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CeRQT, UniVersitat de Barcelona i Parc Cientı´fic de Barcelona, C/ Martı´ i Franquès
1, E-08028 Barcelona, Spain, and Theoretical Chemistry, Materials Science Centre,

UniVersity of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received January 8, 2007

Abstract: The performance of density functional theory in estimating the magnetic coupling

constant in a series of Cu(II) binuclear complexes is investigated by making use of two open

shell formalisms: the broken symmetry and the spin-restricted ensemble-referenced Kohn-
Sham methods. The strong dependence of the calculated magnetic coupling constants with

respect to the exchange-correlation functional is confirmed and found to be independent of

whether spin symmetry is imposed or not. The use of a method which guarantees the spin

state does not improve the correlation with the experiment and indeed shows some worsening

due to an overestimation of the ferromagnetic interactions. However, with the present exchange-

correlation functionals, a rather systematic deviation is found. Therefore, it would be possible to

develop improved density functionals which will allow for a rigorous treatment of open shell

systems in density functional theory.

1. Introduction
The Kohn-Sham (KS) implementation1 of density functional
theory (DFT)2 has no doubt become the standard electronic
structure method in computational chemistry as well as
computational materials science.3-6 Successful applications
of DFT in chemistry are very broad covering, among others,
molecular structure, thermochemistry, reactivity in organic,
inorganic and organometallic chemistry, interpretation of
infrared spectra, prediction of nuclear magnetic resonance
shielding, core level binding energies,7-9 and, more recently,
interpretation of optical spectra.10 Likewise, there are numer-
ous examples of successful applications of DFT in condensed

matter and surface science.3 The prediction of crystal
structures, the reconstruction of complex surfaces, the
structure of chemisorbed molecules, and the reaction mech-
anisms of chemical reactions mediated by surfaces can be
mentioned in this respect along with the broad field of
applications emerging from coupling of DFT with molecular
dynamics which in itself generated a new field usually termed
ab initio simulations.11

The basis of the Kohn-Sham method is the existence of
a reference system of noninteracting electrons with the
density identical to that of the real physical system. The
existence of such a reference system is usually taken for
granted although there is a large body of literature dealing
with this important problem. In the original KS formulation,
the density of the reference system is written as a Slater
determinant with identical spatial part for the alpha and beta
spin orbitals and for an even number of electrons resulting
in a closed shell electronic structure. For stable molecules
and nonmagnetic solids having precisely a closed shell
electronic structure this is a very reasonable choice which
indeed imposes spin symmetry. In the case of radicals and
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other magnetic systems the closed shellAnsatzcannot be
used and different alternatives have been proposed, with the
spin-unrestricted or spin-polarized version of the KS imple-
mentation (UKS) being almost universally used in this
case.12,13

The UKS implementation is very similar to the Unre-
stricted Hartree Fock (UHF) method proposed earlier by
Pople and Nesbet14 and by Berthier.15 For many years, the
UHF method was the most common approach to the open
shell problem in quantum chemistry, and in the late 1970s
and early 1980s it was implemented in almost all semiem-
pirical and ab initio Hartree-Fock computational codes. The
periodic formulation of the UHF method was also developed
and later coded into the CRYSTAL suite of programs.16

However, many numerical applications of UHF to different
systems soon encountered certain problems, mainly related
to the so-called spin contamination arising from the fact that
the corresponding UHF wave function is not an eigen
function of the square of the total spin operator. These
difficulties led quantum chemists to seek for alternatives to
UHF within the different orbitals for different spins scheme;
we mention here extended Hartree-Fock17-19 and similar
formalisms. However, these methods appeared to be very
complex and not very accurate because of the lack of the
dynamic electron correlation. Hence, the UHF approaches
were almost abandoned, and the problems encountered by
these methods were solved by making use of the more
advanced wave function theory (WFT) methods of electronic
structure such as the multiconfigurational self-consistent field
(MCSCF), the configuration interaction (CI) methods, or the
coupled cluster (CC) approaches.20 Notice, however, that
these methods demand a huge increase in the computational
complexity and an enormous computational cost. In principle,
numerical accuracy up to a predefined threshold can be
achieved by these sophisticated wave function based meth-
ods. In practice, however, even with the present day available
supercomputers, very accurate calculations can be carried
out in systems containing a rather limited (∼10-20) number
of atoms. Clearly, density functional methods do not face
these limitations, because the electron correlation is implicitly
introduced through the exchange-correlation functional.
However, one must be aware of the possible artifacts arising
from the fact that, while the real system of interacting
electrons possesses the well-defined spin symmetries, the
UKS noninteracting reference system does not.

In the case of radicals or open shell systems with a high
spin open shell ground state, the UKS approach is almost
free of problems, at least judged from the numerical success
evidenced in many applications. The problems remain,
however, when the system of interest exhibits a low spin
ground state or when the property of interest concerns energy
differences involving both high and low spin states. This is
the case of biradicals and, also, of a broad class of systems
such as di- or polinuclear complexes with open shell
transition-metal atoms; the same problem appears when
computing various spectral terms of a given atomic or
molecular multiplet state. A practical solution to the problem
of computing the energy of low spin states for transition-
metal dinuclear complexes has been given by Noodleman21,22

in the framework of UHF and of SCF-XR methods. An
independent, closely related, method was also proposed by
Yamaguchi in the framework of UHF.23 These practical
approaches are all based on the use of broken symmetry (BS)
solutions which do not necessarily represent the desired state
but the energy of which can be related to the desired spin
state through spin symmetry considerations, such as the Slater
sum rule as applied by Ziegler, Rauk, and Baerends,24

through projection techniques, such as the methods of
Noodleman21,22and Yamaguchi,23 or through the appropriate
mapping approach.25,26In this context it is also worth pointing
out the pioneering calculations of Bagus and Bennet27 on
the energies of atomic multiplets in the framework of SCF-
XR.

The broken symmetry approaches provide a way to bypass
the problem of dealing with low spin states in the UKS
calculations; however, the problem itself still remains. The
origin of the problem is in the neglect of spin symmetry
requirement in the wave function of the noninteracting
reference system employed in the KS self-consistent ap-
proach. This problem has attracted the attention of many
theoretical groups, and a number of well-defined procedures
have been proposed. Thus, new Kohn-Sham procedures
within strict spin-restricted formalism have been proposed
which result in a proper description of open shell states where
the total spin quantum numbers (S and Sz) are well defined,
for instance, the spin-Restricted Ensemble-referenced Kohn-
Sham (REKS) method of Filatov and Shaik,28,29which is, in
its spirit, similar to the well-known CASSCF approach. The
CAS-DFT approach30 has been also formulated where the
nondynamic electron correlation effects and the proper spin
symmetry are introduced through the CASSCF wave function
and the dynamic electron correlation is taken over by a
suitable correlation functional. The problem of CAS-DFT
lies, however, in the double counting of correlation effects,
which are implicitly incorporated via the density functional
and are explicitly treated by the WFT method. The time
dependent DFT formalism31-33 does also treat spin symmetry
correctly, but its current implementation cannot be applied
to the problem of magnetic coupling where the low spin
ground state possesses strong multireference character and
requires the inclusion of doubly excited configurations for
its proper description. Hence, the REKS approach seems to
be the most appropriate spin restricted KS method which
can be applied to the study of magnetic coupling in this kind
of systems.

In the present work, we extend our previous studies about
the REKS description of magnetic systems34,35to a new series
of large Cu binuclear complexes, which cover a broad range
of physical situations, from strongly antiferromagnetic
coupling to ferromagnetic interactions. In doing so one must
be aware of the strong dependence of the magnitude of the
calculated magnetic interaction on the exchange-correlation
functional employed in the calculations. In particular, we
recall the dramatic effect of the amount of the Fock exchange
in the HF/DFT hybrid functionals.36-38 Indeed, by tuning this
parameter one can obtain almost any a priori desired result.
This criticism does not, by any means, pretend to invalidate
the high quality research in this field and the meaningful
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magneto-structural correlations derived from these calcula-
tions. We just want to stress the weakness of the present
approaches and, hence, stimulate further research work in
the development of new and improved density functionals.
In any case, this discussion makes it clear that the predictive
capability of DFT approaches with regard to the quantitative
prediction of magnetic coupling in this type of systems is
limited. Therefore, the aim of the present work is not to
reproduce the experimental values but to examine the
performance of the REKS approach and, for a series of
density functionals, compare the results predicted by this
more physically grounded formalism with those obtained by
means of a more pragmatic broken symmetry approach.

2. Density Functional Description of Open
Shell Electronic States in Magnetic Systems
Many magnetic systems exhibit localized magnetic moments
at a given atomsor group of atomsswith unpaired electrons.
Hence, an effective magnetic moment,Si, which depends
on the actual electronic configuration of the magnetic center,
can be associated with this center to rationalize the magnetic
properties of these systems. Various interactions between
these localized magnetic moments are possible which give
rise to an interesting magnetic behavior and define the
observed magnetic properties. These interactions are usually
described with the help of the phenomenological Heisen-
berg-Dirac-van Vleck (HDVV) Hamiltonian which pro-
vides the simplest physical model for the description of
magnetic coupling (or exchange coupling) in a broad class
of chemical compounds including organic biradicals, inor-
ganic complexes, and ionic solids. This Hamiltonian de-
scribes the isotropic interaction between localized magnetic
momentsSi andSj as

where theJij constant controls the magnitude and type of
interaction betweenSi andSj localized spin moments. In eq
1, a positive value ofJij corresponds to a ferromagnetic
interaction. The HDVV Hamiltonian can be rigorously
derived from the effective Hamiltonain theory. This is an
effective Hamiltonian which describes the low-energy spec-
trum arising from the interactions betweenSi andSj. These
interactions are of quantum mechanical nature, and, in
general, they are much stronger than the classical interactions
between magnetic dipoles.

For the simplest problem of two electrons in two atomic
orbitals, such as in a Cu dinuclear complex, it follows that
the lowest energy electronic states are a singlet,S, and a
triplet, T. These states are the eigenstates of the HDVV
Hamiltonian, and the magnetic coupling constant can be
obtained as in eq 2.

Assuming that the HDVV Hamiltonian effectively describes
the low-energy spectrum of these systems, a one-to-one
correspondence between the eigenstates of the HDVV
Hamiltonian and those of the exact nonrelativistic Hamil-
tonian must exist. In particular, notice that the lowest

eigenstates of the exact Hamiltonian are also a singletSand
a triplet T. The one-to-one correspondence between the
eigenfunctions of the HDVV and those of the exact Hamil-
tonian follows from the fact that both Hamiltonians commute
with the total spin operators.

In practice, however, the eigenfunctions of the exact
Hamiltonian are not known, and a suitable approximation is
generally used. Within the spin-restricted description of the
relevant electronic states, the one-to-one correspondence
mentioned above is imposed by construction. In the simplest
case of two electrons in two atomic orbitals (iA andjB), one
can choose a delocalized description and construct two
molecular orbitals ofg (even) andu (odd) symmetry. The
lowest singlet state is multireference in nature and involves
a variable mixing of the two resulting closed shell determi-
nants which, for a given set ofg andu molecular orbitals, is
optimal for the variational two by two configuration interac-
tion Ansatz. Alternatively, one can choose to continue using
the localized description, and, in this case, several single
Slater determinants can be constructed. Thus, one has the
ferromagnetic solution,|FM>,

which corresponds to theMS ) 1 (or MS)-1) component
of the triplet stateT, and two broken symmetry solutions

and

which can be combined to yield theMS ) 0 component of
the tripletT or the singletS thus preserving the space and
spin symmetry. In practice, one can choose to work with
only one of the two broken symmetry solutions and
variationally optimize the orbitals with respect to it. The
resulting wave function does not have spin and space
symmetry and does not represent any electronic state of the
exact Hamiltonian. Nevertheless, one can relate the expecta-
tion energy of the broken symmetry solution to that of the
singlet state by an appropriate mapping. This is the basis of
the broken symmetry approach proposed by Noodleman21,22

and Yamaguchi et al.23 Hence, it is easy to show that

where “i′A” and “j′B” stand for the self-consistent localized
orbitals on magnetic centers A and B, and< i′A |j′B >
corresponds to the overlap integral between these magnetic
orbitals. It has been shown that this overlap integral is usually
less than 0.1,25 and, therefore, the denominator in eq 6 does
not significantly deviate from unity.

In the standard Kohn-Sham implementation of density
functional theory, the reference state is a single determinant
state, and, hence, the only way to get an estimate of the
magnetic coupling constant is the computation of the|FM>
and |BS> single determinant state through eq 6 and
neglecting the overlap term. On the other hand, in the spin-

ĤHDVV ) - ∑
i>j

JijŜi‚Ŝj (1)

J ) E(S) - E(T) (2)

|FM > ) |....iAjB > (3)

|BS1> ) |....iAjB > (4)

|BS2> ) |....iAjB > (5)

J ) E(S) - E(T) )
2(E(BS) - E(FM))

1 + < i′A|j′B >2
(6)
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restricted ensemble-referenced Kohn-Sham (REKS) method,
employed in the present study, a completely different strategy
is used which is based on the ensemble approach to density
functional theory. Within the standard Kohn-Sham proce-
dure to DFT, it is tacitly assumed thatanyphysical density
can be represented by a single Slater determinant constructed
from theN lowest eigenfunctions of a certain Hamiltonian
which describes a system of noninteracting particles moving
in potential Vs (pure stateV-representability). However,
already in the early works on Kohn-Sham DFT, it was
realized that such a representation can not be the most general
one, and it was suggested to employ the ensemble density
(weighted sum of the densities of several states) to represent
the physical density (density of a system of interacting
particles).39,40 The rigorous proof that any physical density
can be represented by an ensemble of densities, as in eq 7,
has been provided by Lieb41 and Englisch and Englisch.42

Within the Kohn-Sham approach, the ensemble representa-
tion translates to the fractional occupation numbers of the
Kohn-Sham orbitals, that is

where the occupation numbersnk vary between 0 and 2. In
spite of its formal exactness, the ensemble representation was
considered to be of a purely academic interest until its
practical validity was demonstrated in the first principles
numeric Kohn-Sham simulations of the exact densities for
a number of strongly correlated systems carried out by
Baerends et al.43 and Ullrich et al.44 Together with the
theoretical arguments, these results show unambiguously that
the ensemble representation is of immediate practical rel-
evance and that it is the onlyrigorousrepresentation for the
density of a strongly correlated system of electrons.

The practical implementation of the ensemble approach
to DFT was hindered by the absence of approximate density
functionals conforming to the ensemble densities. The REKS
method29 was designed to fill this gap in computational DFT.
The method combines the ensemble representation for the
density with certain ideas from wave function theory (WFT)
for constructing the energy functional for ensemble densities.
Therefore, the method shares some features of the multiref-
erence approaches in WFT, and the nomenclature developed
for the complete active space (CAS)SCF methods is ap-
plicable to REKS as well. Thus, in the REKS(2,2) (two active
electrons in two active orbitals) method, the density is
represented as an average over densities of two configura-
tions: one with doubly occupied KS orbitalφr(r ) and another
with doubly occupied orbitalφs(r ), whereφr(r ) and φs(r )
can be the HOMO and the LUMO in the conventional single
determinant KS calculation. The inactive core KS orbitals
are occupied with 2 electrons each, and the ground state
density is given as in eq 9.

The total ground state energy for a state with two fractionally
occupied KS orbitals is represented as a weighted sum of
the KS energies of the individual configurationsEKS(...φr

2...)
andEKS(...φs

2...) and a coupling term which is expressed as
a linear combination of the KS energies of the singly excited
configurations generated within the same (2,2) active space,
see eq 10.

Thus, the energy of the ensemble state is represented as an
ensemble of the energies of individual states (microstates)
where each microstate is assumed to be pure state V-
representable. Each of the microstates can be viewed as a
weighted sum of a number of the real physical states, in the
same way that a broken spin-symmetry state can be viewed
as a sum of the true singlet and triplet states. Therefore, eq
10 is based on model considerations similar to those used in
the works of Ziegler et al.24 and von Barth.13 Note, however,
that the total energy in eq 10 is minimized with respect to
the KS orbitals and their fractional occupation numbers. As
it has been demonstrated by Staroverov et al.,45 within the
finite basis set, the optimization of the total energy with
respect to the orbitals is equivalent to the optimization with
respect to the KS potential. Therefore, this orbital optimiza-
tion procedure is a valid implementation of the KS scheme
for an orbital-dependent density functional.

The factorf(nr,ns) in front of the last term in eq 10 can be
derived from the following considerations. In the case of
(near) degenerate active orbitalsφr(r ) andφs(r ), where the
occupation numbers arenr ≈ ns ≈ 1, the factorf(nr,ns) is
given by eq 11, which is the same as in the CASSCF(2,2)
energy functional.

In such a case, nearly all the correlation energy taken into
account via the functional form (10) corresponds to the
nondynamic correlation energy. In the situation where there
is a substantial energy gap betweenφr(r ) andφs(r ) and one
of the occupation numbers is nearly zero and another is
nearly two (“normal” single reference case), the factorf(nr,ns)
should satisfy eq 12 which can be obtained from analysis of
the energy functional in DFT with the fractional occupation
numbers (DFT-FON) method.46

In this regime, the energy functional (10) with the factor
(12), no extra correlation energy is taken into account
explicitly, via the functional form (10), and the double
counting of the correlation energy is suppressed.

F(r ) ) ∑
i

wiFi(r ) (7)

F(r ) ) ∑
k

nk|φk(r )|2 (8)

FREKS(r ) ) (∑
k

core

2|φk(r )|2) + nr|φr(r )|2 + ns|φs(r )|2 (9)

EREKS(2,2))
nr

2
EKS(...φr

2...) +
ns

2
EKS(...φs

2...) +

f(nr,ns)[EKS(...φrφs...) -

1
2
EKS(...φrφs...) - 1

2
EKS(...φrφs...)] (10)

f(nr,ns) ) (nrns)
1/2 (11)

f(nr,ns) ) (nrns) (12)
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In the first implementation of the REKS method, a
geometric average of the two asymptotes (11) and (12) was
taken for the factorf(nr,ns) in eq 10; see eq 13

This choice provides a reasonable account of the nondynamic
electron correlation combined with the sufficient suppression
of the double counting of the dynamic correlation, as was
confirmed in comparisons of the REKS results for “normal”
single-reference states with the results from the conventional
single-reference KS method.

Recently, another algebraic expression for the factor
f(nr,ns), which interpolates between the asymptotic regimes
(11) and (12), was suggested. This expression, eq 14,

satisfies the condition (11) in the vicinity of the orbitally
(near) degenerate state and provides a better suppression of
the double counting of the dynamic electron correlation in
the “normal” state; a detailed description of this new formula
and the choice of the parameters in it will be given elsewhere.
This is evidenced by the results of the calculations for the
planar and the 90°-twisted ethylene carried out with the use
of the old formula (13), with the new formula (14) and (for
the planar ethylene) with the standard closed-shell single-
reference KS approach (RKS). Calculations employing the
6-311(d,p) basis set together with the B3LYP density
functional and the geometries optimized with the RKS
method for the planar ethylene and with the old REKS
method for the twisted ethylene give total energies ofERKS)
-78.6139345 au,EREKS ) -78.6145855 au, andEREKS(new))
-78.6139726 au for the planar geometry. Thus the new
formula (14) provides considerably better elimination of the
double counting of the dynamic electron correlation in the
“normal” state. The old REKS formula (eq 13) “overshoots”
the total energy by 0.408 kcal/mol, whereas with the new
formula as in eq 14 the REKS energy differs from the RKS
one by 0.024 kcal/mol only. This implies that the effect of
the double counting of the dynamic correlation should not
be observed in practical calculations. For the orbitally
degenerate state of 90°-twisted ethylene, both formulations
of REKS, the old and the new one, yield total energies of
-78.5064634 au and-78.5064635 au, respectively, which
are practically identical. The advantage of the new formula
(14) will become obvious later on when discussing the
singlet-triplet separations in binuclear metal complexes.

The fractional occupation numbers in REKS are analogous
to the natural orbital occupation numbers in conventional
wave function multireference methods. Thus, one can analyze
the REKS density and energy in similar terms as in
conventional WFT. Because of the variational nature of the
REKS energy functional, the one-electron properties, includ-
ing the energy gradient, can be straightforwardly obtained
from its density matrix. The feasibility of the REKS method
makes it an attractive alternative to conventional multiref-
erence methods in WFT, in particular, when large molecular
systems, such as those studied in the present work, are
considered. Moreover, because the REKS method belongs

to the class of spin-restricted methods, it does not experience
difficulties with the spurious spin-contamination which
plagues spin-unrestricted (DFT or not) calculations. This
however implies that, in the calculation of singlet-triplet
energy separations, the triplet state energy should be
calculated with the use of the spin-restricted method as well.
Thus, the spin-restricted open-shell KS (ROKS) method is
employed in the present work for the calculation of these
differences in connection with the REKS method.

3. Computational Details
For each one of the different systems described in the next
section, we have computed the magnetic coupling constant
with the use of both, the broken symmetry UKS and the
REKS/ROKS, approaches discussed above. The extended
basis sets are employed which consist of the 6-3111+G basis
set on Cu and the 6-31G* basis set on the remaining atoms.
Several exchange-correlation functionals are examined which
start from quite opposite extremes. At one extreme, we have
the Hartree-Fock method which uses the exact nonlocal
exchange and neglects the electron correlation effects (except
for a part of nondynamical correlation introduced through
the spin polarization). At the other extreme, there lies the
Local Density Approximation (LDA) which employs local
exchange and correlation functionals. However, because this
approach fails to describe most magnetic systems, it is not
considered here. Hence, the pure DFT method chosen in this
work is the gradient-corrected BLYP density functional
obtained by using the Becke (B) exchange47 and the Lee-
Yang-Parr (LYP) correlation functional48 which is based
on the original work of Colle and Salvetti on the correlation
factor.49,50 Next, we explore a couple of hybrid HF/DFT
functionals which incorporate a certain amount of the Fock
exchange. These are the BH&HLYP51 and B3LYP func-
tional52 which both use the Becke gradient corrected
exchange and the LYP correlation functionals and mix in
50% and 21% of the Fock exchange, respectively.

The broken symmetry UKS and ROKS computations have
been carried out using the Gaussian0353 package, and the
REKS calculations have been carried out with the CO-
LOGNE2005 code.54

4. Selected Reference Systems: Structure
and Exchange Constants
In order to investigate the effect of spin symmetry require-
ments on the predicted magnetic coupling constants of real
systems as well as to further analyze the performance of the
different exchange-correlation functionals, a set of binuclear
Cu complexes covering a broad range ofJ values, ranging
from strong ferro- to strong antiferromagnetic couplings, has
been chosen. This set of molecules has been selected
according to the following criteria: (i) In order to minimize
the zero field splitting effects which can be problematic in
a nonrelativistic approach, as the one used here, we have
exclusively considered binuclear copper(II) complexes; (ii)
The simplicity of the molecular structure with a moderate
number of atoms (in some systems, the large innocent groups
have been substituted by simpler groups); (iii) A wide
diversity of bridging ligands; (iv) The crystalline structure

f REKS(nr,ns) ) (nrns)
3/4 (13)

f REKS(new)(nr,ns) ) [nrns]
(1-1/2nrns+δ/1+δ); δ ) 0.4 (14)
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is well characterized experimentally, even with the positions
of H atoms well determined. The resulting set of structures,
together with the corresponding standard abbreviations as
in the Cambridge Structural Database,55 which will be used
henceforth, is listed in Table 1. The relevant experimental
data has been taken from refs 56-62, and the compounds
are sorted in the order of decreasingJ values.

In order to avoid mixing structural and electronic effects,
the crystallographic structures for which the magnetic
parameters have been measured have been used without
further optimization. In BISDOW we excluded the nitrate
ligands since it has been found that these do not significantly
affect the calculated coupling constant values. Following the
previous work, all ferrocenecarboxylate ligands in XAMBUI
and PATFIA complexes have been replaced by formiate
groups.57,58

In the following we provide a short description of the more
salient features of each of these compounds.

YAFZOU shows a triplet ground state, and its structure
contains a dimeric Cu(II) cation where the metal ions are
bridged by a hydroxo and a carboxylato ligands. Two
terminal 1,10-phenantroline ligands configure an essentially
square planar coordination geometry for each copper atom.
The resulting core geometry leads to a strong ferromagnetic
coupling which agrees with the well studied magnetostruc-
tural correlation for this kind of heterobridged com-
plexes.58,63-65

XAMBUI contains a centrosymmetric dicopper(II) cation
which consists of two [Cu(dpt)] fragments (dpt) dimeth-
ylpropilenetriamine) bridged by two ferrocenecarboxylato
ligands insyn,antibinding, which form a core consisting of
a six-membered ring in a chair conformation. Copper atoms
are in a square-pyramidal coordination, with parallel basal
planes, where each carboxylate group is bonded to a basal
position of one copper and one apical position of the other.
This disposition makes the magnetic orbitals parallel, which
obscures the superexchange pathways, thus resulting in a very
weak ferromagnetic coupling.

PATFIA consists of two Cu(II) ions bridged by one
methoxo and one ferrocenecarboxylato group. The coordina-
tion sphere of each copper ion is completed by one bidentate
chelating ligand (dmen) N,N-dimethylethylenediamine),
resulting in a slightly distorted square planar environment.
In this compound the methyl group of the bridge is close to
the Cu-O(CH3)-Cu core plane, leading to an antiferromag-
netic coupling.

CAVXUS contains a binuclear cation where the copper
atoms are bridged through an oxalato bis-chelating ligand.

The coordination environment is completed by a tridentate
N,N,N′,N′′,N′′-pentaethyldiethylenetriamine (petdien) ligand
resulting in a pronounced trigonal bipyramidal (pentacoor-
dinated) character. The deviation from the square planar to
the trigonal bipyramidal geometry results in a reduction of
the antiferromagnetic coupling, as shown by Kahn and co-
workers.60

The CUAQAC02 complex is the well-known copper(II)
acetate which consists of two copper ions bridged by four
acetate groups in a paddle-wheel core. The coordination
environment of the metal ions is square-planar pyramid, with
a water molecule in the apical position. This system has been
studied by many groups either experimentally or theoretically
and is one of the best known models for fundamental
magnetic studies.66

BISDOW consists of a centrosymmetric binuclear neutral
molecule where the two copper ions are bridged by an
oxalato bis-chelating anion. Coplanar to the bridge there are
two terminal 2,2′-bipyridine chelating ligands, providing a
basic square planar environment for the copper atoms. In
addition, a nitrate anion and a water molecule coordinate
each metal center at longer distances, thus completing a 4
+ 1+1 coordination mode. The influence of these groups
on the magnetic coupling is negligible, especially for the
weakest nitrate ligands, at 2.75 Å bond distance.

5. Results and Discussion
The results for the six compounds described above, and
summarized in Table 2, confirm previous findings25,34-38

reviewed at length recently26 but also add some new,
interesting and somehow unexpected features. First, let us
concentrate on the predictions of the broken symmetry
approach for the different methods described in section 3.
The most evident trend is that HF largely underestimates
the magnitude of the magnetic coupling constant, whereas a
pure DFT method such as the gradient corrected BLYP
largely overestimates it. The prediction of the two hybrid
methods represents a general improvement although some
necessary remarks will be raised in the forthcoming discus-
sion. Except for the very weakly antiferromagnetic PATFIA
compound, all methods correctly predict the ferro- or
antiferromagnetic character. This is quite an unexpected
conclusion, especially for the HF method since, at first sight,
one would expect the nature and the extent of electronic
correlation effects to be different for the different compounds.
However, previous analyses of the electronic correlation
effects based on accurate configuration interaction wave
functions reveal a common origin of the most important
terms,67,68 confirming earlier analysis based on perturbation

Table 1. Cambridge Structural Database Notation, Chemical Formula, Magnetic Coupling Constant, and References for
Experimental Structure and/or Magnetic Data of the Six Compounds Studied in the Present Work

CCDC refcode chemical formula J (cm-1) ref

YAFZOU [{Cu(phen)}2(µ-AcO) (µ-OH)](NO3)2‚H2O 111 56
XAMBUI [{Cu(dpt)}2{µ-O2C-(η5-C5H4)Fe(η5-C5H5)}2] (ClO4)2 2 57
PATFIA [{Cu(dmen)}2(µ-OMe){µ-O2C-(η5-C5H4)Fe(η5-C5H5)}] (ClO4)2 -11 58
CAVXUS [{Cu(petdien)}2(µ-C2O4)](PF6)2 -19 59, 60
CUAQAC02 [{Cu(H2O)}2(µ-AcO)4] -286 61
BISDOW [{Cu(bpy)(H2O)(NO3)}2(µ-C2O4)] -382 62
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theory.66 Therefore, one can conclude that for strongly ferro-
or antiferromagnetic compounds, even the HF method will
predict a qualitatively correct magnetic description although
it is not clear that this simple approach will be able to make
good predictions about the magneto-structural correlations.
For weakly antiferromagnetic compounds such as PATFIA
it is likely that HF will make a wrong prediction. Notice,
however, that the situation for weakly ferromagnetic com-
pounds is different since HF predicts the right ferromagnetic
character of XAMBUI. This is because direct exchange,
explicitly accounted for in the HF method, makes a very
important contribution to ferromagnetic interactions.

A more quantitative picture can be found by inspecting
the correlation between the experimental and calculated
values (Figure 1) which, for each exchange-correlation
potential, is given below

Equations 16-18 show that all methods including a part of
Fock exchange are able to reproduce the experimental trend
in a semiquantitative way and, also, that a pure gradient

corrected method such as BLYP leads to a global description
which is even worse than the one obtained with the HF
method. Moreover, the independent term in eqs 16-18
provides a measure of the limitations of each method. Thus,
within the broken symmetry approach, HF and BH&HLYP
should not be applied to compounds where the magnetic
coupling is antiferromagnetic and of the order of 10-15 cm-1

because they will predict a ferromagnetic behavior. The fact
that HF and BH&HLYP underestimate the magnitude of the
magnetic coupling constant is also clear from the values of
the slope of the straight lines in eqs 15 and 16 which is
significantly smaller than 1. Notice also that the correlation
improves with decreasing the amount of Fock exchange, the
21% included in the B3LYP functional being close to an
optimum value, at least for the list of compounds studied in
the present work. This can be deduced from the small value
of intersect with theJcalc axis. However, the slope of the
linear regression suggests that the broken symmetry B3LYP
predictsJ values which are clearly too large. Assuming, with
no theoretical justification,26,34,35that the energy of the broken
symmetry solution is an estimate of the energy of the open
shell singlet state will lead to a slope of∼0.8, closer to the
desired value but still with an average 20% error. Therefore,
the good correlation found for hydroxo- and alkoxo-bridged
Cu(II) binuclear complexes69 and some other binuclear
complexes does not seem to hold when the magnetic coupling
spans a wide range of values and when the nature of the
bridging ligands is also of increased complexity.70 Here, it
is worth pointing out recent studies on magnetic solids
evidencing that the proper choice of Fock exchange is less
universal than desired and therefore is dependent on the type
of system. In fact, previous calculations have shown that at
least for NiO71 and cuprates68,72 the best percentage of Fock
exchange is∼35%.

The results obtained from the broken symmetry approach
evidence once again the strong dependence of the magnetic
coupling constant on the exchange-correlation functional.34-38

One can, of course, still argue that the good correlation for
the B3LYP results is indicative of the suitability of this

Table 2. J Values (in cm-1) Using Spin Unrestricted and
Restricted Formalisms for the Different Binuclear Copper
Complexes Studied in This Work

REKS/ROKS
J ) ∆EST

compound
[J exptl] method

broken
symmetry

J ) 2(E(BS) -
E(T)) REKS

REKS
(new)

YAFZOU HF +37 +18 +18
[+111 cm-1] BH&HLYP +91 +89 +87

B3LYP +194 +269 +264
BLYP +261 +462 +447

XAMBUI HF +0.1 +0.1 +0.04
[+2.5 cm-1] BH&HLYP +0.7 +1.0 +0.75

B3LYP +3.9 +7.0 +6.2
BLYP +24 +32 +31

PATFIA HF +16 +11 -0.2
[-11 cm-1] BH&HLYP +9.0 +78 +32

B3LYP -61 +247 +139
BLYP -493 +105 -55

CAVXUS HF -1.0 -0.5 -1.1
[-19 cm-1] BH&HLYP -5.3 0.3 -3.4

B3LYP -21.2 19.6 +3.3
BLYP -83.3 +83.1 +27.4

CUAQAC02 HF -39 -12 -20
[-286 cm-1] BH&HLYP -132 -47 -91

B3LYP -429 -158 -285
BLYP -1121 -595 -774

BISDOW HF -49 -17 -30
[-382 cm-1] BH&HLYP -160 -68 -135

B3LYP -634 -224 -429
BLYP -2299 -1164 -1361

Jcalc
HF ) 0.165Jexp + 10.108 withR2 ) 0.94 (15)

Jcalc
BH&H ) 0.489Jexp + 14.896 withR2 ) 0.98 (16)

Jcalc
B3LYP ) 1.608Jexp - 1.193 withR2 ) 0.99 (17)

Jcalc
BLYP ) 4.757Jexp - 155.08 withR2 ) 0.91 (18)

Figure 1. Experimental versus HF, BH&HLYP, and B3LYP
calculated broken symmetry values of the magnetic coupling
constant of the six compounds studied in the present work.
The experimental versus experimental plot is also drawn for
reference. Values for the corresponding correlation factors are
given in eqs 15-17.
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functional to describe magnetic interactions in these systems.
This is even more the case if one decides to neglect spin
symmetry considerations and take the broken symmetry
energy as that of the singlet state and computeJ using eq 2
instead of eq 6. This line of reasoning is only based on
numerical arguments69,70 and lacks fundamental theoretical
support.34,35 A better assessment of the reliability of the
existing exchange-correlation functionals in the description
of the magnetic coupling can be made by using a method
which does not rely on the broken symmetry approach and,
therefore, does allow one to avoid referring to the expectation
value of the square of the total spin operator which is not
really defined within the framework of DFT since it is a
two-electron operator. This is because in DFT, the density,
and not the N-electron wave function, is the main math-
ematical object, and one can claim that the Kohn-Sham
determinant is just a construct to get the density. However,
in such a case one can only use DFT to get the energy of
the ground state without any information about its spin state.
This point of view will, of course, restrict the use of DFT to
ground state properties only, and prediction of magnetic
coupling constants will not be possible. The spin-Restricted
Ensemble-referenced Kohn-Sham (REKS) method de-
scribed in section 2 offers a theoretically well-grounded
alternative since it ensures that the final density for the
antiferromagnetic state arises from a singlet state. Using the
ROKS procedure for the triplet state permits one to compute
J as in eq 2, that is using exactly the same mapping that one
would use when aiming to computeJ from a wave function
approach.

Now, let us focus on the results for the magnetic coupling
of the compounds in Table 1 as predicted from the ROKS/
REKS formalism and using different correlation functionals.
As in the case of the broken symmetry results, a more
quantitative picture can be found by inspecting the correlation
between the experimental and calculated values (Figure 2)
which, for the two hybrid exchange correlation potentials,
is given by eqs 19 and 20 below.

From results in Table 2 and the correlation in eqs 19 and
20 it is clear that the use of a formalism which is rigorously
spin restricted does not largely improve the results. This is
contrary to what is expected and to what is commonly found
when using wave function formalism. The direct conclusion
is therefore that the exchange-correlation functionals inves-
tigated are not capable of correctly describing open shell
systems. This is confirmed by the analysis of the results
obtained using the HF exchange potential (and no correlation
potential) in the ROKS/REKS formulas. The predicted
ROHF/REHF magnetic coupling constants are smaller in
absolute value than those predicted using the broken sym-
metry approach. This is because the broken symmetry
approach introduces an uncontrolled amount of dynamic
electron correlation through spin polarization,73 and, hence,
the UHF broken symmetry results are usually very similar
to those obtained through a Complete Active Space Con-
figuration Interaction wave function. However, in the ROKS/
REKS formalism the amount of dynamical correlation is
minimized to avoid a double counting since this has to be
introduced by the correlation functional. Using the REKS
formula as in eq 13 or 14 leads to a similar qualitative
description (Table 2). A somewhat better correlation between
the experimental and the calculated results is obtained using
the new REKS formula as in eq 14. Since the BLYP results
are always grossly overestimated (by a factor of∼3) we will
focus in the results corresponding to the BH&HLYP and
B3LYP hybrid functionals which are summarized in Figure
2. This plot is qualitatively similar to Figure 1, and the slope
of the straight lines (0.415 and 1.328) is very similar to the
values in eqs 16 and 17 for the broken symmetry calculations.
However, the linear regression lines appear to be somewhat
displaced to the left with a concomitant increase in the
intercept to theJcalc axis. This is a clear indication that when
used in rigorous spin restricted formalism the BH&HLYP
and B3LYP exchange-correlation functionals tend to grossly
overestimate the ferromagnetic component of the magnetic
coupling.

A clear conclusion of the above discussion is that, for a
given exchange-correlation functional, the scale factor
between experimental and either broken symmetry or ROKS/
REKS values is almost the same, provided the latter are
displaced to the origin of coordinates. A corollary of the
conclusion above is that eq 6 must be used when employing
the broken symmetry approach, otherwise the scale factor
between experimental and calculated values corresponding
to a given functional will be method dependent. To sum-
marize, broken symmetry and ROKS/REKS lead to similar
descriptions although with the present functionals the latter
exhibits a trend to overestimate the ferromagnetic interac-
tions. However, the fact that the deviation is rather systematic
opens the possibility for the development of improved
functionals which will allow for a rigorous treatment of open
shell systems in density functional theory.

Figure 2. Experimental versus BH&HLYP and B3LYP cal-
culated ROKS/REKS(new) (cf. eq 14) values of the magnetic
coupling constant of the six compounds studied in the present
work. The experimental versus experimental plot is also drawn
for reference. Values for the corresponding correlation factors
are given in eqs 19 and 20.

Jcalc
BH&H ) 0.415Jexp + 22.204 withR2 ) 0.96 (19)

Jcalc
B3LYP ) 1.328Jexp + 79.087 withR2 ) 0.95 (20)
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6. Conclusions
In this work we have investigated the performance of two
different formalisms to describe open shell systems in density
functional theory by analyzing the calculated magnitude of
the magnetic coupling constant in a series of Cu(II) binuclear
complexes. The two open shell formalisms are the broken
symmetry approach, where the spin symmetry requirements
are neglected, and the restricted ensemble Kohn-Sham
method, where the spin symmetry is fully taken into account.
The series of compounds includes both ferro- and antifer-
romagnetic compounds and cover a broad range of values.

The present study confirms the strong dependence of the
calculated magnetic coupling constant with respect to the
exchange-correlation functional. This is found to be a general
conclusion which does not depend on whether spin symmetry
is imposed or not. All methods, including HF and gradient
corrected functionals, are capable of properly describing the
main trends, especially for compounds with large values of
the magnetic coupling constants. However, the HF method
largely underestimates this property, whereas pure density
functional largely overestimates it. The use of hybrid
functionals improves both the correlation between calculated
and experimental values and the quantitative agreement with
the experiment. However, even the hybrid B3LYP functional
is shown to be unable to accurately predict magnetic coupling
constant in different families of compounds.

The use of a method which guarantees the correct spin
state does not improve the correlation with respect to
experiment and indeed shows some worsening due to an
overestimation of the ferromagnetic interactions. However,
for a given exchange-correlation functional, the scale factor
between experimental and either broken symmetry or ROKS/
REKS values is nearly the same although only if a displace-
ment of the coordinate origin is carried out for the latter.
This fact provides further support to the argument about the
use of proper mapping to obtain meaningful values of the
magnetic coupling constant even if the final results may not
be in numerical agreement with experiment due to the above-
mentioned dependence of the calculated value on the
exchange-correlation functional.

To conclude, the spin unrestricted broken symmetry and
spin restricted ROKS/REKS approaches lead to similar
descriptions of the magnetic coupling constants. However,
in the latter case and with the present exchange-correlation
functionals, a rather systematic deviation is found. Therefore,
it would be possible to develop improved functionals which
will allow for a rigorous treatment of open shell systems in
density functional theory. In this sense, a particularly
promising approach could be the use of the recently proposed
local hybrid functionals74 which for the prediction of
thermodynamic data have very recently proven to be
competitive with other hybrid functional such as B3LYP.75

Clearly, the performance of such new functionals in the
description of magnetic coupling needs to be explored.

Acknowledgment. Financial support has been provided
by the Spanish Ministry of Education and Sciencesprojects
CTQ2005-08459-CO2-01, UNBA05-33-001, and the Ramo´n
y Cajal program (I. de P.R.M.)sand, in part, by Generalitat

de Catalunyasprojects 2005SGR-00697, 2005 PEIR 0051/
69, and Distincio´ per a la Promocio´ de la Recerca Univer-
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