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Abstract—Much research has been devoted to the problem of
restoring Poissonian images, namely for medical and astronom-
ical applications. However, the restoration of these images using
state-of-the-art regularizers (such as those based upon multiscale
representations or total variation) is still an active research area,
since the associated optimization problems are quite challenging.
In this paper, we propose an approach to deconvolving Poissonian
images, which is based upon an alternating direction optimization
method. The standard regularization [or maximum a posteriori
(MAP)] restoration criterion, which combines the Poisson log-like-
lihood with a (nonsmooth) convex regularizer (log-prior), leads to
hard optimization problems: the log-likelihood is nonquadratic
and nonseparable, the regularizer is nonsmooth, and there is a
nonnegativity constraint. Using standard convex analysis tools,
we present sufficient conditions for existence and uniqueness of
solutions of these optimization problems, for several types of reg-
ularizers: total-variation, frame-based analysis, and frame-based
synthesis. We attack these problems with an instance of the alter-
nating direction method of multipliers (ADMM), which belongs
to the family of augmented Lagrangian algorithms. We study
sufficient conditions for convergence and show that these are
satisfied, either under total-variation or frame-based (analysis
and synthesis) regularization. The resulting algorithms are shown
to outperform alternative state-of-the-art methods, both in terms
of speed and restoration accuracy.

Index Terms—Alternating direction methods, augmented
Lagrangian, convex optimization, image deconvolution, image
restoration, Poisson images.

I. INTRODUCTION

A
LARGE fraction of the work on image denoising, restora-

tion, and reconstruction has been devoted to developing

regularizers (priors, from a Bayesian point of view) to deal with

the presence of noise and/or the ill-conditioned or ill-posed na-

ture of the observation operator, and to devising efficient algo-

rithms to solve the resulting optimization problems. Much of

that work assumes linearity of the observation operator (e.g.,

the convolution with some point spread function, the acquisi-

tion of tomographic projections, or simply an identity in the

Manuscript received January 13, 2010; revised April 05, 2010; accepted June
02, 2010. Date of publication June 28, 2010; date of current version November
17, 2010. This work was supported in part by the Fundação para a Ciencia
e Tecnologia (FCT), Portuguese Ministry of Science and Higher Education,
under Projects POSC/EEA-CPS/61271/2004, PTDC/EEA-TEL/104515/2008,
and UTAustin/MAT/0009/2008. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Yongyi Yang.

The authors are with the Instituto de Telecomunicações, Instituto Superior
Técnico, 1049-001 Lisboa, Portugal. (e-mail: mario.figueiredo@lx.it.pt;
bioucas@lx.it.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2053941

case of denoising) and the presence of additive Gaussian noise.

For this classical scenario, recent state-of-the-art methods adopt

nonsmooth convex regularizers, such as total-variation or the

norm of frame coefficients; the resulting optimization prob-

lems are convex but nonsmooth, of very high dimensionality,

and have stimulated a considerable amount of research on spe-

cial purpose algorithms (see [4], [5], [16], [26], [53], [59], and

the many references therein).

The algorithms developed for linear operators and Gaussian

noise cannot be directly applied to other observation models,

such as the Poisson case considered in this paper. Poissonian

image models are well studied and highly relevant in fields such

as astronomical [51], biomedical [18], [24], [42], [46], [55],

[57], and photographic imaging [27].

Comprehensive reviews of Poissonian image restoration

methods, including the classical Richardson–Lucy (RL) algo-

rithm, can be found in [46] and [51]. Regularized variants of

the RL algorithm have been proposed in [18] (with total-vari-

ation) and in [52] (with wavelet-based regularization). Other

wavelet-based approaches to Poissonian inverse problems

include [2] and [43] (both based upon the wavelet-vaguelette

decomposition [19]), [8] (based upon the vaguelette-wavelet de-

composition [1]), and [41] (based upon a cross-validation filter

design [40]). A frame-based state-of-the-art method recently

proposed in [20] uses the Anscombe variance stabilizing trans-

form, which allows replacing a linear observation model with

Poisson (nonadditive) noise by a nonlinear observation model

with additive noise. Other multiscale approaches to handling

imaging inverse problems with Poissonian observations can be

found in [42], [55], [57], and [58]. A method based upon local

polynomial approximations was introduced in [27]. Finally,

there is also a vast literature on the use of expectation-maxi-

mization (EM) methods for image reconstruction from Poisson

data using penalized maximum likelihood (PML) criteria; a

representative publication (where many earlier references can

be found) is [24].

The standard criterion for deconvolution of Poissonian im-

ages consists of a convex constrained optimization problem:

the objective function includes the so-called data term, which is

convex and smooth, but not quadratic, plus a convex nonsmooth

regularizer (the log-likelihood and log-prior, from a Bayesian

inference perspective), and a constraint forcing the solution to

be nonnegative. Although the problem is convex, its very high

dimensionality (when dealing with images) usually rules out the

direct application of off-the-shelf optimization algorithms.

Furthermore, the Poisson log-likelihood, which is non-

quadratic and nonseparable (except in the pure denoising

case) raises several difficulties to the current state-of-the-art

image deconvolution algorithms. More specifically, the Poisson

1057-7149/$26.00 © 2010 IEEE
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log-likelihood does not have a Lipschitz-continuous gradient,

a sufficient condition for the applicability (with guaranteed

convergence) of algorithms of the forward-backward splitting

(FBS) family [16], [20], [59]. If, nevertheless, an FBS method

is applied, it is well known to be slow, specially if the obser-

vation operator is severely ill-conditioned, a fact which has

stimulated recent research on faster methods [4], [5], [59];

these faster algorithms also require the log-likelihood to have

a Lipschitz-continuous gradient, which is not the case with

Poissonian observations.

In this paper, we propose a new approach to tackle the op-

timization problem referred to in the previous paragraph. The

proposed algorithm is based upon an instance of the alternating

direction method of multipliers (ADMM) [21], [28], [29], which

belongs to the family of augmented Lagrangian methods [39].

For this reason, we call it PIDAL (Poisson image deconvolution

by augmented Lagrangian). Although the proposed approach

is related to the recent split-Bregman (SB) technique [30], our

splitting strategy and resulting algorithm are quite different from

the one in [30] (which, moreover, is not adequate for Poissonian

image models). This paper is an extension of our much shorter

and preliminary work [25]; another extension of that earlier

work of ours has recently appeared in [50]. Finally, we should

mention that related work on a different nonadditive noise model

(multiplicative Gamma-distributed noise) can be found in [3],

[6], [54].

In recent work, Douglas-Rachford splitting (DRS) methods

were proposed to attack problems in which log-likelihood the

does not have a Lipschitz-continuous gradient [15], [54]. In fact,

the ADMM is closely related to DRS methods [21], [23], so the

method proposed in this paper can also be interpreted from a

DRS viewpoint.

In this paper, we will consider three types of regulariza-

tion: total variation [9], [44] and both frame-based analysis

and frame-based synthesis formulations [22]. In Section II,

after presenting these three formulations, we derive sufficient

conditions for existence and uniqueness of solutions of the

corresponding optimization problems. The ADMM framework

is reviewed in Section III, where we also introduce the partic-

ular variant that is suitable for a linear combination of several

convex functions, which is the form of the objective function

in hand. In Sections IV and V, we instantiate the proposed

variant of ADMM to the three types of regularizers considered

and provide sufficient conditions for convergence. Finally,

the effectiveness of the resulting algorithm is illustrated in

comparison with current state-of-the-art alternatives [18], [20],

[27], [50], [52], via a set of experiments reported in Section VI.

II. PROBLEM FORMULATION

In this section, we begin by reviewing the derivation of

the standard log-likelihood resulting from assuming that the

observations are Poisson distributed with a mean intensity

linearly related with the underlying image to be estimated.

Then, we present three different regularization/Bayesian cri-

teria, using synthesis and analysis formulations [22], and study

existence/uniqueness of the corresponding solutions.

A. Linear/Poisson Observation Model

Let denote an -vector of observed

counts , assumed to be a sample of a random

vector of independent Poisson variables,

with probability distribution

(1)

where ( denotes the nonnegative

reals) is the underlying mean (intensity) vector, assumed to be

a linear observation of an unknown image , i.e.,

(2)

where the observation operator, which in our finite dimen-

sional setting is simply a matrix . This matrix may

model a convolution or some other linear observation mecha-

nism, such as emission tomography. So that the underlying un-

known can also have the meaning of intensity, it is commonly

assumed that . It is usually further assumed that all the

elements of are nonnegative [18], [24], [51]. When dealing

with images, we adopt the usual vector notation obtained by

stacking the pixels into a vector, in lexicographic order.

Combining (1) and (2) and taking logarithms leads to the neg-

ative log-likelihood function [18], [51]

(3)

(4)

where (or ) denotes the th component of some vector

and is the negative log-

likelihood function for the case , that is

(5)

Dealing with the particular case requires some care,

because of the presence of the logarithm. Seen as function of

to be used in a minimization problem, it is convenient to write

the negative log-likelihood function as

(6)

where is a finite (recall that ) irrelevant

(independent of ) constant and is defined as

(7)

where is the indicator function of set

, , and .
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The following two propositions characterize as a function

of its first argument, as well as and , in terms of the key

concepts of convex analysis (see Appendix A).

Proposition 1: For any the function

is proper, lower semicontinuous (lsc), coercive, and convex. If

, then is also strictly convex.

Proof: For , , thus,

is the sum of the identity function with , which are both

proper, lsc, coercive, and convex. For any ,

; since is also proper, lsc,

coercive, and convex, so is . Finally, if ,

is strictly convex (see the definition in Appendix A), thus,

is also strictly convex.

Proposition 2: Function is proper, lsc, coercive, and

convex. If , for , is also strictly convex.

Function is proper, lsc, and convex. Function is

coercive if is injective. Function is strictly convex if

is injective and , for .

Proof: Function is the sum of proper, lsc, coercive,

convex functions. If , for , the functions in

the sum are also strictly convex, thus, is also strictly convex.

Function is the composition of a proper, lsc, convex

functions with a linear function, thus, it is proper, lsc, and

convex. If is injective, its null set is the zero vector, thus,

, thus, is coercive. Finally,

if is injective and , for , is strictly

convex, thus, so is .

B. Regularization Criteria: Total Variation and Frame-Based

Analysis and Synthesis Formulations

Under a maximum a posteriori (MAP) or regularization cri-

terion, the image estimate is obtained by solving a variational

problem: minimizing an objective function, which includes the

log-likelihood term plus a regularizer [25], [34], [51], under a

positivity constraint. We will now describe three possible ways

of building such an objective function.

1) Total Variation Regularization: A standard choice for reg-

ularization of digital image restoration/reconstruction problems

is the isotropic discrete TV regularizer [9]

(8)

where and denote the horizontal and vertical first-

order differences at pixel , respectively. This regularizer is a

discrete version of the TV regularizer proposed in [44]. The re-

sulting optimization problem is

(9)

with

(10)

where is the regularization parameter and the role of

, the indicator of the first orthant, is to impose the nonnega-

tivity constraint on the estimate. The next proposition concerns

the existence and uniqueness of minimizers of .

Proposition 3: Consider the function defined in (10).

a) is proper, lsc, and convex.

b) If the intersection of the space of constant images

(which is the null space of )

with the null space of is just the zero vector, then

is coercive, and (9) has a solution.

c) If is injective, then (9) has a solution.

d) If , and at least one element of is strictly

positive, then (9) has a solution.

e) If is injective and , for , then

is coercive and strictly convex, thus, there is a unique

solution.

Proof:

a) the functions , , and (Proposition 2) are

proper, lsc, and convex, thus, so is their sum;

b) similar to [10];

c) if is injective, its null space is just the zero vector, thus,

and are coercive;

d) if all the elements of are nonnegative and at least one

is positive, then the constant vector doesn’t

belong to the null space of and the result follows from

b);

e) if is injective and , for ,

is strictly convex (Proposition 2), thus, so is and its

minimizer is unique.

2) Frame Analysis Regularization: The use of a regularizer

which is a direct function of the unknown image [as in (9)–(10)]

corresponds to a so-called analysis-based prior/regularizer [22].

Another well-known type of analysis-based regularization pe-

nalizes the norm (typically ) of the representation coefficients

of on some wavelet basis or tight frame (e.g., of wavelets,

curvelets, or other multiscale system), given by , where

is the analysis operator associated with the frame [36]. This ap-

proach leads to the following optimization problem:

(11)

where FA stands for frame analysis and

(12)

as shown previously, is the regularization parameter and

imposes the nonnegativity constraint on the estimate. The next

proposition addresses the existence and uniqueness of mini-

mizers of .

Proposition 4: Consider the function defined in (12).

a) is proper, lsc, convex, and coercive, thus, has a min-

imizer.

b) If is injective and , for , then

is strictly convex with a unique minimizer.

Proof:

a) The functions , , and (Proposition 2) are

proper, lsc, and convex, thus, so is their sum. Furthermore,

since is the analysis operator of a tight frame, its null

space is simply the zero vector, thus is coercive.

b) If is injective and , for ,

is strictly convex (Proposition 2), thus, so is and its

minimizer is unique.
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Fig. 1. ADMM algorithm.

3) Frame Synthesis Regularization: Finally, another well-

known class of approaches is known as synthesis-based [22].

Here, the unknown image is represented on a frame and then

the coefficients of this representation are estimated from the

observed data, under some regularizer. With de-

noting the synthesis matrix of the frame, the image is written as

, where is the vector of representation coefficients,

and the resulting optimization problem is

(13)

where FS stands for frame synthesis and

(14)

Naturally, the indicator function forcing the image estimate

to be nonnegative is applied to the image and not its coeffi-

cients. The next proposition addresses the existence and unique-

ness of minimizers of .

Proposition 5: Consider the function defined in (14).

a) is proper, lsc, convex, and coercive, thus, has a

minimizer.

b) If is injective and , for , then

is strictly convex with a unique minimizer.

Proof:

a) The functions , , and (Proposi-

tion 2) are proper, lsc, and convex, thus, so is their sum.

Furthermore, since is coercive, is coercive.

b) Same proof as that of Proposition 4 (b).

III. ALTERNATING DIRECTION METHOD

OF MULTIPLIERS (ADMM)

A. Standard ADMM

The key tool in this paper is the alternating direction method

of multipliers (ADMM) [21], [28], [29]. Consider an uncon-

strained problem of the form

(15)

where , , and . The ADMM

for this problem is defined in Fig. 1.

For later reference, we now recall a theorem by Eckstein and

Bertsekas in which convergence of (a generalized version of)

ADMM is shown.

Theorem 1 (Eckstein-Bertsekas, [21]): Consider problem

(15), where has full column rank and

and are closed, proper, convex functions. Consider

arbitrary and . Let

and be two sequences such that

and

Consider three sequences ,

, and that satisfy

and

(16)

Then, if (15) has a solution, say , the sequence converges

to . If (15) does not have a solution, then at least one of the

sequences or diverges.

According to Theorem 1, it is not necessary to exactly solve

the minimizations in lines 3 and 4 of ADMM: as long as the se-

quences of errors are absolutely summable, convergence is not

compromised. As shown in Section IV-D, this fact is quite rel-

evant in designing instances of ADMM, when these minimiza-

tions lack closed form solutions.

The proof of Theorem 1 is based upon the equivalence

between ADMM and the DRS method applied to the dual

of problem (15). For recent and comprehensive reviews of

ADMM, DRS, and their relationship with Bregman and

split-Bregman methods, see [23] and [49].

B. Variant of ADMM

Notice that the ADMM and the associated convergence the-

orem presented in the previous subsection apply to objective

functions of the form (15), i.e., which are the sum of two func-

tions. The fact that our objective functions (9), (11), and (13)

involve more than two terms requires finding a way of mapping

an objective with more than two terms into (15) so that the re-

sulting ADMM is easily applicable and the conditions of The-

orem 1 still hold.

Consider a generalization of problem (15), where instead of

two functions, we have functions, that is

(17)

where are closed, proper, convex functions,

and are arbitrary matrices. The minimiza-

tion problem (17) can be written as (15) using the following

correspondences:

... (18)
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where , and given by

(19)

where and .

We are now in position to apply ADMM. The resulting algo-

rithm has exactly the same structure as the one in Fig. 1 with

...
...

The fact that turns Step 3 of the algorithm into a

simple quadratic minimization problem, which has a unique so-

lution if has full column rank

(20)

where (and, naturally, ) and

the second equality results from the particular structure of in

(18).

Furthermore, our particular way of mapping problem (17)

into problem (15) allows decoupling the minimization in Step

4 of ADMM into a set of independent ones. In fact

(21)

which can be written as

...

...
...

...

Clearly, the minimizations with respect to are de-

coupled, thus, can be solved separately, leading to

(22)

for , where

The minimization problem in the right hand side of (22) de-

fines the so-called Moreau proximity operator (see Appendix B

for definitions and references) of (denoted as ), ap-

plied to , thus

(23)

For some functions, the corresponding Moreau proximity op-

erators can be computed exactly in closed form [12], [14]. A no-

table case is , for which the corresponding prox-

imity operator is simply a soft threshold

(24)

where denotes the component-wise application of the

sign function, denotes the component-wise product, de-

notes the vector of absolute values of the elements of , and the

maximum is computed in a component-wise fashion. For other

functions, such as the TV regularizer, the corresponding Moreau

proximity operator does not have a simple close form and needs

to be computed numerically.

Some comments on the algorithm are relevant. Firstly, being

exactly an ADMM, and since all the functions , for

, are closed, proper, and convex, convergence is guar-

anteed if has full column rank. This full column rank condi-

tion, which is also required for the inverse in (20) to exist, will

be studied in the next section for each of the specific problems

considered in this paper.

IV. POISSONIAN IMAGE RECONSTRUCTION WITH

TV-BASED REGULARIZATION

A. Applying ADMM

In this section, we apply the algorithmic framework presented

in Section III-B to the total-variation-based criterion (9) and

(10). The objective function in (10) has the form (17) with

(25)

and

(26)

The resulting ADMM algorithm, which we call PIDAL-TV

(Poisson image deconvolution by augmented Lagrangian—total

variation), is shown in Fig. 2.

B. Implementation Aspects and Computational Cost of

PIDAL-TV

Notice that line 7 of PIDAL-TV corresponds to (20) for the

particular form of matrix in this problem:

[see (25) and (26)], which is of course of full column rank.

Moreover, if models a periodic convolution, it is a block cir-

culant matrix and the inversion in line 7 of the algorithm can be

implemented in operations, via the FFT algorithm.

Although this is a well-known fact, we include the derivation in

the next paragraph, for the sake of completeness.

Assuming that the convolution is periodic, is block-circu-

lant with circulant blocks and can be factorized as

(27)
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Fig. 2. PIDAL-TV algorithm.

where is the matrix that represents the 2-D discrete Fourier

transform (DFT), is its inverse ( is unitary, i.e.,

), and is a diagonal matrix containing

the DFT coefficients of the convolution operator represented by

. Thus, (with , since is a real matrix)

(28)

(29)

where denotes complex conjugate and the squared ab-

solute values of the entries of . Since is diagonal, its

inversion has cost. Products by and can be carried

out with cost using the FFT algorithm.

The minimization in line 9 of PIDAL-TV is separable. With

respect to each component, it has the form

(30)

It is simple to show that the solution of (30) leads to

(31)

where denotes the th component of . Notice that

is always a nonnegative quantity.

The minimization in line 11 of PIDAL-TV is, by definition,

the Moreau proximity operator [16],

which corresponds to applying TV-denoising to . In the fol-

lowing, we address in detail the issue of how to implement this

operator and its implications to the convergence of PIDAL-TV.

Suffice it to say here that most TV-denoising algorithms have

cost.

The minimization in line 13 of PIDAL-TV corresponds to the

projection of onto the first orthant, thus

(32)

where the maximum is to be understood in a component-wise

sense; this projection has of course cost.

From the observations in the previous paragraphs, the compu-

tational costs of the lines of PIDAL-TV are the following. Lines

3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 have cost. Lines 6, 7,

8, and 14 have cost. Thus, the computational cost of

PIDAL-TV scales as .

C. Convergence of PIDAL-TV: Exact TV

Convergence of PIDAL-TV is addressed by the following

corollary of Theorem 1, for the (ideal) case where

(line 11) is computed exactly. The minimizations in lines 9 and

13 have the closed-form solutions given in (31) and (32).

Corollary 1: If the minimizations in lines 9, 11, and 13 of

PIDAL-TV are solved exactly, then the algorithm converges to

a minimizer of (10), provided one exists.

Proof: PIDAL-TV is an instance of ADMM in Fig. 1,

where and has the form (19), with and the

functions given in (25), which are all closed, proper, and

convex. Function is, thus, also closed, proper, and convex.

Matrix has full column rank. The minimiza-

tion in line 4 of ADMM corresponds to lines 9, 11, and 13

of PIDAL-TV; if these minimizations are solved exactly, then

according to Theorem 1, convergence to a minimizer of the

objective function, if one exists, is guaranteed.

D. Convergence of PIDAL-TV: Approximate TV

As is well known, the (isotropic) TV denoising problem has

no closed form solution, with many algorithms having been

proposed to solve it (see [9], [11], [17], [44], and references

therein). Here, we adopt Chambolle’s algorithm [9].

Of course, in practice, Chambolle’s (or any other iterative)

algorithm can only run for a finite number of iterations, thus,

the minimization in line 11 of PIDAL-TV can only be solved

approximately. However, as stated in Theorem 1, this will not

compromise the convergence of ADMM/PIDAL-TV, if the cor-

responding error sequence is summable. To achieve this goal,

we adopt a simple procedure in which the internal variables of

Chambolle’s algorithm (the discrete gradient, see [9]) are ini-

tialized, in each iteration of PIDAL-TV, with those obtained in

the previous iteration. We will now formalize this idea and pro-

vide experimental evidence that this procedure does produce a

summable error sequence.

Let us define and let be

the result of running iterations of Chambolle’s algorithm with

its internal variables initialized at , where is the obtained

(denoised) image (which is approximately ) and the

final values of the internal variables. Consider now two possible

implementations of line 11 of PIDAL-TV

(33)

(34)
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Fig. 3. Error sequences � and � for � � � and � � �� (number of
iterations of Chambolle’s algorithm) and fitted functions of the form � � to

the sequences �� � � � ������ � � � ����.

Implementation 11(a) uses the proposed internal variables ini-

tialization, whereas in 11(b) the internal variables are always

initialized to the same values (usually zeros). Consider now the

corresponding error sequences

(35)

(36)

Notice that since the two other minimizations (lines 9 and 13)

are solved exactly, the sequences and correspond to the

sequence in Theorem 1.

The following experiment provides evidence that is sum-

mable, but is not. Consider the same setup as in the first

experiment in [50]: the original image is a portion of the Cam-

eraman image scaled to a maximum value of 3000 and then

blurred with a Gaussian kernel of unit variance; the observed

image is generated according to (1). As in [50], we set

and . The number of iterations of Chambolle’s

algorithm is set to five or 20. To compute (almost)

exactly, we run 4000 iterations of Chambolle’s algorithm. In

Fig. 3, it is clear that the sequences are not even decreasing,

let alone summable. In contrast, the sequences approach

zero, for both choices of . Evidence for the summability of the

sequences is provided by the fact that by fitting a function

of the form to the tails of these sequences (i.e., for

), we obtain values of that are larger than one

( , for , and , for ).

In conclusion, the experiment reported in the previous para-

graph, though of course not a formal proof, strongly suggests

that by implementing line 11 of PIDAL-TV as in (33), the cor-

responding error sequence (with respect to the exact minimiza-

tions) is summable, thus, we can invoke Theorem 1 to state

that PIDAL-TV converges. Moreover, this experiment shows

that this is achieved with a quite small number of iterations in

each call of Chambolle’s algorithm. In all our experiments with

PIDAL-TV, we, thus, use (33) with .

Fig. 4. PIDAL-FA algorithm.

V. POISSONIAN IMAGE RECONSTRUCTION WITH

FRAME-BASED REGULARIZATION

We now consider the frame-based analysis criterion (11), and

the frame-based synthesis criterion (13).

A. Analysis Criterion

In this case, the objective function is given by (12), which has

the form (17) with

(37)

and

The resulting instance of ADMM, which we call PIDAL-FA

(where FA stands for “frame analysis”), is shown in Fig. 4.

The matrix being inverted in line 7 results from assuming that

is the analysis operator of a 1-tight (Parseval) frame, thus,

. Notice that line 7 of PIDAL-FA

corresponds to (20) for the particular form of matrix in this

case, , which of course has full column

rank. As in PIDAL-TV, if models a convolution, the inverse

can be computed with cost, using

the FFT [see (29)].

For most tight frames used in image processing, products by

and correspond to the inverse and direct transforms for

which fast algorithms exist. For example, in the case of trans-

lation-invariant wavelet transforms, these products can be com-

puted using the undecimated wavelet transform with

cost [33], [36]. Curvelets also constitute a Parseval frame for
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which fast implementations of the forward and in-

verse transform exist [7]. Yet another example of a redundant

Parseval frame is provided by complex wavelets, with the cor-

responding direct and inverse transforms having cost [32],

[47]. In conclusion, for a large class of choices of , the cost of

lines 6, 10, and 15 of PIDAL-FA is .

The expressions in lines 9 and 13 of PIDAL-FA are similar

to those in lines 9 and 13 of PIDAL-TV, respectively; see also

(30)–(32).

The minimization in line 11 is, by definition, the Moreau

proximity operator of the norm [16], which corresponds to

a soft-threshold (24).

In summary, from the observations in the previous para-

graphs, the computational costs of the lines of PIDAL-FA are

the following. Lines 3, 4, 5, 9, 11, 12, 13, and 16 have

cost. Lines 6, 7, 8, 10, 14, and 15 have cost. Thus,

the computational cost of PIDAL-FA scales as .

Finally, convergence of PIDAL-FA is addressed by the fol-

lowing corollary of Theorem 1.

Corollary 2: The PIDAL-FA algorithm converges to a mini-

mizer of (11), provided one exists.

Proof: The proof is similar to, but simpler than, that of

Corollary 1, since all the minimizations involved are solved ex-

actly in closed form. Clearly, matrix has

full column rank, thus, Theorem 1 guarantees convergence to a

minimizer of the objective function.

B. Synthesis Criterion

In the synthesis formulation, the objective function is given

by (13), which has the form (17) with

and

The resulting ADMM algorithm, which we call PIDAL-FS

(where FS stands for “frame synthesis”), is shown in Fig. 5.

Notice that line 7 of PIDAL-FS corresponds to (20)

for the particular form of matrix in this problem:

. This matrix has of course full

column rank. However, even if models a periodic convolu-

tion (thus, is block circulant), the question remains of how to

efficiently compute the matrix inverse in line 7, since is

not block circulant. The next paragraph shows how to sidestep

this difficulty.

Consider that matrix corresponds to a 1-tight (Par-

seval) frame, i.e., , and start by noticing that

.

Applying the Sherman–Morrison–Woodbury (SMW) matrix

inversion formula yields

(38)

Fig. 5. PIDAL-FS algorithm.

Using the factorization (27), we have

(39)

where both inversions have cost since and are di-

agonal, thus, products by the matrix in (39) have the

cost associated to the FFT implementation of the products by

and .

The leading cost of line 7 of PIDAL-FS (given by (38)) will,

thus, be either or the cost of the products by

and . As mentioned previously, for a large class of choices of

frames, matrix-vector products by and have

cost.

From the observations in the previous paragraphs, the compu-

tational costs of the lines of PIDAL-FS are the following. Lines

3, 4, 5, 9, 10, 11, 12, 13, 15, and 16 have cost. Lines 6, 7,

8, and 14 have cost. Thus, the computational cost of

PIDAL-FS scales as .

Finally, convergence of PIDAL-FS is addressed by the fol-

lowing corollary of Theorem 1.

Corollary 3: The PIDAL-FS algorithm converges to a mini-

mizer of (13), provided one exists.

Proof: The proof is similar to that of Corollary 2, since all

the minimizations involved are solved exactly in closed form.

Clearly, matrix has full column rank,

thus, Theorem 1 guarantees convergence to a minimizer of the

objective function.
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TABLE I
INITIALIZATION OF THE PIDAL ALGORITHMS

VI. EXPERIMENTS

We now report experiments where PIDAL is compared

with other state-of-the-art methods, namely those proposed

in [20], [27], [50]. All the algorithms are implemented in

MATLAB and the experiments are carried out on a PC

with a 3.0 GHz Intel Core2Extreme CPU, with 4 Gb of

RAM, under Microsoft Windows Vista. Unless otherwise

indicated, we manually adjust the regularization parameter

to achieve the highest improvement in signal-noise-ratio

ISNR . The PIDAL algo-

rithms are initialized as shown in Table I.

According to Theorem 1, ADMM (thus, PIDAL) converges

for any choice of . However, this parameter does influ-

ence the speed of the algorithms. To our knowledge, there is no

work on methods to choose this parameter for optimal speed; in

our experiments, we use the following rule of thumb, found to

achieve satisfactory results: , where is the max-

imum intensity of the original image. We have observed that the

results do not change significantly if this parameter is changed

to one order of magnitude below or above this choice.

A. Comparison With [50]

We begin by comparing with the algorithms (PIDSplit and

PIDSplit+) proposed in [50], which (as acknowledged by the

authors of [50]) is based upon the earlier version of PIDAL-TV

[25]. The setup was already described in Section IV-D: the orig-

inal image is a portion of the Cameraman image,

scaled to a maximum value of 3000 and blurred with a Gaussian

kernel of unit variance; the observed image is generated ac-

cording to (1); the regularization parameter is set to .

In the experiments reported in [50], the TV denoising step of

PIDAL-TV is implemented by an inner iterative algorithm with

a tight stopping criterion based upon the change between two

consecutive images. Our implementation of PIDAL-TV, as ex-

plained in Section IV-D, uses a small and fixed number of it-

erations (just 5) of Chambolle’s algorithm, which is initialized

as explained in that section. Because PIDSplit and

have no inner loop, each of its iterations is roughly equivalent

to one iteration of PIDAL-TV with just one iteration of Cham-

bolle’s algorithm. In [50], PIDSplit and were run

for 2150 iterations; we, thus, run PIDAL-TV for

iterations, corresponding to roughly the same amount of

computation. Fig. 6 shows the evolution of the mean absolute

error MAE and ISNR along the first 160 iter-

ations of PIDAL-TV (as well as elapsed time); it is clear that

convergence is achieved after less than 140 iterations (4.3 s in

our computer). This is dramatically less than what is reported

in [50] for PIDAL-TV; in terms of iterations of PIDSplit and

PIDSplit+, this corresponds to approximately it-

erations, thus, also much less than the 2150 iterations (11 s) re-

Fig. 6. Evolution of the MAE and ISNR along the iterations and elapsed time
of PIDAL-TV, for the experiment of Section VI-A.

ported in that work. Finally, Fig. 7 shows the original, observed,

and restored images; as expected, the image estimates produced

by PIDSplit and PIDAL-TV are very similar.

Finally, we also tested PIDAL-FA and PIDAL-FS on the same

example, using a fully redundant Haar frame. The plots of ISNR

and MAE are presented in Figs. 8 and 9, while the estimated

images are shown in Fig. 10.

These results show that, in this example, PIDAL-FA performs

slightly better than PIDAL-TV in terms of ISNR and similarly

in terms of MAE, with PIDAL-FA achieving its best estimate

faster than PIDAL-TV. The synthesis-based criterion imple-

mented by PIDAL-FS is a little worse in terms of both ISNR

and MAE, and PIDAL-FS also takes longer than PIDAL-FA

to achieve its best estimate. This poorer performance of the

synthesis formulation (in line with recent results in [48]) was

also found in all the experiments reported in the following, so

we will only present results for PIDAL-TV and PIDAL-FA.

B. Comparison With [27]

The next experiment follows [27]: the original image is the

complete (256 256) Cameraman, scaled to a maximum value

of 17600, the blur is 9 9 uniform. As in the experiment re-

ported in the previous subsection, this is a high SNR situation.

Fig. 11 shows the evolution of the MAE and ISNR along the

execution of PIDAL-TV; it is clear that convergence is achieved

after about 160 iterations (25 s in our computer). A detail of the

blurred, and estimated images (from [27] and using PIDAL-TV

and PIDAL-FA) are shown in Fig. 12. Although the TV and FA

regularizers are considerably simpler than the locally adaptive

approximation techniques used in [27], both PIDAL-TV and

PIDAL-FA achieve higher ISNR values (7.0 and 6.95 dB, re-

spectively) than that reported in [27] (6.61 dB).

C. Comparison With [20]

In the last set of experiments we compare our approach

with another recent state-of-the-art algorithm (herein referred
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Fig. 7. Experiment of Section VI-A. Top row: (left) original; (right) blurred and
noisy image. Bottom row: estimate from [50]; estimate by PIDAL-TV �ISNR �
��� dB�.

Fig. 8. Experiment of Section VI-A. Evolution of the MAE and ISNR along
the iterations and elapsed time of PIDAL-FA.

to as DFS), proposed in [20], for which the MATLAB im-

plementation is available at www.greyc.ensicaen.fr/~fdupe.

That work includes comparisons with other methods, namely:

Richardson–Lucy with multiresolution support wavelet regular-

ization (RL-MRS) [52]; fast translation invariant tree-pruning

reconstruction (FTITPR) [58]; Richardson–Lucy with total

variation regularization (RL-TV) [18]. The results in [20] show

that the algorithm therein proposed generally achieves better

performance (i.e., lower MAE) than the others, except for one of

the images (a microscopy cell image) where RL-MRS outper-

forms DFS. For this reason, we will report results comparing

PIDAL-TV and PIDAL-FA versus DFS and RL-MRS. For

PIDAL-FA, we use a redundant Haar frame for the Cameraman

image and Daubechies-4 for the other images. As in [20], the

Fig. 9. Experiment of Section VI-A. Evolution of the MAE and ISNR along
the iterations and elapsed time of PIDAL-FS.

Fig. 10. Experiment of Section VI-A. Left: PIDAL-FA estimate �ISNR �
��� dB�. Right: PIDAL-FS estimate �ISNR � ��� dB�.

Fig. 11. Experiment of Section VI-B. Evolution of the MAE and ISNR along
the iterations and elapsed time of PIDAL-TV.

original images are scaled to a maximum value , belonging

to 5, 30, 100, 255, and then blurred by a 7 7 uniform filter.

The DFS algorithm does not include a stopping criterion, with

the results reported in [20] having been obtained by running a

fixed number (200) of iterations. In order to compare the run-

ning times of PIDAL-TV, PIDAL-FA, and DFS, we run DFS
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TABLE II
RESULTS OF THE COMPARISON OF PIDAL-TV AND PIDAL-FA WITH THE ALGORITHMS PROPOSED IN [20] AND [52]

(AVERAGE OVER 10 RUNS); THE REPORTED TIMES ARE IN SECONDS

Fig. 12. Experiment of Section VI-B. Top row: blurred noisy image (left) and
estimate from [27]�ISNR � ���� dB�. Bottom row: PIDAL-TV estimate (left,
ISNR � ��� dB); PIDAL-FA estimate (right, ISNR � ���	 dB).

until the MAE decreases less than 0.01% between two consec-

utive iterations. Our algorithms are stopped when the following

condition is met:

with if and in all the other cases.

Notice that this favors DFS, since a stopping criterion based

upon MAE is not applicable in practice due to the absence of

the original image.

The results reported in Table II show that, in nine out of the

12 experiments, either PIDAL-TV or PIDAL-FA achieves the

lowest MAE. Notice however, that the main goal of this paper

was not to introduce a new restoration criterion aiming at ob-

taining the lowest possible MAE (or any other performance

measure), but rather to introduce algorithms to solve the opti-

mization problems resulting from variational formulations of

Poissonian image restoration. In terms of computational effi-

ciency, PIDAL-TV and PIDAL-FA are clearly faster than the

DRS algorithm, except in the very low SNR situations

for two of the images (Cameraman and Cell).

VII. CONCLUDING REMARKS

We have propose new algorithms to handle the optimiza-

tion problems resulting from regularization approaches to the

restoration of Poissonian images. These optimization problems

include several difficulties: the Poisson log-likelihood is non-

quadratic and its gradient is not Lipschitz; the state-of-the-art

regularizers are nonsmooth; there is a nonnegativity constraint.

We have started by presenting sufficient conditions for existence

and uniqueness of solutions of these optimization problems, for

the following regularizers: total-variation, frame-based anal-

ysis, and frame-based synthesis. These problems were handled

by adapting the alternating direction method of multipliers

(ADMM) to their particular forms. This adaptation is based

upon a new way of using ADMM to deal with problems in

which the objective function is a linear combination of convex

terms, which can be used in many other problems. We gave

sufficient conditions for convergence and proved that these are

met in the considered cases. Finally, we have experimentally

compared the proposed algorithms against competing tech-

niques, showing that they achieve state-of-the-art performance

both in terms of speed and restoration accuracy.

APPENDIX A

CONVEX ANALYSIS

We very briefly review some basic convex analysis results

used in this paper. For more details see [16], [61].

Consider a function , where

is called the extended real line, and is a real Hilbert space. The

domain of function is the set .

The function is convex if

, for any and any . Convexity

is said to be strict if the inequality holds strictly for any

and .

The function is called proper if it is not equal to every-

where and is never equal to .

The function is lower semicontinuous (lsc) at if

where is the -ball around ,

and is the norm in the Hilbert space . A function is called

lsc if it is lsc at every point of its domain.
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A function is called coercive if it verifies

. Proper, lsc, coercive func-

tions play a key role in optimization via the following theorem

[16]:

Theorem 2: If is a proper, lsc, coercive, convex function,

then the set is nonempty.

The next theorem concerns strictly convex functions.

Theorem 3: If is a strictly convex function, the set

possesses at most one element.

APPENDIX B

MOREAU PROXIMITY OPERATORS

Consider a function , where is a real Hilbert

space (with norm denoted by ), assumed to be convex, lsc,

and proper (see Appendix A for definitions and implications

of these properties). Consider also the function ,

defined as

(40)

Clearly, for any , the function is convex, lsc, proper, and co-

ercive, so, thus, is the function . According to The-

orem 2 (Appendix A), the set of minimizers of is not empty.

Moreover, since is strictly convex, is strictly convex, thus,

the minimizer of is unique (see Theorem 3 in Appendix A).

From these facts, the so-called Moreau proximity operator (see

[12], [14]–[16], [37], and [38])

(41)

is well defined. Many examples of Moreau proximity operators

can be found in [12] and [14].
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