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Abstract

Parallel patterns are a high-level programming paradigm that enables non-experts

in parallelism to develop structured parallel programs that are maintainable, adap-

tive, and portable whilst achieving good performance on a variety of parallel sys-

tems. However, there still exists a large base of legacy-parallel code developed

using ad-hoc methods and incorporating low-level parallel/concurrency libraries

such as pthreads without any parallel patterns in the fundamental design. This code

would benefit from being restructured and rewritten into pattern-based code.

However, the process of rewriting the code is laborious and error-prone, due to

typical concurrency and pthreading code being closely intertwined throughout the

business logic of the program. In this paper, we present a new software restoration

methodology, to transform legacy-parallel programs implemented using pthreads

into structured farm and pipeline patterned equivalents. We demonstrate our

restoration technique on a number of benchmarks, allowing the introduction of

patterned farm and pipeline parallelism in the resulting code; we record improve-

ments in cyclomatic complexity and speedups on a number of representative

benchmarks.
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1 Introduction

Parallel patterns are a well-established high-level parallel programming model for

producing portable, maintainable, adaptive, and efficient parallel code. They have

been endorsed by some of the biggest IT companies, such as Intel and Microsoft,

who have developed their own parallel pattern libraries; e.g. Intel TBB [35] and

Microsoft PPL. A standard way to use these libraries is to start with a sequential

code base, identifying in it the portions of code that are amenable to parallelisation,

together with the exact parallel pattern to be applied. Proceeding with instantiating

the identified pattern at the identified location in the code, after possibly

restructuring the code to accommodate the parallelism. Sequential code therefore

gives the cleanest starting point for introduction of parallel patterns. There exists,

however, a large base of legacy code that was parallelised using lower-level, mostly

ad-hoc parallelisation methods and libraries, such as pthreads [12]. This code is

usually very hard to read and understand, is tailored to a specific parallelisation, and

optimised for a specific architecture, effectively preventing alternative (and possibly

better) parallelisations and limiting portability and adaptivity of the code. An even

bigger problem, from a software engineering perspective, is the maintainability of

the legacy-parallel code: commonly, the programmer who wrote it is the only one

who can understand and maintain the code. This is due to both complexity of low-

level threading libraries and the need for custom-built data structures, synchroni-

sation mechanisms, and sometimes even thread/task scheduling implemented in the

code. The benefits of using parallel patterns lie in a clear separation between

sequential and parallel parts of the code and a high-level description of the

underlying parallelism, making the patterned applications much easier to maintain,

change, and adapt to new architectures. In this paper, we deal with farms and

pipelines. In a farm, a single computational worker is applied to a set of independent

inputs. The parallelism arises from applying the worker to different input elements

in parallel. In a parallel pipeline, a sequence of functions, f1; f2; :::; fm are applied to a

stream of independent inputs, x1; :::; xn where the output of fi becomes the input to

fiþ1; the parallelism arises from executing fiþ1ðfið:::f1ðxkÞ:::ÞÞ in parallel with

fiðfi�1ð:::f1ðxkþ1Þ:::ÞÞ. In this paper, we present a new methodology for the

restoration of legacy-parallel code into an equivalent patterned form, through the

application of a number of identified program transformations; the ultimate goal of

which is to provide a semi-automatic way of converting legacy-parallel code into an

equivalent patterned code, therefore increasing its maintainability, adaptivity, and

portability whilst either improving or maintaining performance. The transformations

presented in this paper are intended as manual transformations. We envisage

incorporating implementations of these refactorings into a semi-automated refac-

toring tool as future work.

This paper makes the following specific research contributions:

1. we present a novel software restoration methodology for converting legacy-

parallel applications into their structured (patterned) parallel equivalents, via the

farm and pipeline patterns;
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2. we present a new set of (manual) restoration transformations that attempt to

systematically, (i) eliminate pthread operations from legacy C/C?? programs;

(ii) perform code repair, fixing any bugs introduced in i; and, (iii) reshape code

in preparation for parallel pattern introduction;

3. we evaluate these transformations on a set of benchmarks, demonstrating that

removal of parallelism can allow us to manually derive structured parallel code

that is comparable to the original legacy-parallel version in terms of

performance, while being more portable, adaptive, and maintainable.

2 Software Restoration

In this section, we propose a new Software Restoration methodology for

improving the structure of legacy-parallel C?? code by applying a series of

incremental program analysis and transformation steps to rewrite the code into its

patterned equivalent. Software restoration is based on program transformation and

code analysis and aims to:

1. discover the instances of common patterns in legacy-parallel code;

2. eliminate undesirable legacy parallel primitives from the same code; and

3. replace the removed parallel primitives with instances of parallel patterns.

The input to the Software Restoration process is a legacy-parallel C/C?? program

that is based on some low-level parallelism library, such as pthreads, and the output

is a semantically-equivalent C/C?? program based on parallel patterns. In this way,

we obtain well-structured code based on a higher level of parallel abstraction, which

is significantly more maintainable and adaptive while still preserving good

performance of the original, highly-tuned parallel version. In this paper, we will

Fig. 1 Software restoration process
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focus on the TBB library as our target code. It is important to note, however, that

transforming the code into a patterned form also increases the portability of the

code and gives a wider opportunity for parallelisation using different techniques,

libraries and pattern approaches. In this paper, we target TBB as just one example of

a typical and common pattern library but the patternisation step could easily be

replaced with other equivalent and more general frameworks; e.g. the Generic

Reusable Parallel Pattern Interface (GrPPI) [18], which allows multiple different

pattern backends to be targetted from a single interface. Indeed, prior work on

refactoring to introduce GrPPI [8] patterns could easily be deployed at this stage,

further increasing portability of the patterned code.

The Software Restoration methodology consists of a number of steps, each

applying a class of code transformations, some of which are driven by the pattern

discovery code analysis. The whole process is depicted in Fig. 1. In the below

description, we will focus on the code transformation steps. We will use a synthetic,

but representative, parallel pipeline as a running example in order to demonstrate

the transformation. Listing 1 presents aspects of the original parallel code with

pthreads that are pertinent to this demonstration.
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44 queue->nr_elements++;
45 pthread_cond_signal(&queue->queue_cond_write);
46 pthread_mutex_unlock(&queue->queue_lock);
47 }

Listing 1: Original Simple Pipeline Code

1 int main(int argc, char *argv[]) {
2 ...
3 // create the workers, then wait for them to finish
4 pthread_create(&workerid[0], &attr, Stage1, (void *)&stage_queues[0]);
5 pthread_create(&workerid[1], &attr, Stage2, (void *)&stage_queues[1]);
6 pthread_create(&workerid[2], &attr, Stage3, (void *)&stage_queues[2]);
7

8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

10

11 ...
12 }
13

14 // Second stage reads an element from the input queue, adds 1 to it,
15 // and writes it to the output queue.
16 void *Stage2(void *arg) {
17 int my_input, my_output;
18 pipeline_stage_queues_t *myQueues = (pipeline_stage_queues_t *)arg;
19 queue_t *myOutputQueue = myQueues->outputQueue;
20 queue_t *myInputQueue = myQueues->inputQueue;
21

22 for (my_input = read_from_queue(myInputQueue);
23 my_input>0 || my_input == EOS;
24 my_input = read_from_queue(myInputQueue)) {
25 if (my_input != EOS) {
26 my_output = my_input + 1;
27 add_to_queue(myOutputQueue, my_output);
28 } else { // EOS is a terminating token. Pass on if received.
29 add_to_queue(myOutputQueue, EOS);
30 break;
31 }
32 }
33 return NULL;
34 }
35

36 void add_to_queue(queue_t *queue, int elem)
37 {
38 pthread_mutex_lock(&queue->queue_lock);
39 // If the queue is full, wait until something reads from it before adding a new element
40 if (queue->nr_elements == queue->capacity)
41 pthread_cond_wait(&queue->queue_cond_read,&queue->queue_lock);
42 queue->elements[queue->addTo] = elem;
43 queue->addTo = (queue->addTo + 1) % queue->capacity;

In the above main function (Lines 1–12), a pipeline of three stages is created

using three threads. The stages are connected by queues such that all stages have an

output queue, and stages two and three have an input queue. After creation, the

main function waits for the threads to finish their work (Lines 8–9) before

continuing. In Lines 14–34, we show the function for the middle stage of the

pipeline, which reads an integer from the input queue, increments it by one, then

puts it into the output queue. The first and third stages have a similar structure,

where the first stage acts as a source of integers for the second stage, and the third

stage doubles its inputs before adding them to the final output queue. All the

relevant synchronisation code for the queues can be found in two functions:

add_to_queue and read_from_queue. Only add_to_queue (Lines

36–47) is shown here; read_from_queue is defined similarly. Both functions

use one mutex lock and two conditional variables. The latter are used for
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synchronisation when threads are waiting to insert an element into a full queue or

for reading from an empty queue (e.g. at the start of the program). When a thread

needs to add to the queue, it first acquires the queue lock and checks if the queue is

full (Lines 38–41). When the queue is full, the thread releases the lock and waits for

a signal that some other thread has consumed an element of this queue (queue-

[queue_cond_read conditional variable, Line 41). After this conditional

variable is signalled, the thread enqueues the element, updating the queue counter

and pointer in the process (Lines 42–44). Finally, the thread signals that an element

has been added to the queue (queue-[queue_cond_write conditional

variable, Line 45) and releases the queue lock (Line 46) before returning.

2.1 Parallelism Elimination

The initial step, Initial Pattern Discovery, analyses the original pthreaded code and

discovers those parts of it, if any, that correspond to instances of parallel patterns. In

our example, this stage identifies the linear pipeline created in Lines 4–6, with the

pipeline stages being the functions: Stage1, Stage2, and Stage3. This process

could be achieved by using a technique similar to the one described in [10]

Following pattern discovery, the first code transformation step is applied, where

pthread operations and primitives are either removed or transformed, eliminating

parallelism. In Listing 1, this impacts main and add_to_queue. Listing 2 shows

the resulting code.

Listing 2: Simple Pipeline Code with Parallelism Removed

1 int main(int argc, char *argv[]) {
2 ...
3 // Calls to pthread_create are converted to function calls.
4 Stage1((void *)&stage_queues[0]);
5 Stage2((void *)&stage_queues[1]);
6 Stage3((void *)&stage_queues[2]);
7

8 // The loop containing pthread_join is removed.

9 ...
10 }
11

12 void add_to_queue(queue_t *queue, int elem) {
13 // All mutex and conditional variable operations are removed.
14 queue->elements[queue->addTo] = elem;
15 queue->addTo = (queue->addTo + 1) % queue->capacity;
16 queue->nr_elements++;
17 }

We note that the Parallelism Elimination stage does not guarantee that a

program’s functional behaviour is preserved and thus errors may be introduced.

Here, Stage1 contains a for-loop that enqueues elements in its output queue.

Since the second stage, which reads from that queue, is no longer consuming those

elements concurrently, and the queue is smaller than the total number of elements

produced, the second stage will now consume and process only a subset of its inputs

in the original pthreaded version after Stage1 returns. Because the semantics of

the program have changed following Parallelism Elimination, the code must be

repaired.
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2.2 Code Repair

Our example is just one of many in which merely removing pthread constructs

introduces errors (see Sect. 5 for more examples). The next step in Software

Restoration is, therefore, to repair the potentially broken code produced by

Parallelism Elimination. In general, due to the potential complexity of this repair

stage, multiple transformations may need to be applied. In order to effect repairs in

our running example it is necessary to stop the first stage from overflowing its

output queue. This can be achieved by merging the loops found in Stage1,

Stage2, and Stage3, thereby resulting in a loop where the operations in stages

two and three are applied to each integer produced by stage one in the same iteration

that produces it. Listing 3 represents the result of this process, where Stage1,

Stage2, and Stage3 are first lifted into a new function, Pipe, and subsequently

unfolded (i.e. unfolding in the transformational sense, à la Burstall and Darling-

ton [11]). The for-loops exposed by this unfolding are then merged, allowing all

three stages to be executed within a single iteration. This avoids the first stage

overflowing its output queue, and consequently, results in a program that is

sequential but semantically equivalent to the original pthreaded program.

1 void Pipe(void** a0, void* a1, void* a2, void* a3) {
2 int my_output1, i1;
3 pipeline_stage_queues_t *myQueues1 = (pipeline_stage_queues_t *)a1;
4 queue_t *myOutputQueue1 = myQueues1->outputQueue;
5 ...
6 for (i1 = MAXDATA ; i1>=0; i1--) {
7 if (i1 > 0) { ...
8 my_output1 = i1;
9 } else {

10 my_output1 = EOS;
11 }
12 add_to_queue(myOutputQueue1, my_output1);
13

14 my_input2 = read_from_queue(myInputQueue2);
15 if (my_input2 != EOS) {

16 my_output2 = my_input2 + 1;
17 add_to_queue(myOutputQueue2, my_output2);
18 } else {
19 add_to_queue(myOutputQueue2, EOS);
20 }
21

22 my_input3 = read_from_queue(myInputQueue3);
23 if (my_input3 != EOS) {
24 my_output3 = my_input3 * 2;
25 add_to_queue(myOutputQueue3, my_output3);
26 }
27 }
28 }

Listing 3: Simple Pipeline Code after Code Repair

2.3 Program Shaping

The code produced by the Code Repair stage may still contain artefacts from the

original legacy parallelisation. In our running example, this includes the EOS token

and intermediate queues. In other examples, custom-built representations of flat data
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structures, e.g. arrays, introduced for chunking purposes may also be present. These

artefacts are redundant and could hinder alternative (and possibly better) paralleli-

sations of the code. The next step is, therefore, to eliminate residual artefacts of

legacy parallelism, and to improve structure where such improvements make the

code more amenable to the introduction of patterned parallelism. As in Code Repair,

due to the potential complexity of this task, multiple transformations may need to be

applied. Each Program Shaping refactoring results in a program that is semantically

equivalent to the one it transforms. The result of the Program Shaping stage on our

running example can be found in Listing 4, where both the EOS token and

intermediate queues have been removed (see Sect. 4.3 for details) and the individual

stages lifted back into functions.

Listing 4: Clean Sequential Simple Pipeline Code

1 int S1(int i1) { ... }
2

3 int S2(int my_output1) { ... }
4

5 void S3(int my_output2, queue_t* myOutputQueue3) { ... }
6

7 void Pipe(void** a0, void* a1, void* a2, void* a3) {
8 int my_output1, i1;
9 ...

10 for (i1 = MAXDATA ; i1 > 0; i1--) {
11 S3(S2(S1(i1)), myOutputQueue3);
12 }
13 }

2.4 Pattern Introduction

After the final pattern discovery analysis is performed and the final patterns to be

introduced are identified, together with the locations in the code where this will be

done, the final step is to introduce instances of parallel patterns into the now-clean

sequential code. The parts of the sequential code are replaced by calls to the

functions from the high-level pattern libraries such as Intel TBB [35] or

OpenMP [16]. This results in final, patterned parallel code that is semantically

equivalent to the starting legacy-parallel code, but with much cleaner structure and

simpler, higher-level code that allows easier maintainability, adaptivity and

portability.

3 Pipeline Assumptions

In this paper, we demonstrate our methodology on a subset of pipelines defined

using pthreads. Whilst the refactorings described below apply only to this subset,

they can be extended to facilitate a more general application of the restoration

process. We assume that a valid pipeline (i.e. a pipeline that can be restored using

the below refactorings) is linear, that all tasks are generated by the first stage, and

that no subsequent stages will create or destroy tasks. Moreover, we assume that the

first stage of the pipeline will produce an end-of-stream (EOS) token, which is
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propagated through the pipeline, and results in a stage halting when it is received as

input. A valid pipeline is assumed to be set up in a single function containing a

sequence (or loop) of pthread_create calls. For each pthread_create call there

must be a corresponding pthread_join call in the same function. We assume that

each stage of a pipeline is run on a single thread. However, no assumptions are

made regarding threnad attributes, arguments passed to the function upon thread

creation, or the second argument passed to pthread_join. Tasks are sent between

stages in pipelines via intermediate queues. Each stage of a pipeline is assumed to

have an input queue, q1, and an output queue, q2, given that q1 6¼ q2 and the output

queue of stage i is the input queue of stage iþ 1. Pipeline stages may only

communicate via these intermediate queues; for simplicity, we assume that

(intermediate) stages do not access global variables. Queues are assumed to be

cyclic. If the queue is full, and the implementation does not wait for an element to

be read before adding a new element, it is assumed that the queue overwrites

(unread) elements. We assume that queues use pthread_cond_wait,

pthread_cond_signal, pthread_mutex_lock, and pthread_mutex_unlock

operations only. These restrictions are to ensure that, following Parallelism

Elimination, the behaviour of the pipeline breaks in a consistent way. Any queue

update functions should not be recursive. Whilst we make no assumption on the size

of queues, the interesting case is when queues are smaller than the total number of

tasks passing through the pipeline. Each stage of a valid pipeline is assumed to

contain a loop that retrieves input and produces a modified version of it as output.

1 void *Stage2(void *arg) {
2 // SETUP
3 ...
4 for (input = read_from_queue(inputQueue);
5 valid(i) || input == EOS;
6 input = read_from_queue(inputQueue)) {
7 if (input != EOS) {
8 output = f(input);
9 add_to_queue(outputQueue, output);

10 } else {
11 add_to_queue(outputQueue, EOS);
12 break;
13 }
14 }
15 }

The for-loop is assumed to read input from the stage’s input queue for each

iteration, where the test expression is a disjunction permitting both EOS token and

valid inputs (for some definition of valid). The test expression may be simplified by

treating the EOS as a valid input. The body of the loop is assumed to comprise an if-

statement that checks for the EOS token, represented here by a preprocessor macro.

When the input is not the EOS token, it is modified (Line 8) and added to the output

queue (Line 9). Conversely, when the input is the EOS token, it is propagated to the

next stage (Line 11) and a break statement used in order to halt the stage (Line 12).

Should the EOS token be handled incorrectly and not halt the stage, due to our

assumptions on the nature of the intermediate queues, the for-loop will wait

indefinitely for input that will never arrive. Whilst we permit the occurrence of
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break statements only in the locations specified above, we assume that no part of

the pipeline has continue or goto statements.

The first stage differs in that the input is not retrieved from an input queue, but

tasks are generated in a for-loop. For example, in Stage1

1 void *Stage1(void *arg) {
2 t1 inputs[NINPUTS];
3 ...
4 for (i = 0; i<=NINPUTS; i++) {
5 if (i < NINPUTS) {
6 output = inputs[i];
7 } else {
8 output = EOS;
9 }

10 add_to_queue(outputQueue, output);
11 }
12 }

an array of inputs is iterated over and each element is sent to the second stage of

the pipeline. We assume that the for-loop in the first stage is finite and that

termination is controlled by the test expression and not through a conditional

statement in the body of the loop. Once all tasks have been generated, the first stage

will emit an EOS token and no further iterations of the loop occur.

4 Restoration Transformations

The following transformations are grouped according to the stages in Sect. 2 and all

apply to C programs that adhere to the assumptions in Sect. 3. In this paper, we do

not attempt to prove that our transformations preserve functional behaviour; indeed,

some intentionally do not. Such proofs are left to future work, where they can be

properly explored in depth. Instead, and where expected, we conjecture that our

transformations preserve functional behaviour when they are applied to code that

both adheres to the assumptions in Sect. 3 and that meets the pre-conditions of the

individual refactoring. For example, commutativity of loops in Merge for-loops

(Sect. 4.2). It is our intention that these assumptions and pre-conditions are

sufficiently strong so as to render post-conditions and dynamic correctness checks

unnecessary. Proof that this property holds for our refactorings is outside of the

scope of this paper and will be considered as part of future work alongside proofs of

general soundness.

In addition to the following transformations, standard refactorings may also

facilitate the restoration process. For instance, the transformation to unfold a

function definition [11] is used in both Code Repair and Shaping stages; e.g. in the

former, it allows loops to be merged, and in the latter, it allows the elimination of

intermediate queues. The extract method [21] transformation can be similarly used

to lift a pipeline into a self-contained function, or to lift its individual stages (back)

into separate functions.
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4.1 Parallelism Elimination

Parallelism Elimination comprises a single composite transformation that either

removes or transforms pthread operations. As noted in Sect. 2, Parallelism

Elimination does not guarantee that the result of the transformation will be

semantically equivalent to the transformed program. It is applied to the functions

that are identified as part of the valid pipeline and effects the following

transformations.

• Removes #include <pthread> when all pthread operations within the file are

found within the functions identified as part of the valid pipeline.

• Removes all pthread operations within the pipeline functions aside from calls to

both pthread_join and pthread_create.

• Removes all variable declarations whose types are defined as part of the pthread

library, excepting pthread_t. This includes global declarations when those

variables occur solely within the identified pipeline functions.

• Declarations in the form pthread_t t; are transformed into void* t;. As

above, in the case where such declarations are global, the variables may occur only

in the pipeline functions.

• Calls to pthread_create of the form,

1 pthread_create(t,a,f,x)

are transformed into the form:

1 t = f(x);

Recall that Parallelism Elimination converts the type of pthread_t variables to

void* variables of the same name(s), and that pthread_create requires that f

returns a value of type void*.

• Calls to pthread_join are transformed according to whether the second

argument is NULL. When the second argument is not NULL, e.g.

pthread_join(t,x) , the join operation is transformed into the form x = t.

Otherwise, the call to pthread_join is removed.

• In cases where a call to pthread_join or pthread_create forms the right-

hand-side of an assignment statement, e.g.

1 r = pthread_join(t,x);

in addition to the transformation of the pthread operation, an assignment statement

is inserted where the variable being assigned, r, is assigned the value of a successful

call to the original pthread operation, here pthread_join and 0. The assignments

resulting from the transformation is:
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1 r = 0;
2 x = t;

• Any for-loop whose body contains no statements following the removal of a

pthread operation will itself be removed.

• Any if-statement with a branch whose body contains no statements following

the removal of a pthread operation will be transformed to have only the other

branch, or itself removed, if no such branch exists. For instance, given the for-loop

from the synthetic pipeline example in Listing 1,

8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

since the second argument to pthread_join is NULL, the join operation result is

itself a statement, and the body of the for-loop contains no other operations, this

for-loop is removed.

4.2 Code Repair

In addition to unfolding and extract method refactorings, the merging of loops is a

key transformation of the Code Repair stage when restoring valid pipelines.

Parallelism Elimination can result in one or more intermediate queues to overwrite

elements before they can be read. Merging the queues of all pipeline stages ensures

that no queue overflows. Whilst we only describe the merging of for-loops, a

similar approach can be used to merge equivalent loop kinds.

Merge for-loops. A sequence of n for-loops, in the same compound statement

can be merged such that the result is a single loop containing the bodies of the

original loops in the same order that they appeared in the original sequence. Any

statements that appear in between loops in the original code, must be commutative

with respect to all preceding loops; i.e. it must be possible to swap the ordering of

the statements and preceding loops without changing the behaviour of the program.
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Listing 5: Intermediate Code Repair Stage for Simple Pipeline Example

1 void Pipe(void* a1, void* a2, void* a3) {
2 int my_output1, i1;
3 ...
4 for (i1 = MAXDATA ; i1>=0; i1--) {
5 if (i1 > 0) {
6 my_output1 = ...;
7 } else {
8 my_output1 = EOS;
9 }

10 add_to_queue(myOutputQueue1, my_output1);

11 }
12

13 int my_input2, my_output2;
14 ...
15 for (my_input2 = read_from_queue(myInputQueue2);
16 my_input2>0 || my_input2 == EOS;
17 my_input2 = read_from_queue(myInputQueue2)) {
18 if (my_input2 != EOS) {
19 ...
20 } else {
21 add_to_queue(myOutputQueue2, EOS);
22 break;
23 }
24 }
25

26 int my_input3, my_output3;
27 ...
28 for (my_input3 = read_from_queue(myInputQueue3);
29 my_input3>0 || my_input3 == EOS;
30 my_input3 = read_from_queue(myInputQueue3)) {
31 if (my_input3 != EOS) {
32 ...
33 } else {
34 break;
35 }
36 }
37 }

Listing 5 builds on the example in Listing 2, where the calls to Stage1,

Stage2, and Stage3 have been lifted into the function Pipe using extract

method and then unfolded. It is possible to merge all three loops since the statements

in between the loops can be safely executed prior to the first and second loops.
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Listing 6: Following Merging of loops in Listing 5

1 void Pipe(void** a0, void* a1, void* a2, void* a3) {
2 int my_output1, i1;
3 ...
4 for (i1 = MAXDATA ; i1>=0; i1--) {
5 if (i1 > 0) {
6 my_output1 = ...;
7 } else {
8 my_output1 = EOS;
9 }

10 add_to_queue(myOutputQueue1, my_output1);
11

12 my_input2 = read_from_queue(myInputQueue2);
13 if (my_input2 != EOS) {
14 ...
15 } else {
16 add_to_queue(myOutputQueue2, EOS);
17 }
18

19 my_input3 = read_from_queue(myInputQueue3);
20 if (my_input3 != EOS) {
21 ...
22 }
23 }
24 }

Since we assume that new tasks are only produced by the first stage and that all

subsequent stages neither generate nor destroy tasks, it follows that the number of

iterations for the first loop will be equal to the number of iterations for subsequent

loops in the original pipeline. Consequently, the initialisation statement, test

expression, and iteration expression of the merged loop will be those of the first

loop; here, i1 = MAXDATA, i1[=0, and i1--, respectively. The bodies of the

individual loops are included in the same order as the original loops themselves.

Since the merged loop uses its initialisation statement, test expression, and iteration

expression, the body of the first loop is included unchanged. Bodies of subsequent

loops, however, are preceded by their update statement. For example, the body of

the second loop is preceded by the assignment to my_input2 on Line 12 in

Listing 6 which is taken from the update statement on Line 18 in Listing 5. This

ensures that the input queue for each stage is read from only when a task has been

added to that queue by the preceding stage. In addition to the inclusion of the update

expression, the break statements from the original for-loops are removed, leaving

the propagation of the EOS token in all but the final stage. In the final stage of our

pipeline (Lines 19–22) we remove the entire else branch in Listing 6 since it

contains only the break statement on Line 34 in Listing 5. Whilst the removal of

these break statements is not strictly necessary, since they will only be evaluated

when the first stage emits an EOS token once all other tasks have been processed,

they are removed because they are redundant now that the termination of the

merged loop is controlled by the first stage of the pipeline, which will terminate

after generating the EOS token.

4.3 Program Shaping

Program Shaping represents the broadest stage in the process and presents the

programmer with the largest range of choices in terms of transformations that may
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be effected. In addition to unfolding definitions and creating new functions via

extract method, other standard transformations may be applied, e.g. dead-code

elimination [28], in order to improve or simplify the structure of the code. In order

to remove aspects of the code that represent optimisations enacted for the legacy

parallelisation, both existing and novel transformations may be necessary. Novel

transformations may include the unchunking of data, the removal intermediate, and

now redundant, queues between stages, and a removal of the EOS token. In line with

our running example, we propose transformations to remove EOS tokens and to

remove intermediate queues.

4.4 Remove EOS Token from Merged Loops

Intuitively, we assume that Remove EOS Token from Merged Loops applies to the

result of Merge Loops. Since termination of all stages is controlled solely by the

merged loop, the EOS token is redundant and can be removed so that the resulting

restored pipeline doesn’t perform unnecessary work. By our assumption, at the

beginning of the for-loop, there is an if-statement that determines whether the

iterator being generated by the first stage is genuine output or the EOS token. This

if-statement is replaced by the branch of the if-statement that produces genuine

output. Additionally, the test expression of the merged loop is replaced by the

condition of the if-statement being removed. This results in the merged loop

executing one fewer iteration and the first stage of the (now-removed) pipeline no

longer adding the EOS token to its output queue. For all other stages of the pipeline,

we replace each stage’s if-statement with their output branches, thus removing the

EOS token behaviour.

Listing 7: Following application of Remove EOS Token from Merged Loops to

Listing 6

1 void Pipe(void** a0, void* a1, void* a2, void* a3) {
2 int my_output1, i1;
3 ...
4 for (i1 = MAXDATA ; i1 > 0; i1--) {
5 my_output1 = ...;
6 add_to_queue(myOutputQueue1, my_output1);
7

8 my_input2 = read_from_queue(myInputQueue2);
9 my_output2 = ...;

10 add_to_queue(myOutputQueue2, my_output2);
11

12 my_input3 = read_from_queue(myInputQueue3);
13 my_output3 = ...;
14 add_to_queue(myOutputQueue3, my_output3);
15 }
16 }

Listing 7 gives the result of applying Remove EOS Token from Merged Loops to

the code in Listing 6. Here, the original test expression of the merged loop, i1[=0

(Line 4 Listing 7), has been replaced with the condition of the if-statement from

the first stage of the pipeline, i1[0 (Line 5, Listing 7). That if-statement has itself

been replaced by its true branch. The if-statements for the other two stages (Lines
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13–17 and 20–22, Listing 7) have similarly been replaced by their true branches,

since their false branches handle the EOS token.

4.5 Remove Intermediate Queues

Following the application of Merge Loops the intermediate queues become

redundant. They can be removed by inspecting, matching, and transforming read,

write, and update operations pertaining to those queues. In our recurring example

we begin this process having removed the EOS token, and having unfolded both

add_to_queue and read_from_queue operations. Note that the add_to_-

queue operation in the third stage is not unfolded since this is the output of the

pipeline itself.

1 void Pipe(void** a0, void* a1, void* a2, void* a3) {
2 int my_output1, i1;
3 ...
4 for (i1 = MAXDATA ; i1 > 0; i1--) {
5 ...
6 myOutputQueue1->elements[myOutputQueue1->addTo] = my_output1;
7 myOutputQueue1->addTo = (myOutputQueue1->addTo + 1) % myOutputQueue1->capacity;
8 myOutputQueue1->nr_elements++;
9

10 my_input2 = myInputQueue2->elements[myInputQueue2->readFrom];
11 myInputQueue2->nr_elements--;
12 myInputQueue2->readFrom = (myInputQueue2->readFrom + 1) % myInputQueue2->capacity;
13 ...
14 myOutputQueue2->elements[myOutputQueue2->addTo] = my_output2;
15 myOutputQueue2->addTo = (myOutputQueue2->addTo + 1) % myOutputQueue2->capacity;
16 myOutputQueue2->nr_elements++;

17

18 my_input3 = myInputQueue3->elements[myInputQueue3->readFrom];
19 myInputQueue3->nr_elements--;
20 myInputQueue3->readFrom = (myInputQueue3->readFrom + 1) % myInputQueue3->capacity;
21 ...
22 add_to_queue(myOutputQueue3, my_output3);
23 }

A variable is read from when that variable occurs in a statement and that variable

is not being updated; e.g. capacity on Line 7 above. Similarly, a variable

undergoes a write when it is being assigned to and is not being updated; e.g.

elements in the first output queue is written to on Line 6. Finally, a variable is

updated when it occurs in a statement that is both reading from and writing to that

variable; e.g. addTo in Line 7 above. Basic increment operators, e.g. nr_ele-

ments?? on Line 8, are similarly considered updates due to their semantics. In

order to transform these read, write, and update operations, we pair the operations

in the order that they appear in the code and according to the variables they read,

write, or update, and transform those pairs according to their composition. If two

queues are semantically the same but referred to by different variables then they

themselves will be considered the same during pairing; e.g. myOutputQueue1

and myInputQueue2 refer to the same intermediate queue, thus myOut-

putQueue1-[elements and myInputQueue2-[elements are similarly

considered to be the same variable for pairing. In the above example, two cases

arise:
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1. Updates to variables that do not occur elsewhere in the code pertain to queue

housekeeping operations are therefore removed. In the above code, Lines 7, 8,

11, 12, 15, 16, 19, and 20 are all removed.

2. A write followed by a read is merged into a single assignment statement s.t. the

RHS of the read is replaced with the RHS of the write, and where the original

write statement is removed. For example, in the above code, the write to

elements on Line 6 and the read from elements on Line 10 can be paired

(due in part to the behaviour of the queue reading the element that has just been

added). Since this represents passing my_output1 on Line 6 to my_input2

on Line 10, it is possible to remove Line 10 and transform Line 6 into the form

my_input_2 = my_output_1.

An unpaired read that is part of an update, e.g. capacity on Line 7, or a paired

write, e.g. addTo on Line 6, is removed or otherwise transformed along with the

update or paired write statement. Similarly, an unpaired read that is part of a paired

read statement, e.g. readFrom on Line 10, is also transformed according to the

paired read statement. When applied, the above transformations result in the

removal of the two intermediate queues.

1 void Pipe(void** a0, void* a1, void* a2, void* a3) {
2 ...
3 for (i1 = MAXDATA ; i1 > 0; i1--) {
4 my_output1 = ...;
5

6 my_input2 = my_output1;
7 my_output2 = ...;
8

9 my_input3 = my_output2;

10 my_output3 = ...;
11 add_to_queue(myOutputQueue3, my_output3);
12 }

5 Evaluation

In this section, we present an evaluation of our restoration methodology on a

number of examples of pthreaded C and C?? applications taken from a variety of

domains, including image convolution, nqueens, cholesky decomposition, blacksc-

holes, pgpry, mandelbrot and matrix multiplication1. For each benchmark we

evaluate the effectiveness of our technique using standard metrics, such as

McCabe’s Cyclomatic Complexity [31], lines of code and difference in runtimes

between the original pthread version and the restored TBB version, using the

maximum number of available cores; these results are summarised in Table 1,

which also labels if each benchmark is a standard task from implementation (F) or a

pipeline (P), where each stage can also be farmed. All of our execution experiments

are executed 5 times and conducted on a server with Intel Xeon E5-2690 CPU with

1 Repository of examples available at https://github.com/Paraformance/restoration
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28 cores, running at 2.6 GHz with 256 GB of RAM, with the Scientific Linux 6.2

operating system.

5.1 Image Convolution

Image Convolution is a technique widely used in image processing applications for

blurring, smoothing, and edge detection. We consider an instance of the image

convolution from video processing applications, where we are given a list of images

that are processed by applying a filter. Applying a filter to an image consists of

computing a scalar product of the filter weights with the input pixels within a

window surrounding each of the output pixels:

outði; jÞ ¼
X

m

X

n

inði� n; j� mÞ � filtðn;mÞ ð1Þ

Table 1 Metrics for each benchmark, where F = Farm, and P = Pipeline; performance times are in

seconds on a 28-core machine

Benchmark McCabe Lines Performance (std dev)

Before After Before After Before After

Blackscholes F 29 29 366 393 38.5 (0.07) 39 (0.42)

MatMult F 9 15 176 146 918.7 (24.6) 922.24 (30.42)

Mandelbrot F 12 11 145 142 2.21 (0.01) 2.27 (0.04)

Cholesky F 31 19 321 226 16.97 (0.07) 17.08 (0.02)

NQueens P (2) 41 24 421 337 8.63 (0.04) 8.622 (0.27)

PGPry P (2) 23 19 210 243 138.1 (0.23) 131 (0.10)

ImageConv P (1) 71 29 714 280 12.85 (6.08) 5.2 (0.02)

The number of tokens for TBB pipelines are shown in parentheses
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Listing 8: Original Convolution with PThreads

1 void add_to_queue(queue_t *queue, task_t elem)
2 {
3 /* Same as in Listing 1 */
4 }
5

6 task_t read_from_queue(queue_t *queue)
7 {
8 ...
9 }

10

11 void* stage1() {
12 ..
13 while(1) {
14 t = read_from_queue(tq1);

15 r = workerStage1(t); /* Reads in pixels from a file into an array */
16 add_to_queue(tq2, r);
17 }
18 return NULL;
19 }
20

21 void* stage2() {
22 ..
23 while(1) {
24 t = read_from_queue(tq2);
25 r = workerStage2(t); /* Applies transformation to each pixel in a received array */
26 add_to_queue(tq3, r);
27 }
28 return NULL;
29 }
30

31 int main (int argc, char **argv)
32 {
33 ...
34 /* Reading in the images in the task queue tq1 */
35 ...
36 /* Create the pipeline */
37 for (int i=0; i<nw1; i++)
38 pthread_create(&workers1[i], NULL, stage1, NULL);
39 for (int i=0; i<nw2; i++)
40 pthread_create(&workers2[i], NULL, stage2, NULL);
41 ...
42 /* Wait for threads to finish execution and output results to files */
43 }

For the convolution example, we start off with a pthreaded version in Listing 8,

with a similar structure as the other pipelined examples in this paper, and outlined in

Sect. 2. After setting up the task queue for the first stage of the pipeline (e.g. by

reading a list of names of files with images), the example creates the pipeline in

Lines 37–40, spawning a number of worker threads for each stage of the pipeline.

The pipeline stages are shown at Lines 11 and 21, respectively; each stage has a

similar structure: a non-terminating while loop that retrieves a task from the stage’s

input queue (tq1 and tq2 for stage1 and stage2, respectively), computes the

unit of work on the task item (Lines 15 and 25) and then places the result on an

output queue (Lines 16 and 26). Functions add_to_queue and read_-

from_queue put a task in an output queue and read a task from an input queue,

respectivelly, in a thread safe manner. The code for add_to_queue was shown in

Listing 1.
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The first step to restoration is to remove the threading code; this is a fairly

straightforward process, but results in an executable that no-longer terminates. This

is due to the fact that there is no termination condition of the while loops within the

stages. A simple repair for this step is to add a termination token, EOS. When no

more tasks are available on the original input queue, EOS is sent through the

pipeline, terminating the stages (Listing 9).

Listing 9: Convolution, Repaired with a Termination Token

1 if ((int)(task_t)t == EOS) {
2 puttask(tq2, (task_t2 *)EOS);
3 break;
4 }

The next step is to perform program shaping which goes through various steps,

including unfolding the various calls to gettask and puttask in the stages,

merging the stages together, and finally removing the intermediate queue between

the two stages (leaving the input and output queue; see Listing 10).

Listing 10: Stages merged, unfolded and intermediate queue removed

1 /* Unfolded gettask function, reutrning t1 as an input task to stage 1 */
2 . . .
3 r1 = workerStage1(t1);
4 r2 = workerStage2(r1);
5 /* Unfolded puttask function that puts r2 into queue tq2 */
6 tq2->elements[tq2->addTo] = r2;
7 tq2->addTo = (tq2->addTo + 1) % tq2->capacity;
8 tq2->nr_elements ++

The final step in the shaping process is to arrive at the code shown in Listing 11

where we remove the input and output queues completely, and transform the

program into a simple function composition; the function composition has been

unfolded into the original for loop (Line 37–40 from Listing 8), and the loops

merged into a single loop.

Listing 11: Convolution Shaped

1 for (int i=0; i<NIMGS; i++) {
2 workerStage2(workerStage1(i));
3 }

Finally, the fully shaped program from Listing 11 can be parallelised using a

structured pattern approach. Here we use TBB, to define a pipeline, using C??

classes, as shown in Listing 12.

Listing 12: Convolution Restored with TBB

1 tbb::parallel_pipeline(
2 ntoken,tbb::make_filter<void,task_t2*>(tbb::filter::serial, Stage1(NIMGS) )
3 & tbb::make_filter<task_t2*,int>(tbb::filter::parallel, Stage2() )
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5.2 Discussion

Table 1 shows the summary of our results for all the benchmarks. For all

benchmarks we see comparable results in the McCabe metrics, where the TBB

version gives a better result, apart from Blackscholes, where the complexity is

equal, and Matrix Multiplication, where the complexity actually increases. This is

most likely because both of these benchmarks are simple farms, and the TBB logic

actually introduces some complexity over simply calling pthread_create multiple

times. The number of lines of code for the TBB version is mostly comparable, with

most benchmarks showing a decrease in lines of code. Blackscholes shows a slight

increase in LOC, most likely, again, due to the slight increase in code logic for TBB

versus the pthread version. In terms of performance, again, the TBB versions are

mostly comparable, with the exception of a few cases. For convolution, the TBB

version performs 2.49 faster, due to the pthreading version introducing extra

overheads in the locking code; Blackscholes also performs very slightly worse, by

1.28%.

5.3 Limitations

The methodology presented in this paper is still preliminary and intended to be a

foundational step to a more advanced (semi-automated) restoration technique that

applies to many different kinds of patterns and applications. As such, we have noted

a number of general limitations to the approach, which we document here.

As the transformations are currently applied manually, with the lack of a (semi-

automated) tool, mistakes can easily happen as part of that manual transformation.

The functionality of the transformed program has to be tested and checked with the

original version at each step to ensure validity. However, if a (non-specialised)

developer was undertaking this task, without any real direction or structure to

parallelise their code, the manual process would undoubtedly take much longer and

be a much more error-prone process. Our methodology aims to give a guide to

programmers so that they can restore their programs, and act as a basis for future

implementation efforts.

Furthermore, many code bases (including PARSEC) are large and diffuse,

containing many files and many hundreds or thousands of lines of code. Applying

such a manual technique to large and complex code is a very time consuming

process, limiting our choice in use-cases and examples. Knowledge of the use-case

is also needed in order to transform it correctly, taking into account subtle structural

and algorithmic properties of the underlying source code. Often the most time

consuming part of the process is understanding the underlying algorithmic

properties, and not in the transformations themselves.

Our methodology only currently applies to farms and pipelines. A preliminary

study of other applications with instances of different types of patterns, such as BSP,

reduce, and map, seem to indicate that many of the restoration steps will be

different, resulting in different transformation steps depending on the pattern

instance to be restored. However, many of the tranformations that we present in this

paper to eliminate pthreaded code can still be applied. We intend to pursue this

direction as an avenue for future work.
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6 Related Work

The concept of a systematic, or structured approach to software restoration has, to

our knowledge, been largely previously unexplored. A concept that is probably most

related to software restoration is that of reverse engineering, which is a technique

used to retrieve high-level requirements from existing sequential code [14, 15]. Yu

et al. [37] proposed a technique that attempts to use refactoring to try and recover

requirements goal models from legacy code. However, the work only targets

sequential code and only capture high-level information that is not useful for

parallel restoration. Refactoring has roots in Burstall and Darlington’s fold/unfold

system [11], and has been applied to a wide range of applications as an approach to

program transformation [32], with refactoring tools a feature of popular IDEs

including, i.a., Eclipse [36] and Visual Studio [33]. Previous work on parallelisa-

tion via refactoring has primarily focussed on the introduction and manipulation of

parallel pattern libraries in C?? [9, 27] and Erlang [5, 7]. Another approach has

been the automated introduction of annotations in the form of C?? attributes [19].

Dig proposed an approach to parallelise loops in Java [20], but did not use high-

level algorithmic skeletons. Aldinucci and Danelutto proposed an approach to

convert between skeleton configurations and could be used to introduce parallelism,

but where the sequential program must also be defined using (sequential)

skeletons [1]. Thompson et al. [29] proposed an approach to refactor sequential

Erlang programs into concurrent versions, using program slicing to guide the

refactoring process. However, their approach was not focussed on parallel

performance, and did not use restoration or parallel patterns. High-level parallel

patterns, sometimes known as algorithmic skeletons offer high-level abstraction

over low-level concurrency methods [3, 22]. A range of pattern/skeleton imple-

mentations have been developed for a number of programming languages; these

include: RPL [27]; Feldspar [4]; FastFlow [2]; Microsoft’s Pattern Parallel

Library [13]; and Intel’s Threading Building Blocks (TBB) library [35]. Since

patterns are well-defined, rewrites can be used to automatically explore the space of

equivalent patterns, e.g. optimising for performance [24, 30] or generating

optimised code as part of a domain-specific language (DSL) [23]. Moreover, since

patterns are architecture-agnostic, patterns have been similarly implemented for

multiple architectures [26, 34]. SPar [25] is a C?? internal domain-specific-

language (DSL) for supporting the development of classic stream parallel

applications targetting a FastFlow [2] backend. SPar allows the programmer to

annotate C?? code with high-level annotations, relating to the streaming and

staging properties of the underlying algorithm. A compiler then transforms the SPar

annotations into FastFlow code which can then be executed. We believe SPar would

be a viable framework to support the introduction of patterns in our methodology.

The P3ARSEC benchmark suite [17], offer patterned implementations of the Parsec

benchmark suite using pattern-based parallel programming, in contrast to the

standard Parsec implementations of pthreads, OpenMP and TBB. P3ARSEC instead

uses a FastFlow backend, and makes use of several parallel patterns, including

pipeline, farm, map and reduce.
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7 Conclusions

In this paper, we have introduced a software restoration methodology for converting

legacy-parallel applications into structured parallel code using parallel patterns.

This ensures portability, maintainability and adaptivity of parallel code while

maintaining, and sometimes even increasing, performance. We also presented

transformations to eliminate ad-hoc pthread parallelism from legacy-parallel code,

transformations that repair the code from bugs introduced by the elimination step,

and , shape the code in order to patternise it. Furthermore, we evaluated out software

restoration methodology on a number of realistic benchmarks and use-cases,

demonstrating benefit in terms of gained performance, increased adaptivity,

portability and maintainability. One of the limitations of the work is the fact that

the transformations must be applied manually in their current form. It would be

possible to take the transformations presented here and implement them into a semi-

automatic refactoring tool, such as ParaFormance2, which is a semi-automatic tool

for transforming sequential C and C?? applications into parallel patterned

versions. The refactorings presented in this paper would be implemented in terms of

the pre-conditions and transformation rules of an Abstract Syntax Tree, both of

which are described in this paper. Other similar refactorings to introduce patterns

into C and C?? applications have previously been described in [7, 8, 9, 27] and the

restoration refactorings would take a similar direction. We will extend our

methodology to take into account many other types of parallel patterns, including

reduce, maps, stencil, etc. It’s possible that we will see similarities and overlapping

ideas in the restoration of different types of patterns. We will catalogue these

commonalities in a future paper. We also intend on giving proofs of general

soundness that our refactorings conform to their specification and do not change the

program’s functional behaviour. Proving soundness of refactorings is a complicated

and challenging issue, but recent work in the use of Dependent Types [6] has

allowed us to capture the soundness properties as part of the refactoring

implementations. We envisage extending this to prove soundness of concurrency

refactorings in a similar way. Lastly, we would like to explore optimisation of the

restored application in other domains, such as energy optimisation. Once the code

has been refactored into a structured, maintainable code base, it is possible to then

apply different kinds of optimisations for energy, memory usage, etc. in a similar

way to parallelisation.
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