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The motion of a satellite in the gravitational field of a binary system is investigated. The two bodies of the binary

system aremodeled as a sphere and a triaxial ellipsoid and the satellite is assumed to have no influence on themotion

of the two primaries. The case of relative equilibria in the full two-body problem is assumed. In earlier papers, we

looked at equilibrium solutions in the restricted full three-body problem, especially for L4;5. In the present work, we

investigate energy constraints on the motion of the spacecraft using zero-velocity curves, collinear Lagrangian

points, and the Jacobi constant for varying parameters of the system. We study transit and nontransit trajectories

between the components. The methods are applied in the study of the binary asteroid system 1999 KW4, and some

results are shown.

I. Introduction

I N RECENT years, we have witnessed a few spacecraft missions
sent to small bodies of our solar system.With the growing interest

in asteroid systems in the scientific community, it is fair to assume
that a mission will target a binary asteroid system in the near future.
To develop amodel suitable for binary asteroid systems, we took into
account the mass distribution of one of the bodies of the restricted
three-body problem (R3BP), and named it the restricted full three-
body problem (RF3BP). The “full” problem has proven to be a
dynamically rich problem.

Previous papers have considered relative equilibria of the binary
itself, or the full two-body problem (F2BP) [1,2] and stability of
equilibrium solutions in the RF3BP [3,4]. In [1], the author discusses
the stability region of the relative equilibria for an ellipsoid-sphere
system; it is common to find systems made of a small ellipsoid and a
large sphere [5]. Scheeres [2] gives a more general discussion on the
conditions for equilibria in the general case of the F2BP under sphere
restriction. In the case of the RF3BP, [3] derived the general
equations of motion of a particle in the RF3BP, whereas Bellerose
and Scheeres [4] looked at equilibrium solutions for an ellipsoid-
sphere system. In particular, the stability of the equilateral
Lagrangian points have been investigated. It was found that the
ellipsoid reduces the stability region compared with the R3BP.

In the present work, we give a more general discussion of the
equilibrium solutions and the energy constraints associated with
them for an ellipsoid-sphere system. In the case of an equilibrium in
the F2BP, the system allows for one integral of motion, the Jacobi
integral. As for the R3BP, different values of the Jacobi integral lead
to the definition of the Lagrangian points, in which the regions of
allowable motion can be mapped. For particular values of the free
parameters of the system, we solve for the collinear Lagrangian
points. Because the mass distribution of one of the bodies is taken
into account, the system has an extra physical constraint in that
Lagrangian points should be located outside of the body.

Looking at the case ofL1 especially, if the zero-velocity curves are
open, this implies that particles could transit from one body to the
other. This problem has interesting application to surface vehicles
transiting between the binary components. As rovers are now sent to
investigate small bodies to get samples back to Earth, such as the
JAXA’s Hayabusa mission [6], surface motion on both bodies and
transfers between them are important to consider in the design of
missions to a binary system. In this case, however, because of the
unstable nature of L1, only specific regions and conditions at the
body surface can lead to transit or nontransit trajectories. The initial
and final conditions at the surface are crucial for designing transfer
maneuvers of a vehicle. These findings can also give us a better
understanding of particles dynamics near the surface.

In the following sections, we first review the dynamics of the
binary system itself before looking at the motion of a particle in this
gravitational field in more detail. Finally, we apply these theoretical
developments to a recently analyzed binary system, designated
Asteroid 1999 KW4 [5].

II. Full Two-Body Problem

Before defining the dynamics for a particle in orbit about a binary
system, we need to address the full two-body problem itself. We
consider an ellipsoid-sphere system. The general problem is
represented in Fig. 1. In this model, M1 is the mass of the spherical
shape andM2 is the mass of the ellipsoid. The mass ratio of the two
primaries is defined as

��
M1

M1 �M2

(1)

We use r b for the position vector of the sphere relative to the
ellipsoid. Relative to their center of mass, we also have the positions

r e ���rb (2)

r s � �1 � ��rb (3)

where subscripts s and e refer to the sphere and the ellipsoid,
respectively.

Taken from [1] for a general body in a sphere restricted binary
system, the dynamics of the binary system in the general body-fixed
frame is defined by

�r b � 2� � _rb �
_� � rb �� � �� � rb� �G�M1 �M2�

@ ~U

@rb

(4)
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and the rotational dynamics of the general body are described in the
general body-fixed frame by

I � _���I ����GM1rb �
@ ~U

@rb
(5)

where � is the angular velocity of the general body, I is its inertia

matrix normalized by its mass and ~U is the mutual potential, defined
as

~U�
1

M2

Z

�2

dm2���

jrb � �j
(6)

The variable � is the position vector of a mass element of the general
body.

To simplify the analysis, the following normalizations are
introduced. Themaximum radius of the distributed body, denoted by
�, and the mean motion of the system at this radius

n�

���������������������������

G�M1 �M2�

�3

r

are taken as length and time scales, respectively. The normalized
position and angular velocity are then

r �
rb

�
and !�

�

n

and Eqs. (4) and (5) now become

�r� 2! � _r� _! � r�! � �! � r� �
@U

@r
(7)

I � _!�! � I �!���r �
@U

@r
(8)

In this work, we model the general body as an ellipsoid. As
discussed in [7], the general expression for an ellipsoid potential
energy is written in terms of elliptic integrals. The mutual potential
can be expressed as

Ue �
3

4

Z

1

�

��r; v�
dv

��v�
(9)

��r; v� � 1 �
x2

v� 1
�

y2

v� �2
�

z2

v� �2
(10)

��v� �
���������������������������������������������������

�v� 1��v� �2��v� �2�
p

(11)

where 0< � � � � 1 and � satisfies ��r; �� � 0. In this work, the x
axis is aligned with the longest axis of the ellipsoid , whereas the z
axis is along its shortest axis. The normalized principal moments of
inertia are

Ixx �
1
5
��2 � �2�

Iyy �
1
5
�1� �2�

and

Izz �
1
5
�1� �2�

FromEqs. (7) and (8), we can solve for relative equilibria when all
first and second derivatives are zero. With these same equations, it is
then possible to show that there exists equilibria when one of the
principal axes of the ellipsoid is pointed at the sphere, as the
acceleration and position vectors are parallel. Similarly, we can show
that the spin vector is perpendicular to the position vector, and it is
parallel to one of its principal axes. These equilibria are independent
of the principal axis the ellipsoid is rotating about; solutions exist
along the x, y, and z axis. Given a solution along a q axis, which can
be x, y, or z, the square of the spin rate is expressed as[3]

!2 �
3

2

Z

1

�

dv

��2
q � v���v�

(12)

Note that the spinmay be about one of the other two principal axes.
For the present problem, �q represents the radius along which the
sphere is located. Note that here, �� q2 � �2

q, in which q is the
distance between the primaries. In our analysis, we denote q as r,
with the ellipsoid having �q � �� 1.

The relative equilibria for an ellipsoid-sphere system and their
stability have been mapped in [1] as a function of the mass ratio and
distance between the bodies. This work studied two configurations in
which the � or � ellipsoid parameter is aligned with the sphere,
referred to as the long-axis and short-axis configurations,
respectively. We choose to consider the long-axis configuration, as
it was shown to be the only energetically stable configuration for
certain parameters. Hence, in Eq. (12), we look at the case in which r
is along the x axis. Note that following a more general discussion of
the F2BP in [2], the spectral and energetic stability of the ellipsoid-
sphere system relative equilibria were also studied for the case of a
fixed value of angular momentum [8]; however, this topic is not
addressed in the current paper.

III. Restricted Full Three-Body Problem

A. Equations of Motion of a Particle

Having a relative equilibrium state in the F2BP, we look at the
dynamics of a particle in this gravitational field. Earlier studies
looked at equilibrium solutions, especially the equilateral
Lagrangian points and their stability [4]. By investigating the
collinear points, zero-velocity curves and the Jacobi integral, one can
give a general description of the constraints on a particle’s dynamics.

We now consider a particle or a spacecraft in the gravitational field
of the binary system. For the current problem, we assume relative
equilibrium of the F2BP as defined byEqs. (7) and (8). The equations
of motion of a particle were originally defined in [3]. As shown in
Fig. 2, we now let � be the position of a particle relative to the center
of mass of the system. The dynamics are expressed as

��� 2� � _��� � �� � �� �G�M1 �M2�
@ ~U12

@�
(13)
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Fig. 1 Representation of the full two-body problem for an ellipsoid-

sphere system.
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Fig. 2 The restricted full three-body problem.
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In normalized units, Eq. (13) becomes

�~�� 2! � _~��! � �! � ~�� �
@U12

@ ~�
(14)

where

~��
�

�

is the normalized distance of the particle. Because we take a frame
fixed to the ellipsoid, U12 is a time-invariant potential energy
expression, as the bodies are in mutual equilibrium. It is expressed as

U12 �
�

j ~� � �1 � ��rj
� �1 � ��Ue� ~�� �r� (15)

Ue represents the normalized expression for the ellipsoid body,
defined by Eqs. (9–11).

The free parameters of this system are the mass ratio, �, the
distance between the two bodies, r, and the size parameters of the
ellipsoid, � and �. Given these parameters, the spin rate! is given by
Eq. (12). The equations of motion can be restated in an �x; y; z�
coordinate system; that is, ~�� xi� yj� zk. The x, y, and z
components of Eq. (14) are written as follows:

�x � 2! _y � !2x�
��	x � �1 � ��r


f	x � �1 � ��r
2 � y2 � z2g
3
2

� �1 � ���x� �r�Rj� (16)

�y� 2! _x � !2y�
��y

f	x � �1 � ��r
2 � y2 � z2g
3
2

� �1 � ���y�Rj�

(17)

�z�
��z

f	x � �1 � ��r
2 � y2 � z2g
3
2

� �1 � ���z�Rj� (18)

The Rj expressions are elliptic integrals taking into account the
mass distribution of the ellipsoid. They are given in the Appendix.

B. Equilibrium Solutions

As for the R3BP, five equilibrium solutions exist when velocities
and accelerations are set to zero in Eq. (14), and are solutions of the
equation

! � �! � ~�� �
@U12

@ ~�
(19)

These five locations are shown qualitatively in Fig. 3. The
equilibrium solutions are then computed from

!2x�
�	x � �1 � ��r


f	x � �1 � ��r
2 � y2 � z2g
3
2

� �1 � ���x� �r�Rj� (20)

!2y�
�y

f	x � �1 � ��r
2 � y2 � z2g
3
2

� �1 � ��yRj� (21)

where ! is given by Eq. (12).
These algebraic equations were solved numerically using

MATLAB for varying free parameters. Note that z� 0 in all cases.
The Lagrangian points can also be defined using the Jacobi integral
of the system. This topic is introduced in the next section.

C. Spectral Stability

In the R3BP, for all values of the free parameters, L1, L2, and L3

are unstable, whereasL4;5 may be stable. Looking at small deviations
from the equilateral position, we can investigate their stability. In the
R3BP, the stability criteria for L4;5 is usually given by the Routh
criteria and is only function of the mass ratio:

� <
1

2

"

1 �

������

23

27

r

�

� 0:0385 . . . (22)

Because the mass distribution of the general body is now taken
into account, the stability of some of the equilibrium solutions are
expected to deviate from the R3BP. We introduce x� ~x� dx and
y� ~y� dy, and expand the potential energy expression. The
following equations are derived:

�~x � 2!_~y � !2 ~x� ~x�Uxxs �Uxxe� � ~y�Uxys �Uxye� (23)

�~y� 2!_~x � !2 ~y� ~y�Uyys �Uyye� � ~x�Uyxs �Uyxe� (24)

The second order partial derivatives for the ellipsoid potential
were given in [1]. The characteristic equation for the system is found
from

�

�

�

�

�2 � !2 � Uxx �2!� � Uxy

2!� � Uxy �2 � !2 � Uyy

�

�

�

�

�0 (25)

where Uxx �Uxxs �Uxxe, Uyy �Uyys �Uyye, and Uxy �Uxys�
Uxye.

Expanding the determinant, the characteristic equation is found to
be of the form

�4 � A�2 � B� 0 (26)

where

A� 2!2 � Uxx � Uyy (27)

and

B� !4 � !2�Uxx �Uyy� �UxxUyy � U2
xy (28)

For the system to be linearly stable, the following conditions must
be satisfied:

A > 0 (29)

B > 0 (30)

A2 � 4B > 0 (31)

As in theR3BP, the collinear Lagrangian pointsL1;2;3 are unstable.
The equilateral Lagrangian points were studied in [4]. For these, the
stability was found to be decreased from the known R3BP (also see
Fig. 7). We give a more detailed description of L4;5 with the
discussion on energy constraints in the next section.

4
L

LL
1 2

L
5

3
L

Fig. 3 The analog Lagrangian points.
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IV. Energy Constraints

A. Jacobi Integral

With the two bodies being in relative equilibrium, this system
allows for one integral ofmotion, the Jacobi integral. For a spacecraft
navigating in this system, computing its Jacobi integral value is
important, as it indicates the regions in which it can move and
provides necessary conditions for when it may escape the system. To
compute the integral, let us rewrite Eqs. (16) and (17) in the following
form:

�x � 2! _y�
@V

@x
(32)

�y� 2! _x�
@V

@y
(33)

�z�
@V

@z
(34)

where

V ��
�

j� � rsj
� Ue�� � re� �

1

2
!2�x2 � y2� (35)

with

rs �
���������������������������������������������

f	x � �1 � ��r
2 � y2g
p

and

Ue �
3
2
�1 � ��Rj0 �

1
2
�1 � ��	�x� �r�2Rjx � y2Rjy


To derive the Jacobi integral, wemultiply each of the two previous
equations by _x and _y, respectively, and add them up to find

�x _x� �y _y��z _z�!2� _xx� _yy� �
@V

@x
_x�

@V

@y
_y�

@V

@z
_z (36)

We substitute

�x�
d_x

dt
�

d_x

dx

dx

dt

and integrate with respect to time. Equation (36) becomes

C� 1
2
� _x2 � _y2 � _z2� � V (37)

where C is called the Jacobi constant, the integral value of this
system, or, more generally,

C� 1
2
v2R � V (38)

where vR is the speed of a particle or a spacecraft relative to the
rotating frame.

Relating the relative velocity to inertial velocity, the Jacobi
constant is then written as

C� 1
2
v2I � �! � r� � vI � U12 (39)

where we have

v I � vR �! � r (40)

And we substitute for v2R using

v R � vR � v2I � 2�! � r� � vI � !2�x2 � y2� (41)

In either form, given values of the Jacobi constants, there exist
constraints on the motion of a particle. We start with a study of the
zero-velocity curves.

B. Zero-Velocity Curves

In Eq. (38), the solutions of C��V delineate between the
allowable and nonallowable motion of a spacecraft in this
gravitational field, or the zero-velocity curves. If C � �1, then
V � 1, meaning x and y can be either large or very small to satisfy
the relation. This restricts the motion of the spacecraft to be either far
away from the bodies or very close to them. In Fig. 4, these two cases
correspond to the regions exterior to the large circular line around the
bodies, referred to as the outer region, and the small circle near the
bodies. Note that the small darker circle and ellipse represent the two
components of the binary system. In the outer region, a spacecraft can
escape from the system, whereas in the interior region it cannot. Note
that with mass distributions, it becomes necessary to account for
impact on the surface.

Increasing the value of C allows one to define the three collinear
Lagrangian points. First, the two zero-velocity curves close to each
body will meet at one point on the x axis between the bodies. This
defines the L1 Lagrangian point with its Jacobi constant, C1,
associated with it. The ellipsoid, having a finite size, adds one
interesting constraint on the location of the L1 point. The limiting
case is when L1 sits on the ellipsoid, facing the sphere. Figure 5
provides a closer view of this situation. In this case, we have

xL1
� 1 � �r (42)

x

y
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0
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L
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*
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Fig. 4 Zero-velocity curves in the x–y coordinate frame for an ellipsoid-
sphere system with distance between the bodies of r� 1:8; ellipsoid

parameters �� 1, �� 0:5, and �� 0:5; and mass ratio of �� 0:3. The
small darker circle and ellipse represent the bodies themselves.
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Fig. 5 Zero-velocity curves for an ellipsoid-sphere system inwhichL1 is
sitting on the ellipsoid surface, facing the sphere. The parameters are

r� 1:8, �� 0:5586, �� �� 0:5. The black lines represent the bodies

themselves.
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We can then substitute xL1
with y� z� 0 into Eq. (20) and solve for

the mass ratio as a function of the distance between the bodies, r:

��
!2 � 2

3
Rjx

�

!2r � 1
�r�1�2

� 2
3
Rjx

� (43)

Hence, given a value of the distance between the bodies, Eq. (43)
gives the corresponding mass ratio to have L1 sitting on the edge of
the ellipsoid, facing the sphere.Depending on the systemparameters,
L1 can be either inside or outside of the ellipsoid body. Figure 6
shows the mass ratio as a function of the distance between the
primaries satisfying Eq. (43). The upper region of the curve defines
the parameters for which L1 is outside of the ellipsoid; the lower
region represents cases of L1 being inside the ellipsoid. A variety of
trajectories can be computed formotion in the vicinity ofL1, and they
are addressed in the following section.

Then, increasing C again allows the inner region to meet with the
outer region of allowable motion, on one side of the binary system
and then on the other side, defining theL2 andL3 Lagrangian points.
The point at which the two regions meet first depends on the free
parameters of the system. The two points will appear at the same time
for a mass ratio of about �� 0:5, depending on the ellipsoid
parameters. This meeting point happens for slightly smaller mass
ratios in the case of a pronounced ellipsoid. Note that we keep the
same notation on the Lagrangian points throughout the text,
independently of the point, L2 or L3 appearing first. The case of
interest is for binary systems with large mass ratios (i.e., small
ellipsoid body), as such systems have been found to be stable and to
exist in nature [1,5]. In such cases, from the convention on
Lagrangian points introduced in Fig. 3, L3 appears first on the
exterior side of the ellipsoid.

Finally, as for the R3BP, L4 and L5 are then defined as being the
two points forming in the vicinity of the equilateral triangle points in
the R3BP. Note that these two Lagrangian points are mirrors of each
other about the x axis. In general, they are stable only for very small
or very large mass ratios. The location and stability of these points
were studied in [4]. Figures 7a and 7b show results for a long-axis
configuration with the distance, r� 2, between the bodies. On
Fig. 7a, the mass ratio � varies from 0 to 1 horizontally from left to
right, and � � � varies from 0 to 1 vertically from bottom to top.
Starred points are stable, whereas dotted ones are unstable. On
Fig. 7b, each line corresponds to different values of �=� and equal
0.25, 0.5, 0.75, and 1.0. Stable regions lie above the lines in the upper
figure and below the lines in the lower figure. The horizontal dotted
line corresponds to the Routh criterion. We see that the stability
region is reduced from the R3BP, although exceptions exist for small
mass ratios.

V. Surface Motion in an Ellipsoid-Sphere
Binary System

A. Trajectory Investigations Using Linearization Near L1

An eventual mission to a binary system would want to carry out
surface motion for scientific investigations or for sample return
objectives. Other than surface and gravity constraints, situations such
as spinning of the bodies need to be taken into account. In terms of
mission design, for a small ellipsoid case, it would be interesting to
have a vehicle approaching a binary system from the small ellipsoid
body, through L3, as the primary is often spinning more rapidly than
the orbit rate [5]. Given a value of the Jacobi integral, the spacecraft
would have enough energy to travel close to the system, visiting both
bodies, without escaping through the L3 region. Hence, it is
important to look into possiblemissions scenarios and to characterize
the surface conditions and requirements for possible transit
trajectories between the bodies.

For certain parameters of the system, L1 is on the outside of the
ellipsoid, providing a channel for possible transit trajectories.
However, because of the instability of L1, only certain conditions on
the position and velocity of a spacecraft can lead to transit.Moreover,
certain velocity limits are required to prevent a vehicle from escaping
the system.

Different trajectories such as transit and nontransit
trajectories between the bodies can be analyzed from linearizing
near L1 and computing its manifolds. In the following, we
apply the methodology of Conley [9] to our problem. This is
possible by investigating the eigenvalues and eigenvectors of the
state transition matrix evaluated about L1. The L1 Equilibrium
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r

Fig. 6 Values of the distance between the bodies, r, as a function of the

mass ratio � to have theL1 Lagrangian point sitting on the ellipsoid body,

facing the sphere. The ellipsoid parameters are ��:�:�� � �1:0:5:0:5�.
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Fig. 7 a) Locations of the analog equilibrium points for r� 2 in the x–y
coordinate space for the long-axis configuration. The mass ratio � varies
from 0 to 1 horizontally from left to right and �� � varies from 0 to 1

vertically from bottom to top. Starred points are stable, whereas dotted

ones are unstable. b) Stability regions of the long-axis configuration for
r� 2 as a function of � and �. The lines correspond to different values of

�=� and equal 0.25, 0.5, 0.75, and 1.0. Stable regions lie above the lines in

the upper figure and below the lines in the lower figure. The horizontal

dotted line corresponds to the Routh criterion.
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point has one pair of real and one pair of imaginary conjugate
eigenvalues. The corresponding eigenvectors, one pair of
hyperbolic manifolds and one center manifold, respectively, make
L1 unstable.

Tofind themanifolds atL1, wefirst compute the eigenvalues of the
linearized dynamics. For a system of the form _x� F�x; t�, the
linearized equations are computed using the first derivative of
F�x; t�, @F=@x. For the dynamics defined by Eqs. (16) and (17), we
express

@F

@x
�

0 0 1 0

0 0 0 1

!2 � �Uxxs �Uxxe� �Uxys �Uxye� 0 2!

�Uxys �Uxye� !2 � �Uyys �Uyye� �2! 0

2

6

6

4

3

7

7

5

(44)

Note that the second-order derivatives for the sphere and ellipsoid
potential are given in [4].

Because of the nature of L1, we can write the eigenvalues as�1

and �2, in which �1 is real and �2 is imaginary. The associated
eigenvectors are �

1 and

� 2 � � Re
2 � i�Im

2

The solution for the particle dynamics can be written as a
superposition of the eigenvectors.

q � ����
1 e

��1t� � ����
1 e

���1t� � 2Re���2e
�i�2t�� (45)

where ��, ��, and � are constants.
Now, let us substitute

�� �Re � i�Im (46)

and

e�i�2t� � cos��2t� � i sin��2t� (47)

Equation (45) then becomes

q� ����
1 e

��1t� � ����
1 e

���1t� � 2�Re
h

�Re
2 cos��2t�

� �Im
2 sin��2t�

i

� 2�Im
h

�Re
2 sin��2t� � �Im

2 cos��2t�
i

(48)

With t� 0 in Eq. (48), we have

q �
h

��
1 ;�

�
1 ; 2�

Re
2 ;�2�Im

2

i

��

��

�Re

�Im

2

6

6

4

3

7

7

5

(49)

Writing Eq. (49) in the form q� 	�
��, we can find the
components of �� from

� � � 	�
�1q (50)

Having the constants ��, ��, �Re and �Im, we can investigate
trajectories of a particle near the L1 Lagrangian point from its linear
dynamics. Depending on the value of �� and ��, the system will
excite different manifolds, leading to different types of trajectories.
As shown on Fig. 8, we can summarize these cases as being transit
trajectories, nontransit trajectories and asymptotic trajectories,
respectively:

���� < 0 (51)

���� > 0 (52)

���� � 0 (53)

To find regions allowing transit and nontransit trajectories, we
computed the � constants along the y axis of the L1 point with
varying the direction of the velocity vector. The geometry is sketched
in Fig. 9. Results on the trajectories are shown in Fig. 10. The dark
and white region represents nontransit and transit trajectories,
respectively, for a system with r� 2, �� � � 0:5, and �� 0:3 for
an interval on the y axis of 	�0:5; 0:5
.
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B. Surface Conditions Leading to Transit and Nontransit

Trajectories

We can integrate the methodology from previous sections to
design a possible mission leading to surface exploration and transit
between the bodies. As the gravity of an asteroid is low, we are
interested in looking at surface motion from a “hopper” point of
view; a vehicle would most likely bounce back from hitting the
surface and loose traction. Hence, wheeled vehicles might be
difficult to control and keep track of. In addition, a hopper would be
able to investigate a larger area in quicker time andmight be easier to
control.

It is common tofind binary systemsmade of a small ellipsoid and a
large sphere having a faster spin rate than themutual binary orbit rate.
In this case, as defined in Fig. 3, its Lagrangian point L3 is the first to
open after L1. Hence, considering a locked configuration of the
bodies and a spinning primary, the spacecraft approaching the binary
system through L3 is the best approach to take. This also limits the
probability of escaping from the system as the spacecraft could only
exit from the same entrance region.

After being inserted close to the binary system, a spacecraft could
place a vehicle on the surface for further exploration of both bodies.
A hopper would easily move on the surface, investigating the small
ellipsoid body and taking measurements along the way. The micro/
nano experimental robot vehicle for asteroid (MINERVA) robot of
the Hayabusa (MUSES-C) mission provides a good example of such
application [10]. Eventually, the vehicle would hop to the side facing
the sphere and then travel across theL1 region using a simple jump to
investigate the massive spinning spheroidal body. For transfer
between the bodies, we use the algorithm defined in Sec. V.A that
relates possible transfer trajectories through L1 and surface
conditions.

Knowing the conditions giving transit and nontransit trajectories
from linear investigation atL1, we can integrate the system backward
and forward in time to find initial and final conditions of the particle
dynamics on the surface of either body. From the results on transit
and nontransit trajectories shown on Fig. 10, we investigated
conditions for transit trajectories. Figure 11 shows a typical
nontransit trajectory for parameters r� 2, �� � � 0:5, and �� 0:3
and two transit trajectories in the center and outer regions of the
surface of the bodies. The small arrows show the locus of transit
trajectories surface conditions; the region facing the bodies gives
more transfer options, whereas the conditions need to be more
precise for the outer regions on the surface.

We investigated different conditions of transit and nontransit
trajectories crossing the L1 region. The point A on Fig. 12a
represents a fixed value on the y axis at L1 through which
trajectories are crossing with varying directions � defined in Fig. 9.

We see that the corresponding surface conditions and nature of the
trajectories can be very different while attempting to cross the L1

region. Figure 12b shows different initial velocity vectors for a
vehicle leaving from the surface of the ellipsoid at point B. In this
case, the direction of the launching velocity at the surface was
varied although the initial surface location and the velocity
magnitude were fixed. It can be seen that small differences in
angle could lead to transfer or not. We also note that some initial
conditions may lead to transfer to the back side of the spherical
body.

C. Bounds on Transfer Velocity

Because we want to keep the spacecraft close to the bodies, we
need to monitor the velocity involved in transferring from the
ellipsoid to the sphere. Getting to an orbit encircling the binary
system would make a spacecraft more susceptible to escape from the
system. Given a Jacobi integral constant, we can find conditions on
the velocity to make sure a spacecraft would not be able to escape
from the system. Using these conditions, we can then perform the
necessary maneuvers to satisfy the surface conditions leading to
transit without possibilities of escaping.

Knowing that a spacecraft could have access to the outer region of
the binary system by leaving through the L2 or L3 region, we can
compute upper bounds on the transit velocity from their Jacobi
integral values, C2 and C3, respectively. For the spacecraft being
close to the back side of the ellipsoid, an energy value larger thanC3

would be a good upper bound, as L3 opens first. If the spacecraft
makes a transfer to the spinning sphere, an energy value larger than
C2 might be more suitable.

0.2 0.4 0.6 0.8 1 1.2

−0.4

−0.2

0

0.2

0.4

0.6

x

0.4

0.2

0

−0.2

−0.4

y

Fig. 11 Transit and nontransit trajectories for a binary system with
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Hence, in the design of a mission approaching the ellipsoid and
transferring to the sphere, we use a value of energy larger than C2

corresponding to an orbit encircling the binary as an upper bound on
the spacecraft velocity. We refer to it as the outer region with Couter

being the corresponding Jacobi value. Given a value ofCouter, we use
Eq. (38) to obtain the corresponding velocity at the specific location
on a body surface, and set it as vmax. This gives a bound on the
velocity for the spacecraft to stay in orbit close to the binary system.
The velocity correction for the spacecraft leaving the surface of the
ellipsoid with a velocity vsfc can be found from

�v� vmax � vsfc (54)

In the case of a spinning spherical primarywith a spin rate given by
��, a vehicle on a spherical surface of radius rsfc would have a
tangential velocity component given by

v T � �� ����rsfc (55)

Note that the sphere spin�� is usually faster than the binary orbit rate
� and that the Jacobi integral is not constant anymore. The transit
velocity on the surface of the sphere is then

v transit � vT � vsfc (56)

From the results on the surface conditions given by Fig. 11, a
vehicle would only need to hop in the right direction to bring the total
launch velocity to the required magnitude and direction for transit.
We want to make sure that the energy of the spacecraft stays low
enoughwhen it hits the spinning sphere. Hence, arriving at the sphere
we can monitor the velocity using Eq. (54) and make the necessary
maneuvers.

VI. Application to Binary System 1999 KW4

Wenow consider the binary system 1999KW4 as a case study [5].
We note that detailed models of both bodies are available, but they
can bewell approximated by a sphere for the primary and an ellipsoid
for the secondary. The two bodies are referred to as � and � for the
sphere and ellipsoid, respectively, and the system has the following
parameters. The distance between the bodies is rb � 2:54 km, the
total mass of binary system is M1 �M2 � 2:472 � 1012 kg, with a
mass ratio of �� 0:9457, an orbit period� of 17.458 h, and ellipsoid
shape parameters

�2�; 2�; 2�� � �0:57:0:455:0:343� km

From these parameters, re ��2:402 km and rs � 0:138 km. The
spin rate of � is 2.8 h, or

�� � 6:23 � 10�4 rad=s

Also, � is locked in a gravity gradient orbit with �� � 17:458 h.
To work with nondimensional units, we set the scaling length and

time as �� 0:57=2, and

n�

����������������������������������

�

G�M1 �M2�

�3

�

s

� 2:67 � 10�3 rad=s

The nondimensional distance between the bodies becomes
r� 8:9123, and we solve for the rotation rate of the system using
Eq. (12),!� 0:0377. The nondimensional spin rate of the primary is
then !� � 0:233.

A. Equilibrium Points, Stability and Jacobi Constant

To find the collinear equilibrium solutions, we solve Eq. (20) with
y� 0 and z� 0. In nondimensional units, and following the
convention on the Lagrangian points notations, we obtain, L1 at
	�6:2363; 0; 0
, L2 at 	9:1004; 0; 0
, and L3 at 	�11:0158; 0; 0
. The
results indicate that L1 is outside of the ellipsoid. For the equilateral

solutions, we find L4;5 at 	�3:9713;7:7035; 0
. In dimensional
units, these giveL1 at 	�1:7773; 0; 0
 km,L2 at 	2:5936; 0; 0
 km,L3

at 	�3:1395; 0; 0
 km, and L4;5 at 	�1:1318;2:1955; 0
 km.
Looking at the stability conditions given by Eq. (31), as expected,

the collinear points are unstable. For the current mass ratio, L4;5 are
also unstable.

The corresponding Jacobi integrals, in nondimensional values, are
C1 ��0:19365, C2 ��0:1716, C3 ��0:18965, and C4;5�
�0:16565. In dimensional units, we find C1 ��1:1208�
10�7 km2=s2, C2 ��9:9323 � 10�8 km2=s2, C3 ��1:0975�
10�7 km2=s2, and C4 ��9:5883 � 10�8 km2=s2. Figure 13 shows
the zero-velocity curve plot for 1999 KW4.

For a circular orbit about the sphere, say at 0.786 km radius, the
velocity in the � frame is computed from

v�

�����������

�

�

rc

�

s

� 4:455 � 10�4 km=s

where

��GMs � 1:5599 � 10�7 km3=s2

Note that, from the spin itself, a particle would have a velocity of

v� � !�rc � 4:897 � 10�4 km=s

meaning particles are already close to being in orbit around �. If we
assume the spacecraft to be on the x axis, the Jacobi value is
calculated using Eq. (38).

If the spacecraft is located on the x axis towards the system center
of mass, it is at ��0:786 � 0:138� km in this coordinate system. Its
associated Jacobi value is

Cx1 ��2:0362 � 10�7 km2=s2

If it is located on the other side of the sphere, it is at
�0:786� 0:138� km, with

Cx2 ��2:0114 � 10�7 km2=s2

Because these values of the Jacobi are smaller than all the three
values of the collinear points, these points have not opened up yet to
the spacecraft on the surface of �. Hence, there is no escape possible
from orbiting close to the surface of �.

From the zero-velocity curves shown on Fig. 13, a spacecraft or
particle could be in the outer region if its Jacobi integral is higher than
Couter ��0:19 or

Couter ��1:0996 � 10�7 km2=s2

This value corresponds to the large circular path around the binary
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system. Inverting Eq. (38), for a spacecraft on the surface of �,
between the bodies, it would need to have a velocity of at least

vmax� � 8:695 � 10�4 km=s

to have access to the outer region. On the surface of �, its velocity
would only need to be

vmax� � 1:95 � 10�4 km=s

Now, because � is spinning, we can compute the maximum
velocity that a particle or spacecraft sitting on�would need to be able
to reach the outer region of the system. In the � frame, its tangential
velocity is given by �!� � !�rc � vs. With the 1999 KW4
parameters, this gives vs � 4:1 � 10�4 km=s. Looking again at a
location between the bodies, for a spacecraft leaving at 90 deg from
the surface of � at vmax, the change in velocity needed is computed by

�v�

����������������������������

�

v2s � v2max�

�

r

(57)

In this case, we find �v� 9:6 � 10�4 km=s, oriented at 155 deg
from the positive x axis. On the other hand, if the velocity applied is
along the tangential velocity coming from the primary spin, we
would need

�v� vmax� � vs (58)

For the current parameters of 1999 KW4, we obtain
�v� 4:6 � 10�4 km=s, tangential to the surface.

B. Velocity Constraints for Transit

In Sec. V, we investigated the conditions on the position and
velocity for transit and nontransit trajectories. This is possible ifL1 is
located outside of the ellipsoid.We retrieve the same situation for the
binary 1999 KW4. Because the trajectories are governed by the
binary gravity field, a spacecraft could just apply a small impulse and
“jump” to coast to the other body.

Provided that the Jacobi value is higher thanC1, we computed the
transit and nontransit trajectories as outlined in Sec. V. The
conditions for nontransit trajectories are shown on Fig. 14. One
example of nontransit trajectory and three transit trajectories are also
shown on Fig. 15. Note that the black lines are the bodies themselves.
We omitted the arrows giving the transit conditions on Fig. 15 for
better clarity in reading the plot. For this binary system, we notice
that most of the transit trajectories impact the surface of � on its outer
regions. On �, the velocities are of the order of vT��
1:80 � 10�4 km=s, which is close to the velocity opening the outer
region of the system, vmax�, computed in the previous section. For �,
such transit velocity is about vT� � 5:75 � 10�4 km=s, which is
almost half of its vmax�. We can also notice that the system can be
very sensitive to initial conditions, as some transit and nontransit
trajectories have very close values of positions and velocities on �.

Now, taking into account the spin rate of �, we can compute the
required launch or arrival velocities involved in transit trajectories.
The situation of having a spacecraft leave �, in transit to �, might be
more appealing. For the spacecraft leaving �, its spin rate makes the
launch window on � small and periodic in time as opposed to
launching from�, inwhich the launching location isfixed in time. As
� is spinning, the relative position of the spacecraft in the RF3BP
would need to be monitored so that transition to � is possible. On the
other hand, the spacecraft can transit from � at any position on its
surface, facing �, provided it has the required velocity for transfer.
Arriving on the spinning primary �, simple geometry for the
velocities would give the required velocity change to maintain the
energy of the spacecraft below vmax� and limit the possibility to reach
the outer regions of the system and eventually escape.

To give a concrete example, we follow a spacecraft leaving� at the
point A and arriving at B on �, shown on Fig. 15. To transit to �, we
need vA � 1:88 � 10�4 km=s oriented at 9.6 deg from the x axis.
Arriving at �, the spacecraft velocity at B would be
vB � 1:6 � 10�4 km=s, at 12.4 deg from the x axis. Because � is
spinning along the same direction, the total spacecraft velocity at B
would be

vBTotal � vB � vs � 5:7 � 10�4 km=s

Because vBTotal is lower than the velocity necessary to reach the outer
region, found to be

vmax� � 8:7 � 10�4 km=s

a spacecraft would not be able to escape from the system in this case.

VII. Conclusions

In this work, we investigated the equilibrium solutions of the
restricted full three-body problem in more detail. Taking the mass
distribution of one of the bodies into account provides an additional
physical constraint on the system. We first computed the conditions
for the Lagrangian pointL1 to be sitting on the ellipsoid body, facing
the sphere. This provides a limiting case of the binary system. Indeed,
depending on the free parameters of the system, L1 can be inside or
outside of the ellipsoid.

For the case in which L1 is between the two bodies, we looked at
the corresponding linearized system. From investigating the
manifold structure at L1, we find conditions on a particle that may or
may not allow transitional trajectories.We thenmap these conditions
on the surface of the binary components to come up with initial and
final conditions allowing transit and nontransit trajectories. We
applied these methods to the binary system 1999 KW4 to come up
with possible mission design.
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As rover exploration becomes more interesting and useful in
sending spacecraft to small bodies, future work involves mission
design and trajectory investigation for surface motion. This work
showed that a vehicle approach by the small, secondary, ellipsoid
body could benefit from the natural environment of a binary. In this
case, with a velocity low enough, a spacecraft could orbit the binary
system while staying close to the bodies. Then, using transit
trajectories, a vehicle on the surface could easily transfer to the other
body from a simple jump, as long as the transit conditions are
satisfied. Because a vehicle would need to keep a low enough energy
to stay close to the bodies, orbital and attitude dynamics couplings
need to be studied; at impact on the other spinning body, for example,
the geometry of a vehicle couldmake it gainmomentum and open up
outer regions of allowable motion of the binary system.

Appendix: Derivatives of the Ellipsoid Potential

Originally derived using Ivory’s theorem [11], the potential
energy expression for an ellipsoid, given the normalization
mentioned, is written as

Ue �
3

4

Z

1

�

��r; v�
dv

��v�
(A1)

��r; v� � 1 �
x2

v� 1
�

y2

v� �2
�

z2

v� �2
(A2)

��v� �
���������������������������������������������������

�v� 1��v� �2��v� �2�
p

(A3)

where 0< � � � � 1 and � satisfies ��r; �� � 0. The x axis is
aligned with the longest axis of the ellipsoid, whereas the z axis is
along its shortest axis. The first derivatives of the ellipsoid potential
are then given by [1],

Ux ��
3

2
x

Z

1

�

du

�u� 1���u�
(A4)

Uy ��
3

2
y

Z

1

�

du

�u� �2���u�
(A5)

Uz ��
3

2
z

Z

1

�

du

�u� �2���u�
(A6)

The derivatives are written in terms of the Rj expressions that are
the elliptic integrals representing the mass distribution of the
ellipsoid. Using the substitution v� u� �, they can be solved as
written in the following form and can be computed using algorithms
from [12]:

Rj� �
3

2

Z

1

0

du

�u� �� 1���u� ��
(A7)

Rj� �
3

2

Z

1

0

du

�u� �� �2���u� ��
(A8)

Rj� �
3

2

Z

1

0

du

�u� �� �2���u� ��
(A9)
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