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1. Introduction 

Recent papers [1, 2] have introduced the concept known as compressive sensing (among 

other related terms). The basic principle is that sparse or compressible signals can be 

reconstructed from a surprisingly small number of linear measurements, provided that 

the measurements satisfy an incoherence property (see, e.g., [3] for an explanation of 

incoherence) . Such measurements can then be regarded as a compression of the original 

signaL which can be recovered if it is sufficient ly compressible. A few of the many 

potent ial applications are medical image reconstruction [4], image acquisit ion [5], and 

sensor networks [6]. 

If the goal is to reconstruct sparse signals from the measurements, a natural 

approach is to find the sparsest signal consistent with the measurements. Let <I> be 

an M x N measurement matrix, and <I>x = b the vector of M measurements of an 

N-dimensional signal x . The approach would be to solve the following optimization 

problem: 

min llull o, subject to <I>u = b. (1) 
u 

Here , the £0 norm II · llo simply counts the number of nonzero components. (This is a 

standard abuse of terminology: II · llo is not a norm, not being positive homogeneous.) 

In principle, this strategy is effective. For example, in the particular case of random 

measurements, where the entries of <I> are drawn from a Gaussian distribut ion, and a 

signal x with llxl lo = K, then with probability 1 the problem (1) will have a unique 

solut ion that is exact ly u* = x, as long as A1 > K . If we have M 2: 2K, we can 

strengthen this statement to say that with probabili ty 1, our choice of <I> will allow ( 1) 

to perfectly recover all signals x satisfying ll xllo ~ K . Proofs of these statements can 

be found in [6]. 

Unfortunately, solving ( 1) would appear to require combinatorial optimization, and 

be utterly intractable to solve. In fact , it is provably NP-hard [7]. However, a remarkable 

result of Candes and Tao [8] for random, Gaussian measurements is that we can recover 

x with llxl lo = K with high probability as the unique solut ion solut ion of the convex, 

basis pursuit problem [9]: 

min llull 1, subject to <I>u = b, (2 ) 
u 

provided lvl 2: CK log( N / K ) for some constant C . The required C depends on the 

desired probabili ty of success, which in any case tends to one as N ~ oo . Because (2) 

is convex, it can be solved efficiently, a much better situat ion than that of (1 ). The cost 

is that more measurements are required, depending logari thmically on N. (Note that 

the above is only a sufficient condition, but Donoho and Tanner [10] have computed 

sharp reconst ruct ion thresholds, so that for any choice of sparsity K and signal size N, 

the required number of measurements M for (2) to recover x with high probability can 

be determined precisely. Their results replace log( N / K ) with log( N / M ), showing that 

logarithmic growth in N is necessary.) 
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Variants of these results have included <D being a random Fourier submatrix, or 

having values ±1/ VN with equal probability. More general matrices are considererl in 

[3, 11]. Also, :r: can be sparse with respect to any basis , with u replaced with Wu for 

suitable unitary W. 

A family of iterative greedy algorithms [12, 13, 14] have been shown to enjoy a 

similar exact reconstruction property, generally with less computational complexity. 

However, these algorithms require more measurements for exact reconstruction than 

the basis pursuit method. 

In the other direction, it was shown in [1 5] that a nonconvex variant of basis pursuit 

will produce exact reconstruction with fewer measurements. Specifically, the £1 norm is 

replaced with the fP norm, where 0 < p < 1 (in which case II · llP isn 't actually a norm, 

though d(x, y) = llx - Y ll~ is a metric): 

min llull ~, subject to <Du = b. 
u 

(3) 

That fewer measurements are required for exact reconstruction than when p = 1 was 

demonstrated by numerical experiments in [15], wit h random and nonrandom Fourier 

measurements. A theorem was also proven in terms of the restricted isometry constants 

of <D (see section 2), generalizing a result of [16] to show that a condition sufficient for 

(3) to recover x exactly is weaker for smaller p. In this paper, we will show for the 

case of random, Gaussian measurements that the above condition of Candes and Tao 

generalizes to 

A1 ~ C1(p )K +pC2 (p) K log(N /K) , (4) 

where C1 , C2 a.re determined explicitly, and are bounded in p. T hus, the dependence of 

the sufficient number of measurements NJ on the signal size N vanishes as p --7 0. 

2. Restricted isometry properties 

In [16], Candes and Tao introduce the notion of restricted isometry constants of a matrix. 

Let <D be an !vl x N matrix, \vhere M < N , and L a positive number. Then 8L is the 

smallest number such that 

(1 - 8 L)l lxll ~ :::; ll<Dxll~:::; (1+ 8 L) llxll ~ (5) 

for all x such that llxl lo :::; L. T hus, bL quant ifies how close to isometrically <D acts 

on L-sparse vectors, or how close to isometric must NJ x L submatrices of <D be. The 

fo llowing theorem illustrates the relevance of these constants. 

Theorem 2.1 (Candes-Tao) . Let.T E ffi.N have sparsity llxllo = K, and suppose <D is a 

matrix satisfying the f ollowing: 

r53K + 3r54K < 2. (6) 

Then x is the unique minimizer of (2) . 
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It is clear from their proof that the constants 3, 4, and 2 can be replaced with b, 

b + 1, and b - 1 for any b > 1. There is a tradeoff between the increase of <5bI< and the 

weakening of the condition on the constants, with the resulting optimal value of b not 

known. 

The above sufficient condition is then shown [16] to be met with high probability 

for random, Gaussian <I> provided A1 :;:::: CK log( N/K ) for some constant C. 

In [17], theorem 2.1 was generalized to the case of £P minimization: 

Theorem 2.2. [17] Let x E JRN have sparsity llxll o = K , 0 < p :::; 1, b > 1, and 

a = bPl(2-pJ . Suppose that <I> satisfi es 

<5aK + M(a+l)K < b - 1. (7) 

Then the unique m inimizer of (8) is exactly x . 

Since bP/( 2- pl < b for p < 1, the sufficient condition (7) is weaker than (6) when 

p < 1. The following corollary appears in [15] : 

Corollary 2.3. Given x with llxllo = K, suppose <I> is such that 02K+ I < 1. Then there 

is p > 0 such that the unique minimizer of (8) is exactly x. 

The corollary says that the limiting case of theorem 2.2 as p ___, 0 is essent ially 

the £0 case. It follows from the theorem by simply choosing b sufficiently large, then p 

sufficiently small. 

In this paper, we consider a different not ion of restricted isometry constant, based 

on the fact that we are working with f.P norms. For an 1\1 x N matrix <I>, L > 0, and 

0 < p :::; 1, we define the restricted p-isometry constant o L to be the smallest number 

such that 

(1 - <5L) llxll~ :::; ll<I>x l l~ :::; (1 + oL) llxll~ (8) 

for all x such that llx llo :::; L. V./e do not explicit ly indicate the dependence of OL on p 

(or <I> , as before) , which should not cause confusion. Also, for the rest of the paper, the 

definition of <5L will be given by (8), and not (5). T his newer notion quantifies how close 

<I> is to an isometric embedding of £ -dimensional subspaces of £2(IRN) into £P(JRM). A 

similar definition in the case of p = 1 appears in [18], and is related to the Banach-Mazur 

distance of Banach space theory. 

We now generalize theorem 2.2 to the new setting. 

Theorem 2.4. Let <I> be an 1\1 x N matrix wi:th M < N, x E IRN, and let K = llxllo be 

the size of the support of x. Let 0 < p :::; 1, b > 1, a = b2
/(

2- pJ. Suppos e that <I> satisfies 

OaK + M(a + l)K < b - 1. (9) 

Then the unique minimizer of (3) is exactly .T . 

Proof. \Ve 'Nill prove something slightly stronger, that ll<I>xllf, can be replaced with 

(1 /c)ll<I>xl lf, in (8) for any c > 0. Although the isometry constants are not scale 

invariant, the sufficient condition is . The proof generally modifies that of [19], but 
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with a simplification. (Specific ally, equation (2.2) therein is not required.) We consider 

a solution u of (3) (t ha t one exists is geometrically obvious) . Let h = u - x; we wish to 

show that h = 0. For TC {1, .. . , N}, <I>r will denote the matrix equalling <I> in those 

columns whose indices belong to T, and otherwise zero , and similarly for t he vector hr . 

Let T0 be the support of x . By the triangle inequali ty for II · II ~ , we have 

111 x11 f, - 11 - hro 11 ~ I ::; 11.x + hro 11 f, . (10) 

Since T0 n T0 = 0, we have 

l lxll~ - ll hro llf, + ll h r 0 ll~::; llx + hro + h r 0 l l ~ = llx + hll~ = llull~ 

::; llxllf, , (11) 

t he last inequality holding because u solves (3). T he result is t hat 

(1 2) 

In other words, although u need not be sparse, a bound exists on t he portion of u outside 

the support of x. 

Let L = aK. Arrange the elements of T0 in order of decreasing magnitude of lhl 
and partition into T0 = T1 U T2 U · · · U T.1 , where each TJ has L elements (except possibly 

TJ ). We do this because the restric ted isometry condition gives us control over the 

action of <I> on small sets. Denote T01 = T0 U T1. We decompose <I>h: 

J p 

0 = ll<I>u - <I>:rllf, = ll<I>hllf, = ll<I>ro1 hro1 + L <I>r1 hr1 II 
j = 2 p 

J J 

~ l l<I>ro1 h T01l l~- 1 1 L<I>rjhr 1 llP ~ ll<I>ro1hT01l lf,- L ll<I>r1 hr1 llf, 
j = 2 p j = 2 

J 

~ c( l - bL+Ed llhr01lli - c( l + 61-) L llhr1 ll i- ( 13) 

j = 2 

Now we need to control the size of the llhr
1

1'2- 'vVe aim to use (1 2), for which we 

must estimate the €2 norm in t erms of the £P norm. For each t E TJ and s E Tj _1 , 

lh(t) I::; lh(s)I , so t hat 

Then 

lh(t) IP ::; llhr1_1 ll f, / L . 

lh(t)l2 ::; llhrj- 1 llf,/ L 21
P, 

llhr; II~ ::; Lll hr1_ 1 II;/ L 21
P, 

llhr
1 
Iii ::; llhr1- 1 I I~ / L

1
- P

12
, 

(14) 

( 15) 

(16) 

(17) 



Restricted isornetry properties and noncorwex compressive sensing 6 

so that 

J J J 

L llhrJ II~ :S (L ll hr1 II~ ) / L I - p/
2 = (LL lh(t ) IP) / L 1

- Pl
2 

j =2 j = l j = l t ETj 

= ll hrci 11~/ L
1

- P
12

. ( 18) 

!\ow we may use (12), and then convert back from fl!' to £2 by means of Holder's 

inequality : 

llhT,11: = ~ lh(t)IP 1 '.". ( p h(t)I' r ( ~? rl 
= ll h 1 0l l~ K l - p / 2 . 

Combining, we obtain 

J K i P. 

Lllhr 1 l l~ :S ll hro ll~/£ 1 -p/ 2 
:S Jl hro ll ~( L ) -

2 

= J lhr 0 ll~/a 1 - p/ 2 

j =2 

= ll h r 0 11 ~ / b. 

Putting together with (13), we have 

0 ~ c(l - 6L+K) llhr01 lli - c( l + 6L)llhr0 ll2/b 
~ c (1 - 6L+K - (1+ 8L) /b) JJ hr01 IJ~ . 

(19) 

(20) 

(21 ) 

The condition (9) of the theorem ensures that the scalar factor is positive, so hr
01 

= 0. 

In part icular, hr
0 

= O; then h = 0 follO\vs from (12). 0 

Since 2/(2 - p) = 1 + p/ (2 - p), the dependence of (9) on pis the same as that of 

(7) . In the next section, we will determine how many random, Gaussian measurements 

are needed for (9) to be satisfied wit h high probability. 

3. Restricted p-isometry property of random, Gaussian matrices 

Henceforth, <I> will denote an !vl x N matrix whose entries are i.i.d. Gaussian random 

variables, specifically (/Jij "' N (O, a 2
). Our results will not depend on the choice of a . 

Note that for x E JRN , we can write 

N N 

ll<I>xll~ = L J(<I>x)ilP = L IWiJP, (22) 

i= l i=l 

where each lVi = "2:;~ 1 X j (/J ij is a Gaussian random variable of mean zero and variance 

llxlJ~a 2 . We have that Jl<I>xl l ~ is a sum of independent random variables Xi = J~V iJ P , 

having an identical distribution whose propert ies are straightforward to calculate. For 

example, its mean isµ= IE (X) = Jlx JJ ~aP2P l 2 r(P~ 1 )/ J1f, and its density function is 

V2 t 2 / p 

fx (t) = t i - le -2 llxll~ u2 (23) 
Pll xl l2aJ1f 
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for t > 0 and otherwise zero. T hese can be obtained via changes of variable in the 

integrals defining them in terms of the Gaussian distribution. In the sequel we shall 

find it simpler to work with the Gaussian density than with f x . 

We thus adopt the perspective of l l <I>xll~ as a random variable, and 'vVi ll use 

probabilistic methods to prove the main theorem of the paper: 

Theorem 3.1. Let 1> be an M x N matrix whose elements are i.i.d. random variables 

distributed normally with mean zero and variance CJ
2

, where !VI < N . Then there are 

constants C 1(p ) and C2 (p) such that whenever 0 < p ::; 1 ond 

lV! 2: C1(p)K + pC2 (p) K log( N/K ), (24) 

the following is true with probability exceeding l/ (Z): For any x E JRN with sparsity 

llxllo = K, x is the unique solution of (3) (wh ere b = <I>x) . 

The main approach of the proof will be as follows: 

(a) for a fixed sparse x, bound the probabili ty that (8) fails; 

(b) deduce bounds on the probability that (8) fai ls (as a condition uniform in x); then 

( c) determine 111 sufficiently large for theorem 2.4 to hold with high probability. 

Similar approaches can be found in [16, 18], but with substantially different methods 

used to ful fill them. Since (6) can be regarded as a st atement about the singular values of 

1>, Caneles and Tao [16] invoke powerful concentration of measure results [20] concerning 

singular values in order to achieve (a). Since we are working in the context of (9) . 

such an approach is not available to us. Similarly, Donoho [18] uses concentration of 

measure applied to a weighted £1 norm, possible since this defines a Lipschitz function . 

The analog for our case would involve a pth power of a weighted fP norm, which is not 

Lipschitz. (It is Lipschitz with respect to the metric induced by II· II~ ; however , applying 

concentration of measure would require knowing the concentration function of Gaussian 

measure with respect to this metric; see [20]. Determining this concentration function 

would require solving a difficult isoperimetric problem, which may be of independent 

interest.) Like Donoho's, our approach to (b) will generalize the proof of Dvoretzky's 

theorem found in Pisier's book [21], but following Donoho's argument would not yield 

a sufficiently sharp result when p is small. 

We begin with (a) , which we regard as a large deviation inequality for the random 

variable 11 <I>x II~· Since this is the sum of M independent random variables, what is 

needed can be thought of as a quantitative, nonasymptotic form of the central limit 

theorem. Known bounds on the tails of L i xi in terms of t he tails of the xi, such 

as those arising from Hermitian or Edgeworth expansions [22], were not quite sharp 

enough. Instead we will make use of the theory of subgaussian variables (see [23]), those 

having tails dominated by a Gaussian density function. The density fx above shows 

that the tails of the random variable X = llVIP = IO" llx ll2ZIP, where Z is standard

normally distributed, are much thinner than Gaussian. T he consequence is that X is 

<p-subgaussian with cp(t) = t2
1(

2- pJ for large t, but in the end this turns out to yield an 

inferior bound [23, Corollary 2.4.2]. 
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Lemma 3.2. Let 0 < p S 1, r7 > 0, 1 S L S N , .'.C E JR L, Wan Pd x L submatrix of <I> 

as in theorem 3. 1. De.fine µP = µ /llx l l~, which is independent of :r: . Then 

(25) 

- '7 2 Af 

with probability e:J:ceeding 1 - PAJ,p(lJ) = 1 - 2e 2
pcµ , where 

r( p+ l) -l/p 
Cp S (31/40)

1
/

4 
[ 1. 15 +JP( .;- ) ] . (26) 

:'.'Jote that Gp := ( f ( P ~ 1 ) /j7f )
1
/ P is an increasing fu nct ion of p , bounded belovv by 

e- 1 /2 ~ 0. 377. 

Proof. We approach (25) as a large-deviat ion inequali ty for the random variable lllJJ:rll ~ , 

a sum of M independent copies of the random variable X = lcrllxll 2 ZIP, Z ,...., N(O, 1) 

as descr ibed above in the case of t he full matrix <I> . Such inequalities are simple to 

establish for random variables satisfy ing IEe>..(X - µ ) S e
72 

>..
2 

/
2 for all >. . T he left side of 

this inequality is t he m oment-generating function of X - µ, and the inequality is the 

defini t ion of X - µ being subgaussian. We now seek to determine an upper bound fo r 

such a T . Vie will employ t heorem 1.3 of [23], which gives the bound 

2kk' .,Jr; 
TS sup(3.1 )

1
/
4 

[ -( )'
1
IE (X - µ)

2
kJ- . (27) 

k 2'. l 2k . 

Examination of the proof of this theorem shows that t he constant (3. 1) 114 can be lowered 

for k = 1 to y776. 
\Ve est imate IE( X - µ) 2

k: 

1
= -5 

2k e 2a 
lE(X -- f l)

2
k = ( lx lP - µ) , __ dx 

-x ,/21rcr 
1 ; ·oc , .2 

= cr ./i/2 
0 

(xP - 11)
2
"e-2:;'1 dx . (28) 

We break this integral into two parts : 11 from 0 to µ l/p, 12 the rest . 

11 S (:r:P - µ)2k dx = (µu - µ )2kt!.__ u1 fp-1 du 
1 1f'l /p . 1 1·1 l / p 

(T ./i72 0 (T ./i72 0 p 

µ2k + l / p 11 . µ 2k+ l/p 

= (1 - -u) 2
"?..t

1
/p-t du = B (2k + 1, l /p) . 

Jm ~ o per ./i72 
(29) 

In bounding the Beta funct ion , we will need to strike a balance between desirable 

dependence on p , and controll ing the growth in k: 

2k . 

B( k I ) q2k + 1)r( 1/ p II 1 
2 "+ 1l p = = p 

' r(2k+ l+l/p) j=l j + l / p 

k 2k k 2k 

=.k+lII J II J < k+lII . II 1 
p . 1 . 1/ - p J 

j=l PJ + j = k + l J + p j = l j = k + I 

= pk+lk'. (30) 
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Thus 

µ2k+ l/ppk k! 
I 1 < l:::/<'i . 

- CJ y7r/2 
(31) 

For h, we will apply the mean value theorem to g(t) = tP on t he interval [x, µ L/p], 

obtaining 

(32) 

T hen 

(33) 

noting µ l / p /CJ = J2exP . Thus 

IE(X _ µ)2k < 2pkµ2kex k'/ Ji+ p2kµ2kex- 2k (2k)! (34) 
- p . p 22kk!. 

Now we multiply through by 2kk! / (2k )!. For the first term, we use Stirling's 

approximation [24]: 

2k(k!) 2 2k27rk2k+1e-2keift 
~~- < ~~~~~~~ 

(2k)! - J27f(2k) 2k+ t/2e-2k 
(35) 

(36) 

The first term does not depend strongly on p , so we bound exp by its largest value 

ex 1 = l fi > 1/2. Hence (2exp )fit is decreasing ink, as is e 12~ 2 . Since logk/k is 

decreasing for k > e, in maximizing (36) we need only consider k = 1, 2, and 3. Taking 

into account the remark following (27) , the largest value is calculated to be for k = 3. 

'vVe thus have 

T :S µ1.P72 (3. 1) 114 [(2ex 1) f23 f2e 16s + JP/exp] 

::; µJP (31/40)
1
1

4
[1.15 + JP/exp]· 

Finally, we apply theorem 1.5 of [23], which applied to our setting gives t hat 

Al 
t 2 

P{l l_)xi - µ) J :;: t} ::; 2e- 2A/7-2 . 

i= I 

(37) 

(38) 
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T his theorem comes from estima t ing the moment-generating fu nct ion of the sum. 

making use of t he special fo rm for t he estimate of the NIG F of X - {L , and then applying 

a standard argument us ing Markov's inequality. An entirely equivalent approach is t o 

apply Cramer's theorem, using t he simple form of the Legendre-Fenchel t ransform of 

the logarithm of t he estimate of the MGF; see [25]. In any case, applying (38) wit h 

t = r1M µco m pletes t he proof of the lemma. D 

Now we turn to (b) in the proof strategy for theorem 3.1. Our approach is a 

generalization of the proof of Dvoretzky 's t heorem in [21]. Dvoretzky's theorem was 

generalized by Dilworth to the case of the eP quasi-norm [26]; however, bet ter bounds 

result by considering the met r ic induced by II · I I ~ instead. 

Lemma 3.3. Let 0 < p ::;; 1, W an NI x L submatrix of <f> as in theorem 3. 1. Let 6 > 0. 

Choose 77 , E > 0 such that i ~:: ::;; 6. T hen 

Af µp (l - b) ll x lli::;; l l'llxl l~::;; 111µ,p(l + b) llx ll i (39) 

holds uniformly for x E JR L with pro bability exceeding 1 - ( 1 + 2/ E) L P1.,1,p( 77) . 

Proof. Let S be the unit sphere of t he €2 norm in JR L. Let A be an E-net of S (wit h 

respect to the e2 metric ) having at most (1 + 2/ E )L points. T hen t he probability that 

(25) fails for any x EA is at most (1+ 2/E)LPM,p('TJ). Assume now that w is such that 

t he t ai l bound ( 25 ) holds uniformly on A. 

F irst, let x E S. Then we can find x 0 E A such that llx - .r 0 ll 2 ::; E. Letting 

E1 = llx - :ro ll 2 , we have that (x - .::r0 ) / E1 E S. T hen we can find X 1 E A wit hin E of 

this quantity; continuing in this fashion , we obtain sequences (En ) and (xn) C A such 

tha t I En I ::;; En, and 11 x - L~ ~ o EnXn I I 2 :S; EN+ 
1, where Eo = 1 for not at ional convenience. 

Therefore x = I: ~= o EnXn· (Note that if any En is zero, we can t erminate t he series a t 

the preceding term and obtain an element of A, which only strengt hens what follows .) 

Now we calculate , denoting c = l'vl µP, using that we know the tail bounds hold for 

each x 11 • and t hat Xn E S: 

00 p 00 00 

ll'llxll~ = ll LEnWXn llp :S; L lknW J;n ll ~ = L IE n lP l l W x nl l ~ 
n=O n=O n =O 

::; ~ Enp(l + r1)c = (1 + 77) c = (1 + 77 + EP) c. 
L 1 - EP 1 - EP 
n = O 

Also , since by the triangle inequa lity 

ll l'llxll~ - 11'11 . ::r o ll ~ I ::;; ll'llx - Wx o l l~, 

we obtain similarly 

Jwxl l ~ 2". l l'll x o ll ~ - I I~ EnWXn llP 2". (1 - 77) c - (l + 'TJ) CEP 
L p 1 - fP 
n = l 

= (1-r7+EP)c. 
1 - EP 

( 40) 

(41 ) 

( 42) 
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J\ow let let x =I- 0 be arbitrary. T hen x /I Jx ll2 E S, so 

( 
T] + EP ) ( T] + EP ) 

1 - -- c::; ll'llx /ll xll2 l l~ ::; 1 + -- c, 
1 - fP 1 - f P 

( 43) 

so 

(1 - c5) cllxll~ ::; ll'll x ll~::; (1 + c5) cl lx ll i - ( 44) 

\Ve therefore have that ( 44) holds uniformly on IR K with probability exceeding 

1 - (1 + 2/E)L PM,p (TJ ). D 

We can now bring the pieces together and complete the proof of our main theorem. 

Proof of theorem 3.1. \hle need to determine how large M must be for (9) to hold 

with high probability, which we have chosen to m an failure probability at most 

1/ ( ~ ) . In applying our lemmas, we will make use of the remark beginning the proof 

of theorem 2.4, with c = M µP . It will be simpler to show the stronger condition 

that c5(a+l)K < (b - l )/ (b + 1). Leaving b undetermined for the moment, we let 
2 

L = (a+ l )K = (b2
- p + l) K , let TJ = r(b - l) / (b + 1) for r E (0, 1) to be chosen 

shortly, and let EP = (1 - r)(b - 1) /2b. We have (TJ + EP )/ (1 - EP) ::; (b - l)/(b + 1). 

(We should really require strict inequality, perhaps by letting TJ = r0 (b - l )/ (b + 1) for 

r0 < r, but the lack of sharpness in our estimates will render this unnecessary.) Then 

by lemma 3.3, an upper bound for the probability that any kl x L submatrix of <I> fails 

to sat isfy (39) is 

(~) (1 + 2/E)L2e - ~. (45) 

\Ve want this quantity t o be bounded above by 1/ ( ~ ) 2 Nlfz:K. For this it suffices that 

A1 2:: 
2
~~; [ L (log ~ + 1 + log ~ ) + log 2 + K (log Z + 1) J 

2pc; [ ..JL ( N 1 1 2b ) 
= (b- l)2 K(b 2

- p + 1) log K + log _2 + 1 + log 3 + - log ( )(b ) 
r2 (b+1)2 b2- p + 1 p 1 - r - 1 

+ log 2 + K (log Z + 1) J 

( 2c~(b + 1)
2 

_2 2b ) 
= r 2(b - 1)2 (b

2

-p + l) log (1 - r) (b - 1) K 

( 
2c

2 

( b + 1) 
2 

) [ ( 2 1 ) 
+p r;(b -l)2 log 2 + ( b 2 - p+l)(lo g3+l og b ~+l)+l K 

+ ((b 2:p + J. ) + 1 ) K log ZJ. (46) 
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We can substitute any b > 1 and r E (0 , 1) , and the theorem follows. These are 

free parameters, which can be chosen independent ly for each p . To be somewhat more 

concrete, we choose valu s minimizing the constant C1 at p = 0, which means minimizing 

(b+1)'1 
. 2b 

r2(b - 1) 2 log (1 - r) (b - 1) · 
( 47) 

A numerical computation yields an approximate minimum value of 52.38 at r = 0.847 

and b = 5.43. Substituting gives the sufficient condition 

16.3c;(5.43 2_:P + l)K 

+p16.3c; [1og2+ (( 5.43~ + l)(lo g3- l og(5.43 ~ + 1)) + 1)K + 

_p_ NJ (5 .43 2
- p + 2)K log K . (48) 

D 

The above gives an estimate of C1 (0) ~ 122, which is rather far from sharp. 

Numerical experiments (see section 4) suggest a value less than 3. The proof has 

many sources of non-sharpness, from the various estimates, to the exponential-Markov 

inequality argument behind theorem 1.5 of [23] which is never sharp. Although much 

of the above can be tightened somewhat , it is doubtful that our approach can give 

sharp constants. However, our efforts have yielded a condit ion that shows clearly that 

decreasing p allows fewer measurements to be sufficie nt for (3) to successfully recover 

sparse signals. 

We note further that our restricted isometry approach yields a, condition sufficient 

for (3) to recover all sufficiently sparse signals, with high probability for a given choice 

of <P. Such a uniform recovery probability is desirable for many applications. However, 

what our approach is unable to obtain is a condition sufficient for a choice of <P to recover 

a single sparse signal x with high probability. In situations where such a nonuniform 

condition would be adequate, a substantially weaker condition should be sufficient. In 

the case of p = 1, the polytope approach of Donoho and Tanner [10] gives both sharp 

recovery thresholds and estimates for both uniform and nonuniform recovery. It would 

be valuable to extend this approach to the nonconvex setting. 

4. Numerical experiments 

In this section we run empirical tests checking how many random, Gaussian 

measurements are needed for (3 ) to reconstruct a sparse signal. Vve solve (3) using 

an iteratively-reweighted least squares (IRLS) method. We begin with the minimum 

£2-norm solution of <Px = b, u (O) = A+b, and set Eo = 1. We then let u(n) be the solution 

of 

subject to <Pu = b, ( 49) 
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where the weights are given by 

Wi = ((u;n) )2 + Ej)p/2- 1. 

The solution can be given explicit ly as 

U(n) = Qn<J?T (<J?Qn<J?T( lb, 

13 

( 50) 

(51) 

where Qn is the diagonal matrix with entries 1/ wi· This iteration is continued until 

convergence, deemed to be when the relative £2-norm change from the previous iterate 

is less than JEi/100. The whole process is then repeated with Ej+ I = fj/10, with 

u (O) being the solution at the previous stage, through a minimum E of 10- 13
. This is 

the algorithm used in [27], and uses a similar E-regularization strategy as used in the 

projected gradient algorithm in [15]. The algorithm differs from the FOCUSS algorithm 

of Rao and Kreutz-Delgado [28] only in the use of E. Results in [27] show this f approach 

to give drastically better sparse recovery results than the FOCUSS algorithm. 

We fix N = 256 and K = 40. For each of 100 trials, we randomly select the ent ries 

of an 140 x 256 matrix A from a Gaussian distribut ion with mean zero and unit variance, 

randomly select which 40 components of x will be nonzero, and randomly select their 

values from a mean-zero, unit-variance Gaussian distribution. We then use the above 

algorithm to solve (3), with <T? consisting of the first NJ rows of A , for each Af from 60 

to 140. This is all done for each p E {0.01, 0.02, ... , 1}, with the same matrices A and 

signals x used for each p. We also do it for p = 0, which amounts to minimizing the 

object ive L ; log(uz + 10- 13
). 

The results are in figures 1 and 2. On the one hand , reducing p below 1 clearly 

reduces the number of measurements needed for perfect recovery, and the improvement 

is nearly monotonic in p. On the other hand, t here is almost no improvement for p much 

below 1/2 . T his is in cont rast with the form of our theoretical results; this suggests the 

possibility that for small p, more measurements may be needed for the algorithm to 

converge to the global solution than are needed for the global minimizer to equal the 

sparse signal. 

We consider the signal successfully recovered when the sup-norm error is below 

10- 4
. We always find in such instances that furt her iteration of the algori thm through 

smaller values of E results in still smaller sup-norm errors, generally below 10- 13
_ For the 

number of outer iterations chosen, figure 3 shows that when the signal x is recovered, 

smaller values of p give much smaller reconstruction errors . Thus, using smaller p 

results in either a more accurate solution, or a solution of specified accuracy obtained 

more quickly. Vle also note that the number of iterations needed for convergence for 

each value of E also increases as p increases. 

Of course, the algorithm can only be expected to produce a local minimum of (3). 

However, when our solution is exact ly x , that we have results that give circumstances 

under which the global solution of (3) is x strongly suggests that we are computing 

global solutions, at least under a reasonable set of circumstances. 
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Figure 1. Plots of exact recovery frequency versus the number of measurements, for a 

few values of p. T he signals have N = 256 components, K = 40 of t hem being nonzero. 

Compared with p = 1, we see a d ramatic decrease in t he number of measurements 

needed for p even slight ly less t han 1. Reducing p much below 1/2 gives only a sl ight 

increase in the recovery frequency, and does not reduce the number of measurements 

needed for recovery to always be observed. 
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Figure 2 . Same data as in figure 1, bu t wit h every p shown. The perfect recovery 

threshold is surprisingly flat for p < 1/ 2; t his suggests that t he algorithm may not be 

converging to the global minimum as often for smaller p. 
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Figure 3. T he smallest , median, and la rgest sup-norm error among successfully 

recovered ·ignals x. Decreasing p resul t s in a much more accurate solution for the 

same number of outer iterations. 

5. Conclusions 

The results in this paper and in [15] give several ways in which fP minimization can be 

seen to allow recovery of sparse signals using fewer measurements than £1 minimization. 

Our condition for how many random, Gaussian measurements are sufficient with a 

combinatorially-small probability of failure , though not sharp, shows a clear structural 

dependence of the number of measurements on the value of p. These findings are 

partially supported by our numerical experiments, in that reducing p reduces the number 

of measurements needed for perfect recovery, but seemingly by le s than expected for 

small p. We also find that when sparse recovery is successful , fewer iterations of our 

process are required to give very complete convergence when p is small. 
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