Restricted Domination Parameters in Graphs

${ }^{1}$ Wayne Goddard and ${ }^{2}$ Michael A. Henning*
${ }^{1}$ Department of Computer Science
Clemson University
Clemson SC 29634, USA
${ }^{2}$ School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa

Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset $S \subseteq V(G)$ is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of $G-S$ at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ_{m}, and of an m-tuple dominating set is $\gamma_{\times m}$. For a property π of subsets of $V(G)$, with associated parameter f_{π}, the k-restricted π-number $r_{k}\left(G, f_{\pi}\right)$ is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for $1 \leq k \leq n$ where n is the order of G : (a) if G has minimum degree m, then $r_{k}\left(G, \gamma_{m}\right) \leq(m n+k) /(m+1)$; (b) if G has minimum degree 3, then $r_{k}(G, \gamma) \leq(3 n+5 k) / 8$; and (c) if G is connected with minimum degree at least 2, then $r_{k}\left(G, \gamma_{\times 2}\right) \leq 3 n / 4+2 k / 7$. These bounds are sharp.

Keywords: domination number, double domination, k-domination, restricted
AMS subject classification: 05C69

[^0]
1 Introduction

In this paper we continue the study of restricted dominating sets started by Sanchis [16]: the restricted version of a parameter considers the case when certain vertices are specified to be in the set. We prove a general result which gives sharp bounds for several domination-like parameters, including domination and m-domination. We also establish a sharp bound for the case of double domination.

Suppose π is a property of sets of vertices (for example, being a dominating set). Suppose that f_{π} is the associated parameter: the minimum/maximum cardinality of a π-set; for definiteness, assume that f_{π} is the minimum cardinality. Then, for a graph G and a subset K of the vertex set, we define $r\left(G, K, f_{\pi}\right)$ as the minimum cardinality of a π-set containing K. The k-restricted π-number $r_{k}\left(G, f_{\pi}\right)$ is the maximum value of $r_{k}\left(G, f_{\pi}\right)$ taken over all subsets K of G of cardinality k. Note that the 0 -restricted π-number is just f_{π}. (If f_{π} is a maximum, then swap minimum and maximum in the above definitions.)

In this paper we focus on parameters related to domination. For a graph $G=(V, E)$, the open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood is $N[v]=N(v) \cup\{v\}$. A set $S \subseteq V$ is a dominating set if each vertex in $V-S$ is adjacent to at least one vertex of S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set.

In [4] Fink and Jacobsen defined a subset S of V to be an m-dominating set ($m \mathrm{DS}$) of G if for every vertex $v \in V-S,|N(v) \cap S| \geq m$. The m-domination number $\gamma_{m}(G)$ is the minimum cardinality of an $m \mathrm{DS}$. Cockayne, Gamble and Shepherd provided a sharp upper bound:

Theorem 1 ([2]) If H is a graph of order n with minimum degree at least m, then $\gamma_{m}(H) \leq$ $m n /(m+1)$.

In [7] Harary and Haynes defined a subset S of V to be a double dominating set (DDS) of G if for every vertex $v \in V,|N[v] \cap S| \geq 2$. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a DDS. More generally one can consider k-tuple domination; see for example [12, 13]. In [11] a sharp upper bound of the double domination of a connected graph with minimum degree at least 2 was established (and the graphs achieving the bound were characterized):

Theorem 2 ([11]) If $H \neq C_{5}$ is a connected graph of order n with minimum degree at least 2 , then $\gamma_{\times 2}(H) \leq 3 n / 4$.

The concept of restricted domination in graphs, where we restrict the dominating sets to contain any given subset of vertices, was introduced by Sanchis in [16] and studied further
in [9, 17]. Restricted total domination in graphs was introduced and studied in [10]. Bounds on m-domination or double domination are given in $[1,5,6,11,18]$ and elsewhere. For more on domination, see the book [8].

In this paper, we show that for $1 \leq k \leq n$ where n is the order of G :

- If minimum degree $\delta \geq 3$, then $r_{k}(G, \gamma) \leq(3 n+5 k) / 8$, and this is sharp.
- If minimum degree $\delta \geq m$, then $r_{k}\left(G, \gamma_{m}\right) \leq(m n+k) /(m+1)$, and this is sharp.
- If minimum degree $\delta \geq 2$ and G is connected, then $r_{k}\left(G, \gamma_{\times 2}\right) \leq 3 n / 4+2 k / 7$, and this is sharp.

The first two results are a consequence of a general result which derives a bound on the restricted domination number from a bound on the unrestricted version. For example, this gives a quick proof of the main result of [9]. It is to be noted that there are no useful bounds for smaller minimum degree: there are graphs G with $\delta=m-1$ and $\gamma_{m}(G)=n$, and (hence) with $\delta=1$ and $\gamma_{\times 2}(G)=n$.

For notation and graph theory terminology we in general follow [8]. The subdivision of a graph H, denoted by $S(H)$, is the graph obtained from H by subdividing every edge exactly once. A vertex cover S in G is a set of vertices such that every edge is incident with a vertex in S. The minimum cardinality of a vertex cover in G is denoted by $\alpha(G)$.

2 A General Restricted Domination Result

Given thresholds t_{v} at each vertex, S is a threshold ordinary dominating (TOD) set if $|N(v) \cap S| \geq t_{v}$ for all $v \in V-S$. Examples include: ordinary domination $\left(t_{v} \equiv 1\right)$, m-domination $\left(t_{v} \equiv m\right.$), and α-domination (t_{v} is α times the degree of v : see [3]).

We say that a family of graphs is closed under pointwise identification, if given G_{1} and G_{2} in the family, the graph formed by taking the disjoint union of G_{1} and G_{2} and identifying one vertex on each copy is in the set. For example, the set of trees is so closed. The notation $|G|$ represents the order of G.

We are now in a position to present a general restricted domination result.

Theorem 3 Consider a threshold ordinary dominating parameter $\tilde{\gamma}$. Assume \mathcal{F} is a set of graphs such that:
(a) \mathcal{F} is closed under pointwise identifications;
(b) there is a constant c such that $\tilde{\gamma}(G) \leq c|G|$ for all $G \in \mathcal{F}$;
(c) there is a graph $F \in \mathcal{F}$ and a vertex $v \in V(F)$ such that $\tilde{\gamma}(F)=\tilde{\gamma}(F-v)=c|F|$ and there is a $\tilde{\gamma}$-set of F containing v.
Then

$$
r_{k}(G, \tilde{\gamma}) \leq c|G|+(1-c) k
$$

for all $G \in \mathcal{F}$ and for all k with $0 \leq k \leq|G|$. Furthermore this bound is sharp in that for every k there are infinitely many connected $G \in \mathcal{F}$ such that $r_{k}(G, \tilde{\gamma})=c|G|+(1-c) k$.

Proof. Let graph $G \in \mathcal{F}$ be given of order n. Say it has k specified vertices $K=$ $\left\{w_{1}, \ldots, w_{k}\right\}$.

Construct a supergraph G^{\prime} as follows. Take k disjoint copies of F; say these are F_{1}, \ldots, F_{k} with the vertex corresponding to v called v_{1}, \ldots, v_{k} in the corresponding copy. Then, identify v_{i} and w_{i} for $1 \leq i \leq k$. By the closure property of \mathcal{F}, the resultant graph G^{\prime} is in \mathcal{F}.

Now, consider a minimum TOD-set S^{\prime} of G^{\prime}. There are at least $\tilde{\gamma}(F-v)$ vertices of S^{\prime} in each copy of F. (We assume that the threshold t_{v} is nondecreasing as a function of the degree of v.) Since $\tilde{\gamma}(F-v)=\tilde{\gamma}(F)$ and there is a $\tilde{\gamma}$-set of F containing v, we may therefore assume that S^{\prime} contains all of w_{1}, \ldots, w_{k}. It follows that $S=S^{\prime} \cap V(G)$ is a TOD-set of G, containing K.

Hence,

$$
r_{k}(G, \tilde{\gamma}) \leq|S|=\left|S^{\prime}\right|-k(\tilde{\gamma}(F)-1) \leq c(n+k(|F|-1))-k(c|F|-1)=c n+(1-c) k
$$

as required.
For the sharpness, note that by repeated pointwise identification with F it follows that \mathcal{F} contains arbitrarily large connected graphs. Take such a graph and specify any k vertices. Add pointwise copies of F to the remaining vertices to form the graph G. It follows that $r_{k}(G, \tilde{\gamma})=c|G|+(1-c) k . \quad$ QED

2.1 Applications

As a consequence of Theorem 3, we can derive bounds on the restricted m-domination number and the restricted domination number from bounds on the unrestricted versions.

Corollary 1 For positive integer m, if graph G has minimum degree at least m, then $r_{k}\left(G, \gamma_{m}\right) \leq(m n+k) /(m+1)$ for $0 \leq k \leq n$.

Proof. Apply Theorem 3 to the bound of Cockayne et al. given in Theorem 1 with $F=$ K_{m+1}. QED

A special case of this is the result for ordinary domination:

Corollary 2 ([9]) If G is a graph with no isolated vertex, then $r_{k}(G, \gamma) \leq(n+k) / 2$ for $0 \leq k \leq n$.

Corollary 3 ([9]) If G is a connected graph of order n with minimum degree $\delta \geq 2$, then $r_{k}(G, \gamma) \leq(2 n+3 k) / 5$ for $1 \leq k \leq n$.

Proof. McCuaig and Shepherd [14] showed that $\gamma(G) \leq 2 n / 5$ for a connected graph G with minimum degree at least 2, apart for seven exceptional graphs (one of order four and six of order seven). So apply Theorem 3 with \mathcal{F} the connected graphs with minimum degree 2 apart from the seven exceptions, and with $F=C_{5}$. Then check by hand that the exceptional graphs are not exceptions when $k \geq 1$. QED

Corollary 4 If G is a connected graph of order n with minimum degree $\delta \geq 3$, then $r_{k}(G, \gamma) \leq(3 n+5 k) / 8$ for $0 \leq k \leq n$.

Proof. Reed [15] showed that $\delta \geq 3$ implies $\gamma(G) \leq 3 n / 8$. So apply Theorem 3 with F being the cubic nonplanar graph \mathcal{C} on 8 vertices shown in Figure 1 with v any of the vertices of the triangle. QED

Figure 1: A cubic graph \mathcal{C} with domination number 3
To illustrate the sharpness of Corollary 4 , let H be a connected graph with K a set of $k \geq 0$ specified vertices each of which has degree at least 3 in H. For each vertex v of $V(H)-K$, add a (disjoint) copy of the graph \mathcal{C} of Figure 1 and identify any one of its vertices that is in a triangle with v. Then, for G the resulting graph, we have $r_{k}(G, \gamma)=(3 n+5 k) / 8$.

For minimum degree 4 we might expect a similar result, once the minimum degree bound is solved!

3 Restricted Double Domination

Our aim in this section is to establish the following result.

Theorem 4 Let G be a connected graph of order n with minimum degree at least 2 , and let k be an integer with $1 \leq k \leq n$. Then,

$$
r_{k}\left(G, \gamma_{\times 2}\right) \leq \frac{3 n}{4}+\frac{2 k}{7}
$$

By Theorem 2, the upper bound of does not necessarily hold if G is a disconnected graph, unless we insist that no component is a 5 -cycle or that the subset K of k vertices of G contains at least one vertex from each component.

The bound of Theorem 4 is sharp for graphs of arbitrarily large order. To see this, let G be a connected graph of order $n=28 r$ obtained from the disjoint union of $r \geq 1$ copies of $S\left(K_{7}\right)$, the subdivision of K_{7}, by adding any number of edges joining non-degree-2 vertices. Let K be the set of degree- 2 vertices in G, and let $k=|K|=21 r$. Then every DDS of G that contains K must contain all but one vertex from each copy of $S\left(K_{7}\right)$ in G, and so $r\left(G, K, \gamma_{\times 2}\right)=n-r$. Thus, by Theorem $4, r_{k}\left(G, \gamma_{\times 2}\right)=n-r=3 n / 4+2 k / 7$.

3.1 Proof of Theorem 4

The value of $\gamma_{\times 2}\left(C_{n}\right)$ for a cycle C_{n} was established by Harary and Haynes [7] who showed that for $n \geq 3, \gamma_{\times 2}\left(C_{n}\right)=\lceil 2 n / 3\rceil$. Using a similar proof (which we omit) we can determine the double domination number of a path P_{n}.

Proposition 5 For $n \geq 2, \gamma_{\times 2}\left(P_{n}\right)=\lceil 2(n+1) / 3\rceil$.

The proof of Theorem 4 is in general by induction. We need to handle one case separately.

3.1.1 Subdivision Graphs

We will need the following lemma:

Lemma 6 Let H be a graph with p vertices and q edges. Let $a=3 / 4$ and $b=1 / 28$. Then the vertex cover number $\alpha(H) \leq a p+b q$.

Proof. By induction. There are two (overlapping) possibilities.
Case 1: H has maximum degree $\Delta \geq 7$. Let v be a vertex of maximum degree and let H^{\prime} be the graph $H-v$. Then

$$
\alpha(H) \leq \alpha\left(H^{\prime}\right)+1 \leq a(p-1)+b(q-\Delta)+1=a p+b q+R(\Delta)
$$

where $R(\Delta)=1-a-b \Delta$. Clearly $R(\Delta)$ is decreasing in Δ and $R(7)=0$.
Case 2: H has minimum degree $\delta \leq 6$. Let v be a vertex of minimum degree and let H^{\prime} be the graph formed from H by the deletion of v and its δ neighbors. Then

$$
\alpha(H) \leq \alpha\left(H^{\prime}\right)+\delta \leq a(p-(\delta+1))+b\left(q-\binom{\delta+1}{2}\right)+\delta=a p+b q+S(\delta)
$$

where $S(\delta)=\delta-a(\delta+1)-b\binom{\delta+1}{2}$. It is easily checked that $S(\delta)$ is increasing as a function of δ for $\delta \leq 6$, and $S(6)=0$. This gives the desired result. QED

Equality in Lemma 6 occurs for H being K_{7} or K_{8}. (We comment that Lemma 6 also holds for $a=d(d+3) /\left(d^{2}+5 d+2\right)$ and $b=2 /\left(d^{2}+5 d+2\right)$ where d is any nonnegative integer.)

Lemma 7 Let H be any loopless multigraph with minimum degree at least 2 , and let $S(H)$ be its subdivision. Let K be the subdivision vertices, $|K|=k$. Then

$$
r\left(S(H), K, \gamma_{\times 2}\right) \leq 3 n / 4+2 k / 7,
$$

where n is the order of $S(H)$.

Proof. Let C be a vertex cover of H. Then $C \cup K$ is a DDS of $S(H)$: every original vertex is adjacent to at least two members of K, and every vertex of K is adjacent to at least one member of C.

By the above lemma applied to the underlying simple graph of H, it follows that

$$
r\left(S(H), K, \gamma_{\times 2}\right) \leq k+(3 p / 4+k / 28)=3 n / 4+2 k / 7
$$

where p is the order of H. QED

3.1.2 Main Lemma

We define a vertex as small if it has degree 2; otherwise it is large. We say a prescribed vertex is troublesome if it is small but both its neighbors are large. The main induction is provided by the following lemma.

Lemma 8 Let G be a connected graph of order n with minimum degree at least 2 , such that the set \mathcal{L} of large vertices is an independent set. Let K be a subset of the vertices, $|K|=k$ such that if $G=C_{5}$ then K is nonempty. Let T denote those vertices in K that are troublesome, $|T|=t$. Then,

$$
r\left(G, K, \gamma_{\times 2}\right) \leq f(n, k, t):=\frac{3 n+k}{4}+\frac{t}{28}
$$

We proceed by induction on n. If $n=3$, then $G=C_{3}$ and $t=0$, and it is straightforward to check that $r_{k}\left(C_{3}, K, \gamma_{\times 2}\right) \leq(3 n+k) / 4$ (with equality if and only if $k=3$). This establishes the base cases. Further, if $k=0$, then the result is given by Theorem 2 .

So let G be a connected graph of order $n \geq 4$ with minimum degree at least 2 and K a nonempty subset of the vertices. Let \mathcal{L} denote the set of large vertices of G. By assumption, \mathcal{L} is an independent set.

The following observation is trivial.
Observation 1 If graph G has a subgraph H that has 5 vertices and contains a 5-cycle, then any DDS S of $G-H$ can be extended to a DDS of G by adding at most three vertices provided some vertex of $N_{G}(H)-H$ is in S.

We observe that we may apply the inductive hypothesis of Lemma 8 to a disconnected graph G provided every component of G that is a C_{5} contains a prescribed vertex. (The values n, k, t are simply the sum of the values of the components.)

Observation 2 We may assume that any small vertex in K that has a small neighbor is in a triangle.

Proof. Assume that b is a small vertex in K with small neighbor c that is not in a triangle. Let a be b 's other neighbor and let d be c 's other neighbor. Since b is not in a triangle, $a \neq d$.

Suppose $c \notin K$ or d is small. Then let $G^{\prime}=(G-b) \cup\{a c\}$ (that is, with b contracted out). Then, G^{\prime} satisfies the hypothesis of the lemma. By the assumption of the case, the contraction does not create a troublesome vertex. Applying the inductive hypothesis to G^{\prime}, there exists a DDS S^{\prime} of G containing $K \backslash\{b\}$ with $\left|S^{\prime}\right| \leq f(n-1, k-1, t)=f(n, k, t)-1$. Let $S=S^{\prime} \cup\{b\}$; then since at least one of a and c is in S^{\prime}, S is a DDS of G containing K. Thus $r\left(G, K, \gamma_{\times 2}\right) \leq f(n, k, t)$.

Suppose $c \in K$ and d is large. Then let $G^{\prime}=G-\{b, c\}$. By the assumption on G, this removal does not create a troublesome vertex. If each component of G^{\prime} satisfies the lemma
hypothesis, then applying the inductive hypothesis to each component of G^{\prime}, there exists a DDS S^{\prime} of G containing $K \backslash\{b, c\}$ with $\left|S^{\prime}\right| \leq f(n-2, k-2, t)=f(n, k, t)-2$. Let $S=S^{\prime} \cup\{b, c\}$; this is a DDS of G containing K, and so $r\left(G, K, \gamma_{\times 2}\right) \leq f(n, k, t)$.

If some component C of G^{\prime} is a K-free C_{5}, then let $G^{\prime \prime}=G^{\prime}-C$. At least one vertex of C is adjacent to $\{b, c\}$; thus one gets a DDS of G by adding b, c and only three vertices to a DDS of $G^{\prime \prime}$. The arithmetic is similar to above. QED

By Observation 2, we may assume that G is not a cycle. Let C be any component of $G-\mathcal{L}$; it is a path. If C has only one vertex, or has at least two vertices but the two ends of C are adjacent in G to different large vertices, then we say that C is a 2-path. Otherwise we say that C is a 2 -handle.

Observation 3 We may assume that any small vertex that has two large neighbors is in K.

Proof. Assume that b is a small vertex with two large neighbors u and w that is not in K. Let $G^{\prime}=G-b$ and $K^{\prime}=K \cup\{u, w\}$. Then, $\delta\left(G^{\prime}\right) \geq 2$ and G^{\prime} has at most t troublesome vertices.

If G^{\prime} is disconnected, then both components contain a prescribed vertex. Applying the inductive hypothesis to (each component of) G^{\prime}, there exists a DDS S^{\prime} of G containing K^{\prime} with $\left|S^{\prime}\right| \leq f(n-1, k+2, t)<f(n, k, t)$. Since $\{u, w\} \subseteq S^{\prime}$, the set S^{\prime} is also a DDS of G, and so $r\left(G, K, \gamma_{\times 2}\right)<f(n, k, t)$. QED

Observation 4 We may assume that every 2-path has only one vertex.

Proof. Assume that there is a 2-path $P: v_{1}, v_{2}, \ldots, v_{r}$ with $r \geq 2$. Let u be the large vertex adjacent to v_{1} and v the large vertex adjacent to v_{r}. By Observation 2, none of the vertices on P is in K.

Let $G^{\prime}=G-V(P)$ and $K^{\prime}=K \cup\{u, v\}$. Then, $\delta\left(G^{\prime}\right) \geq 2$ and G^{\prime} has at most t troublesome vertices. Every component of G^{\prime} satisfies the hypothesis of the lemma; thus by the inductive hypothesis, there exists a DDS set S^{\prime} of G^{\prime} containing K^{\prime} with $\left|S^{\prime}\right| \leq$ $f(n-r, k+2, t)$.

Suppose $r \geq 4$. Then adding to the set S^{\prime} a minimum DDS of the path $P-\left\{v_{1}, v_{r}\right\}$ produces a DDS of G (as a DDS of the path necessarily contains the end-vertices). Thus, by Proposition 5, one obtains a DDS of G containing K of cardinality

$$
\left|S^{\prime}\right|+\gamma_{\times 2}\left(P_{r-2}\right) \leq f(n-r, k+2, t)+\lceil 2(r-1) / 3\rceil=f(n, k, t)+A(r)
$$

where $A(r)=(2-3 r) / 4+\lceil 2(r-1) / 3\rceil$. We observe that $A(r) \leq 0$ with equality if and only if $r=6$. Thus, one obtains a DDS of G containing K of cardinality at most $f(n, k, t)$.

Suppose $r=2$. Then $S^{\prime} \cup\left\{v_{1}\right\}$ is a DDS of G containing K of cardinality $\left|S^{\prime}\right|+1 \leq$ $f(n-2, k+2, t)+1=f(n, k, t)$.

Suppose $r=3$. Using the inductive hypothesis, we can show that there exists a DDS set S^{\prime} of G^{\prime} that contains $K \cup\{u\}$ or $K \cup\{v\}$ with $\left|S^{\prime}\right| \leq f(n-3, k+1, t)$. (If G^{\prime} is connected or if G^{\prime} is disconnected with both components containing a vertex of K, this follows immediately by induction. Otherwise, if G^{\prime} is disconnected and the component containing u has no vertex of K, then set $K^{\prime}=K \cup\{u\}$, else set $K^{\prime}=K \cup\{v\}$; then there exists a DDS set S^{\prime} of G^{\prime} that contains K^{\prime} of the desired cardinality.) So without loss of generality we may assume that $S^{\prime} \supseteq K \cup\{u\}$. Then $S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a DDS of G containing K of cardinality $\left|S^{\prime}\right|+2 \leq f(n, k, t)$, as desired. QED

Observation 5 We may assume that no vertex in a 2-handle is prescribed (i.e., in K).

Proof. Assume that there is a small vertex $b \in K$ that lies in a 2-handle C. Assume the ends of C are adjacent to $v \in \mathcal{L}$. By Observation 2, we may assume that C is a triangle; say $V(C)=\{a, b, v\}$.

Suppose $\operatorname{deg} v \geq 4$. Let $G^{\prime}=G-\{a, b\}$. Then, G^{\prime} is connected with $\delta\left(G^{\prime}\right) \geq 2$. If $a \notin K$, then by the inductive hypothesis, there exists a DDS set S^{\prime} of G^{\prime} containing $(K \backslash\{b\}) \cup\{v\}$ with $\left|S^{\prime}\right| \leq f(n-2, k, t)$. The set $S^{\prime} \cup\{b\}$ is a DDS of G containing K of cardinality less than $f(n, k, t)$. If $a \in K$, then by the inductive hypothesis, there exists a DDS set $S^{\prime \prime}$ of G^{\prime} that contains $K \backslash\{a, b\}$ with $\left|S^{\prime \prime}\right| \leq f(n-2, k-2, t)$. The set $S \cup\{a, b\}$ is a DDS of G containing K with $|S| \leq f(n, k, t)$.

Suppose $\operatorname{deg} v=3$. Let c be the small neighbor of v not on C, and let u be the other neighbor of c. Since c is in a 2-path, by Observation $4, u \in \mathcal{L}$. By Observation 3, $c \in K$. Let $G^{\prime}=G-\{a, b, c, v\}$. Then, G^{\prime} is a connected graph with $\delta\left(G^{\prime}\right) \geq 2$, and the number of troublesome vertices in G^{\prime} is at most $t-1$.

Define the set K^{\prime} as follows. If $a \in K$, then $K^{\prime}=(K \backslash\{a, b, c\}) \cup\{u\}$; otherwise $K^{\prime}=$ $K \backslash\{a, b, c\}$. Note that $\left|K^{\prime}\right| \leq k-2$. Unless $K^{\prime}=\emptyset$ and $G^{\prime}=C_{5}$, by the inductive hypothesis, there exists a DDS set S^{\prime} containing K^{\prime} with $\left|S^{\prime}\right| \leq f(n-4, k-2, t-1)<f(n, k, t)-3$. Then, $S=S^{\prime} \cup\{b, c, v\}$ is a DDS of G containing K with $|S|<f(n, k, t)$. The case that $K^{\prime}=\emptyset$ and $G^{\prime}=C_{5}$ is easily verified.

QED

Observation 6 We may assume that there is no 2-handle.

Proof. Suppose there is a 2 -handle C. Say its ends have common neighbor $v \in \mathcal{L}$. By the above observation, no vertex of C is in K.

Assume $\mathcal{L}=\{v\}$. Then, G can be constructed from $r \geq 2$ disjoint cycles by identifying a set of r vertices, one from each cycle, into one vertex v. By Observation 5, $K=\{v\}$. By Theorem 2, there exists a DDS S of G with $|S| \leq 3 n / 4$. By rotating the vertices of S around C, if necessary, we may assume that $v \in S$, and so the desired result follows.

Assume that $|\mathcal{L}| \geq 2$. Then by connectivity there exists a 2 -path with an end adjacent to v. By Observation 4, this 2-path has only one vertex, say x. By Observation $3, x \in K$. Let $G^{\prime}=G-x$. Then, G^{\prime} is a connected graph with $\delta\left(G^{\prime}\right) \geq 2$. Provided no component of G^{\prime} is a K-free C_{5}, by the inductive hypothesis, there exists a DDS S^{\prime} of G^{\prime} that contains the set $K \backslash\{x\}$ with $\left|S^{\prime}\right| \leq f(n-1, k-1, t-1)<f(n, k, t)-1$. By rotating the vertices of S^{\prime} around C, if necessary, we may assume that $v \in S^{\prime}$. Hence, $S^{\prime} \cup\{x\}$ is a DDS of G containing K with $\left|S^{\prime}\right|+1<f(n, k, t)$. The case that one or more components of G^{\prime} is a K-free C_{5} is easily handled similarly. QED

Observation 7 We may assume that no large vertex is in K.

Proof. Suppose there is a large vertex v in K. Let a be any neighbor of v. By our earlier observations, we may assume that a belongs to a 2 -path of length 1 and is in K. Let $G^{\prime}=G-a$. Then, G^{\prime} is a graph with $\delta\left(G^{\prime}\right) \geq 2$. Provided no component of G^{\prime} is a K-free C_{5}, by the inductive hypothesis, there exists a DDS S^{\prime} of G^{\prime} that contains the set $K \backslash\{a\}$ with $\left|S^{\prime}\right| \leq f(n-1, k-1, t-1)$. Since $v \in S$, the set $S \cup\{a\}$ is a DDS of G containing K with $|S|<f(n, k, t)$. The case that one or more components of G^{\prime} is a K-free C_{5} is easily handled similarly QED

By the above observations, we may assume that G has the following form. It is $S(H)$ where H is a multigraph with $|\mathcal{L}|$ vertices and k edges with minimum degree at least 3 . Further, K is the set of small (spliced) vertices of G, and $t=|K|=k$. By Lemma 7, $r\left(G, K, \gamma_{\times 2}\right) \leq 3 n / 4+2 k / 7$, which is what is required, since $2 / 7=1 / 4+1 / 28$.

3.1.3 Proof of Theorem 4

We proceed by induction. Let G be a connected graph with minimum degree at least 2, and K a nonempty subset of the vertices. If there is no edge joining two large vertices, then the theorem follows from Lemma 8. Hence we may assume that there is an edge e joining two large vertices. Since the restricted double domination number of a graph cannot decrease if edges are removed, we may remove the edge unless its removal creates a K-free C_{5} component C. If both ends of e are in C, then G is the 5 -vertex house graph and the
result is easily checked. If one end of e, say v, is outside C, then let $G^{\prime}=G-V(C)$ and $K^{\prime}=K \cup\{v\}$. By the inductive hypothesis, there exists a DDS S^{\prime} of G that contains K^{\prime} with $\left|S^{\prime}\right| \leq 3(n-5) / 4+2(k+1) / 7<3 n / 4+2 k / 7-3$. Since $v \in S$, the set S^{\prime} can be extended to a DDS S of G that contains K with $|S|<3 n / 4+2 k / 7$, as required.

4 Acknowledgment

The authors thank Douglas Rall for his hospitality and generosity, and for very helpful discussions.

References

[1] G. Chartrand, L. Eroh, F. Harary, and P. Zhang, How large can the domination numbers of a graph be? Australas. J. Combin. 21 (2000), 23-35.
[2] E.J. Cockayne, B. Gamble, and B. Shepherd, An upper bound for the k-domination number of a graph. J. Graph Theory 9 (1985), 533-534.
[3] J.E. Dunbar, D.G. Hoffman, R.C. Laskar, and L.R. Markus, α-domination. Discrete Math. 211 (2000), 11-26.
[4] J.F. Fink, and M.S. Jacobson, n-domination in graphs. Graph theory with Applications to Algorithms and Computer Science (Kalamazoo 1984), 283-300, Wiley, New York, 1985.
[5] J. Harant and M.A. Henning, On double domination in graphs. Discussiones Math. Graph Theory 25 (2005), 29-34.
[6] J. Harant, A. Pruchnewski, and M. Voigt, On dominating sets and independent sets of graphs. Combin. Prob. Comput. 8 (1998), 547-553.
[7] F. Harary and T.W. Haynes, Double domination in graphs. Ars Combin. 55 (2000), 201-213.
[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[9] M.A. Henning, Restricted domination in graphs. Discrete Math. 254 (2002), 175-189.
[10] M.A. Henning, Restricted total domination in graphs. Discrete Math. 289 (2004), 2544.
[11] M.A. Henning, Graphs with large double domination numbers. Discussiones Math. Graph Theory 25 (2005), 13-28.
[12] C.-S. Liao and G.J. Chang, Algorithmic aspect of k-tuple domination in graphs. Taiwanese J. Math. 6 (2002), 415-420.
[13] C.-S. Liao and G.J. Chang, k-tuple domination in graphs. Inform. Process. Lett. 87 (2003), 45-50.
[14] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.
[15] B. Reed, Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277295.
[16] L.A. Sanchis, Bounds related to domination in graphs with minimum degree two. J. Graph Theory 25 (1997), 139-152.
[17] L.A. Sanchis, Relating the size of a connected graph to its total and restricted domination numbers. Discrete Math. 283 (2004), 205-216.
[18] C. Stracke and L. Volkmann, A new domination conception. J. Graph Theory 17 (1993), 315-323.

[^0]: *Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

