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RESTRICTED ISOMETRY OF FOURIER MATRICES AND LIST
DECODABILITY OF RANDOM LINEAR CODES∗

MAHDI CHERAGHCHI† , VENKATESAN GURUSWAMI‡ , AND AMEYA VELINGKER§

Abstract. We prove that a random linear code over Fq, with probability arbitrarily close to 1,
is list decodable at radius 1 − 1/q − ε with list size L = O(1/ε2) and rate R = Ωq(ε2/(log

3(1/ε))).
Up to the polylogarithmic factor in 1/ε and constant factors depending on q, this matches the lower
bound L = Ωq(1/ε2) for the list size and upper bound R = Oq(ε2) for the rate. Previously only
existence (and not abundance) of such codes was known for the special case q = 2 (Guruswami
et al., 2002). In order to obtain our result, we employ a relaxed version of the well-known Johnson
bound on list decoding that translates the average Hamming distance between codewords to list
decoding guarantees. We furthermore prove that the desired average-distance guarantees hold for a
code provided that a natural complex matrix encoding the codewords satisfies the restricted isometry
property with respect to the Euclidean norm. For the case of random binary linear codes, this matrix
coincides with a random submatrix of the Hadamard–Walsh transform matrix that is well studied in
the compressed sensing literature. Finally, we improve the analysis of Rudelson and Vershynin (2008)
on the number of random frequency samples required for exact reconstruction of k-sparse signals of
length N . Specifically, we improve the number of samples from O(k log(N) log2(k)(log k+log logN))
to O(k log(N) · log3(k)). The proof involves bounding the expected supremum of a related Gaussian
process by using an improved analysis of the metric defined by the process. This improvement is
crucial for our application in list decoding.
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1. Introduction. This work is motivated by the list decodability properties
of random linear codes for correcting a large fraction of errors, approaching the
information-theoretic maximum limit. We prove a near-optimal bound on the rate
of such codes by making a connection to and establishing improved bounds on the
restricted isometry property (RIP) of random submatrices of Hadamard matrices.

A q-ary error correcting code C of block length n is a subset of [q]n, where [q]
denotes any alphabet of size q. The rate of such a code is defined to be (logq |C|)/n. A
good code C should be large (rate bounded away from 0) and have its elements (code-
words) well spread out. The latter property is motivated by the task of recovering a
codeword c ∈ C from a noisy version r of it that differs from c in a bounded number of
coordinates. Since a random string r ∈ [q]n will differ from c on an expected (1−1/q)n
positions, the information-theoretically maximum fraction of errors one can correct is
bounded by the limit (1−1/q). In fact, when the fraction of errors exceeds 1

2 (1−1/q),
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RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1889

it is not possible to unambiguously identify the close-by codeword to the noisy string
r (unless the code has very few codewords, i.e., a rate approaching zero).

In the model of list decoding, however, recovery from a fraction of errors ap-
proaching the limit (1 − 1/q) becomes possible. Under list decoding, the goal is to
recover a small list of all codewords of C differing from an input string r in at most
ρn positions, where ρ is the error fraction (our interest in this paper being the case
when ρ is close to 1− 1/q). This requires that C have the following sparsity property,
called (ρ, L)-list decodability, for some small L : for every r ∈ [q]n, there are at most L
codewords within Hamming distance ρn from r. We will refer to the parameter L as
the “list size”—it refers to the maximum number of codewords that the decoder may
output when correcting a fraction ρ of errors. Note that (ρ, L)-list decodability is a
strictly combinatorial notion and does not promise an efficient algorithm to compute
the list of close-by codewords. In this paper, we only focus on this combinatorial as-
pect and study a basic trade-off between between ρ, L, and the rate for the important
class of random linear codes, when ρ → 1− 1/q. We describe the prior results in this
direction and state our results next.

For integers q, L ≥ 2, a random q-ary code of rate R = 1−hq(ρ)−1/L is (ρ, L)-list
decodable with high probability. Here hq : [0, 1 − 1/q] → [0, 1] is the q-ary entropy
function: hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x). This follows by a
straightforward application of the probabilistic method, based on a union bound over
all centers r ∈ [q]n and all (L+1)-element subsets S of codewords that all codewords
in S lie in the Hamming ball of radius ρn centered at r. For ρ = 1 − 1/q − ε, where
we think of q as fixed and ε → 0, this implies that a random code of rate Ωq(ε

2) is
(1− 1/q− ε, Oq(1/ε

2))-list decodable. (Here and below, the notation Ωq and Oq hides
constant factors that depend only on q.)

Understanding list decodable codes at the extremal radii ρ = 1 − 1/q − ε, for
small ε, is of particular significance mainly due to numerous applications that depend
on this regime of parameters. For example, one can mention hardness amplification
of Boolean functions [29], construction of hardcore predicates from one-way functions
[14], construction of pseudorandom generators [29] and randomness extractors [30],
inapproximability of NP witnesses [24], and approximating the VC dimension [26].
Moreover, linear list-decodable codes are further appealing due to their symmetries,
succinct description, and efficient encoding. For some applications, linearity of list
decodable codes is of crucial importance. For example, the black-box reduction from
list decodable codes to capacity achieving codes for additive noise channels in [20] or
certain applications of Trevisan’s extractor [30] (e.g., [10, sections 3.6, 5.2]) rely on
linearity of the underlying list decodable code. Furthermore, list decoding of linear
codes features an interplay between linear subspaces and Hamming balls and their in-
tersection properties, which is of significant interest from a combinatorial perspective.

This work is focused on random linear codes, which are subspaces of Fn
q , where

Fq is the finite field with q elements. A random linear code C of rate R is sampled
by picking k = Rn random vectors in Fn

q and letting C be their Fq-span. Since the
codewords of C are now not all independent (in fact they are not even 3-wise inde-
pendent), the above naive argument only proves the (ρ, L)-list decodability property
for codes of rate 1 − hq(ρ) − 1/ logq(L + 1) [33].1 For the setting ρ = 1 − 1/q − ε,

1The crux of the argument is that any L nonzero vectors in Fk
q must have a subset of logq(L+1)

linearly independent vectors, and these are mapped independently by a random linear code. This
allows one to effectively substitute logq(L + 1) in the place of L in the argument for fully random
codes.

D
ow

nl
oa

de
d 

02
/1

2/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1890 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER

this implies a list size bound of exp(Oq(1/ε
2)) for random linear codes of rate Ωq(ε

2),
which is exponentially worse than for random codes. Understanding if this exponen-
tial discrepancy between general and linear codes is inherent was raised as an open
question by Elias [13]. Despite much research, the exponential bound was the best
known for random linear codes (except for the case of q = 2, and even for q = 2 only
an existence result was known; see the related results section below for more details).

Our main result in this work closes this gap between random linear and random
codes up to polylogarithmic factors in the rate. We state a simplified version of the
main theorem (Theorem 3.8) below.

Theorem 1.1 (main, simplified). Let q be a prime power, and let ε > 0 be
a constant parameter. Then for some constant aq > 0 only depending on q and
all large enough integers n, a random linear code C ⊆ Fn

q of rate aqε
2/ log3(1/ε)

is (1 − 1/q − ε, O(1/ε2))-list decodable with probability at least 0.99. (One can take
aq = Ω(1/ log4 q).)

We remark that both the rate and the list size are close to optimal for list decoding
from a (1 − 1/q − ε) fraction of errors. For rate, this follows from the fact the q-ary
“list decoding capacity” is given by 1 − hq(ρ), which is Oq(ε

2) for ρ = 1 − 1/q − ε.
For list size, a lower bound of Ωq(1/ε

2) is known—this follows from [3] for q = 2 and
was shown for all q in [22, 4]. We have also assumed that the alphabet size q is fixed
and have not attempted to obtain the best possible dependence of the constants on
the alphabet size.

1.1. Related results. We now discuss some other previously known results
concerning list decodability of random linear codes.

First, it is well known that a random linear code of rate Ωq(ε
4) is (1 − 1/q −

ε, O(1/ε2))-list decodable with high probability. This follows by combining the
Johnson bound for list decoding (see, for example, [21]) with the fact that such codes
lie on the Gilbert–Varshamov bound and have relative distance 1−1/q− ε2 with high
probability. This result gets the correct quadratic dependence in list size, but the rate
is worse.

Second, for the case of q = 2, the existence of (ρ, L)-list decodable binary linear
codes of rate 1 − h(ρ) − 1/L was proved in [18]. For ρ = 1/2 − ε, this implies the
existence of binary linear codes of rate Ω(ε2) list decodable with list size O(1/ε2) from
an error fraction 1/2− ε. This matches the bounds for random codes and is optimal
up to constant factors. However, there are two shortcomings with this result: (i) it
works only for q = 2 (the proof makes use of this in a crucial way, and extensions
of the proof to larger q have been elusive), and (ii) the proof is based on the semi-
random method. It only shows the existence of such a code while failing to give any
sizeable lower bound on the probability that a random linear code has the claimed
list decodability property.

Motivated by this state of affairs, in [17], the authors proved that a random q-ary
linear code of rate 1 − hq(ρ) − Cρ,q/L is (ρ, L)-list decodable with high probability
for some Cρ,q < ∞ that depends on ρ, q. This matches the result for completely
random codes up to the leading constant Cρ,q in front of 1/L. Unfortunately, for
ρ = 1 − 1/q − ε, the constant Cρ,q depends exponentially2 on 1/ε. Thus, this result

2The constant Cρ,q depends exponentially on 1/δρ, where q−δpn is an upper bound on the prob-
ability that two random vectors in Fn

q of relative Hamming weight at most ρ, chosen independently
and uniformly among all possibilities, sum up (over Fn

q ) to a vector of Hamming weight at most ρ.

When ρ = 1− 1/q − ε, we have δρ = Θq(ε2), which makes the list size exponentially large.
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only implies an exponential list size in 1/ε, as opposed to the optimal O(1/ε2) that
we seek.

Summarizing, for random linear codes to achieve a polynomial in 1/ε list size
bound for error fraction 1− 1/q− ε, the best lower bound on rate was Ω(ε4). We are
able to show that random linear codes achieve a list size growing quadratically in 1/ε
for a rate of Ω̃(ε2). One downside of our result is that we do not get a probability
bound of 1− o(1) but get only 1− γ for any desired constant γ > 0. (Essentially our
rate bound degrades by a log(1/γ) factor.)

Finally, there are also some results showing limitations on list decodability of
random codes. It is known that both random codes and random linear codes of
rate 1 − hq(ρ) − η are, with high probability, not (ρ, cρ,q/η)-list decodable [28, 19].
For arbitrary (not necessarily random) codes, the best lower bound on list size is
Ω(log(1/η)) [3, 19].

Remark 1.2. We note that subsequent to the initial draft of this paper, an
improved version of our coding result was obtained in [32], where it is shown that
the rate of a random linear code can be improved to Ω(ε2/ log(q)) while achieving
((1−1/q)(1−ε), O(1/ε2))-list decodability with probability 1−o(1), thereby obtaining
the optimal dependence of rate on ε. While [32] does make use of the simplex encoding
technique used here, it bypasses the use of RIP-2 and instead controls a related L1

norm to achieve a simpler proof of the list decodability result. However, as a result,
it does not improve the number of row samples of a DFT matrix needed to obtain
RIP-2, a question that is interesting in its own right.

1.2. Proof technique. The proof of our result uses a different approach from
the earlier works on list decodability of random linear codes [33, 13, 18, 17]. Our
approach consists of three steps.

Step 1. Our starting point is a relaxed version of the Johnson bound for list
decoding that requires only the average pairwise distance of L codewords to be large
(where L is the target list size), instead of the minimum distance of the code.

Technically, this extension is easy and pretty much follows by inspecting the
proof of the Johnson bound. This has recently been observed for the binary case
by Cheraghchi [11]. Here, we give a proof of the relaxed Johnson bound for a more
general setting of parameters and apply it in a setting where the usual Johnson bound
is insufficient. Furthermore, as a side application, we show how the average version
can be used to bound the list decoding radius of codes which do not have too many
codewords close to any codeword—such a bound was shown via a different proof in
[16], where it was used to establish the list decodability of binary Reed–Muller codes
up to their distance.

Step 2. Prove that the L-wise average distance property of random linear codes
is implied by the order L restricted isometry property (RIP-2) of random submatrices
of the Hadamard matrix (or in general, matrices related to the DFT).

This part is also easy technically, and our contribution lies in making this con-
nection between restricted isometry and list decoding. The RIP has received much
attention lately due to its relevance to compressed sensing (cf. [5, 6, 7, 8, 12]) and is
also connected to the Johnson–Lindenstrauss dimension reduction lemma [2, 1, 23].
Our work shows another interesting application of this concept.

Step 3. Prove the needed RIP of the matrix obtained by sampling rows of the
Hadamard matrix.

This is the most technical part of our proof. Let us focus on q = 2 for simplicity,
and let H be the N×N Hadamard (DFT) matrix with N = 2n, whose (x, y)th entry is
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(−1)〈x,y〉 for x, y ∈ {0, 1}n. We prove that (the scaled version of) a random submatrix
of H formed by sampling a subset of m = O(k log3 k logN) rows of H satisfies RIP
of order k with probability 0.99. This means that every k columns of this sampled
matrix M are nearly orthogonal—formally, every m× k submatrix of M has all its k
singular values close to 1.

For randommatricesm×N with independent and identically distributed Gaussian
or (normalized) ±1 entries, it is relatively easy to prove RIP-2 of order k when m =
O(k logN) [2]. Proving such a bound for submatrices of the DFT matrix (as conjec-
tured in [27]) has been an open problem for many years. The difficulty is that the en-
tries within a row are no longer independent and not even triplewise independent. The
best proven upper bound on m for this case was O(k log2 k(log k + log logN) logN),
improving an earlier upper bound O(k log6 N) of Candès and Tao [8]. We improve the
bound to O(k log3 k logN)—the key gain is that we do not have the log logN factor.
This is crucial for our list decoding connection, as the rate of the code associated
with the matrix will be (logN)/m, which would be o(1) if m = Ω(logN log logN).
We will take k = L = Θ(1/ε2) (the target list size), and the rate of the random
linear code will be Ω(1/(k log3 k)), giving the bounds claimed in Theorem 1.1. We re-
mark that any improvement of the RIP bound toward the information-theoretic limit
m = Ω(k log(N/k)), a challenging open problem, would immediately translate into an
improvement on the list decoding rate of random linear codes via our reductions.

Our RIP-2 proof for row-subsampled DFT matrices proceeds along the lines of
[27] and is based on upper bounding the expectation of the supremum of a certain

Gaussian process [25, Chapter 11]. The index set of the Gaussian process is Bk,N
2 , the

set of all k-sparse unit vectors in RN , and the Gaussian random variable Gx associated
with x ∈ Bk,N

2 is a Gaussian linear combination of the squared projections of x on the
rows sampled from the DFT matrix (in the binary case these are just squared Fourier
coefficients).3 The key to analyzing the Gaussian process is an understanding of the
associated (pseudo-)metric X on the index set, defined by ‖x−x′‖2X = EG|Gx−Gx′ |2.
This metric is difficult to work with directly, so we upper bound distances under X
in terms of distances under a different metric X ′. The principal difference in our
analysis compared to [27] is in the choice of X ′—instead of the max norm used in
[27], we use an Lp norm for large finite p applied to the sampled Fourier coefficients.
We then estimate the covering numbers for X ′ and use Dudley’s theorem to bound
the supremum of the Gaussian process.

It is worth pointing out that, as we prove in this work, for low-rate random
linear codes the average-distance quantity discussed in Step 1 above is substantially
larger than the minimum distance of the code. This allows the relaxed version of the
Johnson bound to attain better bounds than what the standard (minimum-distance-
based) Johnson bound would obtain on list decodability of random linear codes. While
explicit examples of linear codes surpassing the standard Johnson bound are already
known in the literature (see [15] and the references therein), a by-product of our result
is that in fact most linear codes (at least in the low-rate regime) surpass the standard
Johnson bound. However, an interesting question is to see whether there are codes

3We should remark that our setup of the Gaussian process is slightly different from [27], where
the index set is k-element subsets of [N ] and the associated Gaussian random variable is the spectral
norm of a random matrix. Moreover, in [27] the number of rows of the subsampled DFT matrix
is a random variable concentrating around its expectation, contrary to our case, where it is a fixed
number. We believe that the former difference in our setup may make the proof accessible to a
broader audience.
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that are list decodable even beyond the relaxed version of the Johnson bound studied
in this work.

Organization of the paper. The rest of the paper is organized as follows.
After fixing some notation, in section 2 we prove the average-case Johnson bound
that relates a lower bound on average pairwise distances of subsets of codewords
in a code to list decoding guarantees on the code. We also show, in section 2.3,
an application of this bound on proving list decodability of “locally sparse” codes,
which is of independent interest and simplifies some earlier list decoding results. In
section 3, we prove our main theorem on list decodability of random linear codes by
demonstrating a reduction from RIP-2 guarantees of DFT-based complex matrices to
average distance of random linear codes, combined with the Johnson bound. Finally,
the RIP-2 bounds on matrices related to random linear codes are proved in section 4.

Notation. Throughout the paper, we will be interested in list decodability of
q-ary codes. We will denote an alphabet of size q by [q] := {1, . . . , q}. For linear
codes, the alphabet will be Fq, the finite field with q elements (when q is a prime
power). However, whenever there is a need to identify Fq with [q] and vice versa
(for example, to form the simplex encoding in Definition 2.4), we implicitly assume a
fixed, but arbitrary, bijection between the two sets.

We use the notation i :=
√
−1. When f ≤ Cg (resp., f ≥ Cg) for some absolute

constant C > 0, we use the shorthand f � g (resp., f � g). We use the notation
log(·) when the base of logarithm is not of significance (e.g., f � log x). Otherwise
the base is subscripted as in logb(x). The natural logarithm is denoted by ln(·).

For a matrix M and a multiset of rows T , define MT to be the matrix with |T |
rows, formed by the rows of M picked by T (in some arbitrary order). Each row in
MT may be repeated for the appropriate number of times specified by T .

2. Average-distance-based Johnson bound. In this section, we show how
the average pairwise distances between subsets of codewords in a q-ary code translate
into list decodability guarantees on the code.

Recall that the relative Hamming distance between strings x, y ∈ [q]n, denoted
δ(x, y), is defined to be the fraction of positions i for which xi 
= yi. The relative
distance of a code C is the minimum value of δ(x, y) over all pairs of codewords
x 
= y ∈ C. We define list decodability as follows.

Definition 2.1. A code C ⊆ [q]n is said to be (ρ, �)-list decodable if for all y ∈
[q]n, the number of codewords of C within relative Hamming distance less than ρ is at
most �.4

The following definition captures a crucial function that allows one to generically
pass from distance property to list decodability.

Definition 2.2 (Johnson radius). For an integer q ≥ 2, the Johnson radius
function Jq : [0, 1− 1/q] → [0, 1] is defined by

Jq(x) :=
q − 1

q

(
1−

√
1− qx

q − 1

)
.

The well-known Johnson bound in coding theory states that a q-ary code of
relative distance δ is (Jq(δ−δ/L), L)-list decodable (see, for instance, [21]). Below we
prove a version of this bound which does not need every pair of codewords to be far
apart but instead works when the average distance of every set of codewords is large.
The proof of this version of the Johnson bound is a simple modification of earlier

4We require that the radius is strictly less than ρ instead of at most ρ for convenience.
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proofs, but working with this version is a crucial step in our near-tight analysis of the
list decodability of random linear codes.

Theorem 2.3 (average-distance Johnson bound). Let C ⊆ [q]n be a q-ary code
and L ≥ 2 an integer. If the average pairwise relative Hamming distance of every
subset of L codewords of C is at least δ, then C is (Jq(δ− δ/L), L− 1)-list decodable.

Thus, if one is interested in a bound for list decoding with list size L, it is enough
to consider the average pairwise Hamming distance of subsets of L codewords.

2.1. Geometric encoding of q-ary symbols. We will give a geometric proof
of the above result. For this purpose, we will map vectors in [q]n to complex vectors
and argue about the inner products of the resulting vectors.

Definition 2.4 (simplex encoding). The simplex encoding maps x ∈ [q] to
a vector ϕ(x) ∈ Cq−1. The coordinate positions of this vector are indexed by the
elements of [q − 1] := {1, 2, . . . , q − 1}. Namely, for every α ∈ [q − 1], we define
ϕ(x)(α) := ωxα, where ω = e2πi/q is the primitive qth complex root of unity.

For complex vectors v = (v1, v2, . . . , vm) and w = (w1, w2, . . . , wm), we define
their inner product 〈v, w〉 =

∑m
i=1 viw

∗
i . From the definition of the simplex encoding,

the following immediately follows:

(2.1) 〈ϕ(x), ϕ(y)〉 =
{
q − 1 if x = y,
−1 if x 
= y.

We can extend the above encoding to map elements of [q]n into Cn(q−1) in the natural
way by applying this encoding to each coordinate separately. From the above inner
product formula, it follows that for x, y ∈ [q]n we have

(2.2) 〈ϕ(x), ϕ(y)〉 = (q − 1)n− qδ(x, y)n.

Similarly, we overload the notation to matrices with entries over [q]. Let M be a
matrix in [q]n×N . Then, ϕ(M) is an n(q − 1)×N complex matrix obtained from M
by replacing each entry with its simplex encoding, considered as a column complex
vector.

Finally, we extend the encoding to sets of vectors (i.e., codes) as well. For a set
C ⊆ [q]n, ϕ(C) is defined as a (q − 1)n × |C| matrix with columns indexed by the
elements of C, where the column corresponding to each c ∈ C is set to be ϕ(c).

2.2. Proof of average-distance Johnson bound. We now prove the Johnson
bound based on average distance.

Proof of Theorem 2.3. Suppose {c1, c2, . . . , cL} ⊆ [q]n are such that their average
pairwise relative distance is at least δ, i.e.,

(2.3)
∑

1≤i<j≤L

δ(ci, cj) ≥ δ ·
(
L

2

)
.

We will prove that c1, c2, . . . , cL cannot all lie in a Hamming ball of radius less than
Jq(δ − δ/L)n. Since every subset of L codewords of C satisfies (2.3), this will prove
that C is (Jq(δ − δ/L), L− 1)-list decodable.

Suppose, for contradiction, that there exists c0 ∈ [q]n such that δ(c0, ci) ≤ ρ for
i = 1, 2, . . . , L and some ρ < Jq(δ − δ/L). Recalling the definition of Jq(·), note that
the assumption about ρ implies

(2.4)

(
1− qρ

q − 1

)2

> 1− qδ

q − 1
+

q

q − 1

δ

L
.
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RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1895

For i = 1, 2, . . . , L, define the vector vi = ϕ(ci) − βϕ(c0) ∈ Cn(q−1) for some
parameter β to be chosen later. By (2.2) and the assumptions about c0, c1, . . . , cL, we
have 〈ϕ(ci), ϕ(c0)〉 ≥ (q−1)n−qρn, and

∑
1≤i<j≤L〈ϕ(ci), ϕ(cj)〉 ≤

(
L
2

)(
(q−1)n−qδn

)
.

We have

0 ≤
〈 L∑

i=1

vi,

L∑
i=1

vi

〉
=

L∑
i=1

〈vi, vi〉+ 2 ·
∑

1≤i<j≤L

〈vi, vj〉

≤ L
(
n(q − 1) + β2n(q − 1)− 2β(n(q − 1)− qρn)

)
+ L(L− 1)

(
n(q − 1)− qδn+ β2n(q − 1)− 2β(n(q − 1)− qρn)

)
= L2n(q − 1)

(
q

q − 1

δ

L
+

(
1− qδ

q − 1
+ β2 − 2β

(
1− qρ

q − 1

)))
.

Picking β = 1− qρ
q−1 and recalling (2.4), we see that the above expression is negative,

a contradiction.

2.3. An application: List decodability of Reed–Muller and locally
sparse codes. Our average-distance Johnson bound implies the following combi-
natorial result for the list decodability of codes that have few codewords in a certain
vicinity of every codeword. The result allows one to translate a bound on the number
of codewords in balls centered at codewords to a bound on the number of codewords
in an arbitrary Hamming ball of smaller radius. An alternate proof of the below
bound (using a “deletion” technique) was given by Gopalan, Klivans, and Zucker-
man [16], who used it to argue the list decodability of (binary) Reed–Muller codes up
to their relative distance. A mild strengthening of the deletion lemma was later used
in [15] to prove combinatorial bounds on the list decodability of tensor products and
interleavings of binary linear codes.

Lemma 2.5. Let q ≥ 2 be an integer and η ∈ (0, 1 − 1/q]. Suppose C is a q-ary
code such that for every c ∈ C, there are at most A codewords of relative distance
less than η from c (including c itself). Then, for every positive integer L ≥ 2, C is
(Jq(η − η/L), AL− 1)-list decodable.

Note that setting A = 1 above gives the usual Johnson bound for a code of relative
distance at least η.

Proof. We will lower bound the average pairwise relative distance of every subset
of AL codewords of C and then apply Theorem 2.3.

Let c1, c2, . . . , cAL be distinct codewords of C. For i = 1, 2, . . . , AL, the sum of
relative distances of cj , j 
= i, from ci is at least (AL−A)η since there are at most A
codewords at relative distance less than η from ci. Therefore

1(
AL
2

) · ∑
1≤i<j≤AL

δ(ci, cj) ≥
AL · (AL−A)η

AL(AL − 1)
=

A(L − 1)

AL− 1
η .

Setting η′ = A(L−1)η
AL−1 , Theorem 2.3 implies that C is (Jq(η

′ − η′

AL ), AL− 1)-list decod-

able. But η′ − η′

AL = η − η/L, so the claim follows.

3. Proof of the list decoding result. In this section, we prove our main
result on list decodability of random linear codes. The main idea is to use the RIP
of complex matrices arising from random linear codes for bounding average pairwise
distances of subsets of codewords. Combined with the average-distance-based Johnson
bound shown in the previous section, this proves the desired list decoding bounds.
The RIP-2 condition that we use in this work is defined as follows.
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1896 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER

Definition 3.1. We say that a complex matrix M ∈ Cm×N satisfies RIP-2 of
order k with constant δ if, for any k-sparse vector x ∈ CN , we have5

(1 − δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22.

Generally we think of δ as a small positive constant, say, δ = 1/2.
Since we will be working with list decoding radii close to 1 − 1/q, we derive a

simplified expression for the Johnson bound in this regime, namely, the following.
Theorem 3.2. Let C ⊆ [q]n be a q-ary code and L ≥ 2 an integer. If the average

pairwise relative Hamming distance of every subset of L codewords of C is at least
(1− 1/q)(1− ε), then C is ((1 − 1/q)(1−

√
ε+ 1/L), L− 1)-list decodable.

Proof. The proof is nothing but a simple manipulation of the bound given by
Theorem 2.3. Let δ := (1 − 1/q)(1 − ε). Theorem 2.3 implies that C is (Jq(δ(1 −
1/L)), L− 1)-list decodable. Now,

Jq(δ(1 − 1/L)) =
q − 1

q

(
1−

√
1− q

q − 1
· q − 1

q

(
1− ε

)(
1− 1

L

))

=
q − 1

q

(
1−

√
ε+

1

L
− ε

L

)
≥ q − 1

q

(
1−

√
ε+

1

L

)
.

In order to prove lower bounds on average distance of random linear codes, we
will use the simplex encoding of vectors (Definition 2.4), along with the following
simple geometric lemma.

Lemma 3.3. Let c1, . . . , cL ∈ [q]n be q-ary vectors. Then, the average pairwise
distance δ between these vectors satisfies

δ :=
∑

1≤i<j≤L

δ(ci, cj)/

(
L

2

)
=

L2(q − 1)n−
∥∥∥∑i∈[L] ϕ(ci)

∥∥∥2
2

qL(L− 1)n
.

Proof. The proof is a simple application of (2.2). The second norm on the right-
hand side can be expanded as∥∥∥∥∥∥

∑
i∈[L]

ϕ(ci)

∥∥∥∥∥∥
2

2

=
∑

i,j∈[L]

〈ϕ(ci), ϕ(cj)〉

(2.2)
=

∑
i,j∈[L]

(
(q − 1)n− qnδ(ci, cj)

)
= L2(q − 1)n− 2qn

∑
1≤i<j≤L

δ(ci, cj)

= L2(q − 1)n− 2qn

(
L

2

)
δ,

and the bound follows.
Now we are ready to formulate our reduction from RIP-2 to average distance of

codes.

5We stress that in this work, we crucially use the fact that the definition of RIP that we use is
based on the Euclidean (�2) norm.
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RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1897

Lemma 3.4. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√
(q − 1)n satisfies RIP-2

of order L with constant 1/2. Then, the average pairwise distance between every L
codewords of C is at least

(
1− 1

q

)(
1− 1

2(L−1)

)
.

Proof. Consider any set S of L codewords and the real vector x ∈ R|C| with
entries in {0, 1} that is exactly supported on the positions indexed by the codewords
in S. Obviously, ‖x‖22 = L. Thus, by the definition of RIP-2 (Definition 3.1), we know
that, defining M := ϕ(C),

(3.1) ‖Mx‖22 ≤ 3L(q − 1)n/2.

Observe that Mx =
∑

i∈[L] ϕ(ci). Let δ be the average pairwise distance between
codewords in S. By Lemma 3.3 we conclude that

δ =
L2(q − 1)n−

∥∥∥∑i∈[L] ϕ(ci)
∥∥∥2
2

2q
(
L
2

)
n

(3.1)

≥ (L2 − 1.5L)(q − 1)n

qL(L− 1)n

=
q − 1

q

(
1− 1

2(L− 1)

)
.

We remark that, for our applications, the exact choice of the RIP constant in
the above result is arbitrary, as long as it remains an absolute constant (although the
particular choice of the RIP constant would also affect the constants in the resulting
bound on average pairwise distance). Contrary to applications in compressed sensing,
for our application it also makes sense to have RIP-2 with constants larger than one,
since the proof requires only the upper bound in Definition 3.1.

By combining Lemma 3.4 with the simplified Johnson bound of Theorem 3.2, we
obtain the following corollary.

Theorem 3.5. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√
(q − 1)n satisfies

RIP-2 of order L with constant 1/2. Then C is
((
1 − 1

q

)(
1 −

√
1.5
L−1

)
, L − 1

)
-list

decodable.
Remark 3.6. Theorem 3.5 is a direct corollary of Lemma 3.4 and Theorem 3.2,

which in turn follow from mathematically simple proofs and establish more general
connections between the notion of average distance of codes, list decodability, and
RIP. However, it is possible to directly prove Theorem 3.5 without establishing such
independently interesting connections. One such proof is presented in Appendix B.

The matrix ϕ(C) for a linear code C ⊆ Fn
q has a special form. It is straightforward

to observe that, when q = 2, the matrix is an incomplete Hadamard–Walsh transform

matrix with 2k̃ columns, where k̃ is the dimension of the code. In general ϕ(C) turns
out to be related to a DFT matrix. Specifically, we have the following observation.

Observation 3.7. Let C ⊆ F
n
q be an [n, k̃] linear code with a generator matrix

G ∈ Fk̃×n
q , and define N := qk̃. Consider the matrix of linear forms Lin ∈ FN×N

q with

rows and columns indexed by elements of Fk̃
q and entries defined by

Lin(x, y) := 〈x, y〉,

where 〈·, ·〉 is the finite-field inner product over Fk̃
q . Let T ⊆ Fk̃

q be the multiset of
columns of G. Then, ϕ(C) = ϕ(LinT ). (Recall from Definition 2.4 that the former
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1898 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER

simplex encoding ϕ(C) is applied to the matrix enumerating the codewords of C, while
the latter, ϕ(LinT ), is applied to the entries of a submatrix of Lin. Also recall from the
notation section that LinT denotes the submatrix of Lin obtained by choosing all the
rows of Lin indexed by the elements of the multiset T , with possible repetitions.)

When G is uniformly random, C becomes a random linear code and ϕ(C) can be
sampled by the following process. Arrange n uniformly random rows of Lin, sampled
independently and with replacement, as rows of a matrix M . Then, replace each
entry of M by its simplex encoding, seen as a column vector in Cq−1. The resulting
complex matrix is ϕ(C).

The RIP-2 condition for random complex matrices arising from random linear
codes is proved in Theorem 4.1. We now combine this theorem with the preceding
results of this section to prove our main theorem on list decodability of random linear
codes.

Theorem 3.8 (main). Let q be a prime power, and let ε, γ > 0 be constant
parameters. Then for all large enough integers n, a random linear code C ⊆ Fn

q of
rate R for some

R � ε2

log(1/γ) log3(q/ε) log q

is ((1 − 1/q)(1− ε), O(1/ε2))-list decodable with probability at least 1− γ.
Proof. Let C ⊆ Fn

q be a uniformly random linear code associated to a random
Rn × n generator matrix G over Fq for a rate parameter R ≤ 1 to be determined
later. Consider the random matrix M = ϕ(C) = ϕ(LinT ) from Observation 3.7, where
|T | = n. Recall that M is a (q − 1)n × N complex matrix, where N = qRn. Let
L := 1+ 
1.5/ε2� = Θ(1/ε2). By Theorem 4.1, for large enough N (thus large enough
n) and with probability 1 − γ, the matrix M/

√
(q − 1)n satisfies RIP-2 of order L

with constant 1/2, for some choice of |T | bounded by

(3.2) n = |T | � log(1/γ)L log(N) log3(qL).

Suppose n is large enough and satisfies (3.2) so that the RIP-2 condition holds. By
Theorem 3.5, this ensures that the code C is ((1− 1/q)(1− ε), O(1/ε2))-list decodable
with probability at least 1− γ.

It remains to verify the bound on the rate of C. We observe that whenever the
RIP-2 condition is satisfied, Gmust have rank exactly Rn, since otherwise there would
be distinct vectors x, x′ ∈ FRn

q such that xG = x′G. Thus in that case, the columns
of M corresponding to x and x′ become identical, implying that M cannot satisfy
RIP-2 of any nontrivial order. Thus we can assume that the rate of C is indeed equal
to R. Now we have

R = logq |C|/n = logN/(n log q)

(3.2)

� logN

log(1/γ)L log(N) log3(qL) log q
.

Substituting L = Θ(1/ε2) into the above expression yields the desired bound.

4. RIP of DFT-based matrices. In this section, we prove RIP-2 for random
incomplete DFT matrices. Namely, we prove the following theorem.

Theorem 4.1. Let T be a random multiset of rows of Lin, where |T | is fixed and
each element of T is chosen uniformly at random and independently with replacement.
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RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1899

Then, for every δ, γ > 0, and assuming N ≥ N0(δ, γ), with probability at least 1 − γ
the matrix ϕ(LinT )/

√
(q − 1)|T | (with (q− 1)|T | rows) satisfies RIP-2 of order k with

constant δ for a choice of |T | satisfying

(4.1) |T | � log(1/γ)

δ2
k log(N) log3(qk).

The proof extends and closely follows the original proof of Rudelson and Vershynin
[27]. However, we modify the proof at a crucial point to obtain a strict improvement
over their original analysis, which is necessary for our list decoding application. We
present our improved analysis in this section.

Proof of Theorem 4.1. LetM := ϕ(LinT ). Each row ofM is indexed by an element
of T and some α ∈ F

∗
q , where in the definition of simplex encoding (Definition 2.4),

we identify F∗
q with [q − 1] in a fixed but arbitrary way. Recall that T ⊆ Fk̃

q , where

N = qk̃. Denote the row corresponding to t ∈ T and α ∈ F∗
q by Mt,α, and moreover

denote the set of k-sparse unit vectors in CN by Bk,N
2 .

In order to show that M/
√
(q − 1)|T | satisfies RIP of order k, we need to verify

that for any x = (x1, . . . , xN ) ∈ Bk,N
2 ,

(4.2) |T |(q − 1)(1− δ) ≤ ‖Mx‖22 ≤ |T |(q − 1)(1 + δ).

In light of Proposition A.1, without loss of generality we can assume that x is real-
valued (since the inner product between any pair of columns of M is real-valued).

For i ∈ Fn
q , denote the ith column of M by M i. For x = (x1, . . . , xN ) ∈ Bk,N

2 ,
define the random variable

Δx := ‖Mx‖22 − |T |(q − 1)(4.3)

=
∑

(i,j)∈supp(x)
i	=j

xixj〈M i,M j〉,

where the second equality holds since each column of M has �2 norm
√
(q − 1)|T | and

‖x‖2 = 1. Thus, the RIP condition (4.2) is equivalent to

(4.4) Δ := sup
x∈Bk,N

2

|Δx| ≤ δ|T |(q − 1).

Recall that Δ is a random variable depending on the randomness in T . The proof of
the RIP condition involves two steps: first, bounding Δ in expectation, and second,
a tail bound. The first step is proved, in detail, in the following lemma.

Lemma 4.2. Let δ′ > 0 be a real parameter. Then, E[Δ] ≤ δ′|T |(q − 1) for a
choice of |T | bounded as follows:

|T | � k log(N) log3(qk)/δ′
2
.

Proof. We begin by observing that the columns of M are orthogonal in expecta-
tion; i.e., for any i, j ∈ Fn

q , we have

ET 〈M i,M j〉 =
{
|T |(q − 1), i = j,
0, i 
= j.
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This follows from (2.2) and the fact that the expected relative Hamming distance
between the columns of Lin corresponding to i and j, when i 
= j, is exactly 1−1/q. It

follows that for every x ∈ Bk,N
2 , E[Δx] = 0, namely, the stochastic process {Δx}x∈Bk,N

2

is centered.
Recall that we wish to estimate

E := ETΔ

= ET sup
x∈Bk,N

2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗

q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣ .(4.5)

Suppose the chosen multiset of the rows of Lin is written as a random sequence
T = (t1, t2, . . . , t|T |). The random variables

∑
α∈F∗

q
〈Mti,α, x〉2, for different values of

i, are independent. Therefore, we can use the standard symmetrization technique on
summation of independent random variables in a stochastic process (Proposition A.2)
and conclude from (4.5) that

(4.6) E � E1 := ETEG sup
x∈Bk,N

2

⎛
⎝∑

t∈T

gt
∑
α∈F∗

q

〈Mt,α, x〉2
⎞
⎠ ,

where G := (gt)t∈T is a sequence of independent standard Gaussian random variables.
Denote the term inside ET in (4.6) by ET ; namely,

ET := EG sup
x∈Bk,N

2

⎛
⎝∑

t∈T

gt
∑
α∈F∗

q

〈Mt,α, x〉2
⎞
⎠ .

Now we observe that, for any fixed T , the quantity ET defines the supremum of
a Gaussian process. The Gaussian process {Gx}x∈Bk,N

2
induces a pseudometric ‖ · ‖X

on Bk,N
2 (and, more generally, CN ), where for x, x′ ∈ Bk,N

2 , the (squared) distance is
given by

‖x− x′‖2X := EG|Gx −Gx′ |2

=
∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x〉2 −
∑
α∈F∗

q

〈Mt,α, x
′〉2
⎞
⎠2

=
∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x+ x′〉〈Mt,α, x− x′〉

⎞
⎠2

.(4.7)

By Cauchy–Schwarz, (4.7) can be bounded as

‖x− x′‖2X ≤
∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x+ x′〉2
⎞
⎠
⎛
⎝∑

α∈F∗
q

〈Mt,α, x− x′〉2
⎞
⎠(4.8)

≤
∑
t∈T

∑
α∈F∗

q

〈Mt,α, x+ x′〉2 max
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x− x′〉2
⎞
⎠ .(4.9)
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RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1901

Here is where our analysis differs from [27]. When q = 2, (4.9) is exactly how the
Gaussian metric is bounded in [27]. We obtain our improvement by bounding the
metric in a different way. Specifically, let η ∈ (0, 1] be a positive real parameter to
be determined later and let r := 1 + η and s := 1 + 1/η such that 1/r + 1/s = 1.
We assume that η is so that s becomes an integer. We use Hölder’s inequality with
parameters r and s along with (4.8) to bound the metric as follows:

‖x− x′‖X(4.10)

≤

⎛
⎝∑

t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x+ x′〉2
⎞
⎠r⎞⎠

1/2r⎛
⎝∑

t∈T

( ∑
α∈F∗

q

〈Mt,α, x− x′〉2
)s⎞⎠1/2s

.

Since ‖x‖2 = 1, x is k-sparse, and |Mt,α| = 1 for all choices of (t, α), Cauchy–Schwarz
implies that 〈Mt,α, x〉2 ≤ k and thus, using the triangle inequality, we know that∑

α∈F∗
q

〈Mt,α, x+ x′〉2 ≤ 4qk.

Therefore, for every t ∈ T , seeing that r = 1 + η, we have⎛
⎝∑

α∈F∗
q

〈Mt,α, x+ x′〉2
⎞
⎠r

≤ (4qk)η
∑
α∈F∗

q

〈Mt,α, x+ x′〉2,

which, applied to the bound (4.10) on the metric, yields

‖x− x′‖X

(4.11)

≤ (4qk)η/2r

⎛
⎝∑

t∈T

∑
α∈F∗

q

〈Mt,α, x+ x′〉2
⎞
⎠

︸ ︷︷ ︸
E2

1/2r⎛⎝∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x− x′〉2
⎞
⎠s⎞⎠

1/2s

.

Now,

E2 ≤ 2

⎛
⎝∑

t∈T

∑
α∈F∗

q

〈Mt,α, x〉2 +
∑
t∈T

∑
α∈F∗

q

〈Mt,α, x
′〉2
⎞
⎠ ≤ 4E ′

T ,(4.12)

where we have defined

(4.13) E ′
T := sup

x∈Bk,N
2

∑
t∈T

∑
α∈F∗

q

〈Mt,α, x〉2.

Observe that, by the triangle inequality,

(4.14) E ′
T ≤ sup

x∈Bk,N
2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗

q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣+ |T |(q − 1).
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1902 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER

Plugging (4.13) back in (4.11), we so far have

(4.15) ‖x− x′‖X ≤ 4(4qk)η/2rE ′
T
1/2r

⎛
⎝∑

t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x− x′〉2
⎞
⎠s⎞⎠

1/2s

.

For a real parameter u > 0, define NX(u) as the minimum number of spheres of

radius u required to cover Bk,N
2 with respect to the metric ‖ · ‖X . We can now apply

Dudley’s theorem on supremum of Gaussian processes (cf. [25, Theorem 11.17]) and
deduce that

(4.16) ET �
∫ ∞

0

√
logNX(u)du.

In order to make the metric ‖ · ‖X easier to work with, we define a related metric

‖ · ‖X′ on Bk,N
2 , according to the right-hand side of (4.15), as follows:

(4.17) ‖x− x′‖2sX′ :=
∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α, x− x′〉2
⎞
⎠s

.

LetK denote the diameter of Bk,N
2 under the metric ‖·‖X′ . Trivially,K ≤ 2|T |1/2s

√
qk.

By (4.15), we know that

(4.18) ‖x− x′‖X ≤ 4(4qk)η/2rE ′
T
1/2r‖x− x′‖X′ .

DefineNX′(u) similar toNX(u), but with respect to the new metricX ′. The preceding
upper bound (4.18) thus implies that

(4.19) NX(u) ≤ NX′(u/(4(4qk)η/2rE ′
T
1/2r

)).

Now, using this bound in (4.16) and after a change of variables, we have

(4.20) ET � (4qk)η/2rE ′
T
1/2r

∫ ∞

0

√
logNX′(u)du.

Now we take an expectation over T . Note that (4.14) combined with (4.5) implies

(4.21) ET E ′
T ≤ E + |T |(q − 1).

Using (4.16), we get

E2r
(4.6)

� E2r
1 = (ET ET )2r ≤ ET E2r

T

� (4qk)ηET

(
(E ′

T )
1/2r

∫ ∞

0

√
logNX′(u)du

)2r

≤ (4qk)η(ET E ′
T )max

T

(∫ ∞

0

√
logNX′(u)du

)2r

(4.21)

≤ (4qk)η(E + |T |(q − 1))max
T

(∫ ∞

0

√
logNX′(u)du

)2r

.
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Define

(4.22) Ē := E ·
(

E
E + |T |(q − 1)

)1/(1+2η)

.

Therefore, recalling that r = 1 + η, the above inequality simplifies to

(4.23) Ē � (4qk)η max
T

(∫ K

0

√
logNX′(u)du

)1+1/(1+2η)

,

where we have replaced the upper limit of integration by the diameter of Bk,N
2 under

the metric ‖ · ‖X′ . (Obviously, NX′(u) = 1 for all u ≥ K.)

Now we estimate NX′(u) in two ways. The first estimate is the simple volumetric
estimate (cf. [27]) that gives

(4.24) logNX′(u) � k log(N/k) + k log(1 + 2K/u).

This estimate is useful when u is small. For larger values of u, we use a different
estimate as follows.

Claim 4.3. logNX′(u) � |T |1/s(logN)qks/u2.

Proof. We use the method used in [27] (originally attributed to Maurey; cf. [9,

section 1]) and empirically estimate any fixed real vector x = (x1, . . . , xN ) ∈ Bk,N
2 by

an m-sparse random vector Z for sufficiently large m. The vector Z is an average

(4.25) Z :=

√
k

m

m∑
i=1

Zi,

where each Zi is a 1-sparse vector in CN and E[Zi] = x/
√
k. The Zi are independent

and identically distributed.

The way each Zi is sampled is as follows. Let x′ := x/
√
k so that ‖x′‖1 = ‖x‖1√

k
≤ 1.

With probability 1 − ‖x′‖, we set Zi := 0. With the remaining probability, Zi is
sampled by picking a random j ∈ supp(x) according to the probabilities defined
by absolute values of the entries of x′ and setting Zi = sgn(x′

j)ej , where ej is the

jth standard basis vector.6 This ensures that E[Zi] = x′. Thus, by linearity of
expectation, it is clear that E[Z] = x. Now, consider

E3 := E‖Z − x‖X′ .

If we pick m large enough to ensure that E3 ≤ u, regardless of the initial choice of
x, then we can conclude that for every x, there exists a Z of the form (4.25) that is
at distance at most u from x (since there is always some fixing of the randomness
that attains the expectation). In particular, the set of balls centered at all possible

realizations of Z would cover Bk,N
2 . Since the number of possible choices of Z of the

form (4.25) is at most (2N + 1)m, we have

(4.26) logNX′(u) � m logN.

6Note that since we have assumed x is a real vector, sgn(·) is always well defined.
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1904 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER

In order to estimate the number of independent samplesm, we use symmetrization
again to estimate the deviation of Z from its expectation x. Namely, since the Zi are
independent, by the symmetrization technique stated in Proposition A.2 we have

(4.27) E3 �
√
k

m
· E
∥∥∥∥∥

m∑
i=1

εiZi

∥∥∥∥∥
X′

,

where (εi)i∈[m] is a sequence of independent Rademacher random variables in {−1,+1}.
Now, consider

E4 := E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

= E

∑
t∈T

⎛
⎝∑

α∈F∗
q

〈Mt,α,

m∑
i=1

εiZi〉2
⎞
⎠s

=
∑
t∈T

E

⎛
⎝∑

α∈F∗
q

(
m∑
i=1

εi〈Mt,α, Zi〉
)2
⎞
⎠s

=
∑
t∈T

E

⎛
⎝ m∑

i,j=1

εiεj
∑
α∈F∗

q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
⎞
⎠s

.(4.28)

Since the entries of the matrix M are bounded in magnitude by 1, we have

∣∣∣∣∣∣
∑
α∈F∗

q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
∣∣∣∣∣∣ ≤ q.

Using this bound and Proposition A.3, (4.28) can be simplified as

E4 = E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

≤ |T |(4qms)s,

and combined with (4.27), and using Jensen’s inequality,

E3 � |T |1/2s
√
4qks/m.

Therefore, we can ensure that E3 ≤ u, as desired, for some large enough choice of m,
specifically, for some m � |T |1/sqks/u2. Now from (4.26), we get

(4.29) logNX′(u) � |T |1/s(logN)qks/u2.

Claim 4.3 is now proved.
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Now we continue the proof of Lemma 4.2. Break the integration in (4.23) into
two intervals. Consider

E5 :=

∫ A

0

√
logNX′(u)du︸ ︷︷ ︸

E6

+

∫ K

A

√
logNX′(u)du︸ ︷︷ ︸

E7

,

where A := K/
√
qk. We claim the following bound on E5.

Claim 4.4. E5 � |T |1/2s
√
(logN)qks log(qk).

Proof. First, we use (4.24) to bound E6 as follows:

(4.30) E6 � A
√

k log(N/k) +
√
k

∫ A

0

√
ln(1 + 2K/u)du.

Observe that 2K/u ≥ 1, so 1 + 2K/u ≤ 4K/u. Thus,

∫ A

0

√
ln(1 + 2K/u)du ≤

∫ A

0

√
ln(4K/u)du

= 2K

∫ A/2K

0

√
ln(2/u)du

= 2K

(
A

2K

√
ln(4K/A) +

√
π
(
1− erf

(√
ln(4K/A)

)))
= A

√
ln(4K/A) + 2

√
πK erfc

(√
ln(4K/A)

)
,(4.31)

where erf(·) is the Gaussian error function erf(x) := 2√
π

∫ x

0 e−t2dt, and erfc(x) :=

1− erf(x), and we have used the integral identity

∫ √
ln(1/x)dx = −

√
π

2
erf
(√

ln(1/x)
)
+ x
√

ln(1/x) + C

that can be verified by taking derivatives of both sides. Let us use the upper bound

(for all x > 0) erfc(x) =
2√
π

∫ ∞

x

e−t2dt ≤ 2√
π

∫ ∞

x

t

x
e−t2dt =

1√
π
· e

−x2

x
,

and plug it into (4.31) to obtain

∫ A

0

√
ln(1 + 2K/u)du ≤ A

√
ln(4K/A) + 2

√
πK

(
1√
π
· A

4K
· 1√

ln(4K/A)

)

= A
√
ln(4K/A) +

A

2
√
ln(4K/A)

� A
√
log(qk) � |T |1/2s

√
log(qk)),D
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where the last inequality holds since A = K/
√
qk � |T |1/2s. Therefore, by (4.30) we

get

(4.32) E6 � |T |1/2s
√
k(
√
logN +

√
log(qk)).

On the other hand, we use Claim 4.3 to bound E7:

E7 �
√
|T |1/s(logN)qks

∫ K

A

du/u

� |T |1/2s
√
(logN)qks log(qk).(4.33)

Combining (4.32) and (4.33), we conclude that for every fixed T ,

E5 = E6 + E7 � |T |1/2s
√
(logN)qks log(qk).

Claim 4.4 is now proved.
By combining Claim 4.4 and (4.23), we have

Ē � (4qk)η max
T

E1+1/(1+2η)
5

� (4qk)η
(
|T |1/2s

√
(logN)qks log(qk)

)1+1/(1+2η)

= (4qk)η|T |η/(1+2η)
(√

(logN)qks log(qk)
)1+1/(1+2η)

.(4.34)

By Proposition A.4 (setting a := E/(|T |(q − 1)) and μ := 2η), and recalling the
definition (4.22) of Ē , in order to ensure that E ≤ δ′(q − 1)|T |, it suffices to have

(4.35) Ē ≤ δ′
2(1+η)
1+2η |T |(q − 1)/4.

Using (4.34), and after simple manipulations, (4.35) can be ensured for some

|T | � (4qk)2η

η
k(logN) log2(qk)/δ′

2
.

This expression is minimized for some η = 1/Θ(log(qk)), which gives

|T | � k(logN) log3(qk)/δ′
2
.

This concludes the proof of Lemma 4.2.
Now we turn to the tail bound on the random variable Δ and estimate the ap-

propriate size of T required to ensure that Pr[Δ > δ|T |(q− 1)] ≤ γ. We observe that
the tail bound proved in [27] uses the bound on E[Δ] as a black box. In particular,
the following lemma, for q = 2, is implicit in the proof of Theorem 3.9 in [27]. The
extension to arbitrary alphabet size q and our slightly different subsampling process is
straightforward. However, for completeness, we include a detailed proof of Lemma 4.5
in Appendix C.

Lemma 4.5 (see [27, implicit]). Suppose that for some δ′ > 0, E[Δ] ≤ δ′|T |(q−1).
Then, there are absolute constants c1, c2, c3 such that for every λ ≥ 1,

Pr[Δ > (c1 + c2λ)δ
′|T |(q − 1)] ≤ 6 exp(−λ2),
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provided that

|T |/k ≥ c3λ/δ
′.(4.36)

Proof. See Appendix C.

Now it suffices to instantiate the above lemma with λ :=
√
ln(6/γ) and δ′ :=

δ/(c1 + c2λ) = δ/Θ(
√
ln(6/γ)) and use the resulting value of δ′ in Lemma 4.2. Since

Lemma 4.2 ensures that |T |/k = Ω(logN), we can take N large enough (depending
on δ, γ) so that (4.36) is satisfied. This completes the proof of Theorem 4.1.

The proof of Theorem 4.1 does not use any property of the DFT-based matrix
other than orthogonality and boundedness of the entries. However, for syntactical
reasons, that is, the way the matrix is defined for q > 2, we have presented the
theorem and its proof for the special case of the DFT-based matrices. The proof goes
through with no technical changes for any orthogonal matrix with bounded entries (as
is the case for the original proof of [27]). In particular, we remark that the following
variation of Theorem 4.1 also holds.

Theorem 4.6. Let A ∈ CN×N be any orthonormal matrix with entries bounded
by O(1/

√
N). Let T be a random multiset of rows of A, where |T | is fixed and each

element of T is chosen uniformly at random and independently with replacement.
Then, for every δ, γ > 0, and assuming N ≥ N0(δ, γ), with probability at least 1 − γ
the matrix (

√
N/|T |)AT satisfies RIP-2 of order k with constant δ for a choice of |T |

satisfying

|T | � log(1/γ)

δ2
k(logN) log3 k.

We also note that the subsampling procedure required by Theorem 4.1 is slightly
different from the one originally used by [27]. In our setting, we appropriately fix the
target number of row (i.e., |T |) first and then draw as many uniform and independent
samples of the rows of the original Fourier matrix as needed (with replacement). On
the other hand, [27] samples the RIP matrix by starting from the original N × N
Fourier matrix and then removing each row independently with a certain probability.
This probability is carefully chosen so that the expected number of remaining rows
in the end of the process is sufficiently large. Our modified sampling is well suited
for our coding-theoretic applications and offers the additional advantage of always
returning a matrix with the exact desired number of rows. However, we point out
that since Theorem 4.1 is based on the original ideas of [27], it can be verified to hold
with respect to either of the two subsampling procedures.

Appendix A. Useful tools. The original definition of RIP-2 given in Defini-
tion 3.1 considers all complex vectors x ∈ Cn. Below we show that it suffices to satisfy
the property only for real-valued vectors x.

Proposition A.1. Let M ∈ Cm×N be a complex matrix such that M †M ∈ RN×N

and for any k-sparse vector x ∈ RN , we have

(1 − δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22.

Then, M satisfies RIP-2 of order k with constant δ.

Proof. Let x = a + ib, for some a, b ∈ RN , be any complex vector. We have
‖x‖22 = ‖a‖22 + ‖b‖22, and
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1908 M. CHERAGHCHI, V. GURUSWAMI, AND A. VELINGKER∣∣∣‖Mx‖22 − ‖x‖22
∣∣∣ =

∣∣∣x†M †Mx− ‖x‖22
∣∣∣

=
∣∣∣(a† − ib†)M †M(a+ ib)− ‖x‖22

∣∣∣
=
∣∣∣a†M †Ma+ b†M †Mb+ i(a†M †Mb− b†M †Ma)− ‖x‖22

∣∣∣
(�)
=
∣∣∣a†M †Ma+ b†M †Mb− ‖x‖22

∣∣∣
=
∣∣∣a†M †Ma− ‖a‖22 + b†M †Mb− ‖b‖22

∣∣∣
(��)

≤ δ‖a‖22 + δ‖b‖22
= δ‖x‖22,

where (�) is due to the assumption that M †M is real, which implies that a†M †Mb
and b†M †Ma are conjugate real numbers (and thus equal), and (��) is from the
assumption that the RIP-2 condition is satisfied by M for real-valued vectors and the
triangle inequality.

As a technical tool, we use the standard symmetrization technique summarized in
the following proposition for bounding deviation of summation of independent random
variables from the expectation. The proof is a simple convexity argument (see, e.g.,
[25, Lemma 6.3] and [31, Lemma 5.70]).

Proposition A.2. Let (Xi)i∈[m] be a finite sequence of independent random
variables in a Banach space, and let (εi)i∈[m] and (gi)i∈[m] be sequences of indepen-
dent Rademacher (i.e., each uniformly random in {−1,+1}) and standard Gaussian
random variables, respectively. Then,

E

∥∥∥∥∥∥
∑
i∈[m]

(Xi − E[Xi])

∥∥∥∥∥∥ � E

∥∥∥∥∥∥
∑
i∈[m]

εiXi

∥∥∥∥∥∥ � E

∥∥∥∥∥∥
∑
i∈[m]

giXi

∥∥∥∥∥∥ .
More generally, for a stochastic process (X

(τ)
i )i∈[m],τ∈T where T is an index set,

E sup
τ∈T

∥∥∥∥∥∥
∑
i∈[m]

(
X

(τ)
i − E[X

(τ)
i ]
)∥∥∥∥∥∥ � E sup

τ∈T

∥∥∥∥∥∥
∑
i∈[m]

εiX
(τ)
i

∥∥∥∥∥∥ � E sup
τ∈T

∥∥∥∥∥∥
∑
i∈[m]

giX
(τ)
i

∥∥∥∥∥∥ .
The following bound is used in the proof of Claim 4.3, a part of the proof of

Lemma 4.2.
Proposition A.3. Let (εi)i∈[m] be a sequence of independent Rademacher ran-

dom variables, and let (aij)i,j∈[m] be a sequence of complex coefficients with magnitude
bounded by K. Then, ∣∣∣∣∣∣E

⎛
⎝ ∑

i,j∈[m]

aijεiεj

⎞
⎠s∣∣∣∣∣∣ ≤ (4Kms)s.

Proof. By linearity of expectation, we can expand the moment as follows:

E

⎛
⎝ ∑

i,j∈[m]

aijεiεj

⎞
⎠s

=
∑

(i1,...is)∈[m]s

(j1,...js)∈[m]s

(
ai1j1 · · · aisjsE

[
εi1 · · · εisεj1 · · · εjs

])
.
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Observe that E[εi1 · · · εisεj1 · · · εjs ] is equal to 1 whenever all integers in the sequence

(i1, . . . , is, j1, . . . , js)

appear an even number of times. Otherwise the expectation is zero. Denote by
S ⊆ [m]2s the set of sequences (i1, . . . , is, j1, . . . , js) that make the expectation non-
zero. Then,∣∣∣∣∣∣E

⎛
⎝ ∑

i,j∈[m]

aijεiεj

⎞
⎠s∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i1,...is,j1,...js)∈S

ai1j1 · · ·aisjs

∣∣∣∣∣∣ ≤ Ks|S|.

One way to generate a sequence σ ∈ S is as follows. Pick s coordinate positions
of σ out of the 2s available positions, fill out each position by an integer in [m],
duplicate each integer at an available unpicked slot (in some fixed order), and finally
permute the s positions of σ that were not originally picked. Obviously, this procedure
can generate every sequence in S (although some sequences may be generated in
many ways). The number of combinations that the combinatorial procedure can
produce is bounded by

(
2s
s

)
ms(s!) ≤ (4ms)s. Therefore, |S| ≤ (4ms)s and the bound

follows.
We have used the following technical statement in the proof of Lemma 4.2.
Proposition A.4. Suppose for real numbers a > 0, μ ∈ [0, 1], δ ∈ (0, 1], we have

a ·
( a

1 + a

) 1
1+μ ≤ δ

2+μ
1+μ

4
.

Then, a ≤ δ.

Proof. Let δ′ := δ
2+μ
1+μ /4

1
1+μ ≥ δ

2+μ
1+μ /4. From the assumption, we have

(A.1) a ·
( a

1 + a

) 1
1+μ ≤ δ′ ⇒ a2+μ ≤ δ2+μ(1 + a)/4.

Consider the function

f(a) := a2+μ − δ2+μa/4− δ2+μ/4.

The proof is complete if we show that, for every a > 0, the assumption f(a) ≤ 0
implies a ≤ δ, or equivalently, a > δ ⇒ f(a) > 0. Note that f(0) < 0, and f ′′(a) > 0
for all a > 0. The function f attains a negative value at zero and is convex at all
points a > 0. Therefore, it suffices to show that f(δ) > 0. Now,

f(δ) = δ2+μ − δ3+μ/4− δ2+μ/4 ≥ (3δ2+μ − δ3+μ)/4.

Since δ ≤ 1, the last expression is positive, and the claim follows.

Appendix B. Direct proof of Theorem 3.5. Let ε :=
√

1.5
L−1 and M :=

ϕ(C)/
√
(q − 1)n. Let S ⊆ C be a set of L codewords, and suppose for the sake of

contradiction that there is a vector w ∈ [q]n that is close in Hamming distance to all
the L codewords in S. Namely, for each c ∈ S we have

(B.1) δ(w, c) <

(
1− 1

q

)
(1 − ε).
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Let M ′ be the (q−1)n×L submatrix of M formed by removing all the columns of M
corresponding to codewords of C outside the set S, and define v := ϕ(w)/

√
(q − 1)n,

considered as a row vector. RIP implies that for every non-zero vector x ∈ RL,

‖M ′x‖22
‖x‖22

≤ 3/2.

That is, if σ denotes the largest singular value of M ′, we have σ2 ≤ 3/2. Let u := vM ′.
From (B.1) combined with (2.2), we know that all the entries of u are greater than
ε. Thus, ‖u‖22 > ε2L > 3/2. On the other hand, ‖v‖2 = 1. This means that
‖vM ′‖22/‖v‖22 > 3/2, contradicting the bound on σ (maximum singular value of M ′).

Appendix C. Proof of Lemma 4.5. We closely follow the proof of Theorem 3.9
in [27]. First, we recall the following concentration theorem used by [27].

Theorem C.1 (Theorem 3.8 of [27]). There is an absolute constant CRV > 0
such that the following holds. Let Y1, . . . , Yr be independent symmetric variables taking
values in some Banach space. Assume ‖Yj‖ ≤ R for all j, and let Y := ‖

∑r
i=1 Yi‖.

Then, for any integers l ≥ Q and any τ > 0, it holds that

Pr[Y ≥ 8QE[Y ] + 2Rl + τ ] ≤
(CRV

Q

)l
+ 2 exp

(
− τ2

256QE[Y ]2

)
.

From this theorem, we derive the following corollary.
Corollary C.2. There are absolute constants C1, C2 > 0 such that the follow-

ing holds. Let Y1, . . . , Yr be independent symmetric variables taking values in some
Banach space. Assume ‖Yj‖ ≤ R for all j, and let Y := ‖

∑r
i=1 Yi‖. Moreover,

assume that E[Y ] ≤ E for some E > 0. Then, for every λ ≥ 1, we have

Pr[Y ≥ (C1 + C2λ)E] ≤ 3 exp(−λ2),

provided that E ≥ λR.
Proof. We properly set up the parameters of Theorem C.1. Let τ := 16

√
QλE.

Suppose R > 0 (otherwise, the conclusion is trivial). Let Q := 
eCRV� so that

(C.1)
(CRV

Q

)l
≤ exp(−l).

Let l := Q
τ/(2R)� = Q
8
√
QλE/R� ≥ λ2, where the inequality is because of the

assumption E/R ≥ λ. The coefficient Q also ensures that l ≥ Q. Note that

(C.2) R ≤ E/λ ≤ Eλ ≤ τ ⇒ 2Rl ≤ 2RQ(τ/(2R) + 1) = Qτ + 2QR ≤ 3Qτ.

Thus,

Pr[Y ≥ 8QE + 2Rl+ τ ] ≤ Pr[Y ≥ 8QE[Y ] + 2Rl+ τ ] ≤ 3 exp(−λ2),

where the second inequality follows from Theorem C.1 and by observing the choice of
τ , the bound (C.1), and the lower bounds on l. Finally,

8QE + 2Rl+ τ
(C.2)

≤ 8QE + (3Q+ 1)τ = 8QE + 16(3Q+ 1)
√
QλE =: (C1 + C2λ)E,

where C1 := 8Q and C2 := 16(3Q+ 1)
√
Q. The result now follows since

Pr[Y ≥ (C1 + C2λ)E] ≤ Pr[Y ≥ 8QE + 2Rl+ τ ].

D
ow

nl
oa

de
d 

02
/1

2/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RIP AND LIST DECODABILITY OF RANDOM LINEAR CODES 1911

We now return to the proof of Lemma 4.5. In order to prove the desired tail
bound, we shall apply Corollary C.2 on the norm of an independent summation of

matrices. Recall that N = qk̃. Let the variable t ∈ Fk̃
q be chosen uniformly at random,

and consider the random (q− 1)×N matrix A := ϕ(Lin{t}) formed by picking the tth
row of the N×N matrix Lin and replacing each entry by a column vector representing
its simplex encoding. Let A := A
A − (q − 1)IN , where IN is the N × N identity
matrix, and let ‖A‖Υ denote the following norm:

‖A‖Υ := sup
x∈Bk,N

2

∣∣x
Ax
∣∣.

Denote the rows of A by A1, . . . , Aq−1, and observe that for every x ∈ Bk,N
2 and

i ∈ {1, . . . , q − 1},

(C.3) |〈Ai, x〉| ≤ ‖Ai‖∞‖x‖1 ≤
√
k,

where the second inequality follows from Cauchy–Schwarz. Therefore, since

A =

q−1∑
i=1

(A

i Ai − IN )

for every x ∈ Bk,N
2 , we have

x
Ax =

q−1∑
i=1

〈Ai, x〉2 − (q − 1)
(C.3)

≤ (q − 1)(k − 1),

and thus

(C.4) ‖A‖Υ ≤ qk.

Suppose the original random row of Lin is written as a vector over FN
q with coordinates

indexed by the elements of Fk̃
q . That is, Lin{t} =: (w(u))u∈Fk̃

q
=: w. In particular,

w(u) = 〈u, t〉, where the inner product is over Fq. Let u, v ∈ Fk̃
q . By basic linear

algebra,

Pr
t
[w(u) = w(v)] = Pr[〈(u − v), t〉 = 0] =

{
1/q if u 
= v,
1 if u = v.

Note that the (u, v)th entry of the matrix A
A can be written as

(A
A)(u, v) = 〈ϕ(w(u)), ϕ(w(v))〉 (2.1)
=

{
−1 if w(u) 
= w(v),
q − 1 if w(u) = w(v).

Therefore, from this we can deduce that E[A
A] = (q − 1)IN , or in other words, all
entries of A are centered random variables, i.e., E[A] = 0.

Let X1, . . . , X|T | be independent random matrices, each distributed identically to
A, and consider the independent matrix summation

X := X1 + · · ·+X|T |.
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Since each summand is a centered random variable, X is centered as well. Recall the
random variables Δx and Δ from (4.3) and (4.4), and observe that Δx can be written
as

Δx = x
Xx,

which in turn implies

Δ = ‖X‖Υ.

Thus, the assumption of the lemma implies that

E[‖X‖Υ] ≤ δ′|T |(q − 1),

and proving a tail bound on Δ is equivalent to proving a tail bound on the norm of
X . This can be done using Corollary C.2. However, the result cannot be directly
applied to X since the Xi are centered but not symmetric for q > 2. As in [27], we
use standard symmetrization techniques to overcome this issue. Namely, let B be the
symmetrized version of A defined as

B := A−A′,

where A′ is an independent matrix identically distributed to A. Similar to X , define

Y := Y1 + · · ·+ Y|T |,

where the Yi are independent and distributed identically to B. As in the proof of
Theorem 3.9 of [27], a simple application of Fubini and triangle inequalities implies
that

E[X ] ≤ E[Y ] ≤ 2E[X ],

Pr[X > 2E[X ] + τ ] ≤ 2Pr[Y > τ ].(C.5)

Let E := 2δ′|T |(q − 1) so that by the above inequalities we know that E[Y ] ≤ E.
We can now apply Corollary C.2 to Y and deduce that, for some absolute constants
C1, C2 > 0, and every λ ≥ 1,

(C.6) Pr[Y ≥ (C1 + C2λ)E] ≤ exp(−λ2),

provided that E ≥ λR, where we can take R = qk by (C.4). Plugging in the choice
of E, we get the requirement that

|T |
k

≥ λq

2δ′(q − 1)
,

which can be ensured by an appropriate choice of c3 in (4.36). Finally, (C.5) and
(C.6) can be combined to deduce that

Pr[X > 2E + (C1 + C2λ)E] ≤ Pr[X > 2E[X ] + (C1 + C2λ)E]

≤ 2Pr[Y > (C1 + C2λ)E]

≤ 6 exp(−λ2).

This completes the proof of Lemma 4.5.
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