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Abstract

We present a mechanism for restoring any consistent
global state of a distributed computation. This capa-
bility can form the baais of support for rollback and
replay of computations, an activity we view aa essen-
tial in a comprehensive environment for debugging dis-
tributed programs. Our mechanism records occasional
state checkpoints and logs all messages communicated
between processes.

Our mechanism offers flexibility in the following ways:
any consistent global state of the computation can be
restored; execution can be replayed either exactly as
it occurred initially or with user-controlled variations;
there is no need to know a prioti what states might
be of interest. In addition, if checkpoints and logs are
written to stable storage, our mechanism can be used
to restore states of computations that cause the system
to crash.

1 Introduction

One reason that it is more difficult to debug distributed
applications than single-cpu applications of comparable
complexity is that global states of a distributed com-
putation are more difficult to observe and manipulate
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than the purely local states of a single process. This
paper presents the design of the Distributed State Re-
store (DSR) mechanism, which enables a user to manip
ulate global states in a natural manner for the purpose
of debugging distributed programs.

We adopt a process-oriented computational model in
which a distributed computation is carried out by a col-
lection of processes, each with its own local state, and
interacting only by means of message communication.
With such a model it is common to define a global state
of the computation as a vector of local states, one for
each process participating in the computation.

In such a model there is only a partial time ordering
among the events of a distributed computation [Lam78],
and therefore among the local states of different prcs-
cesses. Events (or states) that are incomparable in thb
partial order are said to be concwrent. For example,
Figure 1 depicts three processes and three messages
communicated among them, and the partial order re-
lating the individual send and receive events in time.1
In this scenario, process P sends message ml before it
aends m2; we also know that message ml is sent before
message m3, because message ml is received between
the two send events. However we cannot claim that
message m2 is sent before m3, nor is message ml neces-
sarily received before m2 is sent. Thus, for example, the
receiving of ml and the sending of m2 are concurrent
events.

It is a simple matter to observe the sequence of local
states visited by each process in a distributed computa-
tion, and all message communications that take place.
However, it may be impossible to infer from this infor-

1In this and other similar diagrams appearing in this paper,
each process is represented by its own downward-pointing time
line. Message communications are depicted by arrows from one
process’ time line to another’s.
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P QR that execution from some intermediate global state.
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Figure 1: A partially ordered distributed execution.

mation the exact sequence of global states that a compu-
tation passed through during its execution; rather, the
global states that it might have passed through are are
those in which the component local states are mutually
concurrent. We call such global states consistent.

The lack of complete ordering information and the am-
biguity in the sequence of global states in a distributed
computation make familiar debugging techniques such
as single-stepping and setting of breakpoints less well
defined than in the single-process case. While it is possi-
ble to define protocols that turn the partial order of dis-
tributed events into a consistent total order ([Lam78]),
such an approach in a debugging environment would de-
stroy the inherent concurrency, and may make certain
synchronization-related bugs impossible to exercise dur-
ing the debugging process. The DSR approach, rather
than destroying or hiding the partial order of states,
exploits it to provide added flexibility to the user,

DSR can operate in any of three modes:

● In reco~ding mode, DSR records information gath-
ered during the course of a distributed computa-
tion. This information can be used later to restore
consistent global states of the computation and/or
replay portions of the computation.

● In analysis mode, DSR restores computations to
global states as requested by the user. Traditional
single thread debugging technology can then sup-
port detailed examination of local proccm statm,

● In replay mode, DSR uses information gathered in
recording mode during a prior execution, to replay

Typically, users might debug a distributed application
by running it in recording mode until the application
fails or reaches some other interesting point.’ They
will then enter analysis mode, where they can explore
the computation in detail, restoring intermediate global
states and examining the details of the resulting local
states. Starting from any consistent global state, the
user can enter replay mode to replay portions of the
original execution. Alternatively, the user may request
that the application simply be continued, perhaps un-
der recording mode. In that case, DSR will not con-
strain the new execution, and the computation may or
may not take a different course than it did originally,
depending on the inherent nondeterminism of the pro-
gram. Finally, replay mode and recording mode can be
used in combination: the user requests replay, but with
controlled deviations from the original execution,

It is important to note that DSR is capable of restoring
a computation to any consistent global state once it has
been executed in recording mode.

This paper does not address user interface issues or the
precise manner in which the user might interact with
DSR, although the above discussion illustrates some of
the possible interactions.

The DSR recording, restoring, and replay components
are discussed in Sections 2, 3, and 4. Section 5 presents
some of the features that could be provided in a debug-
ging environment based on DSR. Section 6 discusses
some related work.

2 Recording Mode

When operating in recording mode, DSR performs three
activities: logging, checkpointing, and causality track-
ing.

The logging activity proceeds independently for each
process in the distributed computation. It records an
ordered sequence of the nondetemninistic local events
that occur in the process, including message receipts
(the receive order of messages arising from concurrent
send eventa in different processes is unpredictable), ex-
piration of timeouts, scheduling decisions in a multi-
threaded process, and others. The entire behavior of
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a process up to a given point is completely determined
by its initial state and the sequence of nondeterministic
local events occurring in the process to that point.

The checkpointing activity also proceeds independently
in all processes. Each process occasionally checkpoints
its local state, solely to expedite the restoration of that
state and subsequent states. In general, a process re-
stores a given local state by restoring the most recent
prior checkpoint and then replaying its execution to the
desired point with the aid of its nondeterministic local
event log. The longer the interval between checkpoints,
the longer it will take on average to restore an arbitrary
local state.

Causality tracking permits DSR to identify consistent
global states.

2.1 Events and States

Recall that in our computation model processes interact
only via message communication. The partial ordering
of events is thus completely determined by the total
ordering of local events at each process, plus the con-
straint that the sending of a message always precedes its
receipt. Precisely, let e~,hdenote the kth event occurring
at process i. Let e,(m) and e~(m) denote, respectively,
the events of sending and receiving a given message m.
Then we have:

{

i=jandk<l; or
e;,h + 4Sj,~ if ei,h = e.(m) and ej,t = er(~)t

for some message m.

In the first case, the ordering arises because the two
events occur in the same process; in the second, the
event order is determined by message communication.
The relation ‘~”, called the “happens-before” relation,
is the smallest transitive relation satisfying the above
conditions. As stated earlier, two events that are incom-
parable by this partial order are said to be concurrent.

If we define each event ei,k as giving rise to a new local
state of process z, denoted .%)k, then by extension we
define a partial ordering on process states as follows:

.?i,k ~ Sj,& iff ei,k+l ~ ej,t or ‘ei,k+l = ej,t.

That is, one process state precedes another if and only
if the event terminating the former cannot follow the
event giving rise to the latter. Process states that are
incomparable under this relation are said to be concur-
rent.

A consistent global state is one in which the compo-
nent local states are mutually concurrent. To see why
this definition of consistent global state makes sense,
consider a global state in which two of the component
process states are Si,h and 8j,~ with Si,k ~ $j,~. Such
a global state would simultaneously have process i in a
state prior to the occurrence of event ei,k+l and pro-
cess j in a state following the occurrence of event ej,l.
But since either ei,h+l ~ ej,f or ei,~+l = ej,f, it is im-
possible for ej,f to have occurred and not ei,k+l. Thus
such a global state cannot occur, and must be labeled
inconsistent.

DSR maintains ordering information among the local
states in a dktributed computation by attaching depen-
dency information to each message exchanged between
processes. specifically, if Si,h ~ Sj,f , we say that the lat-
ter state depends on the former. The states upon which
a given process depends at any instant of time can be
compactly encoded in a vector of length equal to the
number of processes participating in the computation.
Specifically, the vector lists the highest state number
of each process on which the subject process) current
state depends. Since dependence on a state Si,h implies
dependence on all prior states of process i, the implied
dependencies need not be explicitly represented.

It is a simple matter to show that a global state is con-
sistent if and only if there are no component process
states Si,h and Sj,f such that Sj,f depends on .$i,h.

2.2 State Intervals

In practice, to reduce the costs of dependency tracking,
all the states appearing between two consecutive non-
deterministic events can be coalesced into a single state

interval.2 We denote the kth state interval in the exe-
cution of process i by Si,k. Dependence between state
intervals is easily defined: sj,~ depends on Si,h if and
only if one of the states included in Sj,l depends on one
of the atates included in Sitk. We also define the - re-
lation on state intervals: Si,k ~ sj,~ if and only if sj,~

depends on Sa,h.

The above definitions are depicted in Figure 2. In that
figure, we see many individual local events occurring
in processes P and Q. Some events are deterministic,
others are nondeterministic. In this example, all the

2Debugging ~upport at a finer granulad y than the State in-

terval can be provided by traditional single-thread debugging
techniques.
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Figure 2: The relationships between events, states, and
state intervals.

nondeterministic events are message receipts; note that
message send events are deterministic.

A local process state fills the gap in the time-line be-
tween consecutive local events. The states bounded by
two consecutive nondeterministic events form a state
interval. In the diagram, we see P’s state intervals 11
through 14, and Q’s state intervals 33 through 36. The
bounds of Q’s state interval 35 are explicitly highlighted.

In the computation depicted in Figure 2, we see that Q’s
state interval 36 depends on P’s state interval 13 (and
all of P’s earlier state intervals), because a message was
sent by P while it was in state interval 13, and received
by Q to start its state interval 36.

We can now define what it means for a global state in-
terval vector to be consistent: it must not contain two
state intervahi Si,k and sj,~ such that sj,~ depends on
si,k+~. We must allow sj,~ h depend on Si,k because
the sending of a message does not increment the sending
process’ state interval; that state interval may therefore
coexist with the new state interval that begins in the
receiving process when the message is received. In Fig-
ure 2, for example, even though Q’s state interval 36
depends on P’s state interval 13, a state interval vector
containing both state intervals would be considered con-

sistent (provided no other state intervals in the vector
caused inconsistencies). However, no consistent state
interval vector could contain both P’s state interval 12
and and Q’s state interval 36.

A consequence of this definition is that some inconsis-
tent global state vectors correspond to consistent global
state interval vectors. For example, in Figure 2, P’s
state interval 13 contains a state (its first state) that
precedes the sending of the message that gives rise to Q’s
state interval 36, That state in P is thus inconsistent
with any state in Q’s state interval 36. Nevertheless,
since there are also states in P’s state interval 13 that
follow the sending of this message, the two state inter-
vals are considered consistent. We shall see below how
the state restoring part of DSR ensures that restored
global states are consistent even though dependency in-
formation is recorded at the state interval level.

2.3 Dependency Vectors

DSR maintains dependency information as follows:

●

●

●

A current dependency vector is maintained on be-
half of each process. A dependency vector is a vec-
tor of state intervals, one for each process partic-
ipating in the computation. The current depen-
dency vector for a given process contains the high-
est state interval of each other process on which the
subject process depends. The entry for a process
in its own dependency vector always contains its
current state interval.

When a message is sent, the sending process’ cur-
rent dependency vector is appended to the message.

When a message is received by a process, the re-
ceiving process begins a new state interval and up-
dates its own current dependency vector by taking
the piecewise maximum (with respect to the ~ re-
lation) between it and the vector attached to the
incoming message. That is, suppose the current
dependency vector entry for process i is Si,k and
the incoming dependency vector entry for process
i is &,kl. Then if k’ > k, the current dependency
vector is updated to include s~,kl for process i; oth-
erwise, the entry for process i is not changed.

The current dependency vector of a process must be
included in all of its checkpoints; likewise, dependency
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vectors attached to messages are included in the associ- value. The receiving process compares the tag value
ated log entries. with its own associated local receive count. If the val-

uesmatch, themessage is accepted andthe local receive
At the start of the computation, process i is considered count is incremented; otherwise, the message is ignored.
to be in state interval Si,o, and all local dependency
vectors are filled with these initial process state interval
numbers.

3 Restoring Global States in

Analysis Mode

Suppose that a user specifies a global state to restore
by giving its global state interval vector. Then DSR
restores to that global state by restoring each process
independently to its associated state interval. This is
accomplished as follows:

1. The process is restored to the state saved in its
most recent checkpoint preceding the required state
interval.

3.1 Consistency Checks

A user may request the restoration of an inconsis-
tent global state. DSR cannot normally know a ption”
whether a given state request specifies an inconsistent
state. It must first restore the requested global state
aa described above, and then verify that the resulting
global state is consistent. The verification is achieved by
requiring that each restored process check that it does
not depend (according to its restored dependency vec-
tor) on any state interval Si,~+l where Si,k is the state
interval to which process i was restored. This check can
be carried out in linear time by each process after the
entire restored state interval vector is broadcast to all
processes.

2. The process is allowed to run forward, replaying 3.2 Underspecified Global States
nondeterministic events from its event log, until the
required state interval is reached.

After each process has independently restored to its re-
quired state interval, the processes still may not be in a
consistent global state, as discussed at the end of Sec-
tion 2. In addition, some messages may be “in-transit”
in the sense that the sender of a message was restored
to a state following the send event, but its recipient was
restored to a state prior to the receive event. The re-
stored processes must coordinate to address these two
issues.

During replay, a process will send whatever messages
were sent during the original execution. The processes
receiving those messages will normally have obtained
them from their own logs during replay, or will have
started with a checkpointed state following their orig-
inal receipt. Hence, a mechanism is required to allow
processes to detect and ignore duplicate incoming mes-
sages. This can be achieved by providing message se-
quence numbers (unrelated to state interval numbers)
for each pair of communicating processes. Each process
maintains the number of messages it has received (sent)
on each incoming (outgoing) message stream. When a
message is sent, the sending process increments the as-
sociated send count and tags the message with the new

In many cases, a user in a debugging session will want
to focus attention on a subset of a program’s pro-
cesses. Therefore DSR allows the user to underspecify
the global state to restore, by not specifying the state
interval for some processes.

In response to an underspecified request DSR restores
each process mentioned in the request as outlined above,
and performs the local consistency check at each pro-
cess. Each process must only check its restored depen-
dency vector entries that correspond to processes ap-
pearing in the restoration request. If the consistency
checks all succeed, DSR must then choose a state inter-
val for each of the other processes such that when these
state intervals are combined with the original request,
the resulting state interval vector is consistent. Thk
can always be done, because circular dependencies can
never arise in the actual computation, as shown below.

Supposemutuallyconsistentstateintervalshavealready
been chosen for some, but not all of the processes. Let
X be the set containing those state intervals, and sup-
pose process j is not currently represented in Xi Now
suppose Sj,L is the highest state interval of process j
that does not depend on any state interval Si,k+l with
fi’~,k G X. Then sj,~ is mutually consistent with all
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the state intervals in X. For suppose not, that is, sup
pose Sm,n c X depends on Sj,f+l. By construction,
either Sj,f+l does not exist (and hence the above sup
position is vacuous), or Sj,f+l depends on some s~,k+l
with Sitk c X. Since dependencies are transitive, it
must then be that Sm,n depends on s~,k+l, which con-
tradicts the assumption that the state intervals in X are
mutually consistent.

DSR adds missing processes to a state specification one-
by-one, in each case choosing the highest state interval
available for that process which is mutually consistent
with all prior choices. In practice, other choices may
be possible. If the user requires control over these deci-
sions, a complete state interval vector may be built in
an interactive fashion, process-by-process, as follows:

1.

2.

3.

4.

The user selects one of the processes not yet repre-
sented in the restoration request.

DSR presents to the user all the state intervals for
the selected process that are consistent with the
intervals already chosen for other processes.

The user selects a state interval from among the
choices presented by DSR.

The above steps are repeated until all processes are
covered in the restoration request.

At any point in this procedure, the user can ask DSR
to fill in choices for the remaining unspecified processes.
In general, the choices presented by DSR in step 2 will
always be a range of consecutive state intervals for the
process under consideration.

3.3 Consistent
consistent

As indicated earlier,

State Intervals With In-
States

the coalescing of states into state
intervals yields the potential for inconsistent state vec-
tors mapping to consistent state interval vectors. Since
our restoration procedure has been cast in terms of state
intervals, there is a need to detect and remove any incon-
sistencies that remain after the requested state intervals
have been restored. This can be done using the mecha-
nisms outlined earlier for duplicate message detection.

Suppose an inconsistency arises: a state interval vector
containing Si,h and Sj,t is used for restoring a compu-

tation, but although the state interval vector is consis-
tent, sj,l depends on &,k. That is, s+ ~ Sj,t, but
Si,k,+l % sj,~. This can only arise if some message m
sent by process i in its state interval k is received by
process j to begin its state interval L Now consider
global states in which process i is in state interval k,
and process j is in state interval L In all such global
states, process j will have already received message m;
but in some, m will not yet have been sent by process i.

The DSR mechanism can guarantee that any restored
global state is free of these inconsistencies by checking
the message sequence numbers maintained by all pro-
cesses. Whenever one process appears to have received
a message that the sending process did not yet send,
the sending process is caused to (deterministically) run
forward until the message in question has been sent. If
execution of the receiving process is later resumed, the
message will be detected as a duplicate and discarded.

Note that the following simple policy, though less flexi-
ble than the general scheme just described, is sufficient
to avoid inconsistencies without requiring any negotia-
tion among the restored processes: each process is run
to the end, rather than the beginning, of the state in-
terval to which it must be restored. This ensures that
it has sent all messages might appear to have been re-
ceived by any other process.

3.4 Recovering In-Transit Messages

Once a consistent global state has been achieved, there
remains the possibility of in-transit messages. For ex-
ample, suppose process P sends a message m to pro-
cess Q. The user may request restoration to a global
state in which P has sent m but Q has not yet received
it. There is nothing technically wrong with this situ-
ation, since real messages actually experience non-zero
in-transit times. However, we prefer to restore to a state
in which communications have quiesced, meaning that
all messages that have been sent have arrived at their
destinations.3

In this section we assume that, in the process of halting
the original computation in order to analyze it, all mes-

3Note that ~=~~age ~vd and message receiPt me +t~ct

occurrences. Message arrival would normally correspond to asyn-
chronous operating system activity that captures an incoming
message from the network and queues it for later retrieval by
the intended recipient process. Message receipt would correspond
to the actual dequeuing of the message by the receiving process.
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Figure 3: A restored state with in-transit messages.

sage communication is first allowed to quiesce; that is,
if there are messages in-transit, they are delivered and
recorded in the receiving process’ logs before the user is
allowed to enter analysis mode. In Section 5 we discuss
ways to relax this assumption.

In general, all necessary refilling of message queues
can be achieved by comparing send and receive counts
among the various processes; messages that need to be
delivered may be retrieved from the receiver’s message
log (looking beyond the messages that were used to ful-
fill the original restoration request) and placed on the
receiving process’ incoming message queue.

Suppose, for example, that after restoration to a consis-
tent global state, process P’s send count indicates that
132 messages have been sent from P to process Q, but
Q’s receive count for P has only reached 129. Figure 3
illustrates this scenario. Before continuing execution, Q
must search forward in its message Iog for three mes-
sages from P, and insert them, in the order they are
encountered, onto its incoming message queue.

4 Executing From a Restored
State

As indicated earlier, once DSR has restored a consistent
global state several options are available for continuing

1.

2.

3.

DSR can replay the execution exactly as it occurred
during the initial recordhg phase, up to the point
where recording was terminated.

DSR can allow the computation to continue un-
constrained. Depending on the outcome of subse-
quent non-deterministic events, the resulting exe-
cution may not be identical to the original.

The user can place constraints on how execution
should proceed, so long as those constraints are not
inconsistent with the “happens-before” relation in-
herent in the computation.

In options 1 and 3, the DSR replay mode mechanisms
are required. For option 2, there is no need for replay
mode. Recording mode support would be appropriate
for both options 2 and 3, since in those cases the subse-
quent execution may be different from the original.

Replaying an execution requires that non-deterministic
events take place in a predetermined fashion throughout
the computation. In thk section, we deal only with
message receipt; Section 5 discusses how other kinds of
non-deterministic events might be handled.

Message communication introduces non-determinism
because the receive order of messages from multiple
senders to a single receiver depends on unbounded com-
munication delays. DSR’S recording mode mechanisms
must therefore record message receive order at each pro-
cess. When identical replay is requested, DSR delivers
messages to each process in the order that was recorded
during the original execution.

The user can modify the execution by specifying a dif-
ferent receive order for messages that have arrived but
have not yet been recei;ed. The only constraint is that
multiple messages from a single sender to a single re-
ceiver must be received in the order sent.

The option to choose an ordering for future message
receipts provides the user with a powerful “what-if” ca-
pability. Execution scenarios can be established and
run with DSR recording mode enabled, and the result-
ing recordings can be attached in a tree-like fashion to
the original “trunk,” allowing the user to maintain and
relate multiple variant executions in a single debugging
session.
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5 Extensions access, we say the access is discipline~ otherwise, the
access is undisciplined.

In this section we explore some of the advanced features
that could be provided in an implementation of DSR.

5. I Trees of Execution Paths

Users may spend considerable time debugging a single
distributed application. During such a debugging ses-
sion they might halt, restore and re-execute the appli-
cation many times. This activity can be represented by
a tree, called a session tree, in which each node repre-
sents a consistent global state and an edge represents an
execution from that state to another. Each path from
the root to a leaf in the session tree represents a single
execution of the program. DSR can support the notion
of session trees by structuring the checkpoint and log
histories in the shape of the session tree, so that each
checkpoint and log entry is stored only once.

The session tree naturally lends itself to graphical mw
nipulation in a debugging environment. For example,
clicking on a node in the tree might result in DSR
restoring the computation to the corresponding consis-
tent state. Clicking on an edge could result in a dia-
logue in which the user specifies a global state appear-
ing along that edge; DSR would then restore that state.
Whenever a new execution path is recorded (either free-
running execution from a restored state or a controlled
variation of some existing execution), a new edge would
appear on the session tree. The user could discard un-
needed nodes, edges, or entire subtrees by appropriate
mouse actions on the session tree; DSR would discard
the associated checkpoints and log entries.

5.2 Other Nondeterministic Events

In the foregoing sections, the only nondeterministic
events we have considered in detail are message receipts.
In practice, processes are subject to other sources of
nondeterminism aa well, including shared memory ac-
cess. In this section we present some approaches to
handling such events.

Two forms of access to physical shared memory are pos-
sible. If every access is carefully guarded by appropriate
synchronizations (e.g. locks, monitors, etc.) with any
other processes that might make conflicting concurrent

Disciplined access to shared memory provides an ad-
equate hook for DSR each synchronization must be
recorded by DSR in sufficient detail to allow its pre-
cise replay from the log. For example, each time a lock
is granted, DSR can record the process that acquired
the lock and the range of memory addresses covered by
the lock. During replay, a lock would be granted only
if it were the next recorded lock; other lock requests
would block even if the lock was free at the time of the
request. Note that DSR cannot record this information
independently for all the processes; a single locking ac-
tivity log for each group of processes that share memory
would be required.

If access to shared memory is undisciplined, it would ap
pear that DSR must record all memory accesses in the
order they are performed by the physical memory. Not
only would the resulting logs be extremely large; the
run-time cost of recording each memory access would
almost certainly be unacceptable. Nevertheless, it may
be possible to record the necessary information without
imposing an undue logging burden. For example, Bacon
and Goldstein propose special hardware to monitor and
log cache transactions in a shared memory multiproce%
sor [BG91]. By exploiting the cache coherency mech-
anisms already implemented in such hardware, undis-
ciplined shared memory accesses can be replayed using
information recorded only during the relatively infre-
quent cache misses. Alternatively, undisciplined shared
memory access might be considered a bug. Removing
these access anomalies, using techniques such as those
described in [DS90] or [MC91], would allow DSR to
record shared access patterns via synchronization hooks
aa described above.

5.3 Reducing Log and Checkpoint Vol-
ume

Several techniques can substantially reduce the volume
of logged data, as discussed in [SBY88] and [Bac90].

First, we can avoid the cost of logging the content of a
message if the sending process can be rolled back early
enough to recreate the message’s content. In general,
relying on this ability can lead to the domino eflect in
which processes force each other to roll back to earlier
and earlier states in order to regenerate needed messages
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[Ran75]; in the extreme, the entire distributed compu-
tation may need to be reexecuted from its beginning,
despite a multitude of intermediate checkpoints. The
domino effect can be prevented bylimiting reliance on
message regeneration for replay, that is, by logging the
contents of sufficiently many messages. Alternatively,
globally coordinated checkpoints can create a barrier
beyond which rollback will not be required [CL85].

As another optimization, various data compression tech-
niques can be applied to the stream of logging infor-
mation. For example, run-length encoding could be
applied to lock activity logs. Bacon suggests logging
based on predictor functions that effectively reduces the
“happens-before” relationship by dropping the order of
read-only message receipts from the log.

Incremental checkpoints can substantially reduce the
storage requirements of DSR’S checkpointing activities,
by saving only that portion of a process’ state that
has changed since the prior checkpoint. Additionally,
if the size of a process’ state fluctuates greatly during
the course of its execution (such as a process that re-
peatedly allocates and frees large arrays), DSR could
attempt to take checkpoints during the low points of
thb fluctuation.

5.4 Halting Without Quiescence

In discussing the problem of recovering in-transit mes-
sages during state restoration, the assumption was made
that when the process was originally halted prior to
restoration, all communications were allowed to quiesce,
thereby guaranteeing that in-transit messages would be
available in the logs of the intended receivers. The qui-
escence requirement can be relaxed by making use of
the message regeneration techniques suggested above in
connection with the logging of message data. Specifi-
cally, when an in-transit message is detected, the send-
ing process can be transparently restored to a state prior
to the send event and then replayed in order to regener-
ate the required messages. All earlier discussion of the
domino effect applies here.

5.5 Debugging Programs That Crash
the System

Normally, checkpoints and logs can be saved in volatile
memory. However, if DSR is careful to migrate check-

points and logs to stable memory, programs can be
debugged even though they crash the debugging envi-
ronment. In practice, a programmer need only enable
this feature as the application nears its crash point.
The migration of logging information to stable stor-
age can be done either synchronously with message re-
ceipt, or asynchronously. The former choice would re-
sult in algorithms resembling pessimistic log-based re-
covery schemes [Bar78, BBG+ 89], while asynchronous
logging would be suggestive of optimistic recovery algo-
rithms [SY85, Joh89].

6 Related Work

Much recent work has studied the problem of debug-
ging and state restoration in parallel and distributed
systems. Research on debugging has presented algo-
rithms for recording a concurrent computation during
execution and then replaying it later for debugging
[LMC87, LR85, GKY90, Smi84, GMGK84, JLSU85].

Leblanc [LMC87] models a parallel computation as a
set of processes communicating only through shared ob-
jects. During the computation each write to a shared
object results in the identity of the process perform-
ing the write and a count of the number of reads per-
formed since the prior write. This information is suffi-
cient to deterministically replay the execution from its
beginning; presumably, coordinated checkpoints could
be used for replay from an intermediate starting point.
Prior to replay, the user can set breakpoints in pro-
cesses. When replay hits the breakpoints, all the pro-
cesses are guaranteed to eventually quiesce to a con-
sistent global state. Thb approach has been used to
debug programs on the BBN butterfly shared memory
multiprocessor.

DSR contrasts with this approach in that uncoordinated
checkpoints can be used to support replay from inter-
mediate states. In addition, by allowing the user to ma-
nipulate global state vectors, we believe that DSR can
provide new and natural modes interaction between the
user and the debugging environment.

Some researchers have proposed the use of coordi-
nated checkpoints to support restoration of intermedi-
ate global states in a distributed computation [CL85,
MC88, KT87, CT90]. Recently, it haa been pointed out
the the message overhead required to coordinate check-
points can be reduced by exploiting specific properties
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of interconnection topologies [LNP91].

Coordinated checkpoints by themselves support restor~
tion only of the states at which checkpoints are taken. If
done in conjunction with logging, they increase run-time
overhead in exchange for quicker restoration, due to the
need for run-time coordination and the elimination of
such a need at restoration time.

If restoration is supported only to states saved in coordi-
nated checkpoints, the debugging environment requires
that the user be able to identify the interesting states
of the computation in advance. Such knowledge can of-
ten be obtained only via extensive debugging sessions,
resulting in a ‘divide-and-conquer” approach to zeroing
in on interesting states. We believe that DSR’S ability
to restore any consistent global state of a recorded exe-
cution offers a great advantage over such an approach.

7 Conclusions

We have presented a mechanism called Distributed
State Restorer (DSR) that allows users to debug their
distributed applications by manipulating the global
states of a computation in a natural and effective man-
ner. We have identified three major modes in which the
user operates with DSR: recording mode for collecting
information about a particular execution of the applica-
tion; analysis mode in which intermediate global states
can be restored and examined; and replay mode which
can replay a prior execution from a given state, either
precisely or under user-controlled variations.

We believe that the mechanisms provided by DSR form
an essential component of a comprehensive facility for
debugging distributed applications. By combining DSR
with appropriate graphical user interfaces and other de-
bugging facilities (traditional debugging support for in-
dividual processes in isolation, anomaly detection and
other execution analysis tools, etc.), we believe it is pos-
sible to provide a powerful debugging environment for
distributed applications.

Though, DSR has not been implemented, many of the
algorithms are similar with those of Optimistic Recovery
[SY85], of which an experimental prototype implemen-
tation exists for a Mach platform [ABB+ 86].
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