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Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V (G) is

an m-tuple dominating set if S dominates every vertex of G at least m times, and an

m-dominating set if S dominates every vertex of G−S at least m times. The minimum

cardinality of a dominating set is γ, of an m-dominating set is γm, and of an m-tuple

dominating set is γ×m. For a property π of subsets of V (G), with associated parameter

fπ, the k-restricted π-number rk(G, fπ) is the smallest integer r such that given any

subset K of (at most) k vertices of G, there exists a π set containing K of (at most)

cardinality r. We show that for 1 ≤ k ≤ n where n is the order of G: (a) if G has

minimum degree m, then rk(G, γm) ≤ (mn+k)/(m+1); (b) if G has minimum degree 3,

then rk(G, γ) ≤ (3n + 5k)/8; and (c) if G is connected with minimum degree at least 2,

then rk(G, γ×2) ≤ 3n/4 + 2k/7. These bounds are sharp.
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1 Introduction

In this paper we continue the study of restricted dominating sets started by Sanchis [16]: the

restricted version of a parameter considers the case when certain vertices are specified to be

in the set. We prove a general result which gives sharp bounds for several domination-like

parameters, including domination and m-domination. We also establish a sharp bound for

the case of double domination.

Suppose π is a property of sets of vertices (for example, being a dominating set). Sup-

pose that fπ is the associated parameter: the minimum/maximum cardinality of a π-set;

for definiteness, assume that fπ is the minimum cardinality. Then, for a graph G and a

subset K of the vertex set, we define r(G, K, fπ) as the minimum cardinality of a π-set con-

taining K. The k-restricted π-number rk(G, fπ) is the maximum value of rk(G, fπ) taken

over all subsets K of G of cardinality k. Note that the 0-restricted π-number is just fπ. (If

fπ is a maximum, then swap minimum and maximum in the above definitions.)

In this paper we focus on parameters related to domination. For a graph G = (V, E),

the open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E } and the closed

neighborhood is N [v] = N(v) ∪ {v}. A set S ⊆ V is a dominating set if each vertex in

V −S is adjacent to at least one vertex of S. The domination number γ(G) is the minimum

cardinality of a dominating set.

In [4] Fink and Jacobsen defined a subset S of V to be an m-dominating set (mDS) of G

if for every vertex v ∈ V − S, |N(v) ∩ S| ≥ m. The m-domination number γm(G) is the

minimum cardinality of an mDS. Cockayne, Gamble and Shepherd provided a sharp upper

bound:

Theorem 1 ([2]) If H is a graph of order n with minimum degree at least m, then γm(H) ≤

mn/(m + 1).

In [7] Harary and Haynes defined a subset S of V to be a double dominating set (DDS)

of G if for every vertex v ∈ V , |N [v]∩S| ≥ 2. The double domination number γ×2(G) is the

minimum cardinality of a DDS. More generally one can consider k-tuple domination; see

for example [12, 13]. In [11] a sharp upper bound of the double domination of a connected

graph with minimum degree at least 2 was established (and the graphs achieving the bound

were characterized):

Theorem 2 ([11]) If H 6= C5 is a connected graph of order n with minimum degree at

least 2, then γ×2(H) ≤ 3n/4.

The concept of restricted domination in graphs, where we restrict the dominating sets to

contain any given subset of vertices, was introduced by Sanchis in [16] and studied further
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in [9, 17]. Restricted total domination in graphs was introduced and studied in [10]. Bounds

on m-domination or double domination are given in [1, 5, 6, 11, 18] and elsewhere. For more

on domination, see the book [8].

In this paper, we show that for 1 ≤ k ≤ n where n is the order of G:

• If minimum degree δ ≥ 3, then rk(G, γ) ≤ (3n + 5k)/8, and this is sharp.

• If minimum degree δ ≥ m, then rk(G, γm) ≤ (mn + k)/(m + 1), and this is sharp.

• If minimum degree δ ≥ 2 and G is connected, then rk(G, γ×2) ≤ 3n/4 + 2k/7, and

this is sharp.

The first two results are a consequence of a general result which derives a bound on the

restricted domination number from a bound on the unrestricted version. For example, this

gives a quick proof of the main result of [9]. It is to be noted that there are no useful

bounds for smaller minimum degree: there are graphs G with δ = m − 1 and γm(G) = n,

and (hence) with δ = 1 and γ×2(G) = n.

For notation and graph theory terminology we in general follow [8]. The subdivision of

a graph H, denoted by S(H), is the graph obtained from H by subdividing every edge

exactly once. A vertex cover S in G is a set of vertices such that every edge is incident with

a vertex in S. The minimum cardinality of a vertex cover in G is denoted by α(G).

2 A General Restricted Domination Result

Given thresholds tv at each vertex, S is a threshold ordinary dominating (TOD) set if

|N(v) ∩ S| ≥ tv for all v ∈ V − S. Examples include: ordinary domination (tv ≡ 1),

m-domination (tv ≡ m), and α-domination (tv is α times the degree of v: see [3]).

We say that a family of graphs is closed under pointwise identification, if given G1 and G2

in the family, the graph formed by taking the disjoint union of G1 and G2 and identifying

one vertex on each copy is in the set. For example, the set of trees is so closed. The notation

|G| represents the order of G.

We are now in a position to present a general restricted domination result.
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Theorem 3 Consider a threshold ordinary dominating parameter γ̃. Assume F is a set of

graphs such that:

(a) F is closed under pointwise identifications;

(b) there is a constant c such that γ̃(G) ≤ c|G| for all G ∈ F ;

(c) there is a graph F ∈ F and a vertex v ∈ V (F ) such that γ̃(F ) = γ̃(F − v) = c|F | and

there is a γ̃-set of F containing v.

Then

rk(G, γ̃) ≤ c|G| + (1 − c)k

for all G ∈ F and for all k with 0 ≤ k ≤ |G|. Furthermore this bound is sharp in that for

every k there are infinitely many connected G ∈ F such that rk(G, γ̃) = c|G| + (1 − c)k.

Proof. Let graph G ∈ F be given of order n. Say it has k specified vertices K =

{w1, . . . , wk}.

Construct a supergraph G′ as follows. Take k disjoint copies of F ; say these are F1, . . . , Fk

with the vertex corresponding to v called v1, . . . , vk in the corresponding copy. Then, identify

vi and wi for 1 ≤ i ≤ k. By the closure property of F , the resultant graph G′ is in F .

Now, consider a minimum TOD-set S′ of G′. There are at least γ̃(F − v) vertices of S′

in each copy of F . (We assume that the threshold tv is nondecreasing as a function of the

degree of v.) Since γ̃(F −v) = γ̃(F ) and there is a γ̃-set of F containing v, we may therefore

assume that S′ contains all of w1, . . . , wk. It follows that S = S′ ∩V (G) is a TOD-set of G,

containing K.

Hence,

rk(G, γ̃) ≤ |S| = |S′| − k(γ̃(F ) − 1) ≤ c(n + k(|F | − 1)) − k(c|F | − 1) = cn + (1 − c)k,

as required.

For the sharpness, note that by repeated pointwise identification with F it follows that F

contains arbitrarily large connected graphs. Take such a graph and specify any k vertices.

Add pointwise copies of F to the remaining vertices to form the graph G. It follows that

rk(G, γ̃) = c|G| + (1 − c)k. qed

2.1 Applications

As a consequence of Theorem 3, we can derive bounds on the restricted m-domination

number and the restricted domination number from bounds on the unrestricted versions.

Corollary 1 For positive integer m, if graph G has minimum degree at least m, then

rk(G, γm) ≤ (mn + k)/(m + 1) for 0 ≤ k ≤ n.
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Proof. Apply Theorem 3 to the bound of Cockayne et al. given in Theorem 1 with F =

Km+1. qed

A special case of this is the result for ordinary domination:

Corollary 2 ([9]) If G is a graph with no isolated vertex, then rk(G, γ) ≤ (n + k)/2 for

0 ≤ k ≤ n.

Corollary 3 ([9]) If G is a connected graph of order n with minimum degree δ ≥ 2, then

rk(G, γ) ≤ (2n + 3k)/5 for 1 ≤ k ≤ n.

Proof. McCuaig and Shepherd [14] showed that γ(G) ≤ 2n/5 for a connected graph G

with minimum degree at least 2, apart for seven exceptional graphs (one of order four and

six of order seven). So apply Theorem 3 with F the connected graphs with minimum

degree 2 apart from the seven exceptions, and with F = C5. Then check by hand that the

exceptional graphs are not exceptions when k ≥ 1. qed

Corollary 4 If G is a connected graph of order n with minimum degree δ ≥ 3, then

rk(G, γ) ≤ (3n + 5k)/8 for 0 ≤ k ≤ n.

Proof. Reed [15] showed that δ ≥ 3 implies γ(G) ≤ 3n/8. So apply Theorem 3 with F

being the cubic nonplanar graph C on 8 vertices shown in Figure 1 with v any of the vertices

of the triangle. qed

Figure 1: A cubic graph C with domination number 3

To illustrate the sharpness of Corollary 4, let H be a connected graph with K a set

of k ≥ 0 specified vertices each of which has degree at least 3 in H. For each vertex v of

V (H)−K, add a (disjoint) copy of the graph C of Figure 1 and identify any one of its vertices

that is in a triangle with v. Then, for G the resulting graph, we have rk(G, γ) = (3n+5k)/8.

For minimum degree 4 we might expect a similar result, once the minimum degree bound

is solved!
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3 Restricted Double Domination

Our aim in this section is to establish the following result.

Theorem 4 Let G be a connected graph of order n with minimum degree at least 2, and

let k be an integer with 1 ≤ k ≤ n. Then,

rk(G, γ×2) ≤
3n

4
+

2k

7
.

By Theorem 2, the upper bound of does not necessarily hold if G is a disconnected

graph, unless we insist that no component is a 5-cycle or that the subset K of k vertices

of G contains at least one vertex from each component.

The bound of Theorem 4 is sharp for graphs of arbitrarily large order. To see this, let G

be a connected graph of order n = 28r obtained from the disjoint union of r ≥ 1 copies of

S(K7), the subdivision of K7, by adding any number of edges joining non-degree-2 vertices.

Let K be the set of degree-2 vertices in G, and let k = |K| = 21r. Then every DDS of

G that contains K must contain all but one vertex from each copy of S(K7) in G, and so

r(G, K, γ×2) = n − r. Thus, by Theorem 4, rk(G, γ×2) = n − r = 3n/4 + 2k/7.

3.1 Proof of Theorem 4

The value of γ×2(Cn) for a cycle Cn was established by Harary and Haynes [7] who showed

that for n ≥ 3, γ×2(Cn) = ⌈2n/3⌉. Using a similar proof (which we omit) we can determine

the double domination number of a path Pn.

Proposition 5 For n ≥ 2, γ×2(Pn) = ⌈2(n + 1)/3⌉.

The proof of Theorem 4 is in general by induction. We need to handle one case separately.

3.1.1 Subdivision Graphs

We will need the following lemma:

Lemma 6 Let H be a graph with p vertices and q edges. Let a = 3/4 and b = 1/28. Then

the vertex cover number α(H) ≤ a p + b q.
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Proof. By induction. There are two (overlapping) possibilities.

Case 1: H has maximum degree ∆ ≥ 7. Let v be a vertex of maximum degree and let

H ′ be the graph H − v. Then

α(H) ≤ α(H ′) + 1 ≤ a(p − 1) + b(q − ∆) + 1 = a p + b q + R(∆)

where R(∆) = 1 − a − b∆. Clearly R(∆) is decreasing in ∆ and R(7) = 0.

Case 2: H has minimum degree δ ≤ 6. Let v be a vertex of minimum degree and let H ′

be the graph formed from H by the deletion of v and its δ neighbors. Then

α(H) ≤ α(H ′) + δ ≤ a(p − (δ + 1)) + b(q −
(

δ+1

2

)

) + δ = a p + b q + S(δ)

where S(δ) = δ− a(δ +1)− b
(

δ+1

2

)

. It is easily checked that S(δ) is increasing as a function

of δ for δ ≤ 6, and S(6) = 0. This gives the desired result. qed

Equality in Lemma 6 occurs for H being K7 or K8. (We comment that Lemma 6 also

holds for a = d(d + 3)/(d2 + 5d + 2) and b = 2/(d2 + 5d + 2) where d is any nonnegative

integer.)

Lemma 7 Let H be any loopless multigraph with minimum degree at least 2, and let S(H)

be its subdivision. Let K be the subdivision vertices, |K| = k. Then

r(S(H), K, γ×2) ≤ 3n/4 + 2k/7,

where n is the order of S(H).

Proof. Let C be a vertex cover of H. Then C ∪K is a DDS of S(H): every original vertex

is adjacent to at least two members of K, and every vertex of K is adjacent to at least one

member of C.

By the above lemma applied to the underlying simple graph of H, it follows that

r(S(H), K, γ×2) ≤ k + (3p/4 + k/28) = 3n/4 + 2k/7

where p is the order of H. qed

3.1.2 Main Lemma

We define a vertex as small if it has degree 2; otherwise it is large. We say a prescribed

vertex is troublesome if it is small but both its neighbors are large. The main induction is

provided by the following lemma.
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Lemma 8 Let G be a connected graph of order n with minimum degree at least 2, such

that the set L of large vertices is an independent set. Let K be a subset of the vertices,

|K| = k such that if G = C5 then K is nonempty. Let T denote those vertices in K that

are troublesome, |T | = t. Then,

r(G, K, γ×2) ≤ f(n, k, t) :=
3n + k

4
+

t

28
.

We proceed by induction on n. If n = 3, then G = C3 and t = 0, and it is straightforward

to check that rk(C3, K, γ×2) ≤ (3n + k)/4 (with equality if and only if k = 3). This

establishes the base cases. Further, if k = 0, then the result is given by Theorem 2.

So let G be a connected graph of order n ≥ 4 with minimum degree at least 2 and K a

nonempty subset of the vertices. Let L denote the set of large vertices of G. By assumption,

L is an independent set.

The following observation is trivial.

Observation 1 If graph G has a subgraph H that has 5 vertices and contains a 5-cycle,

then any DDS S of G−H can be extended to a DDS of G by adding at most three vertices

provided some vertex of NG(H) − H is in S.

We observe that we may apply the inductive hypothesis of Lemma 8 to a disconnected

graph G provided every component of G that is a C5 contains a prescribed vertex. (The

values n, k, t are simply the sum of the values of the components.)

Observation 2 We may assume that any small vertex in K that has a small neighbor is

in a triangle.

Proof. Assume that b is a small vertex in K with small neighbor c that is not in a triangle.

Let a be b’s other neighbor and let d be c’s other neighbor. Since b is not in a triangle,

a 6= d.

Suppose c /∈ K or d is small. Then let G′ = (G − b) ∪ {ac} (that is, with b contracted

out). Then, G′ satisfies the hypothesis of the lemma. By the assumption of the case, the

contraction does not create a troublesome vertex. Applying the inductive hypothesis to G′,

there exists a DDS S′ of G containing K \ {b} with |S′| ≤ f(n− 1, k − 1, t) = f(n, k, t)− 1.

Let S = S′ ∪ {b}; then since at least one of a and c is in S′, S is a DDS of G containing K.

Thus r(G, K, γ×2) ≤ f(n, k, t).

Suppose c ∈ K and d is large. Then let G′ = G − {b, c}. By the assumption on G, this

removal does not create a troublesome vertex. If each component of G′ satisfies the lemma
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hypothesis, then applying the inductive hypothesis to each component of G′, there exists

a DDS S′ of G containing K \ {b, c} with |S′| ≤ f(n − 2, k − 2, t) = f(n, k, t) − 2. Let

S = S′ ∪ {b, c}; this is a DDS of G containing K, and so r(G, K, γ×2) ≤ f(n, k, t).

If some component C of G′ is a K-free C5, then let G′′ = G′ − C. At least one vertex of

C is adjacent to {b, c}; thus one gets a DDS of G by adding b, c and only three vertices to

a DDS of G′′. The arithmetic is similar to above. qed

By Observation 2, we may assume that G is not a cycle. Let C be any component of

G − L; it is a path. If C has only one vertex, or has at least two vertices but the two ends

of C are adjacent in G to different large vertices, then we say that C is a 2-path. Otherwise

we say that C is a 2-handle.

Observation 3 We may assume that any small vertex that has two large neighbors is in K.

Proof. Assume that b is a small vertex with two large neighbors u and w that is not in K.

Let G′ = G − b and K ′ = K ∪ {u, w}. Then, δ(G′) ≥ 2 and G′ has at most t troublesome

vertices.

If G′ is disconnected, then both components contain a prescribed vertex. Applying the

inductive hypothesis to (each component of) G′, there exists a DDS S′ of G containing K ′

with |S′| ≤ f(n − 1, k + 2, t) < f(n, k, t). Since {u, w} ⊆ S′, the set S′ is also a DDS of G,

and so r(G, K, γ×2) < f(n, k, t). qed

Observation 4 We may assume that every 2-path has only one vertex.

Proof. Assume that there is a 2-path P : v1, v2, . . . , vr with r ≥ 2. Let u be the large vertex

adjacent to v1 and v the large vertex adjacent to vr. By Observation 2, none of the vertices

on P is in K.

Let G′ = G − V (P ) and K ′ = K ∪ {u, v}. Then, δ(G′) ≥ 2 and G′ has at most t

troublesome vertices. Every component of G′ satisfies the hypothesis of the lemma; thus

by the inductive hypothesis, there exists a DDS set S′ of G′ containing K ′ with |S′| ≤

f(n − r, k + 2, t).

Suppose r ≥ 4. Then adding to the set S′ a minimum DDS of the path P − {v1, vr}

produces a DDS of G (as a DDS of the path necessarily contains the end-vertices). Thus,

by Proposition 5, one obtains a DDS of G containing K of cardinality

|S′| + γ×2(Pr−2) ≤ f(n − r, k + 2, t) + ⌈2(r − 1)/3⌉ = f(n, k, t) + A(r)
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where A(r) = (2−3r)/4+ ⌈2(r−1)/3⌉. We observe that A(r) ≤ 0 with equality if and only

if r = 6. Thus, one obtains a DDS of G containing K of cardinality at most f(n, k, t).

Suppose r = 2. Then S′ ∪ {v1} is a DDS of G containing K of cardinality |S′| + 1 ≤

f(n − 2, k + 2, t) + 1 = f(n, k, t).

Suppose r = 3. Using the inductive hypothesis, we can show that there exists a DDS

set S′ of G′ that contains K ∪ {u} or K ∪ {v} with |S′| ≤ f(n − 3, k + 1, t). (If G′ is

connected or if G′ is disconnected with both components containing a vertex of K, this

follows immediately by induction. Otherwise, if G′ is disconnected and the component

containing u has no vertex of K, then set K ′ = K ∪ {u}, else set K ′ = K ∪ {v}; then there

exists a DDS set S′ of G′ that contains K ′ of the desired cardinality.) So without loss of

generality we may assume that S′ ⊇ K ∪ {u}. Then S′ ∪ {v2, v3} is a DDS of G containing

K of cardinality |S′| + 2 ≤ f(n, k, t), as desired. qed

Observation 5 We may assume that no vertex in a 2-handle is prescribed (i.e., in K).

Proof. Assume that there is a small vertex b ∈ K that lies in a 2-handle C. Assume the

ends of C are adjacent to v ∈ L. By Observation 2, we may assume that C is a triangle;

say V (C) = {a, b, v}.

Suppose deg v ≥ 4. Let G′ = G−{a, b}. Then, G′ is connected with δ(G′) ≥ 2. If a /∈ K,

then by the inductive hypothesis, there exists a DDS set S′ of G′ containing (K \{b})∪{v}

with |S′| ≤ f(n − 2, k, t). The set S′ ∪ {b} is a DDS of G containing K of cardinality less

than f(n, k, t). If a ∈ K, then by the inductive hypothesis, there exists a DDS set S′′ of G′

that contains K \ {a, b} with |S′′| ≤ f(n − 2, k − 2, t). The set S ∪ {a, b} is a DDS of G

containing K with |S| ≤ f(n, k, t).

Suppose deg v = 3. Let c be the small neighbor of v not on C, and let u be the other

neighbor of c. Since c is in a 2-path, by Observation 4, u ∈ L. By Observation 3, c ∈ K.

Let G′ = G−{a, b, c, v}. Then, G′ is a connected graph with δ(G′) ≥ 2, and the number of

troublesome vertices in G′ is at most t − 1.

Define the set K ′ as follows. If a ∈ K, then K ′ = (K \ {a, b, c}) ∪ {u}; otherwise K ′ =

K\{a, b, c}. Note that |K ′| ≤ k−2. Unless K ′ = ∅ and G′ = C5, by the inductive hypothesis,

there exists a DDS set S′ containing K ′ with |S′| ≤ f(n − 4, k − 2, t − 1) < f(n, k, t) − 3.

Then, S = S′ ∪ {b, c, v} is a DDS of G containing K with |S| < f(n, k, t). The case that

K ′ = ∅ and G′ = C5 is easily verified. qed

Observation 6 We may assume that there is no 2-handle.
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Proof. Suppose there is a 2-handle C. Say its ends have common neighbor v ∈ L. By the

above observation, no vertex of C is in K.

Assume L = {v}. Then, G can be constructed from r ≥ 2 disjoint cycles by identifying

a set of r vertices, one from each cycle, into one vertex v. By Observation 5, K = {v}.

By Theorem 2, there exists a DDS S of G with |S| ≤ 3n/4. By rotating the vertices of S

around C, if necessary, we may assume that v ∈ S, and so the desired result follows.

Assume that |L| ≥ 2. Then by connectivity there exists a 2-path with an end adjacent

to v. By Observation 4, this 2-path has only one vertex, say x. By Observation 3, x ∈ K.

Let G′ = G− x. Then, G′ is a connected graph with δ(G′) ≥ 2. Provided no component of

G′ is a K-free C5, by the inductive hypothesis, there exists a DDS S′ of G′ that contains

the set K \ {x} with |S′| ≤ f(n − 1, k − 1, t − 1) < f(n, k, t) − 1. By rotating the vertices

of S′ around C, if necessary, we may assume that v ∈ S′. Hence, S′ ∪ {x} is a DDS of G

containing K with |S′| + 1 < f(n, k, t). The case that one or more components of G′ is a

K-free C5 is easily handled similarly. qed

Observation 7 We may assume that no large vertex is in K.

Proof. Suppose there is a large vertex v in K. Let a be any neighbor of v. By our earlier

observations, we may assume that a belongs to a 2-path of length 1 and is in K. Let

G′ = G − a. Then, G′ is a graph with δ(G′) ≥ 2. Provided no component of G′ is a K-free

C5, by the inductive hypothesis, there exists a DDS S′ of G′ that contains the set K \ {a}

with |S′| ≤ f(n − 1, k − 1, t − 1). Since v ∈ S, the set S ∪ {a} is a DDS of G containing K

with |S| < f(n, k, t). The case that one or more components of G′ is a K-free C5 is easily

handled similarly qed

By the above observations, we may assume that G has the following form. It is S(H)

where H is a multigraph with |L| vertices and k edges with minimum degree at least 3.

Further, K is the set of small (spliced) vertices of G, and t = |K| = k. By Lemma 7,

r(G, K, γ×2) ≤ 3n/4 + 2k/7, which is what is required, since 2/7 = 1/4 + 1/28.

3.1.3 Proof of Theorem 4

We proceed by induction. Let G be a connected graph with minimum degree at least 2,

and K a nonempty subset of the vertices. If there is no edge joining two large vertices,

then the theorem follows from Lemma 8. Hence we may assume that there is an edge e

joining two large vertices. Since the restricted double domination number of a graph cannot

decrease if edges are removed, we may remove the edge unless its removal creates a K-free

C5 component C. If both ends of e are in C, then G is the 5-vertex house graph and the
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result is easily checked. If one end of e, say v, is outside C, then let G′ = G − V (C) and

K ′ = K ∪ {v}. By the inductive hypothesis, there exists a DDS S′ of G that contains K ′

with |S′| ≤ 3(n − 5)/4 + 2(k + 1)/7 < 3n/4 + 2k/7 − 3. Since v ∈ S, the set S′ can be

extended to a DDS S of G that contains K with |S| < 3n/4 + 2k/7, as required.
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