
UC Berkeley
UC Berkeley Previously Published Works

Title
Restricted Hartree Fock using complex-valued orbitals: a long-known but neglected tool in 
electronic structure theory.

Permalink
https://escholarship.org/uc/item/6gm9k0zt

Journal
The Journal of chemical physics, 142(2)

ISSN
0021-9606

Authors
Small, David W
Sundstrom, Eric J
Head-Gordon, Martin

Publication Date
2015

DOI
10.1063/1.4905120
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gm9k0zt
https://escholarship.org
http://www.cdlib.org/


Restricted Hartree Fock using complex-valued orbitals: a

long-known but neglected tool in electronic structure theory

David W. Small and Eric J. Sundstrom and Martin Head-Gordon

Department of Chemistry, University of California,

Berkeley, California 94720 and Chemical Sciences Division,

Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Dated: December 16, 2014)

Abstract

Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an or-

bital pairing theorem, with which we obtain a concise connection between cRHF and real-valued

RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and

Generalized Valence Bond Perfect Pairing. This enables an intuition for cRHF, contrasting with

the generally unintuitive nature of complex orbitals. We also describe an efficient computer imple-

mentation of cRHF and its corresponding stability analysis. By applying cRHF to the Be + H2

insertion reaction, a Woodward-Hoffmann violating reaction, and a symmetry-driven conical inter-

section, we demonstrate in genuine molecular systems that cRHF is capable of removing certain

potential energy surface singularities that plague real-valued RHF and related methods. This com-

plements earlier work that showed this capability in a model system. We also describe how cRHF

is the preferred RHF method for certain radicaloid systems like singlet oxygen and antiaromatic

molecules. For singlet O2, we show that standard methods fail even at the equilibrium geometry.

An implication of this work is that, regardless of their individual efficacies, cRHF solutions to the

HF equations are fairly commonplace.
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I. INTRODUCTION

For decades, the Hartree-Fock (HF) method has served electronic structure theory well,

and continues to enjoy significant usage today. The HF energy is typically 0.9 to 0.99 times

the exact energy, by which it is bounded below. In many instances, widely used procedures,

such as the simpler variants of perturbation and Coupled Cluster theories, may be used to

economically obtain most of the remaining energy. In many other cases, all of the standard

methods, except certain ones that are extremely computationally expensive, are insufficient.

These systems are “strongly correlated (SC),” and very often HF itself is blamed for these

failures.

It is all but invariable that, in the SC setting, HF orbitals will break spin symmetry if

they are allowed to do so. This gives rise to energy lowering in the form of unrestricted HF

(UHF) or generalized HF solutions. For SC systems, standard electron-correlation methods

tend to fail badly when used in conjuction with restricted orbitals. Hence, the perhaps

most prevalent approach here is to let the symmetry breaking (SB) occur and proceed as

usual with the standard methods, including Density Functional Theory (DFT). This incurs,

among other “contaminations”, mixings of exact states of different total spin. Even if the

admixed states are low lying, this can be a significant problem if studying the ground state

is an important objective.

There have been several efforts towards scalable models that can treat SC systems without

incurring spin SB.1–32 Some of these are rooted in a sort of back-to-basics approach wherein

the possibility of creating effective single-reference, restricted-orbital approximations for SC

systems is contemplated.33–64 The idea has met with some early successes, including some

favorable results on familiar SC systems once thought to be confined to the unrestricted-

orbital domain. It therefore makes sense to study restricted orbitals, particularly those of

(real-orbital) restricted HF (RHF), in a wider SC scope.

Optimism here must be cautious due to some fundamental issues with RHF. Some of

these relate to the fairly common occurence of artifactual (spatial) SB in RHF calculations.

We are working on some aspects of this, to be described in a forthcoming paper,65 and there

we will provide some references for the existing significant body of work on RHF SB. In the

present work, we will examine how some of the general RHF problems can be improved by

using complex-valued restricted orbitals.
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One of the most accessible examples of cRHF’s usefulness is the oxygen molecule, which

was the inspiration for the present paper. Here, the primary RHF problem is a SB one.

Qualitatively, O2’s low-lying states are characterized by the configuration

uc = (1σ+
g )

2(1σ+
u )

2(2σ+
g )

2(2σ+
u )

2(3σ+
g )

2(1πu)
4 (1)

along with two electrons occupying two π∗ antibonding orbitals, which span a Πg irreducible

representation of the D∞h point group. This gives rise to four low-lying states: one triplet,

3Σ−
g , and three singlets, a doubly degenerate 1∆g and a 1Σ+

g . The triplet is the overall ground

state and the 1∆g state is the singlet ground state. Being degenerate, there is not a unique

wave function to represent this state. However, near its 1.2 Å equilibrium bondlength, two

orthogonal wave functions may be selected that are respectively dominated by the following

two configurations:

Ψ∆1 ∼ uc(π
∗
xπ

∗
x − π∗

yπ
∗
y)

Ψ∆2 ∼ uc(π
∗
xπ

∗
y + π∗

yπ
∗
x). (2)

In this region, the 1Σ+
g state is dominated by

ΨΣ ∼ uc(π
∗
xπ

∗
x + π∗

yπ
∗
y). (3)

In these equations, we use a “∼” because we have simplified the terms by omitting antisym-

metrization, normalization, and the spin components.

For the rest of this paper, we use “RHF” and “cRHF” to denote restricted HF with real

and complex orbitals, respectively. In the (real) restricted open-shell HF (ROHF) treatment

of the triplet, each π∗ orbital is singly occupied, and the wavefunction has the proper Σ−
g

symmetry. But in the singlet case, RHF will doubly occupy one orbital, leaving the remaining

one unoccupied. If the latter orbital were the one being occupied, a separate, but essentially

equivalent RHF solution would result. We have

ΨRHF1 ∼ Ψ∆1 +ΨΣ

ΨRHF2 ∼ −Ψ∆1 +ΨΣ. (4)

This details the SB of the RHF wavefunctions.

Conversely, Ψ∆1 is a linear combination of the two RHF wavefunctions. Thus, a proper

approximation for the 1∆g state using real orbitals takes us into the multireference (MR)
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realm. Alternatively, consider a substitution of the π∗
x and π∗

y orbitals with

π∗
1 = π∗

x + iπ∗
y (5)

and

π∗
−1 = π∗

x − iπ∗
y, (6)

where i =
√
−1 and normalization has been ignored for simplicity. Another way of under-

standing these orbitals is that they are antibonding π orbitals formed from the p1 and p−1

atomic orbitals, i.e. the p orbitals with eigenvalues 1 and -1, respectively, for the z-component

angular momentum operator Lz. For diatomic molecules, Lz commutes with the Hamiltonian

operator, so we are simply employing symmetry adapted orbitals. This substitution does not

alter the orthogonality status of the overall set of orbitals. We can use these orbitals to define

a cRHF determinant: ΨcRHF ∼ ucπ
∗
1π

∗
1. Noting that π∗

1π
∗
1 = (π∗

xπ
∗
x−π∗

yπ
∗
y)+ i(π∗

xπ
∗
y +π∗

yπ
∗
x),

we get

ΨcRHF ∼ Ψ∆1 + iΨ∆2 . (7)

We see that cRHF can recover the proper symmetry of the singlet ground state, and it has

turned a MR problem into a single reference one.

We emphasize that cRHF is not generally able to cure symmetry issues. For example,

it cannot achieve the symmetry of the 1Σ+
g state of O2. In fact, the increased variational

freedom of cRHF may increase the possibilities for SB. Nevertheless, it is only natural at

this point to contemplate the nature and utility of cRHF in general.

This is not the first time it has been considered. Several early papers explored complex

orbitals in various ways.66–74 Later, cRHF began to be more explicitly investigated.75–82

cRHF forms one of Fukutome’s 8 classes of HF wave functions, where it is called “CCW.”83

In other work, the concept of projected HF was applied to cRHF, wherein the imaginary part

of the cRHF wavefunction is discarded and the orbitals are optimized.84–88 As with other

projected HF schemes, this technique captures a significant amount of correlation energy

for small systems, but comes with a loss of size consistency. The technique is also included

in Projected Quasiparticle Theory.9,10 cRHF solutions have been found for several systems,

including the cyclopropyl cation,89, ethylene torsion,90 ethylenedione (OCCO),91 B2H2 and

BCH,92 SiLi2,
93 SiBF,94 and small hydrogenic systems,95 while evidence for semi-empirical

cRHF solutions was given for several organometallic complexes.96–98
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Despite this earlier research, cRHF has not found mainstream application. In this paper,

we examine cRHF from a modern perspective, and consider several molecular examples that

are intended to extend and complement the existing cRHF work. Our aim is to demonstrate

that cRHF is a useful member of the set of standard electronic structure theory methods.

II. THEORY

The above O2 example involves degenerate RHF solutions, and this latter problem is, in

fact, quite commonly encountered in the general case, often without any underlying spatial

symmetries. It is of particular concern when, upon traversing a reaction coordinate, there

are artifactual singularities in the RHF energy, i.e. the lowest RHF energy over a reaction

coordinate involves two or more distinct RHF solutions.

Many years ago, Pople considered this phenomenon in an idealized model with two real

solutions crossing one another.75 He found that, in certain cases, the use of complex orbitals

would allow the energy to smoothen near the crossing point, somewhat similar to the result

one would expect if the real solutions were used in a two-state Configuration-Interaction

calculation. This is one of the key demonstrations of the utility of complex restricted or-

bitals, and merits further investigation along several lines; we will begin by studying cRHF’s

connection to RHF.

Clearly, complex orbitals are linear combinations of real valued ones. Without further

description, such expansions may be rather long and general and, as such, would offer little

insight. However, using the invariance of a determinant wave function with respect to choice

of basis for the occupied space, it turns out that we may obtain a set of occupied orbitals

that may be written very succinctly in terms of real orbitals.

A. Complex-orbitals Pairing Theorem

Complex orbitals are also of interest in UHF and GHF, and we would like our development

to be applicable to these theories, too. For this purpose, and because the implications of

complex orbitals in UHF and GHF are a little more complicated than in cRHF, it makes sense

to keep our discussion quite general for now. To establish an approach for this, consider the

following practical situation. Suppose we make a unitary transformation of a set of RHF
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orbitals among themselves, such that at least some of the resulting orbitals are complex

valued somewhere on their domain. Due to orbital invariance, the determinant formed from

the complex-valued orbitals is still essentially an RHF one. A complex-orbital calculation

may well produce such a set of orbitals, but the conceptual reduction to RHF would not

be evident if we only inspect the orbitals individually. We see that for any complex-orbital

calculation, it is important to determine whether or not its results are fundamentally distinct

from what we can obtain in a real-orbital calculation. If the answer is “yes”, we will refer to

the results as being “fundamentally complex”. To test for this, we must look at the occupied

space as a whole.

We proceed by assuming a given generic occupied space W , even simply thinking of

W as a generic subspace of a complex inner-product space V , which in the orbital context,

would be the finite-basis one-electron space. This way, we can subsume cRHF, where we can

effectively ignore the spin aspects, and cUHF and cGHF, where spin must not be neglected,

into one discussion.

An essential part of the overall fundamental-complexity determination is asking if W is

fundamentally complex. As the above statements suggest, this latter attribute should be

defined as W not having a real basis. Technically, “real” here means invariant with respect

to complex conjugation. The latter is quite naturally defined for spatial orbitals, so this idea

poses no problems in cRHF; there, fundamental complexity in W is all we need to consider.

However, the spin parts make things a little more complicated in GHF: just as there

is freedom in defining the spin functions/vectors, so it is with complex conjugation there.

In this case, the evaluation of W ’s fundamental complexity will depend on the choice of

complex conjugation. Without going into much detail, one viable approach to the overall

fundamental-complexity determination in GHF is to ask if there exists some spin rotation

that transforms the occupied space into one having a real basis relative to a fixed complex

conjugation. An equivalent, and perhaps more clear, concept is asking if W has a real basis

relative to some choice of complex conjugation.

As a matter of completeness, we should give some practical details about complex conju-

gation. Complex conjugation amounts to an operator acting on the pertinent vector space.

In the context of determining fundamental complexity, it is sufficient to identify complex

conjugations as the antiunitary, involutory operators. For the general W picture, we will

assume some such choice and label it ĉ. In the spin-orbital context, this operator has the
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form ĉ1 ⊗ ĉ2, where ĉ1 is the aforementioned “natural” complex conjugation in the spatial

part and ĉ2 is some complex conjugation acting on the spin part.

There are various ways of determining if W has a real basis. One is by establishing

PB, the matrix representation of W ’s orthogonal projection operator with respect to any

real basis B of V . W having a real basis is equivalent to PB being a real matrix. In the

orbital context, we can let B be the atomic orbital basis (in the non-cRHF case, this consists

of atomic spin orbitals whose associated orthonormal one-electron spin functions α, β are

chosen to be invariants of the given ĉ2). Then PB = CC∗S, where C is the occupied-orbital

coefficient matrix, ∗ denotes the conjugate transpose, and S is the spin-orbital AO overlap

matrix, which is simply the Kronecker product of the 2-by-2 identity matrix and the spatial

AO overlap matrix. S is real and full rank (provided any effective linear dependence has

been removed in the usual way), so reality of PB is the same as reality of CC∗. In summary,

the constituents of a complex-orbital calculation are fundamentally complex (with respect

to the choice of spin-space complex conjugation) if and only if the AO density matrix is

complex. We reiterate that this is sufficient in the cRHF case, and note that it is evident in

Fukutome’s work (under the “CCW” classification).83

To move towards a pairing theorem, suppose we have an orthonormal basis {ϕi} for W .

Antiunitary operators preserve orthonormality, so {ĉ(ϕi)} is also orthonormal. Each ϕi is a

linear combination of its real and imaginary parts, which themselves are linear combinations

of ϕi and ĉ(ϕi). While this link to real vectors is technically concise, it is insufficient in that

the real vectors are not necessarily orthonormal. But, this latter attribute can be obtained if

we transform {ϕi} to a different orthonormal basis. Roughly, the idea here is to “diagonalize”

ĉ within W , i.e. look for an orthonormal basis {χi} such that ⟨χj|ĉ|χi⟩ is a diagonal matrix.

Then the real and imaginary parts of each χi will form a set of strongly orthogonal pairs.

The new basis is written relative to the old as

χi =
∑
j

Ujiϕj, (8)

where U is a unitary matrix. Using the antilinearity of ĉ, we observe that

⟨χj|ĉ|χi⟩ = (U∗MU)ji, (9)

where an overline indicates (ordinary) complex conjugation and

Mji = ⟨ϕj|ĉ|ϕi⟩. (10)

7



In other words, under this change of basis, the starting matrix M is transformed to U∗MU .

Note that U is also unitary and M is complex symmetric (but not necessarily Hermitian).

Suppose U is chosen such that U∗MM∗U is diagonal. Taking the transpose, we have that

U
∗
M∗MU is also diagonal. These two observations suggest that U and U might constitute

the left and right transformations of a Singular Value Decomposition (SVD) of M , which

would be compatible with the way M transforms, thus giving the desired diagonalization.

This is indeed the case: the Autonne-Takagi factorization,99 a particular SVD specialized to

the complex-symmetric case, states that there exists a (complex) unitary U such that

U∗MU = m, (11)

where m is real nonnegative diagonal. We note that any SVD computation would give the

same m, but considering that the SVD is unique only up to (matching) unitary transfor-

mations within the left and right subspaces corresponding to the same singular value, a

conventional SVD may not produce the desired U -U relationship between its left and right

unitary matrices, even if there are no degeneracies among the singular values.

If j is such that mjj = 1, then χj is real. Otherwise (i.e. mjj < 1), χj and ĉ(χj) form a

linearly independent set. Let

Re(χj) =
1

2
(χj + ĉ(χj))

Im(χj) =
i

2
(ĉ(χj)− χj) , (12)

i.e. these are the real and imaginary parts, respectively, of χj. We can multiply χj by a

phase factor such that Re(χj) and Im(χj) are orthogonal. We then define

ηj = NjRe(χj)

ηĵ = NĵIm(χj), (13)

where ĵ is some unique integer greater than no, the dimension of the occupied space, i.e. if

j ̸= k then ĵ ̸= k̂, and Nj and Nĵ are real normalization scalars. {ηj, ηĵ} is an orthonormal

set of real vectors, and, because χj is normalized, we may write

χj = cos(θj)ηj − i sin(θj)ηĵ, (14)

where θj is a rotation angle.

Because span({ηj, ηĵ}) = span({χj, ĉ(χj)}), the full set of η orbitals, including the ones

with hatted indices, is orthonormal. We may summarize the above findings as follows:
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Any set of occupied complex orbitals can be transformed into a set of complex

orbitals, each of which is a linear combination of one or two real orbitals, the

real orbitals forming an orthonormal set, with each one being uniquely associated

with one of the complex orbitals.

In summary, this result provides an occupied-space basis that is concisely related to a

(more familiar and facile) orthonormal real basis.

B. the MR element of cRHF

We now specialize to the cRHF case. Here, it suffices to focus on the spatial parts of the

orbitals, so we will now assume that these are denoted by the χj. For each doubly occupied

pair, the corresponding spatial part of the wave function is

χjχj = Πj + Ωj, (15)

where

Πj = cos2(θj)ηjηj − sin2(θj)ηĵηĵ (16)

and

Ωj = −i sin(θj) cos(θj)(ηjηĵ + ηĵηj). (17)

The cRHF wavefunction is then simply the (antisymmetrized) product over all pairs of the

terms on the RHS of eq. (15) (with an αβ spin part included for each pair).

Let us compare these cRHF components to the constituents of the Generalized Valence

Bond Perfect Pairing (PP)100 wavefunction. The normalized PP wavefunction is a product

of two-electron wave functions, whose spatial parts are written

Π
(PP)
j = cos(θj)ηjηj − sin(θj)ηĵηĵ, (18)

where we are using the same labeling for the variables to aid in the comparison. In other

words, PP is also parameterized by rotation angles and two restricted orbitals per pair. As

our notation suggests, the Πj constituents in cRHF and PP have the same basic form. This

helps us understand the driving force for complexification in RHF. The PP wave function

incorporates an important piece of the static correlation, and thereby always produces an

energy lower than that of RHF. In short, in PP, the θj will always be non-zero.
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Things are more complicated in cRHF: complexification entails energetically beneficial

PP-like terms but also the Ωj parts, which are of the open-shell-singlet flavor and typically

higher in energy. Hence, cRHF, unlike PP, will not always polarize, i.e. RHF is often stable

to complexification. For O2, essentially only one pair complexifies, because therein the PP

and open-shell terms are degenerate. In Pople’s idealized example, complexification was

limited to one pair, whose two associated real orbitals had different spatial symmetries, and

this brought the energy of the open-shell part sufficiently low to admit a complex solution.

In the multiple pair case, we may expand out the cRHF product, obtaining first a PP-like

wavefunction, along with contributions in which various PP-like pairs have been substituted

with the open-shell entities. Again, the energetic relevance of the latter will determine the

extent of complexification.

Further insight may be gained by comparing cRHF and (real-orbital) UHF. UHF orbitals

can also be transformed to become concisely related to restricted orbitals,101 and we will

employ the same notation:

ξ−j = cos(θj)ηj − sin(θj)ηĵ

ξ+j = cos(θj)ηj + sin(θj)ηĵ. (19)

The UHF wavefunction is an antisymmetrized product of the various ξ−j ξ
+
j αβ. In each pair,

we may expand out this orbital product, obtaining Πj, i.e. a PP-like term identical to that

found in cRHF, plus

Ω
(UHF)
j = sin(θj) cos(θj)(ηjηĵ − ηĵηj). (20)

Instead of an open-shell singlet term, we have a triplet contribution, i.e. spin-symmetry

breaking. The driving force for unrestriction thus includes that for complexification in

cRHF, i.e. the PP-like contributions. But, the triplet-based components are generally - often

significantly - lower in energy than their cRHF singlet counterparts, and hence polarization

is observed much more often in UHF. This underlies UHF’s historical preponderance, as

compared to cRHF.

C. Detailing the cRHF/UHF/PP connection

Continuing our cRHF/UHF comparison, we will now explicitly analyze the energy ex-

pressions. Consider the 1-electron density matrix (1-PDM) for each of the above methods, in
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the ηj basis. In this basis, the 1-PDMs are block diagonal, with 2-by-2 blocks corresponding

to the electron pairs. The blocks for cRHF are

P[j] =

 cos2(θj) −i sin(θj) cos(θj)

i sin(θj) cos(θj) sin2(θj)

 , (21)

where the [j] notation means the j-th pair. Of course, the blocks are the same for α and β

spin. For UHF, we have

P
(UHF;α)
[j] =

 cos2(θj) − sin(θj) cos(θj)

− sin(θj) cos(θj) sin2(θj)

 (22)

and

P
(UHF;β)
[j] =

 cos2(θj) sin(θj) cos(θj)

sin(θj) cos(θj) sin2(θj)

 . (23)

For PP, we get

P
(PP)
[j] =

cos2(θj) 0

0 sin2(θj)

 . (24)

The kinetic energy, K, is given by the trace over the 1-PDM times the ηj-basis kinetic-

energy matrix. The latter is real and symmetric, so the contributions coming from the

imaginary parts of the cRHF 1-PDM will cancel. Likewise, for UHF, the contributions

coming from the off-diagonal 1-PDM parts will cancel because the latter change sign going

from α to β. The off-diagonal parts of the PP 1-PDM are already 0, and thus, cRHF,

UHF, and PP have the same form for their kinetic energies. Treating K as a function of the

1-PDM, we may summarize this result as

K = K(P ) = K(diag(P )). (25)

In what follows, we will abbreviate the term on the far right-hand-side of this equation to

simply “K”, and will do the same for analogous quantities defined below.

We also see that the three methods have the same form for the total electron density, ρ.

The latter is a function of the 1-PDM: it is obtained by summing over each element of the

1-PDM times the product of the two pertinent orbitals. For this, all off-diagonal terms will

cancel. Analogous to the K situation, we have

ρ = ρ(P ) = ρ(diag(P )) (26)
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for all three methods. This may be used to show that the three methods have the same form

for N and C, their nuclear attraction and Coulomb repulsion energies, respectively, i.e.

N = N(ρ) = N(ρ(diag(P ))) (27)

and

C = C(ρ) = C(ρ(diag(P ))). (28)

What remains are the exchange contribution and, in the PP case, some intra-pair corre-

lation. The former is given by the following general expression

X = −1

2

∑
σ∈{α,β}

∑
pqrs

P σ
prP

σ
qs⟨pq|sr⟩. (29)

Given that each 1-PDM element is diagonal or off-diagonal, we can divide the exchange con-

tributions in eq. (29), each of which involves two 1-PDM elements, into four categories. The

diagonal/diagonal terms are equivalent for cRHF, UHF, and PP. The diagonal/off-diagonal

terms are purely imaginary in cRHF, so they must sum to 0, which is also evident from ob-

serving that each cRHF off-diagonal element is the negative of its transposed counterpart.

The terms also sum to 0 in UHF because the off-diagonal α elements are the negative of

their β counterparts.

For the rest, we divide X into three terms, X ′, X ′′, and X ′′′, where

X ′ = −
∑
kl

cos2(θk) cos
2(θl)⟨kl|lk⟩+ cos2(θk) sin

2(θl)⟨kl̂|l̂k⟩

+ sin2(θk) cos
2(θl)⟨k̂l|lk̂⟩+ sin2(θk) sin

2(θl)⟨k̂l̂|l̂k̂⟩, (30)

X ′′ = −
∑
kl

sin(θk) cos(θk) sin(θl) cos(θl)(⟨kl|l̂k̂⟩+ ⟨k̂l̂|lk⟩), (31)

and

X ′′′ = −
∑
kl

sin(θk) cos(θk) sin(θl) cos(θl)(⟨kl̂|lk̂⟩+ ⟨k̂l|l̂k⟩) (32)

where these summations go over the electron pairs. Then

EcRHF = K +N + C +X ′ −X ′′ +X ′′′, (33)

EUHF = K +N + C +X ′ +X ′′ +X ′′′, (34)

and

EPP = K +N + C +X ′ + Ec, (35)
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where Ec is the intrapair electron correlation, and, for simplicity, we have omitted the nuclear

repulsion energy.

We summarize the preceding results as follows. 1) In cRHF and UHF, the exchange

energy may be simplified somewhat, namely, it may be decomposed into PP exchange plus

some relatively straightforward “off-diagonal” terms. 2) In essence, cRHF and UHF differ

only in exchange. 3) cRHF (and UHF, although it is less relevant to this paper) has a

clear relationship to the PP method. The balance between the pertinent PP and open-shell-

singlet terms determines cRHF’s relevance. In at least some of the situations in which a

gainful compromise is found, problems that are formally MR in the RHF picture may still

be treated with a single-reference approach, using cRHF. We will further investigate this

with some molecular examples in the next section. For these purposes, we have written an

efficient cRHF implementation in the Q-Chem program,102 which we will now describe.

D. cRHF Computational Implementation

As discussed above, all cRHF energy components besides the exchange are functions of

the real part of the 1-PDM. These components can thus be evaluated (in the atomic-orbital

(AO) basis) with existing RHF-type code. The exchange boils down to 4-center AO inte-

grals, and this fact allows us to evaluate the energy and Fock matrix for cRHF by feeding

the imaginary component of the 1-PDM into the existing integral generation and contrac-

tion technology of Q-Chem. Therefore the overall scaling of cRHF is the same as RHF,

albeit with a slightly larger prefactor (double the number of floating point operations for

the contractions). To facilitate and optimize matrix operations with complex numbers, we

utilize the Armadillo linear algebra library103 throughout our implementation. cRHF is one

option in a Q-Chem library consisting of a polymorphic orbital class with derived types:

RHF, ROHF, cRHF, etc., containing the methods which act on the orbitals. These or-

bital classes couple to a polymorphic nonlinear optimizer class with derived types: steepest

descent, direct inversion of the iterative subspace (DIIS),104,105 Broyden-Fletcher-Goldfarb-

Shanno(BFGS),106 etc. which calls methods overridden in the derived orbital classes and

provides a uniform interface. For cRHF, the methods necessary to use both DIIS or Geomet-

ric Direct Minimization107 have been implemented and were used in the examples presented

below.
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GDM is a form of Quasi-Newton method and thus relies on differential geometry, but

it should be noted here that the energy of cRHF is not a holomorphic function. This

implies that cRHF does not have a derivative in the analysis sense, but we must instead use

Wirtinger calculus in order to optimize these orbitals. Wirtinger calculus simply involves

treating both the real and imaginary components of a complex number or vector as separate

real numbers or vectors, mapping the space of Cn to R2n. This allows us to reuse all the

same optimizers from real-orbital code without modification other than passing vectors of

double the length.

The Q-Chem library above also provides an interface for computing the stability of self-

consistent field solutions within their own orbital space and outside of that space as per

Seeger.80 All forms of instability are provided within this library, e.g. RHF to UHF, RHF to

cRHF, cRHF to cUHF, etc. To do this we compute the lowest eigenvalue and eigenvector of

the orbital Hessian matrix:

∂2E

∂χ∂χ
=

 A B

B∗ A∗

 , (36)

Aia,jb = (εa − εi)δ
ab
ij + ⟨aj||ib⟩, (37)

Bia,jb = ⟨ab||ij⟩, (38)

where i and j are occupied orbitals and a and b are unoccupied orbitals. The full Hessian

matrix has dimensions 2OV where O is the size of the occupied space and V the size of the

virtual space, and as such, diagonalization of this matrix scales asO (O3V 3). Transformation

of the 4-center AO integrals to the molecular orbital basis for computing A and B scales as

O (N5) where N is the size of the AO basis. To avoid both of these potential computational

bottlenecks and because we only need the lowest eigenpair to test stability, we use the

Davidson algorithm,108 which only requires products of the matrix (for which one wants the

eigenvalues) with trial vectors. Computing the product of the Hessian with a trial vector

in the AO basis scales as O (N3), which is the same as building the Fock matrix and thus

doesn’t limit the systems for which stability analysis may be performed. When possible we

exploit the symmetry of the problem, that is we may spin-adapt the search or remove spin-

flip blocks entirely. When analyzing the stability of a given solution, if we find a negative

eigenvalue (an instability), we perform a short line search downward along that direction

and restart the SCF calculation starting from this point. This may be repeated at the user’s

request until a stable solution is found.
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III. CALCULATIONS

A. Prelimary Comments

Unless otherwise noted, we used the cc-pVDZ109 basis for all results in this section. For the

upcoming examples, we report HF, Moller Plesset Second Order Perturbation Theory (MP2),

DFT (BLYP110,111 and B3LYP112,113 functionals), and Coupled Cluster Singles Doubles114

with Perturbative Triples115 (CCSD(T)) results, all computed with Q-Chem.102 These cal-

culations were benchmarked with various “high-accuracy” methods, depending on the ex-

ample system: Full Configuration Interaction (FCI), multireference MP2116,117 (MRMP2),

and MR Configuration Interaction Singles Doubles118–120 with Davidson Correction121 (MR-

CISD+Q), with the latter two being based on Complete Active Space Self Consistent Field

(CASSCF).122–129 All of the benchmark computations were done with GAMESS.130 We will

use (m,n) to denote a m electrons in n orbitals active space (AS). We used Gnuplot131 for

all data plots.

We note that for each of the upcoming examples, results for some of the above methods

(except cRHF) exist in the literature. It is important that cRHF be assessed alongside the

results of standard methods, and so we have included the latter in each case below. In the

interest of coherence, we used our own computations, except for some of the data used in

Fig. 3 as stated below.

We will now generalize the above O2 discourse to obtain a qualitative template for the

forthcoming examples. We now assume ϕ1 and ϕ2 are real frontier orbitals and, as before,

that uc, the “core” wave function, is a product of doubly occupied real orbitals. The (2,2)

AS associated with the frontier orbitals is spanned by the following configurations

ΨS0 ∼ uc(c1ϕ1ϕ1 − c2ϕ2ϕ2)

ΨS1 ∼ uc(ϕ1ϕ2 + ϕ2ϕ1)

ΨS2 ∼ uc(c2ϕ1ϕ1 + c1ϕ2ϕ2)

ΨT ∼ uc(ϕ1ϕ2 − ϕ2ϕ1), (39)

where S0, S1, and S2 are singlets, labelled as per convention according to their typical

energy ordering, T is a triplet, and c1 and c2 are positive scalars. If ϕ1 and ϕ2 are of

different symmetry in an Abelian point group, a situation typifying the below examples,
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then for a suitable choice of c1 (and hence c2), the above configurations diagonalize the

(2,2) AS Hamiltonian. In each example below, each of these configurations dominates the

expansion for a different exact state. We will use the same labels (S0, S1, S2, T) for these

exact states, even if their energy ordering fluctuates (e.g. S1 drops below S0).

In each of the upcoming chemical examples, the system develops MR character in some

relevant part of the potential energy surface (PES). This “MR region” contains at least one

geometry where c1 = c2, i.e. a point of maximum MR character. Somewhere in the vicinity

of this point we observe the following:

(a) RHF: two degenerate solutions, whose energies cross in the polyatomic case. This is

because c1 = c2 implies degeneracy in the configurations ucϕ1ϕ1 and ucϕ2ϕ2, and likewise for

the corresponding RHF solutions. Moving through the crossing, the HOMO switches from

ϕ1 to ϕ2. At the crossing point, both ucϕ1ϕ1 and ucϕ2ϕ2 are equal-weighted combinations

of ΨS0 and ΨS2 (c.f. eq. (4)). Accordingly, for the RHF-based data, we will primarily be

interested in the S0 and S2 high-accuracy benchmarks. The same goes for the RDFT data.

(b) cRHF: maximum complexification in the frontier-orbital pair, i.e. the HOMO becomes

ϕ1 − iϕ2. The wavefunction is then an equal-weighted combination of ΨS0 and ΨS1 (c.f.

eq. (7)). Accordingly, for the cRHF-based data, we will primarily be interested in the S0

and S1 high-accuracy benchmarks, although S2 is still relevant for geometries with partial

complexification.

(c) UHF: spin polarization largely confined to the frontier-orbital pair, but maximal

within that pair. We distinguish two ways that this can occur. For the first way, which we

will call “U0”, the α and β orbitals become µα = ϕ1 − ϕ2 and µβ = ϕ1 + ϕ2, respectively.

Then ucµαµβ is an equal-weighted combination of ΨS0 and ΨT. For the second way, which we

will call “U1”, the α and β orbitals become µα = ϕ1 and µβ = ϕ2, respectively. Then ucµαµβ

is an equal-weighted combination of ΨS1 and ΨT. In either scenario, the unrestricted wave

function has a ⟨S2⟩ value of 1, where S is the total-spin operator. For each example below,

one of U0 or U1 ensues: if S0 (S1) is the ground state singlet, then U0 (U1) is observed.

Accordingly, for the UHF-based data, we will primarily be interested in the S0, S1, and T

high-accuracy benchmarks. The same goes for UDFT.
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B. singlet O2

We would now like to complete our above O2 example with some realistic calculations.

As for the above template, ϕ1 and ϕ2 are here of Πg symmetry. If we select π∗
x and π∗

y for

these two orbitals, then they have symmetry B2g and B3g, respectively, for the D2h point

group oriented along those axes. Every geometry of this molecule is a point of maximum

MR character in the frontier-orbital pair.

RHF and cRHF results are given in Fig. 1. Around the equilibrium geometry, the cRHF

orbitals and wavefunction are D∞h symmetric, in line with our comments in the Introduction.

In this region, RHF exhibits a subtle kind of SB, in contrast to our qualitative discussion

above. This is because double occupation of e.g. π∗
x, which results in the SB shown in eq.

(4), causes a polarization in the eq. (1) “core” upon optimization. This leads to small δ

contaminations in the σ orbitals, and the πx and πy orbitals no longer being degenerate

nor exactly related by a rotation. D2h symmetry is preserved, however. These effects are

analogous to unrestricted-calculations phenomena where small spin polarizations in low-

energy orbitals result from larger spin polarizations in the frontier orbitals.

It is interesting that cRHF does not give a bound curve (i.e. relative to O atoms), as may

be seen in Fig. 1. As the bond is stretched, D2h-symmetry violating solutions break away

from the symmetric ones in both RHF and cRHF. These “new” solutions break inversion

symmetry and exhibit localized orbitals. This is similar to what is observed in RHF for

N2.
65,132,133 We will note in passing that N2 also has a cRHF solution for stretched bond

lengths, but will not further discuss it here. The O2 SB cRHF wavefunction has significant

complexification in two pairs, while for the symmetric solution this occurs in just one pair.

In Fig. 2, we show real and complex-orbital MP2 (RMP2 and cRMP2, respectively)

results. Included are MRCISD+Q results based on (16,10) CASSCF. cRMP2 is significantly

closer to the MR results than is RMP2. The energies based on the symmetric HF solutions

“turn over”, as usual for MP2 in bond breaking, while the SB results show a singularity at

the onset of SB and quickly rising energies. This is also observed in N2 and it is due to the

orbital localization, which causes the SB HF wavefunctions to have a low overlap with the

ground state. In other words, the SB MP2 results are predominantly approximating excited

states in the bond breaking region. This makes it clear that cRHF cannot generally skirt

the RHF SB problem.
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Also in Fig. 2, we show RCCSD(T) numbers. In absolute energy, these are rather close

to those of cRMP2 near the equilibrium geometry. This is an intriguing outcome. On one

hand, the MR character of the 1∆g state is, in a sense, confined to the π∗ space, which

contains only two electrons for this system. CCSD is exact for two-electron systems, and

would be exact if the correlation treatment were confined to the associated (2,2) AS, and we

might therefore be inclined to think that RCCSD(T) would be chemically accurate here. On

the other hand, the reference determinant is contaminated by excited states approximately

as given in eq. (4). In cases like this, it is important to appreciate that the quality of the

CCSD method is determined not only by its cluster wavefunction, but also by the reference

determinant and the substituted determinants derived from it, which underlie the projection

equations and thereby the energy. If the substituted determinants also break symmetry, as is

the case here, their projection equations may force the RCCSD wave function to do likewise.

To further probe this point, we have done additional RCCSD(T) calculations with larger

bases, and, in Fig. 3, we compare the results to highly accurate full-valence MRCISD+Q

data for the 1∆g and 1Σ+
g states. We also include RB3LYP results to show that standard

DFT methods, as represented by this, the likely most popular functional, are essentially in

the same boat as CC for this example. UCCSD(T) and UB3LYP were used for the (triplet)

O atom to compute relative energies.

The MR numbers were taken from the Supporting Information of ref. 134. In that

work, the data was obtained by extrapolating to the complete basis set (CBS) limit. Like-

wise, we performed a CBS extrapolation following the protocol suggested in references

135 and 136. For this, we computed RCCSD(T) energies with the frozen-core approxi-

mation and with the aug-cc-pVTZ and aug-cc-pVQZ bases,137 and then fit the functions

EHF,X = EHF,lim + Be−1.63X and ECE,X = ECE,lim + BX−3 to the RHF and correlation

energies (CE), respectively, where X = 3 or X = 4 for aug-cc-pVTZ and aug-cc-pVQZ,

respectively.

We found that the RB3LYP binding energy changed by less than a tenth of a kcal/mol

when going from aug-cc-pVQZ to aug-cc-pV5Z, and as such we concluded there was no need

for a CBS extrapolation for this method, i.e. the RB3LYP data in Fig. 3 are those computed

with aug-cc-pVQZ.

The main observation in Fig. 3 is that, near equilibrium, RCCSD(T) is quite close to

halfway in between the 1∆g and 1Σ+
g energies. This is very consistent with eq. (4), and
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implies that RCCSD(T) is not able to improve the SB situation of RHF. The RB3LYP

energy appears to be biased towards that of the 1Σ+
g state, although we note that the

RB3LYP relative energy is fairly close to that of RCCSD(T) if the former is computed using

the restricted open-shell B3LYP energy of the O atom. In any case, RB3LYP is far from

chemically accurate for either of the pertinent exact states. Although we have not included

RBLYP data in this plot, we will refer to it in the next subsection.

As spoken of in the Introduction, one may be inclined to turn to unrestricted methods

at this point. Since the underlying states of interest are singlet spin, this entails doing UHF

(or UDFT) with an equal number of α and β electrons. We have reported such calculations

in an earlier paper,2 and there, we compared the results with the same high-accuracy MR

data.

Around equilibrium, the UHF and UDFT orbitals adhere to the above template. In

this case, the S0-S1 degeneracy means that U0 and U1 are energetically equivalent. The

UCCSD(T) and UB3LYP energies are thusly complicit: they lie in between the MR 1∆g and

3Σ−
g energies. Thus, in this case, unrestricted methods fare no better than their restricted

counterparts.

Finally, we note that the cRMP2 binding energy, as computed with ROHF/MP2 for the O

atom, is about 10 kcal/mol lower than that of MRCISD+Q at both the cc-pVDZ and aug-cc-

pVQZ levels. This does not appear to be a fundamental problem, because cRMP2/cc-pVDZ

is still noticeably above MRCISD+Q in absolute energy. This issue evidently relates to a

poor MP2 energy for the O atom. We expect an accurate binding energy at the cRCCSD(T)

level; the above discussion implies that RCCSD(T)’s ∆g and Σ+
g components are likely to

be individually accurate, and cRHF will effect the removal of the latter contaminant.

C. A Pople-type Example: BeH2

Pople’s paper,75 although highly insightful, did not present a genuine molecular system.

For our initial exploration in this setting, we would like to use a very simple instance of such

a system, whose properties are similar to the hypothesis of Pople’s abstract model. For this,

we chose BeH2, a common example in the MR literature.138–149 A typical PES is defined by
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the following cartesian coordinates:

Be : (0, 0, 0)

H : (x, 1.344− 0.46x, 0)

H : (x,−1.344 + 0.46x, 0), (40)

where the units here are Å. At x = 0, we have linear BeH2, and as x is increased, the hydrogen

atoms are pulled laterally away from the beryllium atom, and closer to one another, reaching

Be + H2 at around x = 2.1 (see Fig. 1 in ref. 141). For all x > 0, the geometries have C2v

symmetry.

This PES is of MR interest because the dominant electron configuration of the ground

state at x = 0 is (1a1)
2(2a1)

2(1b2)
2, but it is (1a1)

2(2a1)
2(3a1)

2 at x = 2.1. Applying our

above template, ϕ1 and ϕ2 have B2 and A1 symmetry, respectively, and S0, S1, S2, and

T have A1, B2, A1, and B2 symmetry, respectively. We expect an RHF solution crossing,

leaving a singularity in the RHF energy.

In Fig. 4, we plot RHF and cRHF energies as a function of x. The results are essentially

as expected, with cRHF “smoothing” over RHF. Naturally, this is a desirable outcome, but

further inspection is in order because, in contrast to the O2 case, the PP-like and open-shell

pieces of cRHF in BeH2 are of different symmetry. To address this, in Fig. 5, we plot RMP2

and cRMP2 along with accurate S0, S1, and S2 curves as per the template. Each energy in

this plot is shown relative to the pertinent method’s energy for S0 at x = 0. We chose this

geometry/state combination as a reference because all methods considered are well behaved

there, i.e. it is not SC.

Notably, S1 becomes the singlet ground state for intermediate x values. In addition,

RMP2 and cRMP2 are qualitatively consistent with the “contaminated” nature of their

reference determinants as laid out in the template. The RMP2 crossing-point energy is

shifted up from that of S0, towards S2 as expected. It is actually closer to S2 than S0 at this

point. This may be due to RMP2’s poor quality in the Be + H2 region, which itself is due

to RMP2’s poor treatment of certain ss → pp correlations the Beryllium atom. If this were

somehow improved such that the RMP2 curve for the right RHF solution is simply shifted

downward, the crossing-point energy would end up being close to midway between S0 and

S2.

We include RBLYP, RB3LYP, and RCCSD(T) data in the Supplementary Material.201
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The RBLYP and RB3LYP results are very similar to those of RMP2, with crossing-point

energies slightly shifted down and to the right, but with the same inaccuracy in the Be

+ H2 region. For most x values, RCCSD(T) is chemically accurate. The left and right

RCCSD(T) curves each “turn over” and head downward at a very fast rate when moving

to the right and left of the RHF crossing point, respectively. Nevertheless, if we select the

best of the two energies at each x value, it never varies from the accurate S0 curve by more

than 2 kcal/mol. A similar result was found several years ago using RCCSD.138 This likely

represents a situation where the system is small enough (4 valence electrons) that CCSD(T)

can significantly overcome the effects of a poor reference determinant.

The cRMP2 energy is qualitatively consistent with an S0-S1 mixture, again as per the

template. To the right of x = 1.5, at which point the S0 curve maximizes, cRMP2 continues

to rise temporarily, concomitant with S1’s continuing rise. This makes cRMP2 less symmet-

ric looking compared to S0 in this region, and shifts the cRMP2 maximum to the right of

that of RMP2. That the cRMP2 relative energy does not lie in between those of S0 and S1

may again be related to RMP2’s poor quality for Be atom, i.e. moving to the right cRMP2

has to join with an “upshifted” RMP2 energy.

We turn to unrestricted methods. First, ab initio results are plotted in Fig. 6, along

with accurate S0, S1, and T curves as per the template. We first observe that in the

intermediate region, T is the overall ground state. The underlying UHF data, plotted

in the Supplementary Material,201 consists of three solutions. The first one predominates

between x = 0 and around x = 1.2, at which point the second solution crosses the first and

predominates until around x = 1.65, whereupon it crosses with the third solution, which

predominates thereafter. The second crossing persists in the UMP2 and UCCSD(T) data,

while the first UHF crossing becomes a bona fide discontinuity. This somewhat unusual

behavior is due to S1 and T dropping below S0 in the intermediate region. The second

UHF solution corresponds to a U1 situation as described above, whereas the first and third

solutions correspond to a U0 situation (if they are allowed to “continue” into the intermediate

region). Here, the UMP2 energy is very close to lying midway between those of S1 and T,

while UCCSD(T) is somewhat closer to T.

UDFT results are plotted in Fig. 7. First, we see that UBLYP and UB3LYP each pro-

duce only one curve with no crossings, something we have carefully checked by performing

calculations at numerous x values in the two relevant regions. Instead of crossings, there
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exist bifurcations at the two relevant geometries, and on the lower curve each functional is

gradually transitioning from S0/T-like constituents to S1/T-like constituents. This result,

although perhaps seemingly advantageous, is actually unphysical because the underlying

exact states cross.

UB3LYP resembles UCCSD(T) in the intermediate region, while UBLYP is rather close

to the accurate T curve. The latter result is quite interesting, given the SB in its underlying

determinant. To exclude possible basis set effects here, which are generally relevant for DFT

calculations with small basis sets, we computed UBLYP/cc-pVQZ109 energies at x = 0 and

x = 1.4, and benchmarked this data with full-valence MRMP2/cc-pVQZ calculations for S0,

S1, and T. The results corroborated the cc-pVDZ data. If this outcome is a legitimate one,

it certainly would be counted as a success for BLYP. But, there is a reasonable amount of

doubt for this, as shown with the following counterpoint.

For O2 at bond length 1.21 Å, the RBLYP/aug-cc-pVQZ binding energy is 99.4 kcal/mol,

in good agreement with the MR data for 1∆g in Fig. 3. This might make it seem like RBLYP

is overcoming the SB of its auxiliary determinant, which has been qualitatively described

in the above template. Indeed, this situation is very similar to what we are observing just

above for BeH2. However, for the triplet, UBLYP/aug-cc-pVQZ gives a binding energy of

135.8 kcal/mol, which is about 15 kcal/mol too high.134 The above-mentioned agreement

regarding the RBLYP energy for O2 is therefore spurious. This result isn’t unfamiliar;

there are known examples of appreciable BLYP overbinding,150–153 a notable one being the

chromium dimer.154,155 A further indication that this may also be occuring for BeH2 is that

the UBLYP relative energy is significantly below those of S0 and T where the latter curves

cross near x = 1.2. In other words, if UBLYP is demonstrably overbound there, couldn’t

this also be the case around x = 1.4? One might obtain some further clues for this by

exploring the more general BeH2 PES (i.e. geometries not found along the selected C2v cut),

but we will not attempt that here.

D. A Woodward-Hoffmann Violating Reaction

The BeH2 model, although providing a good conceptual testing ground, largely functions

as a prototype. We have endeavored to determine which general and chemically relevant

molecular classes would benefit from cRHF.
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One promising area is found in the various organic reactions to which the WoodwardHoff-

mann (WH) rules have been famously applied.156 In our perspective, the WH rules appear to

be closely related to the general idea that reactions are allowed if and only if the associated

(RHF) occupied space transitions smoothly between reactant and product. In other words,

the latter property is thought to correlate well with low energy barriers. As such, reactive

processes entailing RHF frontier-orbital interchanges and/or associated with multiple RHF

solutions and the associated energetic singularities would generally be (thermally) forbidden.

Naively, this seems detrimental to cRHF’s relevance in this context.

There are (at least) two significant contradictions to this assumption: First, these ther-

mally forbidden reactions often still proceed photochemically, via excited states that even-

tually reconnect with the ground state PES, and thereby to the products, via conical inter-

sections (CI). In a prototypical situation, the excited state is dominated by an open-shell

configuration obtained as a single HOMO-LUMO excitation from the ground-state deter-

minant. cRHF is thus of interest for such cases. Unsurprisingly, the situation in practice

is more complicated (see e.g. the literature cited below for butadiene), but we still expect

open-shell terms being sufficiently low to admit a distinct cRHF solution in the general

vicinity of the CI. As to the second contradiction, for some reactions that are technically

forbidden by the WH rules, the barriers of the ground state PES’s are low enough to grant

a measure of chemical relevance. These are the WH violating (WHV) reactions.157–166

Initially, we were inclined to look for cRHF solutions in the 1,3-butadiene ring closure

to form cyclobutene, an archetype reaction of WH theory. The thermal reaction proceeds

through a conrotatory mechanism, in which the hydrogen atoms on the two terminal car-

bon atoms rotate in the same direction as the carbon atoms come closer to each other.

Throughout this PES, RHF is well behaved. Conversely, a (ground-state) disrotatory pro-

cess, wherein the pertinent hydrogen atoms rotate in opposite directions, must involve a

frontier-orbital interchange and therefore would be WH forbidden. Even if its barrier were

high, it might still be of academic cRHF interest. But even this turns out to be extraneous:

studies employing MR wave functions have found no legitimate (ground-state) transition

state (TS), i.e. first-order saddle point, consistent with a concerted disrotatory PES.167–169

Thus, practical investigations of disrotatory processes for this system are effectively con-

fined to the excited state/CI realm. The associated photochemical reaction is well known

and tractable. It involves multiple CI’s and is generally intricate.170–176 But, for reasons
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discussed in the next subsection, we have chosen not to pursue the CI/cRHF connection in

WH reactions in this paper.

Things are different for a modified version of this reaction. Consider the ring opening

(just the reverse of closure) of cis-bicyclo[2.1.0]pent-2-ene (1) to form cis,cis-cyclopenta-1,3-

diene (2). These structures are analogs of cyclobutene and 1,3-butadiene, respectively (see

Fig. 8). Theoretical ground-state studies177,178 have shown that the added carbon atom,

which starts off in a cyclopropyl group, serves to force the molecule into a ring-opening

disrotatory motion that entails a TS.

To test cRHF on this system, we need to obtain the geometries of its PES. We aim for the

simplest level of theory that is qualitatively correct. The σ-bond framework stays roughly

intact throughout the reaction, while the π framework clearly gets rearranged. Before per-

forming calculations, it is difficult to predict with high confidence whether the essence of this

reaction is limited to the expected HOMO/LUMO interchange, which could be effectively

modeled with a (2,2) AS, or if it will require a full 4-electron π space treatment. Accordingly,

we proceeded with state-specific (SS) CASSCF(4,4).

As a guess geometry, we used the TS geometry computed in ref. 178. This guess geometry

has Cs symmetry, and we note that the reactant and product have a common (i.e. conserved)

Cs axis, which, for example, bisects the cyclobutene group of the reactant, passing through

the cyclopropyl carbon atom. Thus this symmetry constraint was used when computing the

various reaction-path geometries. Using this guess geometry, we did a TS calculation at the

CAS(4,4) level. With a vibrational analysis, we verified that the obtained geometry is a true

TS, and have included its coordinates in the Supplementary Material.201

Starting from the TS geometry, we performed SS CAS(4,4) Intrinsic Reaction Coordinate

(IRC) calculations,179–181 which gradually perturb the starting geometry into two energy

minima that are connected via the TS. We verified that the two obtained minima correspond

to the desired reactant and product. The reaction path is quantified by a variable, Stotal,

which measures the distance traveled from the TS, and has units
√
amu * Bohr radius.182

The details of Stotal are not essential for our present purposes; we only need to know that

the TS corresponds to Stotal = 0, while the leftmost and rightmost values in the forthcoming

plots correspond to reactant and product, respectively. We used the IRC geometries for all

subsequently discussed calculations on this system.

Deciding on a level of theory to use for benchmarking the pertinent approximations is
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slightly complicated. MRMP2 based on CASSCF is in principle adequate here. However,

since we expect complexification in at least one pair, we expect (at least) 3 singlet states

to be relevant to RHF and cRHF in the MR region of the PES, while the associated triplet

should be additionally relevant to UHF. As per our above template, we need to include such

excited states in the benchmarking. The use of SS ground-state CAS orbitals for excited

states is not advisable. Also somewhat dubious are separate orbital opimizations for each

excited state; for example, we were unable to converge the 2nd excited singlet this way.

State averaging (SA) is the more reliable approach here, but even this is a little tricky for

the (4,4) AS. This is because the required 4 states mentioned just above are not always the

lowest four states to be found at any given geometry along the PES, making them difficult

to track.

To get around this issue, we looked at natural-orbital occupation numbers at the geometry

exhibiting the highest degree of MR character, which, at the SS CAS(4,4) level, occurs

around Stotal = 0.7. At this geometry, the occupation numbers are 1.89, 1.04, 0.96, 0.11,

which is close to 2,1,1,0, meaning that qualitatively, this reaction can be correctly modeled by

a (2,2) AS after all. Additionally, at Stotal = 0.1, the highest occupied and lowest unoccupied

natural orbitals have symmetry A′ and A′′, respectively, while the ordering is reversed at

Stotal = 1.0. This frontier-orbital interchange suggests an RHF solution crossing, and bodes

well for a distinct cRHF solution. Thus, applying our template, ϕ1 and ϕ2 have these two

symmetries, and S0, S1, S2, and T have A′, A′′, A′, and A′′ symmetry, respectively.

The (2,2) AS’s dimension is only 4, and it contains the 4 states of greatest interest, so here,

SA is straightforward. Therefore, along the reaction path, we optimized orbitals by averaging

over the lone triplet and 3 singlet energies in CAS(2,2), and used these orbitals to perform

MRMP2 calculations. This approach is further supported by qualitative similarity between

its PES for the ground state and that obtained using MRMP2 based on SS CAS(4,4), which

is shown in the Supplementary Material.201 The two curves have very similar reactant-TS

barriers, but the product-TS barrier for (4,4) is larger. The (2,2)-based numbers will thus

serve as our benchmark. We note that the CAS(2,2) singlet energies do not cross at any

point along the PES, i.e. they are always in accord with the S0-S1-S2 labelling. This is not

the case for MRMP2, as we will see.

We computed RHF and cRHF along the IRC. Sure enough, as Fig. 9 shows, an RHF

singularity occurs, which is smoothed over by cRHF. The associated MP2 energies are also
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shown in Fig. 9. For these and all forthcoming plots for this system, each energy is shown

relative to that of the respective method’s approximation for the ground state at the reactant

geometry.

To assess the MP2 results, consider the MRMP2 benchmark data for the 3 singlets shown

in Fig. 10. The cRMP2 curve is not included in this plot because on this scale, it appears

scantly different from that of RMP2. The MP2 energies are visibly consistent with our

template, with the benchmark S0 and S2 curves resembling “adiabatic” counterparts to

the “diabatic” RMP2 curves. Curiously, S2 drops below S1 in this region, in opposition

to the CAS result. This MRMP2 observation is consistent with the cRMP2 curve, which

veers upwards from the RMP2 curve in the complexification region, while the CAS energy

ordering is consistent with cRHF dropping below RHF there. This is to be compared with

the BeH2 case, where the cRMP2 barrier height is more accurate due to that system’s S0

and S1 states being much closer in energy in the MR region.

These observations also explain why the RMP2 crossing point lies to the right of the S0

barrier. The two RMP2 energies do not become degenerate until the maximal MR point.

Although the exact location of this point varies slightly between the various methods, it

invariably occurs to the right of Stotal = 0, hence the right-shifted “barrier”.

The RBLYP and RB3LYP curves are similar to those for RMP2, so we include them

in the Supplementary Material.201 We have included RCCSD(T) results in Fig. 10. The

RCCSD(T) barrier height is a significant improvement over that of RMP2. In contrast to

the O2 results, here RCCSD(T) is found below the midpoint between the ground state and

pertinent excited state. However, the singularity remains, although each RCCSD(T) curve

does appear to exhibit a maximum, i.e. a barrier.

We show unrestricted results in Fig. 11. The UHF wave function breaks spin symmetry

at all points shown, with ⟨S2⟩ values ranging from 0.19 to 1.26 to 0.40 at the reactant,

MR, and product geometries, respectively. Spin polarization occurs in UBLYP in the Stotal

interval [-1.2,1.6], and in UB3LYP in the interval [-1.7,1.9]. These functionals give maximal

determinantal ⟨S2⟩ values of 1.02 and 1.04, respectively, each of these numbers occuring

essentially at the maximal MR point. These considerations, along with those discussed

above for the restricted results, indicate that the unrestricted results fit the U0 designation.

Near the maximal MR point, the UCCSD(T) energy is in between those of S0 and T. This

is not the case for the UDFT energies, but it would be if we had used the product geometry
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to define the relative energies. The product is non-SC and closed-shell, so it would also be

a valid reference point; indeed, switching to it would not alter our UCCSD(T) observation.

There is another reason that the closeness of the UDFT and S0 energies at the maximal

MR point might still be consistent with admixture: the SS (4,4) MRMP2 T energy, shown

in the Supplementary Material,201 is very close to that of S0 at that geometry.

Compared to MRMP2 S0, each unrestricted method exhibits a left-shifted and raised

barrier. Both of these attributes are consistent with triplet-energy admixture: to the right

of Stotal = 0, both the S0 and T benchmark energies are going down, as are all of the

unrestricted energies, and to the left of Stotal = 0, the T energy rises more quickly than

the S0 energy falls, while correspondingly, the unrestricted energies rise temporarily to a

maximum. Thus, the unrestricted data is generally consistent with the template.

The reduced range of spin polarization in the DFT results is consistent with the behavior

of MRMP2 T, which is low lying only in the general MR region; the DFT functionals have

enough correlation to “see” that there is no point to mixing in a triplet contribution to the

energy outside this region. Accordingly, UHF is short sighted in its SB extent, a problem

clearly unmasked in the UMP2 results.

E. Symmetry-driven Conical Intersection

As stated above, the combination of PP-like and open-shell terms inherent in cRHF (c.f.

eq. (15)) recommends its usage for CI’s whose two (or more) associated states are dominated

by such terms. We were interested in the CI’s found in the ring opening of cyclobutene,

and we particularly wanted to study DNA bases and related molecules, which exhibit CI’s

that appear to fit this description, especially those between the ground state and π-to-π∗

excited states.183–189 Some of these cited papers report CI geometries as computed with

MR methods with relatively large AS’s. On a handful of these geometries, we ran some

exploratory calculations, but each one showed that RHF was stable to complexification.

Upon further contemplation, this isn’t very surprising: it is quite possible that here, as in

the above examples, complexification is limited to a small geometric window, which would

be unlikely to contain the literature geometries as these were computed at a rather different

level of theory. The best we can hope for here is qualitatively similiarity. For these systems,

the CI’s do not occur at “intuitive” geometries, so their locations must be computed. A
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search for “cRHF geometries” must likewise be computational. Our cRHF codes are not

presently equipped for this.

As a result of these difficulties, we shifted our focus to CIs whose geometries are intuitive,

i.e. those driven by spatial symmetry. For this paper, we have chosen C5H
+
5 , the cyclopen-

tadienyl cation. This system has a CI in its singlet ground state at the pentagonal (D5h)

geometry, making it a Jahn-Teller system: the molecule distorts to energetically preferable

C2v structures.190–197 The latter comprise two unique geometry stationary points: one di-

enylic and one allylic structure, as depicted in Fig. 12. As a model for these processes, we

have selected a one-parameter C2v cut of the PES. Each geometry along this cut is planar,

and each is obtained by placing a carbon atom at position (0,1.208) (in Å) and a hydrogen

atom at (0,2.288), and successively rotating these positions by the angles given in Fig. 13 to

obtain the positions of the remaining atoms. With these starting positions, the C-H bond

lengths are always 1.08 Å, while C-C bond lengths are 1.42 Å at the D5h geometry. The

latter occurs at Θ = 0, while negative and positive Θ values correspond to perturbations

in the dienylic and allylic directions, respectively. The exact geometry stationary points

are not found along this cut. Computing a C2v path that does contain these structures

is somewhat complicated due to lack of a proper corresponding transition state (see below

comments on pseudorotation), and because of some SS/SA issues to be discussed shortly.

Rather, our chosen cut serves as a qualitative approximation for the distortions, with the

advantage that it is simply defined.

Comparing the dienylic and allylic structures in Fig. 12, they differ by a restructuring of

the π bonds, but the σ bonds stay relatively intact. This implies that the π space should

contain the essential correlations. At Θ = −2, the RHF π orbitals have symmetries B1, A2,

B1, B1, A2, in order of increasing energy. At Θ = 2, this switches to B1, B1, A2, A2, B1. The

2nd and 3rd orbitals in each of these sequences are the HOMO and LUMO, so, yet again,

we have a PES underlied by a frontier orbital interchange. In this case, T and S1 are B2

symmetry, while S0 and S2 are A1.

As shown in Fig. 14, RHF calculations produce the expected result: two solutions that

cross at the D5h geometry. At that point, the π orbitals have symmetries A′′
2, E

′′
1, and E′′

2, in

order of increasing energy. Of course, this is only approximately true in RHF, because half

occupation of the degenerate E′′
1 level leads to polarization and some orbital SB, as observed

earlier in O2.
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At D5h, the four low lying states of interest have energy orderings and symmetries

T : A′
2

S0 : E′
2

S1 : E′
2

S2 : A′
1. (41)

Because T is the ground state for our selected PES region, and because it is essentially

single reference, all energies reported in this subsection were computed relative to the D5h

T energy. To do this properly, for each of the various methods used to approximate the

excited states here, we must use a concomitant method to compute the D5h T energy. For

RHF, we used ROHF for T, while for cRMP2, we used ROMP2 for T, etc.

S0 and S1 are degenerate at D5h, and here, the cRHF wave function has the correct

E′
2 symmetry. D5h C5H

+
5 is therefore a polyatomic analogue of O2. More generally, cRHF

smoothes the RHF singularity, as may be seen in Fig. 14.

To benchmark these results, we turn to CASSCF. The energetic closeness of the four

states indicates that, once again, we ought to use some SA. This is confirmed by a SS

CAS(4,5) calculation on S0 at the D5h geometry; using these orbitals, the S1 energy, as

computed in the same AS, is 29.6 kcal/mol higher than that of S0. Furthermore, there is

a singularity in the SS-CAS S0 energy at the D5h geometry, as shown in Fig. 14. This is a

consequence of two solutions crossing, similar to what we have generally been observing for

RHF. It demonstrates the underappreciated fact that CASSCF, like HF, is susceptible to

SB problems.

We therefore proceeded to average over the 4 lowest states in CAS (4,5). In contrast to our

previous example, usage of this AS entails no state reordering across the PES. We therefore

include the corresponding SA CASSCF energies in Fig. 14. The SA numbers respect the

S0/S1 degeneracy at D5h, while providing smooth energy profiles across the distortion.

We show MP2 results in Fig. 15. The cRMP2 curve is somewhat odd. In particular,

around D5h, it has a curvature opposite to that of the singlet ground state. This does not

seem to have a straightforward explanation. It could be that cRMP2 is producing an entirely

spurious result, as it does for the symmetric solution as O2 dissociates. Such behavior is

not uncommon for HF wavefunctions that have large overlaps with multiple exact states,

which is the case here, with a large overlap with S1. Alternatively, it could be that cRMP2
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is exhibiting a more legitimate admixture of ground and excited state energies. If so, it

would somehow be modifying the predominantly ground-state character of the cRHF energy

to a predominantly excited-state “concave up” curve, perhaps even implicating S2. This

evokes the shortsightedness of HF, as mentioned earlier, where the relevance of uncorrelated

(excited-type) states gets overestimated. In such circumstances, it might be of interest to

reoptimize the orbitals with correlation included.198–200 For this, it may be reasonable to

expect the most sigificant energy lowerings to occur at medium values of Θ, where SB and

excited-state admixture is most problematic, while also expecting smaller changes at Θ = 0

and for large (perhaps here unplotted) Θ values, where the ground state is more single-

reference in character (in the cRHF sense). In other words, would orbital optimization

reverse the curvature of cRMP2, and without much vertical shifting? In any case, cRMP2’s

ambiguous behavior for this system stands in contrast to what we have observed in the

previous examples.

RB3LYP, RBLYP, and RCCSD(T) all produce curves essentially parallel to those of

RMP2, but shifted down by 1.3, 3.8, and 6.1 kcal/mol, respectively. A plot for these data is

included in the Supplementary Material.201 RCCSD(T) is more in agreement with MRMP2

than is RMP2: RCCSD(T)’s relative energy at Θ = 0 of 20.6 kcal/mol is fairly close to lying

midway between the corresponding numbers for MRMP2 S0 (11.9) and MRMP2 S2 (25.5),

in line with the RHF wave function having comparable overlaps with the exact S0 and S2

wave functions at this point. The parallelity between the RCCSD(T) and RMP2 curves

implies that the vertical displacement between them is due to inconsistencies in how the

triplet energies are computed. It may be that the RMP2/ROMP2 pairing is less compatible

than is the RCCSD(T)/ROCCSD(T) one, something like what we saw earlier for O2.

We turn to unrestricted methods. For cyclic polyenes with an even number of carbon

atoms, unrestricted methods typically spin polarize such that nearest-neighbor carbon atoms

have opposite spin (e.g. in the Mulliken sense). In the present odd-numbered case, the spin

polarization cannot be arranged symmetrically, as there would be 3 α and 2 β spins. To

identify one potential outcome of this fundamental problem, we must note that at the D5h

geometry, there are actually 5 possible C2v point groups; for example, each group’s rotation

axis bisects a different carbon atom. Therefore, there are 5 equivalent dienylic structures,

and likewise for the allylic structures.

The preferred transition between dienylic and allylic structures does not go through the
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C2v path we have been studying, but rather follows a pseudorotation in which the position of

one double bond is preserved in the transition (as opposed to our C2v path, where the allylic

double bond is in a position different from those of the dienlyic).191 In other words, upon

pseudorotation, the C2v group is switched. The above spin polarization is not conducive to

this preferred transition, and we expect singularites in the UHF energy there. However, the

barriers and energy gaps are very low for this process, and we therefore thought it worthy

of mention but not of further examination in this paper.

Returning to our C2v path, we show unrestricted results in Fig. 16. Given that S0 is

the singlet ground state at all points shown, we have a U0 situation, and we thus expect

unrestriction to entail a mixture between S0 and T. The UBLYP, UB3LYP, and UCCSD(T)

energies are consistent with this: they are concave up and they each lie in between and are

generally flatter than the S0 and T energies. The UMP2 energy is also concave up, but its

position is quite high (16.5 kcal/mol at D5h). To not obscure the other curves, we did not

include UMP2 in the plot.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have studied the largely forgotten method, restricted Hartree Fock with

complex orbitals. We introduced a pairing theorem that reveals a concise connection between

cRHF and RHF, wherein complexity is introduced to a doubly occupied RHF pair via an

individualized virtual RHF orbital. This result was used to show that cRHF, UHF, and

PP are actually quite closely related, and it is also helpful for understanding cRHF’s utility

and in predicting when complexification will occur. A main theme here is that the presence

of a relatively low-lying open-shell singlet state is closely connected to the occurrence of a

distinct cRHF solution.

We have implemented an efficient cRHF code within QChem at the same scaling as RHF.

We have also included the capability to test if the solutions found are minima or saddle points

via a stability analysis. This analysis has the same scaling as the SCF procedure and thus

it is feasible for usage on any system for which one has cRHF solutions.

We applied cRHF to four examples. Each displayed complexification essentially within

just one pair (except for O2 upon dissociation), this pair corresponding to the frontier

orbitals. We showed that the standard ground-state methods are ineffective for singlet O2.
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The latter three examples were all characterized by a frontier orbital interchange, where

the LUMO drops below the HOMO and RHF solutions cross. Despite all these similarities,

each of the latter 3 examples presented a fairly different context. At the points of maximum

complexification, we observed: 1) for BeH2, SB in cRHF and a small, in fact negative, S0-S1

gap (in the “exact” energies), 2) for the WHV reaction, SB in cRHF and a big S0-S1 gap,

3) for C5H
+
5 , no SB in cRHF and an S0-S1 degeneracy. These variations made for rather

different outcomes at the cRMP2 level, a subject we will return to shortly.

We would like to point out that D5h C5H
+
5 is a cyclic molecule with a half-filled, doubly

degenerate HOMO, so it is antiaromatic. Considering these attributes, we immediately

surmise that cRHF is a useful, if not the prefered, method for antiaromatic systems. We

should note that many antiaromatics, such as cyclobutadiene, differ from C5H
+
5 in that they

do not have degenerate singlet ground states. Nevertheless, we have confirmed that C4H4

indeed has a distinct cRHF solution with properties similar to what we have seen in this

work.

Although the unrestricted DFT results shown in this paper were generally better than

their (real) restricted counterparts, they did exhibit a particular limitation. For the most

part, spin polarization in DFT is considered to be much less of a problem than it is in ab

initio theory. In part, this is due to the observation that DFT functionals tend to be more

resistant to spin polarization than are ab initio methods, which is generally advantageous.

But, it has also been suggested that even when the level of spin polarization is significant, it

is still much less of a problem in DFT. At least three of the examples considered in this work

contradict this claim, each one showing evidence of triplet contamination for all unrestricted

methods used, both DFT and ab initio.

Accordingly, it may be worth it to incorporate complex orbitals into restricted DFT. For

one, we generally expect complexification in RDFT to correspond well with that in cRHF

for the kinds of systems studied above. In addition, consider a point made in the Theory

section: in the pairing representation, the off diagonal elements of the density matrix, which

are imaginary, cancel out when the density is formed. In the latter 3 examples of this paper,

these elements were the source of SB in cRHF, which itself was implicated in the cRMP2

inaccuracies. Thus, this observation may have significant cRDFT implications, especially for

pure functionals. Nevertheless, we have to be cautious here. Upon running stability analyses

on RBLYP for some geometries of the WHV reaction, we found real-to-complex instabilities
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only in between Stotal = 0.3 and 0.6, meaning cRBLYP will differ from RBLYP only within

this gap. But the inaccuracy of RBLYP extends beyond this small range, so cRBLYP may

still fall short for this system. The energetic position of the open-shell singlet excited state

thus appears to be operative here. Again, this idea underlies all the complex-restricted

approximations discussed in this paper. We might expect a more favorable outcome for

BeH2, with its low lying S1. In any case, experimentation with cRDFT is in order.

It seems reasonable to assert the efficacy of cRMP2 and cRCCSD(T) (and possibly

cRDFT) for systems like O2 (near equilibrium) and D5h C5H
+
5 . For the other situations

considered here, cRMP2’s behavior is erratic, and cRCCSD(T)’s ability to adequately cor-

rect this is uncertain. Accordingly, perhaps the pivotal distinction of cRHF is that it can,

in at least certain important cases, resolve singularities in the RHF energy. This may entail

some SB, but for single-reference methods based on restricted HF, a reference determinant

with this “smoothing” property may prove to be vital. It will be of significant interest to

see how the new SC-inspired, hitherto RHF-based, single-reference approximations noted in

the Introduction would perform in this context.
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98 M. C. Böhm, Int. J. Quantum Chem. 24, 185 (1983).

99 R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, New York,

2013), 2nd edition.

100 F.B. Bobrowicz and W.A. Goddard, in Methods of Electronic Structure Theory 3, edited by

H.F. Schaefer (Plenum, New York, 1977), p. 79.

101 A. T. Amos and G. G. Hall, Proc. R. Soc. Lond. A 263, 483 (1961).

102 Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert,

L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R.A. Distasio, Jr., R. C. Lochan, T. Wang,

G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt,

R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin,

J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi,

T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin,

P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov,

P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E.

Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman,

F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill,

and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).

37



103 C. Sanderson, Armadillo: An open source c++ linear algebra library for fast prototyping and

computationally intensive experiments, Technical report, NICTA, Australia (2010).

104 P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

105 P. Pulay, J. Comp. Chem. 3, 556 (1982).

106 J. Nocedal and S. J. Wright, Numerical optimization (Springer, New York, 2006), 2nd edition.

107 T. Van Voorhis and M. Head-Gordon, Mol. Phys. 100, 1713 (2002).

108 E. R. Davidson, J. Comp. Phys. 17, 87 (1975).

109 T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

110 A. D. Becke, Phys. Rev. A 38, 3098 (1988).

111 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

112 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

113 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623

(1994).

114 G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

115 K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157,

479 (1989).

116 K. Hirao, Chem. Phys. Lett. 190, 374 (1992).

117 K. Hirao, Chem. Phys. Lett. 196, 397 (1992).

118 R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Mol. Phys. 35, 771 (1978).

119 B. O. Roos and P. E. M. Siegbahn, Int. J. Quantum Chem. 17, 485 (1980).

120 H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

121 M. R. A. Blomberg and P. E. M. Siegbahn, J. Chem. Phys. 78, 5682 (1983).

122 B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).

123 B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Adv. Chem. Phys. 48, 157 (1980).

124 K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982).

125 K. Ruedenberg, M. W. Schmidt, and M. M. Gilbert, Chem. Phys. 71, 51 (1982).

126 K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 65 (1982).

127 M. W. Schmidt and M. S. Gordon, Annu. Rev. Phys. Chem. 49, 233 (1998).

128 P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Physica Scripta 21, 323 (1980).
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177 I. Özkan, A. Kinal, and M. Balci, J. Phys. Chem. A 108, 507 (2004).
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