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Abstract. Differential Interference Contrast (DIC) microscopy is a non-destructive

imaging modality that has been widely used by biologists to capture microscopy

images of live biological specimens. However, as a qualitative technique, DIC mi-

croscopy records specimen’s physical properties in an indirect way by mapping

the gradient of specimen’s optical path length (OPL) into the image intensity. In

this paper, we propose to restore DIC microscopy images by quantitatively esti-

mating specimen’s OPL from a collection of DIC images captured from multiple

shear directions. We acquire the DIC images by rotating the specimen dish on the

microscope stage and design an Iterative Closest Point algorithm to register the

images. The shear directions of the image dataset are automatically estimated by

our coarse-to-fine grid search algorithm. We develop a direct solver on a regular-

ized quadratic cost function to restore DIC microscopy images. The restoration

from multiple shear directions decreases the ambiguity among different individ-

ual restorations. The restored DIC images are directly proportional to specimen’s

physical measurements, which is very amenable for microscopy image analysis

such as cell segmentation.

1 Introduction

Under a traditional brightfield microscope, living specimens such as cells are colorless

and transparent because they are predominantly phase objects that absorb and scatter

little illumination light. That is, cells do not significantly alter the amplitude of the light

waves passing through them and as a result, produces little or no contrast when viewed

under a brightfield microscope. For tissue culture cells, a cell’s optical path length (OPL,

product of its refractive index and geometric thickness) is normally different from that

of the surrounding medium (about 0.125µm or a quarter wavelength of green light).

This optical path difference induces a small phase difference between the light waves

passing through cells and those traversing the surrounding medium. Since human eyes

are sensitive to amplitude differences between light waves as opposed to phase differ-

ences, Differential Interference Contrast (DIC) microscopy technique was invented in

1950s to convert these minute phase variations to intensity changes that can be easily

detected by human eyes (see textbook [12]).

The DIC microscope works by splitting a polarized illumination light wave into

two component waves that are spatially displaced (sheared) along a specific direction,

and then recombining the two waves after they travel through adjacent locations on the
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specimen plate. The recombination (interference) is sensitive to phase variations be-

tween the two component waves. An adjustable bias (bias retardation) can be added

into the phase variation. Because the phase variation between the two waves is caused

by OPL difference at two adjacent locations, this microscopy imaging technique is then

called “differential interference,” and the observed intensity in DIC images is propor-

tional to the OPL gradient along the shear direction. The relief-like images generated

by DIC microscopy have the pseudo 3D shadow-cast effects as if the specimens are

illuminated from an oblique lighting resource (e.g. Fig. 1(a,b)), but this artifact only in-

dicates the orientation of a specimen’s OPL gradient rather than the real topographical

structure.

1.1 Related Work

Since the intensity of a DIC image is not a linear mapping of specimen’s inherent prop-

erties such as refractive index, thickness or OPL, this has triggered strong research

interest in reconstructing the original physical properties of specimens from DIC im-

ages. We summarize the related work in three aspects: hardware-related techniques,

reconstruction from a single DIC image and reconstruction using multiple DIC images.

(1) Arnison et al. [1] proposed a hardware extension to the conventional differential

interference by inserting an extra quarter wave plate in the optical layout of a DIC

microscope, and restored the phase objects by varying bias setting and using geometric

phase-shift techniques. Shribak et al. [15] developed an orientation-independent DIC

microscopy by adding liquid crystal devices in the common DIC microscopes. The

setup of these new optical configurations might be complicated and inaccessible to the

common biology labs.

(2) Noticing the gradient interpretation of DIC images, line integration methods

were developed to reconstruct DIC images [8]. The line-by-line integration along shear

direction introduces new streaking artifacts in reconstructed images and it is sensitive

to gradient noise, thus Hilbert transform [2] and other ad hoc techniques such as low-

pass filtering [7] were explored to reduce the streaking artifacts to a certain degree.

General image processing algorithms such as deconvolution by Wiener filter [7, 11]

or by Landweber iterations [6] have been applied to reconstruct optical path length

from DIC images. A preconditioning approach was recently proposed in [10] where

the DIC image is reconstructed by minimizing a nonnegative mixed-norm constrained

cost function. We reimplemented these three types of approaches and applied them on a

pair of DIC images of the same specimens captured from two different shear directions.

As shown in Fig. 1(c) and (d), we can observe the streak artifacts by line integration.

Fig. 1(e) and (f) show the unsatisfactory restoration results by Wiener filtering with 1%
noise-to-signal power ratio of the additive noise. The deconvolution performance de-

pends on the prior knowledge of various hardware parameters (such as shear directions

and bias setting) and image noise models. Fig. 1(g) and (h) show the reconstruction

results by the preconditioning method. It is time-consuming to estimate the direct mea-

surement on specimens by the iterative preconditioning method.

From Fig. 1, we have a common observation that the reconstructions of the image

pair (Fig. 1(c,d), Fig. 1(e,f), and Fig. 1(g,h)) are not the same for the same specimens.

That is, when biologists analyze specimens, they will obtain different measurements
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Fig. 1. Reconstructing optical path length from DIC images. (a,b) Two DIC image of the same

specimens captured from two different shear directions (the arrow denotes the shear direction θ);

(c,d) Reconstruction by line integration enhanced by low-pass filtering; (e,f) Reconstruction by

deconvolution (Wiener filtering); (g,h) Reconstruction by preconditioning.

on the specimen’s optical path length according to different shear directions. This is

very undesirable because biologist don’t know which direction-specific reconstruction

unveils the real properties of specimens.

(3) A few approaches have been proposed to restore specimen’s properties from

multiple DIC images [1, 6, 9, 13, 15]. These approaches either rotate prisms, change bias

settings or step the shear azimuth to capture multiple DIC images, and they require at

least two images captured from a pair of orthogonal shear directions. Without specially-

designed hardware, it is hard to rotate the specimen dish or prism manually by exact 90

degrees to satisfy the orthogonal requirement.

1.2 Our Proposal

We propose a novel approach to restore DIC microscopy images captured from multiple

shear directions without the strict orthogonal requirement. In Section 2, we derived a

closed-form solution for the restoration. Since the DIC images were captured by man-

ually rotating the dish on the stage of a common DIC microscope, there are Euclidean

transformation (rotation and translation) among captured DIC images. We designed an

Iterative Closest Point (ICP) algorithm to register the image dataset (Section 3). Rather

than measuring the shear directions of the DIC images manually, we propose a coarse-

to-fine grid search algorithm to find the shear directions automatically (Section 4). We

show our experiment results in Section 5 with the conclusion followed in Section 6.

2 Problem Formulation and Restoration Method

Based on the gradient interpretation of DIC images, we have the following simplified

DIC imaging model
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Fig. 2. Estimate the optical path length in DIC images. (a) The three observed gradient signals

along different shear directions; (b) The three signals after integration do not intersect in the

OPL space (i.e. there is no consensus among the restored signals); (c) We propose to restore

DIC images (i.e. estimate the optical path length) by minimize the total distance to all integrated

signals; (d) The spatial smooth constraint (gray mesh) is considered during the restoration; (e)

The restoration result using three DIC images.

g = rθf (1)

where g(u, v) is an observed DIC image1, rθ is the gradient operator along the shear

direction θ and f(u, v) is the DIC image to be restored. This imaging model is also

used by some other DIC reconstruction methods such as the iterative preconditioning

method [10] and deconvolution by Landweber iteration [6]. More accurate and compli-

cated DIC imaging models can be referred to [14].

Based on Eq.1, the DIC image can be restored by applying line-by-line integration

on the observed gradient g along the shear direction θ

f =

Z

g dxθ (2)

where xθ denotes a location on the lines along the shear direction. For a line on the

specimen plate with M locations, we can observe M � 1 gradient values by DIC mi-

croscopy. The line integration method reverses the differential problem by estimating

the OPL values at M locations from observed M � 1 gradient values, thus there are

more unknowns than available equations. The under-constrained equation system plus

the image acquisition noise may make the restored signal inconsistent when we per-

form line integration along different shear directions. As shown in Fig. 2(a), at a spec-

imen location, three gradient signals are extracted from three DIC images along their

shear directions. When we integrate the three gradient signals independently (Fig. 2(b)),

the three reconstructed signals do not intersect in the OPL space - they have different

restoration values on f at the same specimen location! To avoid the ambiguity and

achieve the consensus among different restorations, we propose to estimate the true f

1 We drop the 2D location indices (u, v) in all the equations for concise expressions.
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in a least-square sense. In other words, the real f at that location should have the mini-

mum total distance to all integrated signal curves (Fig. 2(c)). Thus, we are looking for

an image f to minimize

K
X

i=1

Z

R2

(f �

Z

gi dx
θi)2dx (3)

where i indexes the K DIC images captured from different shear directions θi on the

same specimens, x = (u, v) is a pixel location on the 2D Euclidean space R2. The

minimization on Eq. 3 needs to carry out the line integration
R

gi dx
θi explicitly for

each DIC image. However, the line integration itself is not a satisfactory restoration

as we see in Fig. 1(c) and (d). Instead, we propose to restore f by minimizing a cost

function in the gradient domain directly

K
X

i=1

Z

R2

(rθif � gi)
2dx. (4)

The goal is to compute an f whose gradients along different shear directions are as close

as possible to the corresponding given gradients, gi’s. After mapping the pixel location

from 2D Euclidean space to a new surface defined by the K shear directions

{x = (u, v),x 2 R2}! {θ = (θ1, θ2, · · · , θK),θ 2 Θ} (5)

and using the commutativity of
P

and
R

operations, the cost function (Eq. 4) is con-

verted into

Z

Θ

K
X

i=1

(rθif � gi)
2dθ. (6)

Eq. 6 only measures the fidelity of the restoration to all the observed data. We en-

hances the data fidelity with smooth and sparse regularizations and propose the follow-

ing objective function for restoration

O(f) =

Z

Θ

" 

K
X

i=1

(dθi ⇤ f � gi)
2

!

+ ωs(a ⇤ f)
2 + ωrf

2

#

dθ (7)

where dθ is a differential kernel along the shear direction θ, “*” is the convolution op-

eration, dθi ⇤ f is equivalent to rθif , a is a kernel for local smooth, ωs and ωr are

weighting coefficients for the smooth and sparse regularizations, respectively. dθi can

be defined by a directional first-derivative-of-Gaussian kernel [10]. The smooth con-

straint encourages nearby pixels to have the same restoration values (Fig. 2(d)). For

example, we can regularize a restored pixel value to be close to the average of its neigh-

boring pixels (i.e. a = [1 1 1; 1 � 8 1; 1 1 1]/8 for 8-connected neighborhood). The

l2 sparse regularization penalizes large f values and enforces the restored background

pixels (with equal OPL at adjacent locations) to be close to zero. A stronger sparse

regularization is using l1 norm but there is no closed-form solution for that. More dis-

cussions on the regularizations can be referred to the rich research work on compressive

sensing [3].

The solution that minimizes Eq. 7 must satisfy the Euler-Lagrange equation
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Fig. 3. Restoring a DIC image. (a) An input image; (b) Restoration by inverse filtering; (c) Our

restoration by minimizing a regularized cost function.

∂E

∂f
�

K
X

i=1

∂

∂θi

∂E

∂fθi
= 0 (8)

where fθi is a shorthand notation of dθi ⇤ f and E is the integrand inside Eq. 7

E =

 

K
X

i=1

(dθi ⇤ f � gi)
2

!

+ ωs(a ⇤ f)
2 + ωrf

2. (9)

Substituting E into Eq. 8 for the differentiating, we have

2ωsa ⇤ a ⇤ f + 2ωrf � 2
K
X

i=1

dθi ⇤ (dθi ⇤ f � gi) = 0. (10)

Now, applying Fourier transform, F , on both sides of this equation, we obtain

2ωsA
2 · F+ 2ωrF� 2

K
X

i=1

D2

θi
· F+ 2

K
X

i=1

Dθi ·Gi = 0 (11)

where A = F{a}, F = F{f}, Dθi = F{dθi}, Gi = F{gi}, “·” denotes the element-

wise production and D2

θi
= Dθi ·Dθi . Solving Eq. 11 for F, we have

F = �(

K
X

i=1

Dθi ·Gi)./(ωsA
2 + ωr �

K
X

i=1

D2

θi
). (12)

where “./” denotes the element-wise division. f is then restored by f = F�1{F}.

Fig. 2(e) shows a restored result using three images with different shear directions.

For a single DIC image with shear direction θ, the direct solution is

F = �(Dθ ·G)./(ωsA
2 + ωr �D2

θ). (13)

If without regularizations (ωs = ωr = 0), Eq. 13 is degraded into an inverse filtering

F = G./Dθ. (14)

However, the simple inverse filtering can not restore a correct DIC image (Fig. 3(b)),

which justifies the needs of regularization. As a comparison, our restoration by Eq. 13

with ωs = 0.1 and ωr = 0.001 is shown in Fig. 3(c) that is much better than the inverse

filtering. Please note that the restoration from a single shear direction (Eq. 13) contains
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ambiguity to measure the real specimen property thus we have derived solution (Eq. 12)

to restore DIC images from multiple shear directions. Eq. 13 is only used in Algorithm

2 (Section 4) for estimating the shear direction of each individual DIC image.

3 Register a Collection of DIC Images

When capturing a collection of DIC images with different shear directions by rotating

and translating dishes, we must register those images such that the same pixel loca-

tion in the image dataset represents the same specimen sample in the world. Note: this

registration step can be waived if there is a DIC microscope with rotatable prisms at

hand. We revised the Iterative Closest Point (ICP) idea [4] to register two DIC images.

Harris corner detector [5] and local non-max suppression are used to locate corners as

feature points for matching in the ICP algorithm. The corners are tolerant to appearance

changes in DIC images from different shear directions. However, the ICP algorithm can

converge to the optimum only when the initialization (rotation R0 and translation T0)

is close to the optimum. To find the correct R and T to register images, we uniformly

sample the entire search space of all possible initializations (e.g. every 30 degrees of

rotation and every 100 pixels of translation) and run the ICP algorithm from these ini-

tializations to find the global optimal R and T. The new designed ICP algorithm is

summarized below. Fig. 4 shows an registration example using this ICP algorithm.

Fig. 4. Register two DIC images by Iterated Closest Point algorithm. (a,b) Image 1 and its corner

points (red squares); (c,d) Image 2 and its corner points (black circles); (e) The two groups of

corner points are matched with the least total distance cost; (f) The registered image 2 regarding

to image 1 based on the Euclidean transformation computed from matched corner points.
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Fig. 5. Register a collection of images and extract the sub-images within the overlapped regions

for our analysis. (a): Nine images are registered regarding to the first image. (b) The ten sub-

images within the overlapped square regions.

For a collection of DIC images, we randomly pick a reference image and register

all the others regarding to it. The registered images overlap in a polygon area and we

crop the largest square sub-images from the overlapped region for our analysis (Fig. 5).

Algorithm I: ICP Algorithm to Register Two DIC Images

Extract two groups of corner points {Qj} and {Pi} from image 1 and image 2, re-

spectively. Compute the centroids: P̄ = 1

|P|

P

i Pi, and Q̄ = 1

|Q|

P

j Qj . Update

Pi  Pi � P̄, Qj  Qj � Q̄.

Initialize R = R0, T = T0, and c = 0.

Repeat the following steps until there is no change on c.
1. Bi-directional Matching: 8Pi, find the closest Qj in the Euclidean space. For

Qj , find the closest Pk. If i = k, the two corner points are matched, and update c+ =
|Pi �Qj |.

2. Transformation: For all matched corner points, compute W =
P

<i,j> PiQ
T
j .

Take the singular value decomposition (SVD) of matrix W, W = UΣVT . Compute

the rotation matrix as R = VUT , and the translation vector as T = Q̄ � RP̄. 8Pi,

update Pi  RPi +T.

Use the final matched points to compute R⇤ and T⇤, rotate and translate image 2 re-

garding to image 1 accordingly.

4 Estimate the Shear Directions

After registration, the shear direction difference between the first image and the other

K � 1 registered images are actually the rotation angle θir (i = 1...K and θ1r = 0). In

other words, if the shear direction of the first image is θs, the shear directions of the rest

images are θs � θir. Since θir’s are already known from the registration step, we only

need to estimate a single unknown variable θs. As shown in Fig. 6(g), when correct

shear directions are estimated for a pair of DIC images, the difference between the two

restorations reaches the minimum. We use this fact to estimate the shear direction over

the collection of registered images by a fast coarse-to-fine grid search algorithm.

Algorithm II: Coarse-to-Fine Grid Search for Shear Direction θs

Initialize lb = 0, ub = 360 and δθ = 30.
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while δθ > 1
for θs = lb; θs < ub; θs = θs + δθ

for i = 1; i < K; i++
Solve fi with θ = θs � θir through Eq. 13;

cost[θs] =
P

i 6=j
i,j=1...K

|fi � fj |

θ⇤s  argmin cost[θs]; δθ  δθ/4; lb θ⇤s � 2δθ; ub θ⇤s + 2δθ;

Return θ⇤s ;

Fig. 6. Estimate the shear direction. (a,b) Image 1 and 2; (c,d) The restorations corresponding to

the correct shear directions; (e,f): The restorations corresponding to wrong shear directions; (g)

The difference between two restored images is a function of the shear direction.

5 Experiment Results

We captured DIC images from different shear directions by manually rotating the spec-

imen dish on the stage. The collected images are registered automatically by our ICP

algorithm and the shear directions of each image is estimated by our coarse-to-fine grid

search algorithm.

First, we qualitatively evaluate our restoration results. Fig. 7(a) shows an image

(700*700 pixels) on two cells with high magnification. When we apply the direct solver

on the captured images individually, we observe different restoration results (Fig. 7(c-

h)). The ensemble restoration on the entire collection of images reveals the cells’ optical

path length much better and has less noise left on the restoration (Fig. 7(b)). Fig. 8 show

the other three collections of DIC images we acquired with low magnification and their

image restorations. Compared to the independent restorations (e.g. the last two columns

of Figure 8), the jointly restored image by an ensemble of DIC images are closer to the

physical properties of cells. There is less ambiguity to compute the optical path length

in joint restoration than the rotation-variant independent restoration.

To quantitatively evaluate the effect of our restoration results on microscopy image

analysis, we apply it onto the cell segmentation task. As we see in the third column
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Fig. 7. Reconstructing DIC images. (a) One DIC image of the image collection; (b) The recon-

structed OPL from a collection of DIC images (3D surface view); (c-i) The independent restora-

tion from individual DIC images (green arrows denote the shear directions).

of Fig. 8, since the pixel values in the restored images represent the specimen’s inher-

ent properties, there is no pseudo 3D shadow-cast effect in the images. In the restored

images, cell pixels are always positive against approximately zero background, thus im-

ages can be easily segmented by straightforward thresholding for further applications

of cell counting, tracking etc., which is not easily possible with original DIC images.

We manually label all cell boundaries in each image collection as ground truth masks.

After thresholding the restored DIC image to obtain the cell mask, we compare it with

the manually-labelled ground truth mask using the accuracy as the evaluation measure

ACC = (|TP|+ |N |� |FP|)/(|P |+ |N |) (15)

where cell and background pixels are denoted as positive (P) and negative (N) respec-

tively, true positive (TP) stands for those cell pixels correctly labelled by both human

annotator and computer algorithms, and false positive (FP) are those cell pixels classi-

fied by computer algorithms mistakenly. We use the same technique in [16] to learn the

best threshold for segmentation.

With K DIC images, we pick k (k = 1...K) of them as a collection and run our

restoration algorithm on this collection. For example, when k = 1 we run the restora-

tion algorithm on each single DIC image. When k = 5, we pick 5 images from the K
DIC images and run the restoration. We exhaustively tested all the possible combinato-

rial choices, and computed the mean and standard deviation on the accuracy regarding

to different image collection sizes. As we see in Fig. 9, there are more ambiguities (the

vertical red bar in Fig. 9) among different restoration results when the image collection

size k is small. As more images are added into the image collection, the restoration

accuracy increases and the ambiguity decreases. The accuracy curve levels off when

enough DIC images from different shear directions are included into the image col-

lection. Overall, we achieve the segmentation accuracy of 81% � 95% on the three

collections of DIC images. Difficulties were encountered during the restoration of pre-

dominantly flat cells that consequently had low gradient values in the observed DIC

images. Less sparsity regularization on these regions may overcome the challenge. We

leave the spatially-adaptive regularization in the future work to explore.
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Fig. 8. Restoring DIC images. Column 1: one sample image in each collection; Column 2: the

jointly reconstructed OPL (3D surface view); Column 3: The reconstructed DIC images whose

intensity values correspond to the reconstructed OPL values; Column 4 and 5: Two indepen-

dent restorations of DIC images with different shear directions, as comparisons to the ensemble

restoration.

6 Conclusions

In DIC microscopy images, the intensity values are proportional to the gradient of spec-

imen’s optical path length (OPL). To quantitatively measure specimen’s physical prop-

erties directly, we propose to restore DIC images from multiple shear directions. The

specimen dish is manually rotated to acquire a collection of DIC images with different

shear directions. An Iterative Closest Point algorithm is designed to register these im-

ages, and the shear directions of the image dataset are automatically estimated by our

coarse-to-fine grid search algorithm. We formulate the restoration problem by minimiz-

ing a regularized a cost function with a closed-form solution.

Fig. 9. The mean (blue circle) and stand deviation (red bar) of the segmentation accuracy when

using different image collection size k. (a,b,c) are evaluation results from three image datasets

corresponding to Figure 8(a,b,c), respectively.

Compared to the reconstruction methods based on a single DIC image which may

reconstruct different optical path lengths according to different shear directions, our
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method is orientation-invariant. Without the strict requirement of at least two orthog-

onal shear directions as needed by the previous multiple-image-based reconstruction

techniques, our approach can restore DIC images from various shear directions. As

qualitatively and quantitatively proved by our experiments, restoration from multiple

shear directions can decrease the ambiguity among different individual restorations.

The restored DIC images are directly proportional to specimen’s physical measure-

ments without the pseudo 3D effect, which is very amenable for microscopy image

analysis such as cell segmentation.
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