, n) is the number of photoelectrons due to ra-
diation from the object; gback, j(m, n) is the number of photo-
electrons due to external and internal background, dark current,
etc.; r j(m, n) is the read-out noise due to the amplifier. The first
two terms are realizations of independent Poisson processes
(photon noise), so that their sum is also a Poisson process and

its expected value is given by:

E{gobj, j(m, n) + gback, j(m, n)} = (2)

(K j ∗ f )(m, n) + b j(m, n),

where: K j is the point spread function (PSF), corresponding to
the jth orientation of the baseline (we assume, for simplicity,
space invariance); f is the object array, formed by the aver-
age numbers of photons emitted at the pixels of the object do-
main and collected by the telescope; b j(m, n) is the expected
value of the background. In the following we will denote by A j

the block-circulant matrix which is defined by the convolution
product with the PSF K j:

A j f = K j ∗ f , (3)

and by AT
j the transposed matrix. Moreover we will assume

that the PSFs are normalized in such a way that the sum of
their pixel values is one.

Finally the last term in Eq. (1) is the realization of an inde-
pendent Gaussian process with expected value r and variance
σ2 (white noise). In the software package AIRY, which is de-
scribed by Correia et al. (2002) and is used for our numerical
simulations, images are generated according to this model.

In the case of images dominated by photon noise, the read-
out noise can be neglected, and the likelihood function is given
by a product of Poisson distributions, one for each pixel of the
image domain. The maximization of this function is equivalent
to the minimization of the Csiszár directed divergence (Csiszár
1991) given by:

J( f ) =
p∑

j=1

N−1∑

m,n=0

{g j(m, n)ln
g j(m, n)

(A j f )(m, n) + b j(m, n)

+[(A j f )(m, n) + b j − g j(m, n)]}. (4)

The new version of OS-EM can be introduced and justified in
the framework of a general approach, proposed by Lanteri et al.
(2001), which makes it possible to design descent methods for
the minimization of a convex functional J( f ) such as that of
Eq. (4). The basic idea relies on the following decomposition
of the gradient of the functional:

−∇J( f ) = U( f ) − V( f ), (5)

where U( f ) and V( f ) are positive arrays. Such a decomposition
always exists and is not unique; the applicability of the method
requires an explicit expression for the dependence of these ar-
rays on f . Then the general structure of the proposed iterative
algorithms is as follows:

f (k+1) = f (k) + α f (k) U( f (k))ω − V( f (k))ω

V( f (k))ω
, (6)

where the quotient of two arrays is defined pixel by pixel as we
will do also in the next equations. α and ω are relaxation pa-
rameters. α is the step-size in the descent direction (modified
by ω if ω > 1) and it can be chosen to guarantee both the non-
negativity of the iterates and their convergence. On the other
hand ω is a parameter that can allow a reduction of the num-
ber of iterations, as we will discuss below. We will call it the
acceleration exponent.
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Indeed, as discussed by Lanteri et al. (2001), an integer
value of ω > 1 can speed up the convergence of the iterations.
At the very first iterationsωmodifies the descent direction; but,
when the iterations are close to convergence, the algorithm with
ω > 1 is approximately equivalent to the algorithm with ω = 1
and step-size α ω. For the convenience of the reader we give
the argument in the simple case ω = 2. If we write Eq. (6) in
the following form:

f (k+1) = f (k) + α f (k) U( f (k)) + V( f (k))

V( f (k))2
(7)

×
[
U( f (k)) − V( f (k))

]
,

and if we observe that ∇J( f ) � 0 when we are close to conver-
gence, so that U( f (k)) � V( f (k)), then we get:

f (k+1) � f (k) + 2α f (k) U( f (k)) − V( f (k))

V( f (k))
, (8)

i.e. the algorithm of Eq. (6) with ω = 1 and step-size 2α.
In the case of the functional of Eq. (4) we get:

U( f ) =
p∑

j=1

AT
j

g j

A j f + b j
, (9)

V( f ) =
p∑

j=1

AT
j 1 = p1,

where 1 is the array whose entries are all equal to 1. If we in-
sert these equations in Eq. (6) we obtain a number of known
algorithms. For instance, if ω = 1 and α = 1, we obtain
just the RL method for multiple-image deconvolution given in
Bertero & Boccacci (2000b). On the other hand, if ω = 1 and
α � 1, we obtain the extension to the multiple-image case of the
relaxed RL-method investigated by several authors (Kosarev
et al. 1983; Holmes & Liu 1991; Adorf et al. 1993). As is
known, this method provides a considerable reduction of the
number of iterations but with an increase of the computational
cost of each iteration, due to the search for the value of α. For
example, if the step-size α is computed by means of an approx-
imate search method, such as the Armijo rule, instead of the
exact one (this is possible in our case), the average reduction of
the overall computation time is about 20% (Lanteri et al. 2001),
depending on the images considered and on the noise level.

Finally, in the case α = 1 and ω > 1, we obtain the exten-
sion to the multiple-image case of an algorithm proposed by
Llacer & Nuñez (1990):

f (k+1) = f (k)


1
p

p∑

j=1

AT
j

g j

A j f (k) + b j


ω

· (10)

The convergence of this algorithm is not proved and therefore
it must be investigated theoretically and/or experimentally. As
shown by Natterer & Wübbeling (2001), convergence presum-
ably holds true when ω is not too large. It is obvious that the
most interesting feature of the algorithm is that, as in the case
of RL, non-negativity of the iterates is automatically assured,
as one can easily verify. Moreover, in the case of tomogra-
phy, it is quite natural to extend the trick to OS-EM itself (see

Tanaka 1987; Natterer & Wübbeling 2001), and what we pro-
pose in this paper is just the extension of this algorithm to
multiple-image deconvolution.

However, there is an important point which must be taken
into account. In the case of zero background, as shown by
Bertero & Boccacci (2000a), the total flux of each iterate of the
multi-image RL method coincides with the arithmetic mean of
the total fluxes of the images g j. As a consequence of the in-
troduction of the background terms, the iterates of the RL and
OS-EM methods do not have this property. Therefore, it is con-
venient to require that the total flux of the solution coincides
with the arithmetic mean of the total fluxes of the images g j,
after subtraction of the background terms (which are not due to
the scientific object):

N−1∑

m,n=0

f (m, n) = c (11)

=
1
p

p∑

j=1

N−1∑

m,n=0

{
g j(m, n) − b j(m, n)

}
· (12)

As shown by Lanteri et al. (2002), to minimize the functional of
Eq. (4) with this constraint is equivalent to normalizing, at each
step, the iterates in such a way that they satisfy this condition.
In the case of the accelerated algorithm we have verified that
this normalization is necessary to assure convergence.

In conclusion, the algorithm we have implemented in AIRY
and tested is as follows:

– compute the constant c, as defined in Eq. (11);
– choose an initial f (0) ≥ 0 such that its total flux coincides

with c;
– given f (k), set j = (k + 1) mod p and compute:

f̃ (k+1) = f (k)

AT
j

g j

A j f (k) + b j


ω

, (13)

c̃(k+1) =

N−1∑

m,n=0

f̃ (k+1)(m, n);

– set:

f (k+1) =
c

c̃(k+1)
f̃

(k+1)
. (14)

For ω = 1 we obtain the standard OS-EM method. However,
we point out that the OS-EM iterations are defined in a differ-
ent way in Bertero & Boccacci (2000a) and in the subsequent
papers: in those papers one iteration consists of a cycle over
the p images, so that it consists of p iterations of the algorithm
defined above. The new version makes easy the comparison
with the single-image approaches discussed in the next section.
Indeed, it is evident that the computational cost of one iteration
is just that of a single-image iteration; the only difference is that
the image changes at each step.

We recall that, as proved in our previous papers, the com-
putational gain of OS-EM with respect to standard multi-image
RL is of the order of 4/(3p + 1). In the probably frequent case
of 3 images, the computation time of OS-EM is about 40% of
that of RL, while for 4 images it is about 30%. A further reduc-
tion is provided by the algorithm of Eq. (13). Indeed, as a result



734 B. Anconelli et al.: Restoration of interferometric images. III.

of many numerical experiments we can state that, for ω = 2,
the method is convergent and always provides a reduction of
the number of iterations by a factor 2, hence a reduction by a
factor 2 of the computational cost, which thus is of the order
of (at least) 20% of that of standard RL. Moreover, numerical
experiments described in Sect. 4 indicate that it is possible to
increase the acceleration exponent in a way that depends on
the signal-to-noise ratio (SNR): smaller SNR may be compat-
ible with a higher acceleration exponent. As we will show, an
exponent of 8 is possible in some cases.

We conclude by remarking that ω does not need to be in-
teger, as pointed out by Tanaka (1987), so that one can also
investigate non-stationary methods, namely methods where ω
changes at each iteration.

3. Single-image approaches

In a recent paper Vio et al. (2004) propose to solve the multi-
image deconvolution problem by combining the different im-
ages into a single one containing all relevant information. At
first glance such an approach looks appealing: first because it
becomes possible to use existing software for image deconvo-
lution and secondly because the computational cost seems to
be reduced. However, we recall that, for an algorithm such as
OS-EM, the cost of one iteration is just that of one single-image
RL-iteration. Moreover two other points should not be forgot-
ten: first, in the case of imaging systems such as the LBT inter-
ferometer where the AO correction, the angular smearing (see
next section), and the time exposure (and hence the noise con-
tributions and the resulting background) can be different for
each different baseline exposure, the link between the (very)
different PSFs and the corresponding images may be lost when
the multi-images are combined into a single one and this may
result in a loss of relevant information; secondly, the statisti-
cal properties of the noise may be modified by the fusion pro-
cess. Hence, the efficiency and accuracy of the single-image
approaches must be tested numerically.

There are many ways of combining the multi-images into
a single one. In this section we consider two of them. In all
cases we assume that, if different images correspond to differ-
ent integration times, τ1, τ2, ..., τp then all images have been
normalized, for instance, to the largest integration time τmax,
i.e. g j has been multiplied by τmax/τ j.

Method 1
The first approach is the most natural one and consists in a
simple addition of the different images. In order to preserve
normalization of the PSF it is convenient to take the arithmetic
mean. Therefore the PSF will be given by:

KAV (m, n) =
1
p

p∑

j=1

K j(m, n), (15)

with the corresponding image

gAV (m, n) =
1
p

p∑

j=1

g j(m, n). (16)

Fig. 1. Examples of MTFs corresponding to three orientations of the
LBT baseline (ideal case): 0◦ in the left panel, 60◦ in the central panel
and 120◦ in the right panel.

Fig. 2. MTFs of the single-image approaches, corresponding to the
ideal MTFs of Fig. 1: method 1 in the left panel and method 2 in the
right panel.

The main features of this approach are the following:

– Both the PSF and the image are non-negative; moreover the
PSF is correctly normalized to 1 and the background of
the image gAV is the arithmetic mean of the backgrounds
of the images g j.

– If the images g j are corrupted by Poisson (photon) noise,
then their sum is also corrupted by Poisson noise, since
the sum of independent Poisson processes is also a Poisson
process with an expected value given by the sum of the ex-
pected values.

– The addition of the images implies that in the domains
of the u, v plane where only one image contains informa-
tion, the effect of the others is just to add noise, hence to
reduce the SNR.

Figure 1 can help to clarify the last statement. We assume
three ideal PSFs corresponding to three different parallactic
angles: 0◦, 60◦, and 120◦ respectively, and we plot the MTFs
(Modulation Transfer Functions) of these PSFs. It is obvious
that all the Fourier transforms of the corresponding images
will take approximately the same values in the central disc;
these values are added together so that the signal will be the
arithmetic mean of the signals coming from the three images.
On the other hand, in the secondary discs only one image will
contribute with significant values, while the other two will add
noise, producing a degradation of the signal. The first picture
to the left in Fig. 2 is the MTF of the average PSF, KAV , in the
case of the ideal PSFs of Fig. 1

Method 2
In a recent paper Vio et al. (2004) propose a new method, de-
rived from the least-squares approach, for the fusion of the
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multiple images into a single one. However, the relationship
with the least-squares approach is not relevant and, in our pa-
per, we consider a different kind of fusion which does not co-
incide exactly with that proposed by Vio et al. (2004) and has
simpler properties.

The basic idea of the approach of Vio et al. is to define a
transfer function K̂MM(m, n) which is obtained by taking, in a
pixel m, n of the u, v plane, the value of the transfer function
which has the maximum modulus, i.e.

K̂MM(m, n) = K̂J(m, n), if (17)

|K̂J(m, n)| ≥ |K̂ j(m, n)|, for j = 1, ...., p.

The MTF of this method is given in the right panel of Fig. 2,
also for the ideal MTFs of Fig. 1. As is obvious, this procedure
provides the correct contrast between the central disc and the
secondary discs, since these reproduce correctly those of the
original MTFs.

Then we introduce the image which is quite naturally re-
lated to the transfer function defined in Eq. (17): it is defined
by taking, in a pixel m, n of the u, v plane, just the value of
the Fourier transform of the image with index J, i.e. that corre-
sponding to the transfer function with the maximum modulus.
We have:

ĝMM(m, n) = ĝJ(m, n). (18)

The main features of this approach are the following:

– Both the PSF and the image, defined as the inverse Fourier
transforms of Eqs. (17) and (18) respectively, may take neg-
ative values. These must be set to zero if the RL method is
used. Therefore the PSF must be renormalized to guarantee
that the sum of the pixel values is 1, and the total flux of
the non-negative image must be computed. For simplicity
we do not change the notations of the PSF and of the image
obtained from the original ones through these operations.

– The background of the image gMM will coincide with the
largest background in the detected images, a difficulty in
the case of very different observation times, so that renor-
malization of the images mentioned at the beginning of this
section is required.

– In the case of white noise affecting the images g j, the noise
affecting the image gMM of Eq. (18) has a constant power
spectrum.

If we apply the RL-algorithm to the images of the two meth-
ods described above, it is obvious that the computational cost
of one iteration is precisely that of one OS-EM iteration.
Moreover, it is obvious that the same acceleration exponent can
be applied in all cases. Therefore the comparison between the
efficiencies of the three methods simply consists in the com-
parison between the numbers of iterations required for reach-
ing the optimal restorations. Since the optimal restorations
provided by the three methods, in general, are not the same,
comparing them gives insight in their accuracy.

4. Numerical experiments

The purpose of our numerical experiments is twofold:

– investigate possible criteria for deciding the maximum
value of the acceleration exponent ω which is compatible
with the convergence of the iterative algorithm;

– compare the accuracy and efficiency of the accelerated
multi-image algorithm of Eq. (13) with ω = 2, and that of
the accelerated single-image RL algorithm (same equations
with p = 1) applied to the images provided by method 1 and
method 2 of the previous section.

We will denote the three approaches respectively as OS-EM,
RL-AV and RL-MM.

We first describe the three sets of PSFs used in our exper-
iments. All the sets correspond to orientations of the baseline
with respect to the observed object (relative parallactic angles)
of 0◦, 60◦ and 120◦. The first set consists of ideal PSFs, the
second of AO-corrected PSFs with different Strehl ratios for
the three different orientations, and the third of AO-corrected
PSFs with the same Strehl ratios as before but with the addi-
tion of an angular smearing effect due to earth rotation during
the observation (which depends also on the declination of the
object – see Carbillet et al. 2002).

The AO-correction effects are obtained, as already de-
scribed in Carbillet et al. (2002), by an accurate model and
simulation of the actual AO system aboard LBT by means of
the software package CAOS (Carbillet et al. 2004). The atmo-
spheric conditions assumed result in a multi-layer turbulent at-
mosphere whose main physical parameters are: a mean velocity
of 15 m/s, a wave-front outer scale of 20 m, and values of the
total Fried parameter of 12, 18, and 15 cm (at 500 nm), respec-
tively, for the PSF at 0◦, 60◦, and 120◦; these clearly correspond
to three different moments of observation during the night. As
concerns the AO system itself, which is pyramid-based, the
physical parameters are those foreseen for the system of LBT.
We assume a configuration of 15×15 equivalent sub-apertures,
a 13th magnitude guide star with optimized exposure time and
a number of LBT 672 mirror modes for each of the three differ-
ent atmospheric conditions. The resulting Strehl ratios are 52%
for the PSF at 0◦, 87% for the PSF at 60◦, and 79% for the PSF
at 120◦.

In the third set the first and the third PSFs are integrated
over an angle of about 5◦, while the second is integrated over
an angle of about 45◦; in practice this angular smearing effect
is obtained by adding snapshot PSFs for different orientations.
The two sets of AO-corrected PSFs are shown in Fig. 3.

For the objects, we consider a series of diffuse objects and a
pointlike one. These objects are relatively simple, but are suit-
able if our purpose is mainly to compare efficiency and accu-
racy of the different methods.

In a first set of numerical experiments, intended to estimate
the maximum value of the acceleration exponent which is com-
patible with the convergence of the algorithm, we use eleven
different nebulae observed with the Hubble Space Telescope
and moved far out in order to match an angular resolution rel-
evant for the 22.8 m equivalent aperture of LBT. For example
the young stellar object (YSO) IRAS 04302+2247, which is
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Fig. 3. The AO-corrected PSFs used in our simulations (logarithmic
scale): in the left column the PSFs without angular smearing effect and
in the right column those with angular smearing effect, for baseline
orientations of 0◦, 60◦ and 120◦ (top to bottom).

one of these diffuse objects and was already used for the nu-
merical simulations described in the first paper of this series
(Correia et al. 2002), is moved to a distance of 1.4 kpc in-
stead of its actual 140 pc. All these objects are 128×128 pixels
wide and correspond to an extension of ∼0.′′85 (the pixel size
is 6.67 mas).

Then we generate images by assuming ideal PSFs (cor-
responding to the three parallactic angles indicated above),
an integration time of 20 min, a sky background value of
12.5 mag/′′2 (K-band), a read-out noise (RON) of 2 e− rms,
and a total transmission of 30%. Moreover, for each of the dif-
fuse objects we use three different magnitudes, arbitrarily fixed
at 14, 15 and 16. An increase in magnitude is equivalent to a
decrease of the SNR in the observed images. Therefore we con-
sider 33 diffuse objects. The results of our experiments can be
summarized as follows: for all the diffuse objects we have con-
sidered we can use ω = 3 if m = 14, ω = 5 if m = 15 and
ω = 8 if m = 16. As a rule, the acceleration exponent increases
for decreasing SNR, so that when the SNR is low the algorithm

can be very fast. Indeed, the reduction in the number of itera-
tions with respect to OS-EM is just given by the acceleration
exponent without modification of the restoration error. This is
the minimum value of the relative rms error defined by:

ρ(k)
rel =

|| f (k) − f ||
|| f || , (19)

where ||.|| is the Euclidean norm, f is the original object and f (k)

is the result of the kth iteration. We have obtained an average
restoration error of 9% for m = 14, 10% for m = 15 and 13%
for m = 16, with corresponding average numbers of iterations
of 350, 125 and 50. Without acceleration, the average numbers
of iterations are, respectively, 1050, 625 and 400. However, the
optimal number of iterations strongly depends on the specific
object to be restored.

In a second set of experiments we perform a first com-
parison of the three methods OS-EM, RL-AV and RL-MM.
To this purpose we fix the acceleration exponent at ω = 2
and we consider only one diffuse object, namely the YSO ob-
ject IRAS 04302+2247, already mentioned above, with magni-
tude 14. For each image we generate, by means of the software
package AIRY, 50 noisy versions obtained with 50 different
noise realizations (of Poisson type for the photon noise and of
Gauss type for the RON). For each one of these realizations we
increase the number of the iterations of the three methods up to
reach the minimum of the restoration error (semiconvergence
of the methods, see Bertero & Boccacci 2000a), as defined in
Eq. (19). Then, for each method, we compute the mean value
(MV) and the standard deviation (S D) of the 50 values of the
minimum restoration error and of the corresponding number
of iterations. The results are reported in the first two rows of
Table 1.

As follows from the first row, the most accurate restoration
is provided by OS-EM while the two single-image methods are
approximately equivalent. In all cases the standard deviation is
quite small, and this means that the minimum restoration error
does not depend strongly on the noise realization. On the other
hand, the second row shows that RL-MM is the most efficient
method, with also a good stability of the number of iterations
with respect to variations of the noise realization. OS-EM is
the less efficient one with also a rather broad dispersion of the
optimal number of iterations.

However, since the minimum of the restoration error is, in
general, rather flat, we have considered the number of iterations
required for reaching the same accuracy with the three meth-
ods. We have chosen a threshold of 7% since this accuracy can
be reached by all the methods. The results are reported in the
third row and we can conclude that, from this point of view,
OS-EM and RL-MM are equivalent.

In a third set of experiments we use three 256×256 versions
of the same YSO object with different magnitudes (m = 14,
15 and 16). For each value of the magnitude three sets of im-
ages are generated by convolving the object with the three sets
of PSFs described above and adding the noise contributions
(sky background, photon noise, RON, and no dark current).
In these experiments we consider only one noise realization,
one for each set of PSFs. The purpose of these experiments is
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Table 1. Comparison between the accuracy and efficiency of the three methods. We have used a 128 × 128 image of the diffuse object
IRAS 04302+2247 with magnitude m = 14, convolved with ideal PSFs and corrupted with 50 different realizations of noise; the reported
mean values (MV) and standard deviations (S D) refer to these 50 realizations.

OS-EM RL-AV RL-MM

MV S D MV S D MV S D

Minimum of the restoration error (RE) 4.8% ±0.1% 6.6% ±0.1% 6.2% ±0.1%

Optimal number of iterations 1536 ±141 705 ±40 366 ±13

Number of iterations providing RE �7% 168 ±6 385 ±56 149 ±6

Table 2. Comparison between the accuracies of the three methods in
the case of the diffuse object IRAS 04302+2247 with different mag-
nitudes; images 256 × 256 generated by means of ideal PSFs.

Magnitude OS-EM RL-AV RL-MM

% error % error % error

14 6. 7.3 7.2

15 7.9 10 9.3

16 9.8 11.4 12.6

Table 3. Comparison between the accuracies of the three methods in
the case of the diffuse object IRAS 04302+2247 with different magni-
tudes; images 256 × 256 generated by means of AO-corrected PSFs.

Magnitude OS-EM RL-AV RL-MM

% error % error % error

14 7.2 9.6 9.1

15 8.6 11.1 10.2

16 10 11.8 12.7

Table 4. Comparison between the accuracies of the three methods in
the case of the diffuse object IRAS 04302+2247 with different mag-
nitudes; images 256 × 256 generated by means of AO-corrected PSF
with angular smearing effect.

Magnitude OS-EM RL-AV RL-MM

% error % error % error

14 7.4 10. 8.7

15 8.6 11.2 9.6

16 10.2 12.8 11.6

to compare the accuracy of the three methods and investigate
its dependence on the magnitude of the object (hence on the
SNR ratio) as well as on the AO-correction of the PSFs. The
results are reported in Table 2 for the ideal PSFs, in Table 3 for
the AO-corrected PSFs, and in Table 4 for the AO-corrected
PSFs with the addition of the angular smearing effect. It fol-
lows that OS-EM always provides the best results even if the
improvement of accuracy with respect to the other two meth-
ods does not strongly depend on the magnitude of the object
and on the PSFs.

Fig. 4. Example of reconstruction of the binary system with mag-
nitudes 10. The images have been obtained by means of the
AO-corrected PSFs with angular smearing effect. In the upper pan-
els, one of the three images and the reconstruction provided by OS-
EM; in the lower panels, the reconstructions provided by RL-AV
and RL-MM.

Finally, in a fourth set of experiments we consider the re-
construction of a binary system consisting of two stars with the
same magnitude (m = 10) and an angular separation which can
be just resolved by LBT in K-band (∼25 mas) . The purpose is
to investigate the behaviour of the three methods for the three
sets of PSFs. In Fig. 4 we give an example of the reconstruc-
tions we have obtained.

In the case of point objects the RL-like methods exhibit
convergent behaviour (instead of the semiconvergent one for
diffuse objects). This effect is shown in Fig. 5 where we plot
the reconstructed value of the flux of the binary as a function of
the number of iterations for the three sets of PSFs we have con-
sidered. The comparison between OS-EM and RL-MM needs
some discussion.

As shown by the plots in the three panels, the OS-EM
method always tends to underestimate the value of the
flux, while in the first two cases RL-MM provides a small
over-estimate. This effect is due to the setting zero of the
negative values of the MM-image, given by Eq. (18), as
we discussed in Sect. 3. As a consequence the total flux
of the image is increased and this effect is at the origin
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Fig. 5. Behaviour of the flux of the binary object, with magnitude 10,
as a function of the number of iterations: ideal PSFs (upper panel);
AO-corrected PSFs (middle panel): AO-corrected PSFs with angular
smearing (lower panel).

of the over-estimation of the flux of the restored binary. In the
third case (AO-corrected PSFs with angular smearing effect)
OS-EM is definitely better than the other two methods.

5. Concluding remarks

In this paper we have investigated three different RL-like meth-
ods for efficiently reconstructing interferometric images pro-
vided by the LN beam combiner of LBT. In our opinion the
accelerated version of the OS-EM method we propose in this
paper is, at the moment, the best approach to a quick-look re-
construction of LN images with the same quality of the recon-
struction provided by the RL method. The accelerated version
of OS-EM may provide a speed-up of a factor 10 with respect
to RL in the case of moderate SNR. However, it is obvious
that further numerical experiments are required if one intends
to provide the users with tables containing the acceleration fac-
tors as functions of the SNR.

We point out that an efficient and accurate quick-look
method, providing nearly-real-time images when observing
with LN will be of fundamental importance. Indeed the im-
ages obtained will have the unprecedented angular resolution
of a nearly-23 m telescope, and hence will show previously
unknown spatial features within the observed astrophysical
objects.
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