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Popular modern generalized gradient approximations are biased toward the description of free-atom
energies. Restoration of the first-principles gradient expansion for exchange over a wide range of density
gradients eliminates this bias. We introduce a revised Perdew-Burke-Ernzerhof generalized gradient
approximation that improves equilibrium properties of densely packed solids and their surfaces.
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Ground-state Kohn-Sham density functional theory [1]
has been hugely successful for electronic structure calcu-
lations of solids and molecules. It relies upon good approx-
imations to the exchange-correlation (xc) energy as a
functional of the electronic spin densities [2]. Over four
decades, increasingly sophisticated approximations have
been developed [3]. The most commonly used in solid-
state calculations today is the Perdew-Burke-Ernzerhof
(PBE) version [4] of the generalized gradient approxima-
tion (GGA), employing both the density and its gradient at
each point in space. Popular GGAs represent a well-
tempered balance between computational efficiency, nu-
merical accuracy, and reliability, but PBE also juggles the
demands of quantum chemistry and solid-state physics [5].

While PBE represented a high point of nonempirical
functional development 11 years ago, much has since
been learned about its limitations. PBE reduces the chronic
overbinding of the local spin density approximation
(LSDA) [1], but, while LSDA often slightly underestimates
equilibrium lattice constants by about 1%, PBE usually
overestimates them by about the same amount. Other
equilibrium properties, such as bulk moduli, phonon fre-
quencies, magnetism, and ferroelectricity, are sensitive to
the lattice constant, and so are also overcorrected by PBE
[6]. Surface energies are too low in LSDA, but are made
lower still by PBE [7].

However, attempts to construct a better GGA face a
Procrustean dilemma [8]: Those with an enhanced gradient
dependence [9,10] improve atomization and total energies,
but worsen bond lengths, while more recent suggestions of
a GGA for solids [6,11–14] (like the very first GGA [15])
have a reduced gradient dependence and typically do im-
prove lattice parameters and/or surface energies, but have
been criticized for worsening total and atomization ener-
gies [13]. More advanced functionals have been con-
structed. For example, meta-GGAs, using also the orbital
kinetic-energy densities, provide greater accuracy over a
wider range of systems and properties [3]. But current

meta-GGAs do not improve lattice constants as dramati-
cally as surface energies, and meta-GGAs are not yet
available in all solid-state codes.

In the present Letter, we explain the origin of this
dilemma and show that no GGA can do both: Accurate
atomic exchange energies require violating the gradient
expansion for slowly-varying densities, which is valid for
solids and their surfaces. At the GGA level, one must
choose. A pragmatic approach to lattice properties is there-
fore to use a modified functional especially for solids
which, unlike previous suggestions, recovers the gradient
expansion for exchange over a wide range of density
gradients. This by itself yields much better lattice constants
than PBE (see Ref. [16]), and excellent jellium surface
exchange energies, because such energies are dominated
by moderate density gradients. Numerical studies [2] sug-
gest that PBEsol will also yield highly accurate bulk ex-
change energies of metals within the pseudopotential
approximation. These observations suggest an improved
starting point for more advanced functional construction.

Restoration of the gradient expansion for exchange re-
quires a complementary alteration for correlation. We fit
the jellium surface xc energy, as done by Armiento and
Mattsson [12]. This condition is insufficient to yield accu-
rate lattice constants, as experience with the Tao-Perdew-
Staroverov-Scuseria (TPSS) meta-GGA shows [3]. But, as
explained below, it is relevant to lattice constants, because
of its bulklike nature. Being accurate for both surface
exchange and xc energies, PBEsol minimizes reliance on
error cancellation between x and c, while Ref. [12] does
not. By using the PBE form but simply altering two pa-
rameters, we retain all other exact conditions that make
PBE so reliable.

The GGA form for the exchange energy is simply

 EGGA
x "n# $

Z
d3reunifx !n%r&"Fx!s%r&"; (1)

where n%r& is the electronic density, eunifx %n& is the exchange
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energy density of a uniform electron gas ( ' n4=3), s $
jrnj=%2kFn& [with kF $ %3!2n&1=3] is the dimensionless
density gradient, and Fx%s& is the enhancement factor for
the given GGA [4]. Equation (1) is the spin-unpolarized
form, from which the spin dependence can be deduced [4].
Any GGA that recovers the uniform gas limit has

 Fx%s& $ 1("s2 ( . . . %s ! 0&: (2)

The gradient expansion [1] that is accurate for slowly-
varying electron gases has [17] "GE $ 10=81 ) 0:1235.

To begin, Ref. [18] showed that the exchange energies of
neutral atoms are very well approximated by their asymp-
totic expansion for large Z, i.e., Ex $ !0:2208Z5=3 !
0:196Z( . . . . The first term arises from LSDA, but the
second arises in a GGA from the s2 contribution to Eq. (2)
and requires " ) 2"GE. Thus any GGA that is accurate for
the exchange energies of free neutral atoms must have " )
2"GE. PBE does, although its value of " $ 0:2195 was
found from a different nonempirical argument. So does
B88, as it was fitted to the x energies of noble gas atoms
[19]. Even PW91 does [20], as it reverts only at irrelevantly
small s to "GE.

Thus, to attain accurate exchange energies of atoms
(vital to dissociation energies in molecules and cohesive
energies in solids), any GGA must strongly violate the
gradient expansion for slowly varying densities [18]. But
most of thermochemistry occurs without free atoms, and is
not much worse in LSDA than in PBE (e.g., [21]).
Moreover, for the evaluation of exchange, the densities of
real solids and their surfaces are often almost slowly vary-
ing over space. Restoring the gradient expansion should
improve their description (but worsen atomization ener-
gies). The GGA is a limited form, and cannot satisfy both
conditions. Equation (2) suggests a necessary condition for
convergence of the second-order gradient expansion for
exchange: s & 1. Since s & 1 for valence electrons in
densely packed solids (or s & 2 in core-valence regions
of alkali atoms), and since the reduced Laplacian of the
density is also & 1, the gradient expansion is important for
exchange in solids. We choose "GE for PBEsol.

Now, for a GGA correlation functional that recovers the
uniform gas limit, the gradient expansion is

 Ec"n# $
Z

d3rn%r&f#unifc !n%r&"( $t2%r& ( . . .g (3)

where #unifc %n& is the correlation energy per particle of the
uniform gas, $ is a coefficient, and t $ jrnj=f2kTFng is the
appropriate reduced density gradient for correlation (fixed
by the Thomas-Fermi screening wave vector kTF $!!!!!!!!!!!!!!
4kF=!

p
, not kF). For slowly varying high densities [22],

$GE $ 0:0667. Unlike exchange, the second-order term in
the gradient expansion for correlation cannot be small
compared to the local term everywhere even for valence
electrons in solids: $t2 can be large compared to j#unifc j (as
$GEt2 $ 0:1s2=rS). The gradient expansion can be relevant

to real systems (especially solids) for exchange, but much
less so for correlation.

Also relevant to solids is fxc%q& for the response of the
uniform gas to a weak potential % cos%q * r&. For valence-
electron densities, the exact fxc%q& is almost independent
of q, up to 2kF [23]. Thus LSDA, which produces a
constant (the value at q $ 0), yields an accurate approxi-
mation for q & 2kF. But any GGA with a nonzero xc
contribution to second order in rn produces a term qua-
dratic in q. Since we are interested in weakly-varying
valence-electron densities in densely packed solids, we
wish to retain this excellent feature of LSDA. If

 " $ !2$=3; (4)

there is complete cancellation between beyond-LSDA x
and c contributions, restoring LSDA response.

In PBE, the gradient expansion for correlation is re-
spected, i.e., $ $ $GE, and " ) 2"GE satisfies Eq. (4).
This choice agrees well with the PW91 exchange func-
tional, and with its hole construction [20] (where sharp
real-space cutoffs are most appropriate to atoms), and
yields highly accurate exchange energies of atoms. But
we have already argued that " ) 2"GE is harmful for
many condensed matter applications. Once we choose
"GE for exchange, we cannot recover simultaneously the
gradient expansion for correlation and the linear response
of LSDA for a uniform density. Exact satisfaction of
Eq. (4) would yield $ $ 0:0375, but a compromise value
will satisfy another, more relevant constraint for solid-state
applications.

For correlation, large neutral jellium clusters are our
paradigm, for which Exc ! eunifxc V ( esurfxc A( . . . as the
radius grows, where esurfxc is the jellium surface xc energy,
V the volume of the cluster, and A its area. A GGA that
recovers esurfxc will be correct in leading- and next-order for
neutral jellium clusters as N ! 1, in a similar way to
popular exchange GGAs for neutral atoms. Moreover, the
surface energy is dominated by xc contributions and esurfxc is
a bulklike property, arising mainly (103% at rS $ 2) from
a moderately-varying-density region (with s & 1:9) inside
the classical turning plane.

We check that this condition is compatible with the
restoration of the gradient expansion for exchange.
Because jellium clusters have a uniform bulk density and
because most of the surface energy comes from within, the
gradient expansion should be accurate. We find, at bulk
density rS $ 3, the errors of the surface exchange energy
are: LSDA 27%, PBE !11%, and PBEsol 2.7%.

We fit esurfxc [12] to determine our correlation functional.
But the jellium esurfxc is not known exactly. Figure 1 shows
surface energy enhancements relative to LSDA. The likely
‘‘range of the possible’’ for esurfxc extends from TPSS meta-
GGA [3,7] or RPA( [24] at the low end of what is possible
(in agreement with the most recent quantum Monte Carlo
calculations [25]) to the RPA-like Pitarke-Perdew (PP)
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[26] value at the high end. For a history of this subject, and
another sophisticated estimate, see Ref. [27]. TPSS may
provide the best target for a GGA. We choose $ $ 0:046
and " $ "GE (within the PBE form) for PBEsol, to best fit
the TPSS results. PBEsol should improve most surface
energies over LSDA, whereas PBE worsens them.

Thus we have violated Eq. (4) in favor of good surface
energies. But our value for $ is considerably closer to that
of the linear response requirement (0.0375) than that de-
manded by complete restoration of the gradient expansion
(0.0667).

PBEsol becomes exact for solids under intense compres-
sion, where real solids and their surfaces become truly
slowly varying, and exchange dominates over correlation
[18]. In Fig. 2, we plot the enhancement factors of PBE and
PBEsol. For a spin-unpolarized (& $ 0) density n $
3=%4!r3S&, we define Fxc%rS; s& by

 EGGA
xc "n# $

Z
d3reunifx !n%r&"Fxc!rS%r&; s%r&": (5)

The high-density (rS ! 0) limit is Fx%s& of Eq. (1). The
nonlocality or s dependence of GGA exchange is dimin-
ished from PBE to PBEsol, making the latter somewhat
closer to LSDA. Over the whole range s & 1, the PBEsol
Fx is close to 1("GEs2. The range 0 & s & 3 is ener-
getically important for most properties of most real sys-
tems, while 0 & s & 1 and 1< rS < 10 are the ranges for
valence-electron regions in many densely packed solids.

To test our functional, we employ a test set of 18 solids
from Ref. [28]. These come in four groups: simple metals
(Li, Na, K, Al), semiconductors (C, Si, SiC, Ge, GaAs),
ionic solids (NaF, NaCl, LiCl, LiF, MgO), and transition
metals (Cu, Rh, Pd, Ag). The set is not claimed to be
representative, but was chosen for the availability of basis
functions and anharmonic corrections [28]. Our calcula-
tions use the Gaussian orbital periodic code of Ref. [28],

with basis sets of the same or higher quality. In Table I, we
list both mean and mean absolute errors for lattice con-
stants. The systematic PBE overestimate is close to the
systematic LSDA underestimate, as shown by the total
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FIG. 2. Enhancement factors of PBE and PBEsol, for spin-
unpolarized systems, as a function of reduced density gradient,
for various values of rS.
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FIG. 1. Ratio of calculated surface exchange-correlation en-
ergy to that of LSDA as a function of rS for various approxi-
mations.

TABLE I. Errors in equilibrium lattice constants (in !A+
10!2) on our data set of 18 solids, relative to experiment with
estimates of the zero-point anharmonic expansion removed [28].

Class LSDA PBE TPSS PBEsol

Mean error

4 simple metals !9:0 2.9 5.3 !0:3
5 semiconductors !1:1 7.9 6.2 3.0
5 ionic solids !8:4 8.5 6.8 2.0
4 transition metals !4:0 6.4 2.5 0.0

Total !5:5 6.6 5.4 1.3

Mean absolute error

4 simple metals 9.0 3.4 5.3 2.3
5 semiconductors 1.3 7.9 6.2 3.0
5 ionic solids 8.4 8.5 6.8 2.7
4 transition metals 4.0 6.4 2.7 1.9

Total 5.6 6.7 5.4 2.5
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mean absolute errors, and TPSS cures this very little. On
the other hand, PBEsol greatly reduces this overestimate,
by a factor of almost 4, except for semiconductors, where
LSDA is unsurpassed.

PBEsol is not expected to give good atomization en-
ergies. In Table II, we give the errors on the AE6 data
set of molecules. These 6 molecules [SiH4, S2, SiO, C3H4
(propyne), C2H2O2 (glyoxal), and C4H8 (cyclobutane)]
were chosen [29] to be representative, i.e., to reproduce
the errors of much larger data sets. As is clear, and ex-
pected, PBEsol is much less accurate than PBE, only about
halving the error of LSDA. This can be related to PBEsol’s
worsened total energies of atoms.

We have demonstrated the relevance of the second-order
gradient coefficient for the exchange energy of a slowly
varying density to the bulk and surface properties of solids.
The TPSS meta-GGA [3], which incorporates this coeffi-
cient, gets good surface energies, but its lattice constants
are only marginally better than those of PBE on which it
builds, whereas PBEsol is significantly better. This sug-
gests that an improved meta-GGA needs to recover the
gradient expansion for exchange over a wider range of
density distributions n%r& than TPSS does.

Previous attempts to improve on PBE within the GGA
form have retained the PBE gradient coefficients " and $
for small s, but altered the behavior at large s [6,9,10], or
have zeroed out " [11,12], and are thus fundamentally
different from PBEsol. The AM05 [12] functional per-
forms very similarly to PBEsol for the solids studied
here, but AM05 follows the proposal of Vitos et al. [11]
to fit the conventional exchange energy density of an Airy
gas. For rS $ 2 to 6, AM05 exchange has errors of 12% to
60% for esurfx , compared to 1.6% to 4.1% for PBEsol.
Numerical comparisons and details are available [16].

We have identified the simple exchange-correlation
physics underlying many properties of many solids, and
shown how it differs from that for atoms. We recommend
PBEsol for the applications discussed here. Any existing
code that implements PBE can be instantly modified to try
PBEsol, by simply replacing the values of " and $.
Modified PBE subroutines are available from [30].

We thank NSF (Grants No. CHE-0355405, No. CHE-
0457030, and No. DMR-0501588) and OTKA for support.
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Table I of this Letter and Table SI of its Supplementary Information require small corrections to the corrected
experimental values of the lattice constants for the nonmetals.

The errors of the density-functional lattice constants in Table I were deviations from corrected experimental values,
where the corrections removed the finite-temperature and zero-point anharmonic expansion (ZPAE) effects. The ZPAE
corrections were taken from Ref. [28] and based on Eq. (18) of Ref. [28], i.e., on Appendix A of A. B. Alchagirov et al.,
Phys. Rev. B 63, 224115 (2001), in which " is the energy per atom and v0 is the volume per atom. But Ref. 28 inadvertently
used the volume per unit cell, which is twice the volume per atom for the semiconductors and ionic crystals. Thus, the
ZPAE corrections for these solids in Ref. [28] and in our article were only half what they should have been. Parts of Table I
(with errors in units of 0.01 Å) of our article should be corrected as follows:

Class LSDA PBE TPSS PBEsol

Mean error

5 semiconductors �0:3 8.6 7.0 3.7

5 ionic solids �6:9 10.1 8.3 3.5

Total �4:9 7.3 6.0 1.9

Mean absolute error

5 semiconductors 0.9 8.6 7.0 3.7

5 ionic solids 6.9 10.1 8.3 3.5

Total 5.1 7.4 6.0 2.9

The corrected experimental lattice constants for the 4 simple metals and 4 transition metals in Table I are unaffected. No
conclusion is changed by this erratum, although the improvement of PBEsol relative to LSDA is slightly reduced. Some
lattice constants (in Å) from the ‘‘Expt.-ZPAE’’ column of Table S1 of the Supplementary Information (EPAPS PRLTAO-
100-016814) should be corrected as follows: 3.544 (C), 5.416 (Si), 4.340 (SiC), 5.640 (Ge), 5.638 (GaAs), 5.566 (NaCl),
4.579 (NaF), 5.074 (LiCl), 3.964 (LiF), and 4.188 (MgO).

J. P. P. thanks Fabien Tran for pointing out this error.
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