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Abstract

A new general theory about restoration of network paths is first introduced. The theory
pertains to restoration of shortest paths in a network following failure, e.g., we prove that
a shortest path in a network after removing k edges is the concatenation of at most k + 1
shortest paths in the original network.

The theory is then combined with efficient path concatenation techniques in MPLS
(multi-protocol label switching), to achieve powerful schemes for restoration in MPLS
based networks. We thus transform MPLS into a flexible and robust method for forward-
ing packets in a network.

Finally, the different schemes suggested are evaluated experimentally on three large
networks (a large ISP, the AS graph of the Internet, and the full Internet topology). These
experiments demonstrate that the restoration schemes perform well in actual topologies.

1 Introduction

Multiprotocol label switching (MPLS) is intended to support network-wide optimizations
such as traffic engineering and quality-of-service (QoS). Although requirements for these goals
have been outlined [5], there is little understanding of how to make effective use of MPLS
mechanisms to administer large IP networks. A major drawback of MPLS is large overhead
and hence slow response to topological changes in the network. For example, when a link
along the LSP (Label Switch Path) fails, a new LSP must be established and the old LSP
torn down, which can introduce considerable overhead and delay. More generally, MPLS is
a low-level (layers 2&3) mechanism for establishing paths and forwarding packets. It must
be augmented by a methodology for routing and restoration that determines which paths to
establish (or tear down), matching current demands and resources, and that overcomes the
associated overhead and delay. Such a methodology must work at a higher level of abstraction
than individual paths and links.

In this paper, we first introduce new theoretical results about shortest paths, with implica-
tions for network restoration. Secondly, we apply these results to design instant, low-overhead
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restoration schemes for MPLS paths, using path concatenation via the MPLS stack mecha-
nism. We describe different strategies for implementing such restoration, and demonstrate
their advantages empirically.

The new graph-theoretic results, presented in the next section, support a general restora-
tion capability for multiple edge failures in arbitrary networks. Theorem 1 shows that in
an unweighted network, a reroute necessitated by any single link failure can be obtained by
concatenating at most two surviving shortest paths from the original network. While a single
fault is the most important case, Theorem 1 is a much more general result, showing that
concatenating at most k + 1 such paths suffices to restore any route in the case of any k link
failures. For the weighted case, Theorem 2 shows that k edge failures can be rerouted by
concatenating an interleaving of at most k + 1 base paths and k edges.

Applying these results, we next show how path concatenation can support restoration
methodologies between all pairs of points in an MPLS domain. Rigid MPLS is thus trans-
formed into a flexible and fault-tolerant set of routes that can withstand topological changes
and failures. This provides an interface that allows network engineers to reason about families
of paths that can be efficiently established and restored via MPLS.

The operation of concatenating paths using the MPLS stack mechanism is simple [6, 2].
Packets are routed along paths according to labels: the label indexed into the ILM (Incoming
Label Map) of the LSR (Label Swapping Router), and the associated entry in the ILM
indicates which outgoing interface to use, and which label to swap in place of the incoming
label. (Although ATM networks route cells using mechanism similar to MPLS, ATM is not
flexible enough to efficiently support the applications we describe. In place of the general push
and pop, ATM uses a strict two-level hierarchy: virtual circuits obtained by concatenating
virtual paths.) Applications of path concatenation in MPLS have been suggested before. For
example, using a small set of LSP’s to compose a larger set has been discussed in general
terms in [2, 6]. ⊤A

To our knowledge, our work is the first to propose and investigate the use of path con-
catenations for backup path establishment and restoration. Although there is substantial
literature on restoration in virtual circuit networks (see e.g. [13, 7, 17, 11]), and in MPLS
network [16, 14, 20, 15], our path-concatanations based approach is novel as it is tailored to
exploit specific characteristics of MPLS. ⊥A

In considering the application of our restoration schemes to other technologies such as
WDM and ATM, the trade-off between the cost of setting up and tearing down virtual circuits
versus the cost of path concatenation has to be evaluated. The higher the former cost and the
lower the latter, the more attractive our scheme. In MPLS, the concatenation cost is very low
when the stack mechanism is used. In WDM the cost of setting up and tearing down is very
high, and therefore the scheme is again attractive, although the concatenation cost is not as
low as in MPLS. Paths may be concatenated in WDM or ATM by going up to layer 3 at the
node at the end of one path and the beginning of the next path. In each such node a look-up
is necessary, to find the next virtualcircuit or path leading to the destination. Still, employing
our restoration scheme with WDM, this cost is much lower than the overheads incurred when
setting up and tearing down new connections. The detailed trade-offs for ATM are less clear,
and are not studied in this paper.

Although MPLS deployment is intended primarily to provide alternatives to shortest-path
OSPF (and other IGP-like) routes, and to support traffic engineering and QoS routing, the
ability to restore shortest path routes in MPLS is important for the following reasons:
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1. Leading designs of QoS routing and traffic engineering in MPLS clouds suggest em-
ploying shortest path routing over subnets of the original network [5]. Such restrictions
might be the subnetwork that consists of all the OC48 links, all the links with available
capacity over some timescale, or all the links with delay below an appropriate threshold.
That is, using explicit MPLS routing, different families of shortest paths are maintained
in the network; traditional shortest paths, and shortest paths over different restrictions
of the network.

2. While the QoS paths may use non-shortest path routes, the signaling used to maintain
and manage these paths is routed over shortest paths. Thus, restoring the shortest path
quickly is an important step in the restoration of QoS routes.

⊤A
Without our restoration scheme, if “good” backup paths (e.g., shortest paths) are desired,

then typically each link failure would trigger the establishment of many new paths. Previous
work proposed to address this costly establishments by compromising the “quality” of the
backup paths (e.g., use non-shortest paths); for the simpler aim of maintaining connectivity,
it is sufficient to use a small number of pre-established paths [16, 3]. Our approach enables
fast restoration without compromising the quality of backup paths.

One limitation of our restoration by path concatenation appoach is that while it provides
a fast mechanism for restoring LSP’s, it does not include a mechanism to manage bandwidth.
Hence techniques of efficiently reserving bandwidth [16, 14, 18] in the original path and the
disjoint backup path are irrelevant to our scheme. ⊥A

2 Short MPLS overview

Here we review some basic concepts of MPLS. Readers familiar with MPLS should skip this
section and continue in Section 3.

Standard IP routing is hop-by-hop, where in each router the decision is based only on
the destination address of the packet. At any given point in time, all packets with the same
destination address are routed in exactly the same way, regardless of any other parameter of
the packet. At each router along the packet path, the destination address of the packet is
examined and the longest prefix that matches that address is found, out of all those prefixes
(usually several tens of thousands) in the router’s forwarding table. The packet is then routed
according to the information associated in the forwarding table with this Best Matching Prefix
(BMP).

The inability to distinguish between different flows with the same BMP, and the cost of
computing the BMP at each router, originally motivated the development of label switching
protocols. All the packets of the same flow are tagged with a unique label upon entering the
network layer. At each router on the path, the label is used to switch (rather than route) the
packet to its next hop. That is, the label is used as an index into a switching table.

Each LSR maintains two basic tables, the ILM which is used for switching and the For-
warding Equivalence Class (FEC) Map which is used for routing of packets that arrive without
a label. The ILM table is implemented in hardware in order to perform switching at high
rates. Each entry of the ILM contains the next link on the path (interface card), the label
that should be swapped into the packet according to the downstream label assignment, and
possibly other fields such as an operation (to pop or push a new label on the packet).
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The FEC Map is a forwarding table used by packets that enter the MPLS cloud. Each
entry in the table corresponds to all the messages that belong to the same FEC, i.e., that are
forwarded through the MPLS cloud in the same way. Packets that belong to the same FEC
will get the same label and travel the same route in the entire MPLS domain. An example
of a FEC could be: all packets to a given destination with the same QoS requirements.

Thus, label switching supports the concept of “route once and switch many”: For all the
packets in a flow, routing is performed once when setting up the label switched path (LSP),
and the label is then used for all the packets at all the intermediate switches. The LSP
mechanism affords the ability to do network-wide optimizations such as traffic engineering
and quality-of-service (QoS).

The labels in MPLS are a scarce resource. First, they are the key element in the scalability
of MPLS, and the more labels needed, the larger the ILM tables. Since the ILM is a hardware
switching table that has to operate at high speed, it is built out of expensive memories and
its size can be critical. Thus, various methods to reduce the number of labels necessary have
been considered, e.g., merging LSP’s, which means using the same label for all the packets
with the same destination even if they arrive from different ports.

3 Theoretical properties of shortest paths

In this section we present our theoretical results. In particular, we show that each new
shortest path after k edge failures can be represented as a concatenation of k + 1 shortest
paths from the original network if the network is unweighted, and an interleaving of k + 1
such original shortest paths and k edges in the weighted case. In particular, if a base set of
LSP’s are provisioned in the network that includes all-pairs shortest paths, then every path
can be restored after a single edge failure with the concatenation of at most two or three base
LSP’s. These results are formalized below.

Theorem 1 After k edge failures in an unweighted network, each new shortest path is the
concatenation of at most k + 1 original shortest paths.

Proof: Let G = (V,E) be a communication graph, let Ek be a set of k edges in E, let
G′ = (V,E − Ek), and let p be a shortest path from s to t in G′. We will prove that p is a
concatenation of at most k + 1 shortest paths of G.

Define w0 = s and let v1 be the closest vertex to s on p such that the prefix of p from s
to v1 is not a shortest path in G. Denote by b1 a shortest path from s to v1 in G. Since b1 is
shorter than the prefix of p from s to v1, b1 must contain an edge of Ek. Let w1 be the vertex
preceding v1 on p.

Constructing inductively and having defined vi−1 and wi−1, if the piece of p from wi−1 to
t is not a shortest path in G we let vi be the closest vertex to wi−1 on the suffix of p from
wi−1 to t such that the subpath of p from wi−1 to vi is not a shortest path of G. We denote
the shortest path in G from wi−1 to vi by bi, and the vertex preceding vi on p by wi. As
above, bi must contain an edge of Ek. As an example Figure 1(a) shows the path p and four
bypass paths b1, b2, b3, b4, the edges e1, e2, and e3 are in Ek. The bypass paths b1, b2, b3, b4

share edges and vertices, Figure 1(b) shows the same picture as Figure 1(a) where each vertex
or edge are drawn only once.

We will prove that the greatest i for which vi is defined is no larger than k. The theorem
then follows since w1, . . . , wi break p into i+1 subpaths each of which is a shortest path in G.
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To prove that the largest i for which vi is defined is at most k we assume for a contradiction
that vk+1 has also been defined by the process above. We shall obtain a contradiction by
showing that p is not a shortest path from s to t in G′.

Consider the bypass paths bj , 1 ≤ j ≤ k + 1. As observed above, each such path contains
at least one edge from Ek. We prove in the sequel that there is a nonempty subsequence B of
bypass paths B = bi1 , . . . , bil of size |B| ≤ k + 1 such that each edge of Ek which is contained
in some bij is in fact contained in an even number of bypasses in B. In the example shown
in Figure 1, B = b1, b2, b4. Assume for the moment that we have established this claim. To
obtain a contradiction, we will show that there is a path p∗ ∈ G′ from s to t which uses some
pieces of the bypass paths in B and some pieces of p and is shorter than (the shortest path)
p. To this end, we first construct a non-simple path p′ in G from s to t. The path p′ includes
all the bypasses in B and additional subpaths and edges from p that are needed to weave
these bypasses, in order, into a path. As we shall see, the length of the path p′ is at most the
length of p plus |B| − 1. The path p∗ is constructed from pieces of p′ and does not include
edges that are in Ek. Since p′ includes all bypasses in B, there are at least |B| edges that are
in p′ and not in p∗. Thus, p∗ must be shorter than p and we obtain a contradiction. We now
present the constructions of the paths p′ and p∗.

We first describe how to construct the path p′ starting from p. Path p′ starts at s and
is identical to p until vertex wi1−1, where i1 is the index of the first bypass in B. Then it
continues according to bi1 to vi1. To define the rest of p′ we similarly traverse the bypasses in
B one by one in the order in which they occur on B, starting from bi2 . For each bypass bij

we extend p′ according to p from vij−1
to wij−1 (note that in case ij−1 and ij are consecutive

this means that we add to p′ the single edge (vij−1
, wij−1

)) and then extend p′ according to
bij to vij . Finally, we continue from vil (the endpoint of the last bypass of B) to t according
to p. We point out again that p′ may not be a simple path, as different bypass paths in B
may share edges and vertices. Figure 1(c) shows p′ for our example where the parts of p not
used by p′ are eliminated.

To see the claim on the length of p′, recall that each bypass path bij is strictly shorter
than the corresponding piece of p from wij−1 to vij and therefore no greater than the piece
of p from wij−1 to wij . The pieces of p from wij−1 to wij are disjoint, and are not included
in p′ except for the edges (vij , wij ), for each pair of consecutive bypass paths bij−1

and bij .
Thus, the length of p′, not counting the edges (vij , wij ) for each pair of consecutive bypasses
bij and bij−1

, is at most the length of p. Since the number of consecutive pairs of bypasses in
B is at most |B| − 1, the length of p′ is at most the length of p plus |B| − 1.

We now describe the construction of p∗ from subpaths of p′. Define the graph H =
(VH , EH) as follows. Let E′′ be the subset of the edges in Ek that are contained in some
bypass path in B. The vertex set, VH , consists of the endpoints of the edges in E′′, together
with s and t (even if they are not endpoints of any edge in E′′). We define the set EH , the
edges of H, using the path p′ as follows. Consider the set of paths obtained by removing all
the edges in Ek from p′. Each such path, p′′, connects two vertices of VH and does not contain
edges from Ek. For each such p′′, we place a corresponding edge in EH between the endpoints
of p′′. This way, each edge of H is associated with a subpath p′′ of p′. Note that H may
contain parallel edges as different subpaths p′′ may share both their endpoints. Figure 1(d)
shows EH and the piece of p′ corresponding to each edge for our example. Figure 1(e) shows
the graph H for our example.

Recall that the set B is such that each edge in E′′ occurs on an even number of bypass
paths in B. Therefore, each edge of E′′ also occurs an even number of times on p′. From this
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Figure 1: Illustration of the proof of Theorem 1.

we obtain that the degree of every vertex of H but s and t is even. Since the degrees of all
vertices but s and t are even, there is an Eulerian path from s to t in H. Such path can be
greedily constructed as follows: Pick an arbitrary edge (s, v) adjacent to s to start the path.
Since the degree of every vertex v 6= t is even, every time we enter v 6= t there must be an
edge not yet on the path adjacent to v that we can add to the path. The only way for this
process to end is by reaching t. This path from s to t in H defines a path p∗ in G′ from s
to t that we obtain by replacing each edge from H by the subpath of p′ associated with it.
Figure 1(f) shows p∗ for our example.

All that remains to complete the proof is to prove that there exists a nonempty subse-
quence B of at most k + 1 bypass paths such that each edge of Ek which is contained in a
bypass of B occurs in an even number of bypass paths of B. To this end, we associate with
each bypass path b a boolean vector of dimension k indexed by the edges in E′ = {e1, . . . , ek}.
The ith bit of the vector is 1 if and only if ei ∈ b. Since we assumed that there are at least
k + 1 bypass paths, we have at least k + 1 such vectors. Since the set of k-vectors over GF2

is a vector space of dimension k, any subset of k + 1 vectors must be dependent. That is,
there must be a linear combination which sums to the zero vector. If we take all the vectors
with coefficient 1 in such a linear combination, and order the associated bypass paths by their
index, we obtain a nonempty subsequence B of at most k + 1 bypass paths whose associated
vectors sum to the zero vector. The sum of vectors is zero over GF2 if and only if each
coordinate is set to 1 in an even number of vectors. Therefore, B is such that each Ek edge
appears in an even number of bypass paths, as required.
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The example in Figure 2 shows that the bound of Theorem 1 is tight. After k edge
failures, there is a unique remaining path connecting s and t. Note that the top node of each
tooth can not be an interior node of a shortest path. Thus, any partition of the remaining
path to original shortest paths must include at least k + 1 paths. In the general weighted

s t
e e e e21 3 k

Figure 2: Example showing that Theorem 1 is tight.

case Theorem 1 does not hold, as is shown below by the example in Figure 3. However, a
proof similar to the proof of Theorem 1 establishes Theorem 2, below. (The key difference
is in the second and third paragraphs of the proof: define wi to be vi, instead of the vertex
preceding vi. The k edges into the k vertices vi are the k edges referenced in the theorem.)
The example in Figure 3 shows that Theorem 2 is tight: After the k edge failures indicated,
there is a unique surviving path connecting s and t. Note that the only original shortest path
each length-1 + ǫ edge participates in is the edge itself. Removal of these k edges from the
remaining path partitions it to k + 1 original shortest paths. Thus, the new shortest path
includes k edges and k + 1 original shortest paths.

Theorem 2 After k edge failures in a weighted network, each new shortest path is a concate-
nation interleaving at most k + 1 original shortest paths and k edges.

s

1+e 1+e 1+e 1+e

1 1 1 1

11111111

t
e e e e1 2 3 k

Figure 3: Example showing that Theorem 2 is tight.

In a network with multiple shortest paths between pairs of endpoints, it may be expensive
to represent the complete set of shortest paths. In such cases, it would be prudent to select
only a subset of the all-pairs shortest paths to include in the basic set, chosen in a way that
preserves the ability to restore shortest paths after failures. The next theorem shows that
such a basic set can include only a single path between every source and destination. (The
proof is a simple corollary of Theorem 2, obtained by infinitesimal padding of edge weights
to create a unique set of shortest paths.)

Theorem 3 Given a weighted network G, there exists a set of base paths, Base, containing
exactly one shortest path between every pair of connected vertices, so that the following holds:
After k edge failures in G, if a path connects two vertices, then they are connected by a
concatenation of at most k + 1 shortest paths from Base and k edges.

Theorem 3 can obviously be applied to unweighted graphs, as well, but at the potential
cost of k additional edges in some of the restored paths. In particular, if the base set is
selected by the infinitesimal padding process outlined above, some topologies are certain
to introduce these k additional edges in some of the restored paths. Consider a network
with V = v1, . . . , v2k+2, and two parallel edges between any two consecutive nodes. Using
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padding, each shortest path in the base set consistently uses the same edge between each
pair (the shorter edge after padding). If the “shorter” edge in each of the k pairs (v2i, v2i+1)
i = 1, . . . , k fails, the best partition of the restoration path from v1 to v2k+2 is into 2k + 1
single edges (These consist of k + 1 “shortest path” edges and k additional edges.) However,
in this example, there is a better choice for a base set: for each pair vi, vj j > i + 1, use
the “longer” edge from (vi, vi+1) and the “shorter” edge from (vj−1, vj). This selection will
guarantee that any restoration path will have at most two components (edges or original
shortest paths) under any 1-link failure.

An interesting and natural question is whether in the unweighted case there is always a
base set of shortest paths, containing exactly one shortest path between every pair of connected
vertices, that guarantees restoration paths with fewer than 2k+1 components after k failures.
(Notice that by Theorem 1, we have k + 1 components as a lower bound.) For k = 1, a cycle
of four nodes answers this question in the negative: if a single shortest path is chosen between
each pair of nodes, there is always a single failure that requires three edges (two trivial paths
and an edge) to be concatenated for restoration. For k > 1 the question is open, and the
general question of minimal base sets is intriguing.

For example, choosing a larger base set, especially one which includes paths that are not
shortest paths in the original graph, may avoid the need for the extra k edges that are required
in the weighted case. (Again, in the unweighted case a maximum concatenation of k+1 paths
is required, while in the weighted case a maximum concatenation of k + 1 paths plus k extra
edges is required.) The following corollary bounds the size of the base set that is required.

Corollary 4 In a weighted graph, there is always a base set of n(n− 1)/2+2m(n− 1) paths,
where m is the number of edges, such that the restoration path consists of at most k + 1 base
paths.

Proof: Choose the base set as follows: Select a base set of shortest paths, one for each pair
on nodes. For each edge (u, v) append (u, v) to all shortest paths starting or terminating at
u or v, and add the resulting paths to the base set. (In practice, of course we can remove all
added paths which are not shortest paths after some removal of k edges or less.)

Evaluating the size of base sets required in practice, we observed (See Section 5) that the
number of edges, m, is very small in real networks. Hence taking for example, a network with
average degree 4 ( m = 2n ), means that by pre-provisioning a base set nine times larger than
just shortest paths, reduces the maximum number of concatenated paths from 2k+1 to k+1.

Remark: The underlying graphs we considered thus far are undirected. The paths in
the base set, however, can be thought of as directed or undirected. So far we treated them as
undirected, but in the context of MPLS, it makes sense to have directed base paths (since the
label distribution protocol [4, 12] is a directed protocol). Our claims thus far mostly apply to
directed base paths. The differences are as follows (1) The statement and proof of Theorem 3
remain the same, but the interpretation for the set of base paths is a set that contains a
path per ordered pair of nodes (thus the base set is of size n(n − 1)). (2) In Corollary 4, we
expand the base set by appending each edge to all base paths terminating at one of its end
points. Thus, the size of the expanded base set is n(n−1)+2m(n−1). (3) The example that
uses a cycle of 4 nodes to show that there is no set of undirected base paths for unweighted
graphs that avoids the ”extra” edge with a single edge failure, is not applicable for directed
base paths. Thus, we leave open the question whether there always exists a set of base paths
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s
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v

Figure 4: In case of failure of router v, the shortest path between s and t is the concatenation
at least (n − 2)/2 shortest paths.

a               bs t

Figure 5: Theorem 1 does not hold in directed graphs: If (a, b) fails the new shortest path
from s to t is a concatenation of at least (n − 2)/3 original shortest paths.

(one for each ordered pair of nodes) such that after k failures, the new shortest paths is a
concatenation of fewer than 2k − 1 base paths and edges.

We cannot prove any similar general bounds in case of router failures. Indeed there are
networks in which the smallest number of pre-established LSP’s that must be concatenated
in order to create the shortest path after a node failure is O(n). Figure 4 shows a network
in which the shortest path between any two routers that are not neighbors has length two.
Hence, the shortest path from s to t after the failure of v, is the combination of at least
(n − 2)/2 shortest paths. On the positive side, a node failure is equivalent to a failure of
all incident edges. Thus, applying the results from edge failures, we obtain an upper bound
on the number of path concatenations needed, which is proportional to the degree of failed
nodes. Fortunately, in real backbone networks the average degree is around 3.5 (see Table 1).
Our empirical results (Section 5) suggest that in reality it is even smaller, with average of
2.1.

A limitation of our results is that they apply to undirected graphs (where edges are
bidirectional and weights are symmetric, that is equal on the two directions), but simple
extensions of the theorems to directed graphs are not possible (a counter example is provided
in Figure 5). We note, however, that while it is possible to configure OSPF routing with ⊤A
asymmetric weights (where the two flow directions of the same link are assigned different
weights), the current common practice is to use symmetric weights (Typically the weight
assigned to a link is proportional to its bandwidth capacity, and thus, the resulting weights are
symmetric since most links have equal capacities in both directions). We note, however, that
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this practice may be changing by emerging traffic engineering techniques. These techniques
adapt the weights according to demand and usage, and can generally assign assymetric link
weights (see [9]). ⊥A

4 Restoration by Path Concatenation, RBPC

This section explores RBPC, the use of path concatenation to efficiently restore broken MPLS
paths. Source-router application of RBPC enables fast restoration and recovery without using
new labels and without changing the ILM tables. After static provisioning of a basic set of
shortest paths, and running in conjunction with e.g. OSPF to distribute dynamic topology
(i.e. failure) information, the method eliminates the need for a special label distribution
protocol (LDP [4] ) and is guaranteed not to introduce loops in the paths created.

In topology-based (static) MPLS, a set of LSP’s is provisioned in the network by a routing
protocol (e.g., OSPF or EIGRP). Usually, this set consists of the shortest paths between all
source-destination pairs in the network. This set is a large and rigid set of paths. In case of a
link failure, all the paths affected by the failure have to be torn down and new paths for the
corresponding pairs constructed. This process includes signaling along the old and new paths
to re-claim the labels along the broken path and to re-assign labels to form the new path.
These processes affect the ILM tables and the FEC (Forward Equivalent Class) tables on the
corresponding LSR’s. Moreover, in most cases the establishment of a new LSP includes a
slow and costly process of loop prevention. All together, this is a costly process in terms of
signaling and in terms of overhead placed on the routers.

The high overhead and slow response time to link failures can be eliminated in an obvious
way: for each possible link failure, pre-provision a set of backup shortest paths. That is, for
each link pre-compute all the paths that would be affected by its failure, and for each affected
path establish a backup LSP that would correspond to the new shortest path between the
same pair of end-stations. This has a huge advantage in that only the source router needs to
act in the occurrence of a fault. However, this method suffers from the following problems:
First, it requires the usage of many more labels–by themselves a potentially scarce resource
(especially in optical applications). Second, the ILM table resides in fast and expensive
memory, and is also multiplied in size by a large factor (see max ILM stretch factor in Table
2. Third, this pre-provisioning for single faults is ineffective if multiple faults occur, and the
costly online method must be used. Moreover, a large portion of these backup paths may
never be used.

In RBPC, this large set of restoration paths are constructed by concatenating LSP’s from
a much smaller pre-provisioned set, preserving the advantages of pre-provisioning without
these overheads, and extending the technique to protect against multiple failures. RBPC has
several variations, depending on the routing protocol (OSPF or EIGRP and/or BGP ) and
depending on other parameters that are discussed here. We focus on the simple case of one
fault, in which a set of basic paths are provisioned as LSP’s, corresponding to a set of all-pair
shortest paths in the network. (For the moment consider the unweighted case.) Suppose
we remove a link from the network. We observe (Theorem 1) that for each basic path that
is broken by this change, if an alternate shortest path exists in the network, then it is the
concatenation of at most two original shortest paths. Given this observation, RBPC uses
the MPLS stack mechanism to route packets along the concatenation of two basic paths. (See
Figure 6.) Specifically, upon learning that an edge in basic path P1 has failed, the source
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router (SR) places two labels that correspond to the two basic paths (P2 and P3) on the
packet, and the destination router on path P2 (which is also the source router on path P3)
pops the stack and routes the message on the label switched path P3 to the destination router
(DR). This change is reversed when the link recovers. Generalizations to k faults and to the
weighted case (invoking Theorem 2) are straightforward.

SR DR

LSP P2 LSP P3

failed link

LSP P1

Figure 6: Restoration by path concatenation: The concatenation of P2 and P3 is the new
shortest path from SR to DR.

Theorems 1 and 2 provide theoretical bounds on the number of base paths needed to
restore after multiple failures. But the empirical tests described in this section show that
almost all broken paths are covered by only two basic paths, even in the weighted case. We also
considered cases in which two or more links may fail, and show here that in practice, in the face
of multiple failures there is only a modest increase in the number of basic path concatenations
needed to restore along shortest paths. The theoretical situation with router failures (instead
of links) was not nearly as positive–in pathological networks a single router failure may disrupt
a shortest path and require a large number of basic paths to recover (essentially resulting in
source routing–see Figure 4). In practice, our empirical studies indicate such pathologies do
not occur, and RBPC is also effective in protecting against such failures–see Table 2.

Summarizing, restoration by path concatenation provides the speed and simplicity of pre-
provisioned restoration paths without the associated overheads, and extends the technique to
multiple failures. Restoration and recovery is carried out by simple actions at source routers
(off-loading high-volume backbone nodes that do not originate traffic), with no need for special
signaling or communication beyond failure notification (e.g., without LDP in conjunction with
OSPF).

We next discuss implementation of RBPC, and present empirical results simulating its
application in three network topologies. We then introduce local RBPC, a variation of RBPC
that is run by the router adjacent to a failed link, discuss alternative implementations and
evaluate them empirically.

4.1 Implementing RBPC

As described in the previous section, a base set of paths is statically provisioned in the network.
Then, for each path that breaks because of a link failure, an alternative path is created by
concatenating paths from the base set. The base set must be selected to efficiently support
this restoration scheme, i.e., that under reasonable failure conditions it will be possible to
replace a broken path with a small number of basic paths.

In more detail the scheme works as follows: The labels that correspond to the base set
are placed in the ILM tables in the routers. As discussed above, in addition to an ILM table,
each router has an FEC table. The router uses the FEC table for traffic that originates at
this router (or at hosts or peers attached to this router). The FEC table has an entry for
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each destination which tells, for each flow to that destination, which label(s) to place on the
headers of the corresponding packets.

To implement the restoration scheme, for each link in the network the router has a set of
changes to its FEC table. This set of changes includes a new entry for the FEC table, for each
destination that used the failed link in the original routing. (That is, for every destination
for which a basic path utilized the failed link.) The new entry contains the sequence of labels
to be pushed on packets heading to that destination, corresponding to the sequence of (still
operational) basic paths that will replace the disrupted path. When a link fails, the original
FEC entries are updated by substituting these new entries.

Each time a router learns about a link failure or recovery, it updates its FEC table with the
set of updates associated with this link failure or recovery. (This process could be computed
online but will be fastest if pre-computed and indexed by the specific link failure or recovery.)
This is all that needs to be done for single link failures. Given the otherwise static topology,
computation of these FEC updates is straightforward. Moreover, restoration is performed
without touching any of the ILM tables or other elements internal to the network.

Multiple failures may force an online computation. When multiple links fail, the source
router learns about the failures (e.g., by link state broadcast). Then a routing algorithm (e.g.,
OSPF) is invoked at the source to compute the new route from the source to the destination.
The routing algorithm could be OSPF, EIGRP, or another algorithm such as would support
QoS. The restoration scheme accepts the new route from the routing algorithm and selects
a set of still-operational paths from the basic set that covers the new route. That is, the
restoration scheme is responsible for the restoration and not for the routing. While RBPC
may be used with any routing algorithm, in the remainder of this section we examine and
consider its use with a shortest-path approximation to OSPF.

FEC

L25

L87IR

DR

ILM

L87

L7

L52/

1/L25

failed link

FEC ILM

L17 3/ LXDR

SR
DR1

2

3
IR

L17

L87 ; L17

L87IR

DR

FEC (AFTER FAULT)

Figure 7: Detail of source-router RBPC: changes to FEC in source router.

All-pairs shortest paths is an approximation to OSPF routing and these paths are nat-
ural candidates for the basic LSP’s in RBPC. Indeed, our empirical and theoretical results
demonstrate that this set of basic paths is an excellent foundation for link restoration. We
next discuss some details of the implementation of RBPC with OSPF. Each router stores the
static topology of the network and uses it to compute the set of basic shortest paths that will
be used as LSP’s. This set should contain at least one shortest path between every pair of
routers, and all subpaths of this shortest path i.e. every contiguous sequence of routers. In
the rare cases where an edge (u, v) is not a shortest path between u and v, the basic set of
paths must also contain the single edge path p = u, v. To follow this scheme, each router must
store the basic set of paths and their labels. In the case where the basic set contains only
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one shortest path between every pair of routers, the space required to store this information
is O(n2), where n is the number of routers in the network.

If the basic set contains all-pairs shortest paths, a simple greedy algorithm can be used
to find the basic paths whose concatenation is a restoration route SP ′

st. Router s first finds
the largest prefix p′ of SP ′

st which is a basic path (p′ may be found by a binary search on
prefix lengths). It makes path p′ the first component in the restoration path and continues
to decompose the suffix SP ′

st − p′ of SP ′

st in the same manner.
If as we discussed in Section 3 the network has many shortest paths between endpoints and

the set of base paths does not include all possible shortest paths, this greedy algorithm will
not work, as the chosen shortest path may not be a concatenation of this sparser set of paths.
In this case, Dijkstra’s algorithm can be run on the graph in which the surviving base paths
are edges. If the basic set is suffix-closed1 and contains at least one shortest path between
each pair of nodes, by Theorem 2 there exists a shortest path that is the concatenation of at
most two basic paths and one edge.

4.2 Local RBPC

An alternative application of RBPC ‘patches’ link failures by applying RBPC at the router
adjacent to a failed edge. (We call this scheme local RBPC.) The adjacent router can utilize
a concatenation of shortest paths to route around the failed edge to the path destination.
This allows immediate restoration of the LSP as soon as the failure is detected, without
e.g., waiting for the link-state protocol to propagate failure information to the path source.
However, application of shortest path restoration at this point in the path requires router
R1 to update the ILM table, replacing the entry associated with the broken path. The
replacement entry instructs the router to replace the incoming label with the sequence of
labels associated with the successive restoration paths.

We consider two strategies for implementing local RBPC, end-route and edge-bypass. As
indicated in Figure 8, in end-route RBPC, the router adjacent to the faulty link, R1, re-routes
along a concatenation of basic paths directly to the destination, DR, by updating its ILM
appropriately. The alternative scheme, edge-bypass RBPC, is illustrated in Figure 9. In this
scheme, R1 re-routes around the failed link using path concatenation, where the original LSP
resumes.

SR DRfailed link

LSP P5LSP P4

R1Original  LSP  P1

Restored  LSP  P1

Figure 8: End-route local restoration by path concatenation

Examining end-route RBPC in more detail, upon detecting the link failure, the router
adjacent to the faulty link, R1, replaces the ILM entry for the disrupted LSP with a series of
labels, which will be pushed in place of the incoming label, together with an indication of the
new output interface. For example, in Figure 8, the entry at R1 for LSP P1 is replaced with
instructions to (after removing the incoming label): push first the initial label of LSP P5,

1A set of paths is suffix-closed if any suffix of a path in the set is also a path in the set.
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then the initial label of LSP P4, and to forward over the interface of LSP P4. These changes
are reversed when the link recovers.

Similarly, in edge-bypass RBPC, the router R1 replaces the ILM entry for the disrupted
LSP, but to route packets around the edge and then resume the original LSP. For example,
in Figure 9, the entry at R1 for LSP P1 is replaced with instructions to (after removing the
incoming label): first, push the original label entry at R1 for LSP P1, then the initial label(s)
for the bypass path(s), and to forward over the alternative interface. Again, these changes
are reversed when the link recovers.

By making a local decision to route around the failed edge, it is possible that using local
RBPC, the concatenated LSP will not be a shortest path from the source router to the
destination. (Although it will be the concatenation of a shortest path from source to R1,
and from R1 to the destination.) While this could introduce serious inefficiencies in theory,
Figure 10 details the impact as compared to applying RBPC at the source router. The figure
shows that the length of the vast majority of the routes obtained by the local restoration at
R1 is about as long as the shortest route from the source to the destination (which would
have been obtained by RBPC).

SR DRfailed linkR1Original  LSP  P1

Edge Bypass

Figure 9: Edge-bypass local restoration by path concatenation

Knowledge of the global topology and of the failure only of incident links allows a router
to safely apply local RBPC. But local re-routing alone will not allow loop-free restoration in
the face of multiple link failures. Hence, routers must monitor the dynamic topology via the
link-state protocol, and modify the restoration path concatenation as needed to recover from
multiple failures.

This leads naturally to consideration of a hybrid scheme, in which both source routing
RBPC and local RBPC can be utilized simultaneously. In this scheme, the adjacent router
immediately re-routes affected LSP’s, though not always along shortest paths, and the source
router eventually redirects along a shortest path.

5 Empirical results for source-router RBPC

We have tested RBPC on three network topologies: The internal topology of a large au-
tonomous system, the autonomous system topology of the Internet (similar to [8, 19]) and
the topology of a large percentage of the Internet routers (in which autonomous system bor-
ders are ignored), as indicated in Table 1. These tests indicate that RBPC performs well at
scale, far better than the worst-case bounds of our theoretical results. In each case the set of
basic paths corresponds to all-pairs shortest paths, and the results describe the efficiency of
restoration using concatenations of these basic paths.

The first topology is derived from a snapshot taken of a large ISP, constituting a single
autonomous system in the Internet. (We removed links under provisioning and treated the
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name nodes links avg.deg.

ISP ˜200 ˜400 3.56
Internet 40,377 101,659 5.035
AS Graph 4,746 9,878 4.16

Table 1: Networks used in this article.

entire graph as a single OSPF area.) On this topology we built and restored shortest paths in
two ways: using the OSPF weights, and according to hop count ( Weighted / Unweighted).

The second topology, AS Graph, is a description of Internet autonomous system connec-
tivity [1]. This topology collapses each autonomous system into a single node.

The third topology is a description of the Internet, gathered experimentally [10]. This
describes the connectivity of the backbone routers in the Internet, ignoring the hierarchical
routing introduced by autonomous systems.

Details of autonomous system topology are considered proprietary, so there is a lack of
generally-available topologies in the open literature. Hence, it has become common to use the
experimentally-determined AS Graph and Internet Core as a basis for empirical studies [8,
19]. However, restoration by path concatenation is most applicable to routing within an
autonomous system, so the ISP topology is the most interesting case in our experiments.

To evaluate RBPC implemented by source routers, we first calculated a set of base LSP’s,
one for each source-destination pair of routers in the network, each corresponding to a shortest
path. (One shortest path was chosen arbitrarily if several existed.) Then we studied the
impact of restoration using the concatenation of these basic paths, by randomly sampling
failure cases. For example, to study the impact of single link failures, we randomly chose
source-destination pairs, SR and DR. Then we simulated a link failure for each link, L, in the
basic LSP connecting SR and DR. That is, we calculated a new shortest path from SR to DR,
(the backup path) and determined the smallest number of basic LSP’s whose concatenation is
the backup path. This simulation was repeated 200 times for the ISP topology and 40 times
for the (much larger) other topologies in each study. We also studied the consequences of
pairs of link failures, and of one and two router failures, using the same methodology.

The results of these experiments are described in the tables below, presenting the following
statistics:

The ILM stretch factor compares the size of the ILM table necessary to provision the basic
LSP’s used in the experiment, as a percent of the size that would be needed to explicitly pre-
provision each backup LSP. For example, in case of the weighted ISP, to recover from one
link failure, one ILM table decreases by a factor of 8 as compared to pre-provisioning all
the backup paths, and the average ILM table is almost 4 times bigger. In order to have the
ability to be capable of dealing with two links failures, the size of one table would increase
by a factor of 44, and the average table is more than 16 times bigger.

The average PC length is the average of the number of basic paths needed to cover a backup
path. According to Theorems 2 and 1, there are upper bounds of three in the weighted case
and two in the unweighted case, for one link failure. The experiments show that in practice
two basic paths suffice in the vast majority of cases.

The length stretch factor is the length (in hop count) of the average backup path divided
by the length of the average shortest path in the original network, indicating the average cost
of the backup paths as compared to the original.
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Network min ILM s.f. avg. ILM s.f. avg. PC length Length s.f. Redundancy (max)

After one link failure.

ISP, Weighted 12.5% 25.6% 2.05 1.15 16.5 % ( 3)
ISP Unweighted 20.0% 32.3% 2.00 1.14 24.0 % ( 4)
Internet 16.7% 22.8% 2.00 1.08 58.6 % (40)
AS Graph 25.0% 32.7% 2.00 1.19 47.2 % (12)

After two link failures.

ISP, Weighted 2.3% 6.1% 2.38 1.77 8.45 %
ISP, Unweighted 3.6% 8.5% 2.20 1.34 10.00 %
Internet 3.0% 4.7% 2.06 1.15 21.00 %
AS Graph 7.1% 16.4% 2.09 1.32 13.00 %

After one router failure.

ISP, Weighted 25.0% 43.7% 2.10 1.38 23.0 %
ISP, Unweighted 20.0% 36.8% 2.03 1.18 26.0 %
Internet 12.5% 21.1% 2.02 1.08 55.3 %
AS Graph 25.0% 38.5% 2.03 1.26 17.0 %

After two router failures.

ISP, Weighted 5.26% 11.1% 2.43 1.57 8.1 %
ISP, Unweighted 6.67% 13.3% 2.21 1.44 9.1 %
Internet 2.50% 4.1% 2.23 1.17 11.5 %
AS Graph 8.33% 18.5% 2.17 1.31 12.8 %

Table 2: ILM Stretch Factor (ILM s.f.): The size of the ILM table necessary to provision
the basic LSP’s, as a percent of the size needed to explicitly pre-provision each backup LSP.
Average PC length: Average of the number of basic paths needed to cover a backup path.
Length stretch factor (Length s.f.): The length (in hop count) of the average backup
path divided by the length of the average shortest path. Redundancy: The percentage of
backup paths that have cost equal to the original shortest path.

The redundancy is the percentage of backup paths that have cost equal to the original
shortest path. This parameter is an indication of the overhead needed to store multiple
shortest paths between source and destination. The first four rows of Table 2 indicates
the maximum number of distinct shortest paths between any two routers in the associated
topology.

6 Empirical results for Local RBPC

An extremely fast restoration and recovery scheme invokes restoration by path concatenation
at the router, R1, adjacent to a failed link (Figure 9). There are two natural variations. In an
end-route application, R1 updates its ILM table to route the disrupted path directly to the
path destination. In an alternative edge-bypass application, R1 pushes the label of a short
bypass path to route directly around the failed edge, after which the packet resumes its path
on the original LSP. Table 3 demonstrates that in all four topologies, these schemes are almost
equivalent. This is because in a majority of cases, each link can be bypassed by a (min-cost)
two-edge path. In every topology, more than 90% of the links have min-cost bypass paths of
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Bypass Hopcount ISP, Weighted ISP, Unweighted AS Internet

2 89.05 % 90.11 % 61.27 % 54.96 %
3 2.95 % 2.99 % 30.88 % 37.68 %
4 1.18 % 1.79 % 6.22 % 2.37 %
5 4.14 % 5.08 % 1.29 % 1.72 %
6 0.88 % 0 % 0.32 % 2.05 %
7 1.77 % 0 % 0 % 0.64 %
8 0 % 0 % 0 % 0.95 %
9 0 % 0 % 0 % 0.23 %

Table 3: The length of the bypass of an edge, from one endpoint to the other endpoint of the
edge.

length 2 or 3.
Figure 10 provides a more detailed picture of the impact of these schemes in the weighted

ISP topology. The first two graphs in Figure 10 show the percentage of restoration paths
constructed using edge-bypass or end-route local RBPC, compared to the cost of the source-
routed min-cost restoration path. The second two graphs in Figure 10 show similar statistics,
comparing the Hopcount of the restoration paths to that of the source-routed min-cost restora-
tion path. Hopcount stretch is important, as it impacts router over-head. (Hopcount stretch
less than 1 occurs in a few cases, where the minimum cost path has higher Hopcount than
the restoration path produced by edge-bypass or end-route local RBPC.)

Because of the prevalence of two-hop bypass paths, pre-provisioning for edge-bypass
restoration would have little impact on the ILM tables. (For the two-hop paths, assuming
every link is a basic path, penultimate hop popping can be used by R1, with no label over-
head.) This small investment would have a huge impact in enabling extremely fast restoration
of single link failures. The impact in path dilation, detailed in Figure 10, can be mediated
by combining RBPC by the source together with local RBPC. Potentially inefficient bypass
paths are provisioned very quickly, and the more efficient paths determined are substituted
once the failure information propagates to the source.

As for the case of multiple edge failures, the experimental results show that in practice for
router failures worst case examples like that in Figure 4 do not happen. In the three networks
we studied, the average number of basic paths needed to restore each disrupted shortest path
is small. For one router failure, this number is close to two (See Table 2).
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