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RESTRICTED LIMITS OF MINIMAL AFFINIZATIONS

ADRIANO MOURA

We obtain character formulas of minimal affinizations of representations of
quantum groups when the underlying simple Lie algebra is orthogonal and
the support of the highest weight is contained in the first three nodes of the
Dynkin diagram. We also give a framework for extending our techniques to
a more general situation. In particular, for the orthogonal algebras and a
highest weight supported in at most one spin node, we realize the restricted
classical limit of the corresponding minimal affinizations as a quotient of
a module given by generators and relations and, furthermore, show that
it projects onto the submodule generated by the top weight space of the
tensor product of appropriate restricted Kirillov–Reshetikhin modules. We
also prove a conjecture of Chari and Pressley regarding the equivalence of
certain minimal affinizations in type D4.

Introduction

The representation theory of affine Kac–Moody algebras and their quantum groups
has been intensively studied from a broad range of perspectives in the last two
decades. In this paper, we focus on nontwisted quantum affine Kac–Moody al-
gebras and their finite-dimensional representations. Let g be a finite-dimensional
simple Lie algebra over the complex numbers, let g̃ = g ⊗ C[t, t−1

] be the as-
sociated loop algebra, and let Uq(g) and Uq(g̃) be their Drinfeld–Jimbo quantum
groups over C(q), where q is an indeterminate. The affine Kac–Moody algebra
is a one-dimensional central extension of g̃, but since the center acts trivially on
finite-dimensional modules, it suffices to consider the loop algebra. It turns out
that the finite-dimensional representations of Uq(g̃) are `-weight modules, that
is, every vector is a linear combination of common generalized eigenvectors for
Uq(h̃), where h is a fixed Cartan subalgebra of g and h̃= h⊗C[t, t−1

]. Moreover,
the simple modules are highest-`-weight and the set of all dominant `-weights is
in bijection with the monoid P+q of n-tuples of polynomials in one variable with
constant term 1, where n is the rank of g. The set of all `-weights corresponds
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to the group Pq associated to P+q . By specializing q at 1, one recovers the finite-
dimensional representation theory of g̃.

Given a nonzero complex number a, let eva : g̃ → g be the evaluation map
x ⊗ f (t) 7→ f (a)x . If V is a g-module, one can consider the pullback V (a) of V
by eva . In particular, every irreducible g-module can be turned into a g̃-module.
In the quantum case, unless g is of type A, there is no analogue of the evaluation
map, and in fact, most often an irreducible Uq(g)-module cannot be turned into a
Uq(g̃)-module. By allowing the underlying vector space to be enlarged in a “con-
trolled” way, a concept of quantum affinization of an irreducible Uq(g)-module
was introduced in [Chari 1995]. Two affinizations are said to be equivalent if they
have isomorphic Uq(g)-structures. It follows from the classification of the finite-
dimensional irreducible Uq(g̃)-modules that every finite-dimensional irreducible
Uq(g)-module has at least one equivalence class of affinizations. Moreover, there
are finitely many equivalence classes of affinizations, and the usual partial order on
the weight lattice P of g induces a partial order on the set of equivalence classes of
affinizations of a given irreducible Uq(g)-module. Representatives of the minimal
elements with respect to this partial order are called minimal affinizations. Al-
though an almost complete classification of the highest `-weights of equivalence
classes of minimal affinizations was obtained by Chari [1995] and by Chari and
Pressley [CP 1996b; 1995; 1996a], their structure remained essentially unknown
except when g is of type A or B2. Further progress was made after the introduction
of the concept of q-characters in [Frenkel and Reshetikhin 1999], which we prefer
to call `-characters as explained in Section 4.8.

The `-character of a finite-dimensional Uq(g̃)-module V is the associated el-
ement char`(V ) of the integral group ring Z[Pq ] that records the dimensions of
the `-weight spaces of V . Given λ ∈ P+q , let us denote by Vq(λ) the irreducible
Uq(g̃)-module with highest `-weight λ. Finding formulas for the `-character of
Vq(λ) is still an open problem in general. In [2001], E. Frenkel and E. Mukhin
defined an algorithm, now widely known as the Frenkel–Mukhin algorithm, which
for a given λ∈P+q returns an element of Z[Pq ] that was conjectured and proved in
certain situations to be char`(Vq(λ)). Nakai and Nakanishi [2008] recently showed
this is not always the case. However, even in the situations for which the conjec-
ture holds, translating the information given by the algorithm into general closed
formulas remains a challenge. For further details on the theory of `-characters,
beside the aforementioned literature, see the survey [Chari and Hernandez 2008]
and its references. We remark that Nakai and Nakanishi [2007b; 2007a] give path-
tableaux descriptions of Jacobi–Trudi determinants that, conjecturally, coincide
with the `-characters if g is of classical type. Hernandez [2007] partially proved
this conjecture if g is of type B; see also [Chari and Hernandez 2008].
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Another approach for studying minimal affinizations is to consider their clas-
sical limit. Even though most of the `-character information is lost, this process
provides an effective tool for studying their Uq(g)-structure, that is, their charac-
ters. The Uq(g)-structure of the minimal affinizations belonging to the family of
Kirillov–Reshetikhin modules was obtained in [Chari 2001] partially using this
approach. The proof consisted in showing that the conjectural character was both
a lower and an upper bound for the character of the given Kirillov–Reshetikhin
module. While the latter was proved by working with the classical limit, the
proof of the former was done in the quantum context. Later on, Chari and Moura
[CM 2006; 2007] showed that both “upper and lower bound” parts of the proofs
of the results of [Chari 2001] could be performed by working with the current
algebra g[t] = g⊗C[t]; they also obtained in this manner characters of Kirillov–
Reshetikhin modules for twisted affine algebras. These modules were introduced
in [Kirillov and Reshetikhin 1987] (in the context of Yangians rather than quan-
tum affine algebras) in connection with the Bethe Ansatz. They are the minimal
affinizations of the irreducible Uq(g)-modules whose highest weights are multiples
of the fundamental weights of g.

The main goal of this paper is to initiate a program for extending the approach
of [CM 2006; 2007] to more general minimal affinizations other than Kirillov–
Reshetikhin modules. We prove several partial results in this direction and carry
out the whole program in the simplest cases. In particular, we obtain character
formulas for minimal affinizations in the case that g is orthogonal and the support
of the highest weigh is contained in the first three nodes of the Dynkin diagram of
g. We now give a summary of our results.

Given a dominant integral weight λ =
∑

miωi (where ωi for i = 1, . . . , n are
the fundamental weights of g), we define restricted graded g[t]-modules M(λ)
and T (λ). The former is given by generators and relations, while the latter is the
submodule generated by the top weight space of ⊗i M(miωi ). We conjecture that
these modules are isomorphic. This is a generalization of one of the main results of
[CM 2006; 2007]. The conjecture clearly holds for type A. The defining relations
for the module M(λ) are, roughly speaking, the intersection of the relations sat-
isfied by the corresponding restricted Kirillov–Reshetikhin modules M(miωi ). In
particular, it is immediate that T (λ) is a quotient of M(λ). We prove this conjecture
when g is orthogonal and λ is supported only in the first three nodes of the Dynkin
diagram of g. If g is of type D, the proof also works in the case that both spin nodes
are in the support of λ. As a byproduct of the proof, we obtain the characters of
the modules M(λ) in these cases. Namely, assume g is of type Bn and that the
nodes of the Dynkin diagram of g are labeled as in [Humphreys 1972]. Given
λ= m1ω1+m2ω2+m3ω3, consider the set

A= {r = (r1, r2, r3) ∈ Z3
≥0 : r1+ r2 ≤ [a3m3], r2 ≤ m1, r3 ≤ [a2m2]},
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where [m] denotes the integer part of the rational number m, an = 1/2, and ai = 1
for i 6= n. Then, we have an isomorphism of g-modules:

(1) M(λ)∼=
⊕
r∈A

V ((m1+r1−r2)ω1+(m2+r2−a−1
2 r3)ω2+(m3−a−1

3 (r1+r2))ω3).

Here, V (µ) denotes the irreducible g-module of highest weight µ ∈ P+. If g is
of type Dn with n ≥ 5 and λ = m1ω1 +m2ω2 +m3ω3 +mn−1ωn−1 +mnωn , the
g-structure of M(λ) is given by (1) as well (in this case ai = 1 for all i). If n = 4
and λ ∈ P+, then M(λ)∼=

⊕m2
r=0 V (λ− rω2) as a g-module.

On the other hand, by regarding the classical limit of a minimal affinization
Vq(λ) as a g[t]-module and then shifting the associated spectral parameter to zero,
we obtain modules L(λ), which we call the restricted limit of Vq(λ). Let λ be the
maximal weight of Vq(λ). We prove T (λ) is a quotient of L(λ) in Proposition 3.21.
Moreover, for orthogonal g, we prove in Proposition 3.22 that L(λ) is a quotient
of M(λ) if λ is supported in a connected subdiagram of type A if g is of type D.
Therefore, if indeed M(λ) is isomorphic to T (λ) as conjectured, it would follow
that they are also isomorphic to L(λ) in the above cases. In particular, Equation (1)
describes the Uq(g)-structure of Vq(λ)when g is orthogonal and λ is supported only
on the first three nodes of the Dynkin diagram of g (and possibly on one of the spin
nodes if g is of type D). For g of type B2, Chari [1995] obtained the same result
by working purely in the quantum setting. If g is of type Bn and the value of λ on
the coroot associated to the spin node is even, then the `-character (and hence the
character) of Vq(λ) can be computed using the tableaux expression of the Jacobi–
Trudi determinant; see [Chari and Hernandez 2008, Section 7.6]. We expect that,
if the minimal connected subdiagram of the Dynkin diagram of g containing the
support of λ does not contain a subdiagram of type D4 (in which case Vq(λ) has a
unique equivalence class of minimal affinizations), Proposition 3.22 remains valid
and, hence, that the modules T (λ),M(λ), and L(λ) are isomorphic. We will pursue
proofs of these conjectures in a more general setting in a forthcoming publication.

When Vq(λ) has more than one equivalence class of minimal affinizations, it
is certainly not true that L(λ) is a quotient of M(λ) (in fact, it is the other way
around). Chari and Pressley [1996b] proved that if λ is supported in the triply
connected node of the Dynkin diagram of g, then there are exactly three equivalence
classes of minimal affinizations. We define g[t]-modules Mk(λ) for k= 1, 2, 3 and
prove that L(λ) is a quotient of Mk(λ) for exactly one value of k. Naturally, we
expect that L(λ) is isomorphic to the appropriate Mk(λ). We prove that this is
so if g is of type D4 and obtain the character of Mk(λ) in this case. Namely, let
λ=m1ω1+m2ω2+m3ω3+m4ω4, where the triply connected node is labeled by 4,
suppose {i, j, k} = {1, 2, 3}, and let

Ak = {r ∈ Z3
≥0 : r1 ≤ mk, r1+ r2 ≤min{mi ,m j }, r3 ≤ m4}.
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Then we have an isomorphism of g-modules:

(2) Mk(λ)∼=
⊕
r∈Ak

V (λ− (r1− r2)ωk − (r1+ r2)(ωi +ω j )− (r3− r1)ω4).

If λ is not supported in the triply connected node, Chari and Pressley proved in
[1996a, Theorem 2.2] that the number of equivalence classes of minimal affiniza-
tions of Vq(λ) grows as λ “grows”. Although we do not have a general conjecture
in this case yet, the definition of Mk(λ) makes sense in this case as well, and its
character is computed in the same way as in the previous case. Moreover, the same
proof we applied to the previous case in type D4 also proves that, if λ satisfies the
conditions (a)i, j or (b)i, j of [1996a, Theorem 2.2], then L(λ) is isomorphic to
Mk(λ) for the appropriate value of k and its character is given by Equation (2).
In particular, this proves the conjecture of [1996a] saying that the modules Vq(λ)

with λ satisfying conditions (a)i, j of [1996a, Theorem 2.2] are equivalent to those
with λ satisfying conditions (b)i, j of that theorem.

The techniques used to prove Propositions 3.21 and 3.22 (and their analogues in
the case of multiple equivalence classes of minimal affinizations) require the results
of [Chari 2002]. For the proof of Proposition 3.22, we also use partial information
on `-characters by combining the Frenkel–Mukhin algorithm with results proved
in [CM 2005; Frenkel and Mukhin 2001; Hernandez 2007].

The paper is organized as follows. In Sections 1 and 2, we review some structural
results of the algebras g and g̃ and their quantum counterparts, as well as some
basic results of the finite-dimensional representation theory of these algebras. In
Section 3, after reviewing the partial classification of minimal affinizations, we de-
fine the modules M(λ), T (λ), and L(λ), and state our main results and conjectures
regarding them. The proofs are given in Sections 4 and 5. The case of multiple
equivalence classes of minimal affinizations is treated in Sections 5.11 and 5.18.

1. Quantum and classical loop algebras

Throughout the paper, let C,R,Z,Z≥m denote the sets of complex numbers, reals,
integers, and integers no less than m, respectively. Given a ring A, the underlying
multiplicative group of units is denoted by A×. The dual of a vector space V is
denoted by V ∗. The symbol ∼= means “isomorphic to”.

1.1. Classical algebras. Let I = {1, . . . , n} be the set of vertices of a finite-type
connected Dynkin diagram labeled as in [Humphreys 1972], and let g be the as-
sociated simple Lie algebra over C with a fixed Cartan subalgebra h. Fix a set of
positive roots R+ and let

n± =
⊕
α∈R+

g±α, where g±α = {x ∈ g : [h, x] = ±α(h)x, ∀h ∈ h}.
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The simple roots will be denoted by αi , the fundamental weights by ωi , while
Q, P, Q+, P+ will denote the root and weight lattices with corresponding positive
cones, respectively. Let also hi ∈ h be the coroot associated to αi for i ∈ I . We
equip h∗ with the partial order λ≤ µ if and only if µ−λ ∈ Q+. We denote by W

the Weyl group of g and let w0 be the longest element of W. Given λ ∈ P , set

(1-1) λ∗ =−w0λ.

Recall that if λ∈ P+, then λ∗ ∈ P+ as well. Let C = (ci j )i, j∈I be the Cartan matrix
of g, that is, ci j = α j (hi ), and let D = diag(di : i ∈ I ) be such that the numbers di

are coprime positive integers and DC is symmetric.
The subalgebras g±α for α ∈ R+ are one-dimensional, and [g±α, g±β] = g±α±β

for every α, β ∈ R+. We denote by x±α any generator of g±α. In particular, if
α+ β ∈ R+, then [x±α , x±β ] is a nonzero generator of g±α±β , and we simply write
[x±α , x±β ] = x±α+β . For each subset J of I , let gJ be the Lie subalgebra of g gener-
ated by x±α j

for j ∈ J , and define n±J and hJ in the obvious way. Let also Q J be the
subgroup of Q generated by α j for j ∈ J , and let R+J = R+ ∩ Q J . Given λ∈ P , let
λJ be the restriction of λ to h∗J , and let λJ

∈ P be such that λJ (h j )=λ(h j ) if j ∈ J
and λJ (h j )= 0 otherwise. By abuse of language, we will refer to any subset J of
I as a subdiagram of the Dynkin diagram of g. The support of µ ∈ P is defined to
be the subdiagram supp(µ) ⊆ I given by supp(µ) = {i ∈ I : µ(hi ) 6= 0}. Let also
supp(µ) be the minimal connected subdiagram of I containing supp(µ).

If a is a Lie algebra over C, define its loop algebra to be ã= a⊗C C[t, t−1
] with

bracket given by [x⊗ tr , y⊗ t s
] = [x, y]⊗ tr+s . Clearly a⊗1 is a subalgebra of ã

isomorphic to a and, by abuse of notation, we will continue denoting its elements
by x instead of x⊗1. We also consider the current algebra a[t], the subalgebra of
ã given by a[t] = a⊗C[t]. Then g̃= ñ−⊕ h̃⊕ ñ+ and h̃ is an abelian subalgebra
and similarly for g[t]. The elements x±α ⊗ tr and hi ⊗ tr will be denoted by x±α,r
and hαi ,r , respectively. Diagram subalgebras g̃J are defined in the obvious way.

Let U (a) denote the universal enveloping algebra of a Lie algebra a. Then
U (a) is a subalgebra of U (ã) and multiplication establishes isomorphisms of vector
spaces

U (g)∼=U (n−)⊗U (h)⊗U (n+) and U (g̃)∼=U (ñ−)⊗U (h̃)⊗U (ñ+).

We can uniquely extend the assignments

4:a→U (a)⊗U (a), x 7→ x⊗1+1⊗x, S :a→a, x 7→−x, ε :a→C, x 7→0

so that U (a) becomes a Hopf algebra with comultiplication 4, antipode S, and
counit ε.

Given a ∈ C, let τa be the Lie algebra automorphism of a[t] defined so that
τa(x ⊗ f (t)) = x ⊗ f (t − a) for every x ∈ a and every f (t) ∈ C[t]. If a 6= 0, let
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eva : ã→ a be the evaluation map x ⊗ f (t) 7→ f (a)x . We also denote by τa and
eva the induced maps U (a[t])→U (a[t]) and U (ã)→U (a), respectively.

For each i ∈ I and r ∈ Z, define elements 3i,r ∈U (h̃) by the following equality
of formal power series in the variable u:

(1-2)
∞∑

r=0

3i,±r ur
= exp

(
−

∞∑
s=1

hαi ,±s

s
us
)
.

1.2. Quantum algebras. Let C(q) be the ring of rational functions on an indeter-
minate q , and let A = C[q, q−1

]. Given p = qk for some k ∈ Z \ {0}, define

[m]p =
pm
− p−m

p− p−1 , [m]p! = [m]p[m−1]p . . . [2]p[1]p,
[m

r

]
p
=

[m]p!
[r ]p![m−r ]p!

,

for r,m ∈ Z≥0 with m ≥ r . Notice that
[m

r

]
p ∈ A.

Set qi =qdi . The quantum loop algebra Uq(g̃) of g is the algebra with generators

x±i,r for i ∈ I, r ∈ Z, k±1
i for i ∈ I , hi,r for i ∈ I, r ∈ Z \ {0},

and the defining relations

ki k−1
i = k−1

i ki = 1, ki k j = k j ki ,

ki h j,r = h j,r ki , ki x±j,r k−1
i = q±ci j

i x±j,r ,

[hi,r , h j,s] = 0, [hi,r , x±j,s] = ±
1
r [rci j ]q i x±j,r+s,

x±i,r+1x±j,s − q±ci j
i x±j,s x±i,r+1 = q±ci j

i x±i,r x±j,s+1− x±j,s+1x±i,r ,

[x+i,r , x−j,s] = δi, j
ψ+i,r+s −ψ

−

i,r+s

qi − q−1
i

,

∑
σ∈Sm

m∑
k=0

(−1)k
[m

k

]
qi

x±i,rσ(1) . . . x
±

i,rσ(k)x
±

j,s x±i,rσ(k+1)
. . . x±i,rσ(m) = 0 if i 6= j,

for all sequences of integers r1, . . . , rm , where m = 1− ci j , Sm is the symmetric
group on m letters, and the ψ±i,r are determined by equating powers of u in the
formal power series

9±i (u)=
∞∑

r=0

ψ±i,±r ur
= k±1

i exp
(
±(qi − q−1

i )

∞∑
s=1

hi,±sus
)
.

Denote by Uq(ñ
±) and Uq(h̃) the subalgebras of Uq(g̃) generated by {x±i,r } and

{k±1
i , hi,s}, respectively. Let Uq(g) be the subalgebra generated by x±i := x±i,0

and k±1
i for i ∈ I , and define Uq(n

±) and Uq(h) in the obvious way. Uq(g) is a
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subalgebra of Uq(g̃), and multiplication establishes isomorphisms

Uq(g)∼=Uq(n
−)⊗Uq(h)⊗Uq(n

+) and Uq(g̃)∼=Uq(ñ
−)⊗Uq(h̃)⊗Uq(ñ

+)

of C(q)-vectors spaces.
Let J ⊆ I and consider the subalgebra Uq(g̃J ) generated by k±1

j , h j,r , x±j,s for all
j ∈ J, r, s ∈ Z with r 6= 0. If J = { j}, the algebra Uq(g̃ j ) :=Uq(g̃J ) is isomorphic
to Uq j (s̃l2). Similarly we define the subalgebra Uq(gJ ), and so on.

For i ∈ I , r ∈ Z, and k ∈ Z≥0, define (x±i,r )
(k)
= (x±i,r )

k/[k]qi !. Define also
elements 3i,r for i ∈ I and r ∈ Z by

(1-3)
∞∑

r=0

3i,±r ur
= exp

(
−

∞∑
s=1

hi,±s

[s]qi

us
)
.

Note that

(1-4) 9±i (u)= k±1
i
3±i (q

∓1
i u)

3±i (q
±1
i u)

,

where the division is that of formal power series in u. Although we are denoting
the elements 3i,r above by the same symbol as their classical counterparts, this
will not create confusion as it will be clear from the context.

Let UA(g̃) be the A-subalgebra of Uq(g̃) generated by the elements (x±i,r )
(k)

and k±1
i for i ∈ I , r ∈ Z, and k ∈ Z≥0. Define UA(g) similarly and notice that

UA(g) = UA(g̃)∩Uq(g) . For the proof of the next proposition see [Chari 2001,
Lemma 2.1] and the locally cited references.

Proposition 1.3. Uq(g̃)= C(q)⊗A UA(g̃) and Uq(g)= C(q)⊗A UA(g).

Regard C as an A-module by letting q act as 1, and set

(1-5) Uq(g̃)= C⊗A UA(g̃) and Uq(g)= C⊗A UA(g).

Denote by η the image of η ∈ UA(g̃) in Uq(g̃). The proof of the next proposition
can be found in [CP 1994a, Proposition 9.2.3] and [Lusztig 1993].

Proposition 1.4. U (g̃) is isomorphic to the quotient of Uq(g̃) by the ideal gener-
ated by ki −1. In particular, the category of Uq(g̃)-modules on which the ki act as
the identity operator for all i ∈ I is equivalent to the category of all g̃-modules.

The algebra Uq(g̃) is a Hopf algebra and induces a Hopf algebra structure
(over A) on UA(g̃); see [CP 1994a; Lusztig 1993]. The induced Hopf algebra
structure on U (g̃) coincides with the usual one. On Uq(g) we have, for all i ∈ I ,

(1-6) 1(x+i )= x+i ⊗1+ki⊗x+i , 1(x−i )= x−i ⊗k−1
i +1⊗x−i , 1(ki )= ki⊗ki .
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Lemma 1.5. Suppose x = [x−i1
, [x−i2

, · · · [x−il−1
, x−il
] · · · ]]. Then X ∈UA(n

−) and

1(x) ∈ x ⊗
( l∏

j=1

k−1
i j

)
+ 1⊗ x + f (q)y

for some y ∈UA(g)⊗UA(g) and some f (q) ∈ A such that f (1)= 0.

Proof. When l = 1, this is immediate from (1-6). A straightforward induction on l
using the relations ki x−j = q−ci, j

i x−j ki completes the proof. �

An expression for the comultiplication 1 of Uq(g̃) in terms of the generators
x±i,r , hi , r, k±1

i is not known. The following partial information will suffice for our
purposes. Let X± be the subspace of UA(ñ

±) spanned by {x±j,r : j ∈ I, r ∈ Z}.

Lemma 1.6. 1(x−i,1) = x−i,1⊗ ki + 1⊗ x−i,1+ x for some x ∈ UA(g)⊗UA(g) such
that x̄ = 0.

Proof. It was proved in [Beck 1994; Beck et al. 1999; Damiani 1998] — see
also [CP 1997, Lemma 7.5] — that 1(x−i,1) = x−i,1 ⊗ ki + 1 ⊗ x−i,1 + x , where
x ∈ UA(g̃)X− ⊗UA(g̃)X+. Since the image 1(x−i,1) of 1(x−i,1) in U (g̃)⊗U (g̃)
is x−αi ,1⊗ 1+ 1⊗ x−αi ,1, the image of x in U (g̃)⊗U (g̃) must be zero. �

The following was also proved in [Beck 1994; Beck et al. 1999; Damiani 1998].
Modulo Uq(g̃)X−⊗Uq(g̃)X+, we have, for all r ∈ Z≥1,

(1-7) 1(hi,r )= hi,s ⊗ 1+ 1⊗ hi,r and 1(3i,r )=

r∑
s=0

3i,r−s ⊗3i,s

The following general result on the dual representation of a tensor product of
representations of a Hopf algebra is proved, for instance, in [Kassel 1995].

Proposition 1.7. Let H be a Hopf algebra and V and W be finite-dimensional
H-modules. Then (V ⊗W )∗ ∼=W ∗⊗ V ∗.

1.8. The `-weight lattice. Given a field F consider the multiplicative group PF of
n-tuples of rational functions µ = (µ1(u), . . . ,µn(u)) with values in F such that
µi (0) = 1 for all i ∈ I . We shall often think of µi (u) as a formal power series in
u with coefficients in F. Given a ∈ F× and i ∈ I , let ωi,a be defined by

(ωi,a) j (u)= 1− δi, j au.

Clearly, if F is algebraically closed, PF is the free abelian group generated by
these elements, which are called fundamental `-weights. It is also convenient to
introduce elements ωλ,a for λ ∈ P and a ∈ C(q) defined by

(1-8) ωλ,a =
∏
i∈I

(ωi,a)
λ(hi ).
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If F is algebraically closed, introduce the group homomorphism (weight map)
wt : PF → P by setting wt(ωi,a) = ωi , where ωi is the i-th fundamental weight
of g. Otherwise, let K be an algebraically closed extension of F, so that PF can be
regarded as a subgroup of PK, and define the weight map on PF by restricting the
one on PK (this clearly does not depend on the choice of K). Define the `-weight
lattice of Uq(g̃) to be Pq :=PC(q). The submonoid P+q of Pq consisting of n-tuples
of polynomials is called the set of dominant `-weights of Uq(g̃).

Given λ∈P+q with λi (u)=
∏

j (1−ai, j u), where ai, j belongs to some algebraic
closure of C(q), let λ− ∈ P+q be defined by λ−i (u)=

∏
j (1− a−1

i, j u). We will also
use the notation λ+ = λ. Two elements λ,µ of P+q are said to be relatively prime
if λi (u) is relatively prime to µ j (u) in C(q)[u] for all i, j ∈ I . Every ν ∈ Pq can
be uniquely written in the form

(1-9) ν = λµ−1 with λ,µ ∈ P+q relatively prime.

Given this ν = λµ−1, define a C(q)-algebra homomorphism 9ν : Uq(h̃)→ C(q)
by setting

(1-10) 9ν(k±1
i )= q±wt(ν)(hi )

i and
∑
r≥0

9ν(3i,±r )ur
=
(λ±)i (u)
(µ±)i (u)

,

where the division is that of formal power series in u. The next proposition is easy.

Proposition 1.9. The map 9 : Pq → (Uq(h̃))
∗ given by ν 7→9ν is injective.

Define the `-weight lattice P of g̃ to be the subgroup of Pq generated by ωi,a

for all i ∈ I and all a ∈ C× or, equivalently, P = PC. Observe that every element
λ ∈ P can be uniquely decomposed as

(1-11) λ=
∏

j ωλ j ,a j for some λ j ∈ P and ai 6= a j ∈ C.

Set also P+ = P∩P+q .
From now on we will identify Pq with its image in (Uq(h̃))

∗ under9. Similarly,
P will be identified with a subset of U (h̃)∗ via the homomorphism 9ν :U (h̃)→C

determined by

(1-12) 9ν(hi )= wt(ν)(hi ) and
∑
r≥0

9ν(3i,±r )ur
=
(λ±)i (u)
(µ±)i (u)

.

It will be convenient to introduce the following notation. Given i ∈ I , a∈C(q)×,
and r ∈ Z≥0, define

ωi,a,r =

r−1∏
j=0

ωi,aqr−1−2 j
i

.(1-13)
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Define also the polynomial

fi,a,r (u)=
r−1∏
j=0

(1− aqr−1−2 j
i u).(1-14)

Observe that given f (u) ∈ C(q)[u] having all its roots in C(q) and such that
f (1)= 0, there exist unique m ∈ Z≥0, a1, . . . , am ∈ C(q)×, and r1, . . . , rm ∈ Z≥1

such that

(1-15) f (u)=
m∏

k=1

fi,ak ,rk (u) with al
a j
6= q±(rl+r j−2p) for 0≤ p <min{rl, r j }.

In particular, given λ ∈ P+q such that λi (u) splits in C(q)[u] for all i ∈ I , there
exist unique mi ∈ Z≥0, ai,k ∈ C(q)×, and ri,k ∈ Z≥1 such that

(1-16) λ=
∏
i∈I

mi∏
k=1

ωi,ai,k ,ri,k ,

with
ai, j

ai,l
6= q±(ri, j+ri,l−2p)

i and
mi∑

k=1

ri,k = wt(λ)(hi )

for all i ∈ I, j 6= l, and 0≤ p <min{ri, j , ri,l}.

If J ⊆ I and λ∈Pq , let λJ be the associated J -tuple of rational functions. Note
that if λ j (u) ∈ C(q j )(u) for all j ∈ J , then λJ can be regarded as an element of
the `-weight lattice of Uq(g̃J ). Let also λJ

∈Pq be such that (λJ ) j (u)= λ j (u) for
every j ∈ J and (λJ ) j (u)= 1 otherwise.

Recall that w0 defines a Dynkin diagram automorphism such that w0 · i = j if
and only if w0ωi = −ω j for i, j ∈ I . Given λ ∈ P+q , let λ∗ ∈ P+q be the element
defined by

(1-17) (λ∗)i (u)= λw0·i (q
r∨h∨u),

where h∨ is the dual Coxeter number of g and r∨ =max{ci j c j i : i, j ∈ I, i 6= j} is
the lacing number of g. Define also the element ∗λ by requiring (∗λ)± = (λ∗)∓.

Given i ∈ I and a ∈ C(q)×, define the simple `-root αi,a by

αi,a = (ωi,aqi ,2)
−1
∏
j 6=i

ω j,aqi ,−c j,i .

The subgroup of Pq generated by the simple `-roots is called the `-root lattice of
Uq(g̃) and will be denoted by Qq . Let also Q+q be the submonoid generated by the
simple `-roots. Clearly wt(αi,a) = αi . Define a partial order on Pq by µ ≤ λ if
λµ−1

∈ Q+q .
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2. Finite-dimensional representations

2.1. Simple Lie algebras. We now review some of basic facts of the representa-
tion theory of g and Uq(g). For details, see for instance [Humphreys 1972] or
CP 1994a].

Given a g-module V and µ ∈ h∗, let Vµ = {v ∈ V : hv=µ(h)v for all h ∈ h}. A
nonzero vector v ∈ Vµ is called a weight vector of weight µ. If v is a weight vector
such that n+v = 0, then v is called a highest-weight vector. If V is generated by
a highest-weight vector of weight λ, then V is said to be a highest-weight module
of highest weight λ.

We summarize the basic facts about finite-dimensional g-modules:

Theorem 2.2. Let V be a finite-dimensional g-module.

(a) V =
⊕

µ∈P Vµ and dim Vµ = dim Vwµ for all w ∈W.

(b) V is completely reducible.

(c) For each λ ∈ P+, the U (g)-module V (λ) generated by a vector v satisfying

x+αi
v = 0, hiv = λ(hi )v, (x−αi

)λ(hi )+1v = 0 for all i ∈ I

is irreducible and finite-dimensional. If V is irreducible, then V is isomorphic
to V (λ) for some λ ∈ P+.

(d) If λ ∈ P+ and V ∼= V (λ), then Vµ 6= 0 if and only if wµ ≤ λ for all w ∈W.
Furthermore, the lowest weight of V (λ) is−λ∗. In particular, V (λ)∗∼=V (λ∗).

Lemma 2.3. Let V be a finite-dimensional g-module, and suppose l ∈Z≥1, νk ∈ P ,
and vk ∈ Vνk for k = 1, . . . , l are such that V =

∑l
k=1 U (n−)vk . Fix a decompo-

sition V =
⊕m

j=1 V j where m ∈ Z≥1 and V j ∼= V (µ j ) for some µ j ∈ P+, and
let π j : V → V j be the associated projection for j = 1, . . . ,m. Then, there exist
distinct k1, . . . , km ∈ {1, . . . , l} such that νk j = µ j and π j (vk j ) 6= 0.

Proof. Proceed by induction on m. If m = 1, the lemma is immediate. Otherwise,
suppose, without loss of generality, that µm is a maximal weight of V . In that case,
there must exist km such that νkm =µm and vkm generates an irreducible submodule
of V isomorphic to V (µm). In particular, there exists j such that µ j = µm and
π j (vkm ) 6= 0. Up to reordering, we can assume j = m. The lemma now easily
follows from the induction hypothesis applied to V := V/U (g)vkm and the induced
decomposition V =

⊕m−1
j=1 V j , where V j is the image of V j in V . �

Let Z[P] be the integral group ring over P and denote by e : P→ Z[P], λ 7→
eλ, the inclusion of P in Z[P], so that eλeµ = eλ+µ. Given a finite-dimensional
g-module V , the character of V is defined to be

(2-1) ch(V )=
∑
µ∈P

dim(Vµ)eµ.
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Given a Uq(g)-module V and µ ∈ P , let

Vµ = {v ∈ V : kiv = qµ(hi )
i v for all i ∈ I }.

A nonzero vector v ∈ Vµ is called a weight vector of weight µ. If v is a weight
vector such that x+i v= 0 for all i ∈ I , then v is called a highest-weight vector. If V
is generated by a highest-weight vector of weight λ, then V is said to be a highest-
weight module of highest weight λ. A Uq(g)-module V is said to be a weight
module if V =

⊕
µ∈P Vµ. Denote by Cq be the category of all finite-dimensional

weight modules of Uq(g).

Remark. A Uq(g)-module V satisfying V =
⊕

µ∈P Vµ is usually called a weight-
module of type 1. We shall not discuss what type 1 means here. For further details
see [CP 1994a] for instance.

The character of an object V ∈ Cq is defined by (2-1). The following theorem
is the quantum analogue of Theorem 2.2.

Theorem 2.4. Let V ∈ Cq .

(a) dim Vµ = dim Vwµ for all w ∈W.

(b) V is completely reducible.

(c) For each λ ∈ P+, the U (g)-module Vq(λ) generated by a vector v satisfying

x+i v = 0, kiv = qλ(hi )
i v, (x−i )

λ(hi )+1v = 0 for all i ∈ I

is irreducible and finite-dimensional. If V is irreducible, then V is isomorphic
to Vq(λ) for some λ ∈ P+.

(d) If λ ∈ P+ and V ∼= Vq(λ), then ch(V ) = ch(V (λ)). In particular, Vq(λ)
∗ is

isomorphic to Vq(λ
∗).

If J ⊆ I , we shall denote by Vq(λJ ) the Uq(gJ )-irreducible module of highest
weight λJ . Similarly V (λJ ) denotes the corresponding irreducible gJ -module.

2.5. Loop algebras. Let V be a Uq(g̃)-module. We say that a nonzero vector v∈V
is an `-weight vector if there exists λ∈Pq and k ∈Z>0 such that (η−9λ(η))

kv= 0
for all η∈Uq(h̃). In that case, we call λ the `-weight of v. We say V is an `-weight
module if every vector of V is a linear combination of `-weight vectors. In that
case, let Vλ denote the subspace spanned by all `-weight vectors of `-weight λ.
An `-weight vector v is said to be a highest-`-weight vector if ηv = 9λ(η)v for
every η ∈ Uq(h̃) and x+i,rv = 0 for all i ∈ I and all r ∈ Z. We say V is a highest-
`-weight module if it is generated by a highest-`-weight vector. The notion of
lowest-`-weight module is defined similarly. Denote by C̃q the category of all
finite-dimensional `-weight modules of Uq(g̃). Clearly C̃q is an abelian category.
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Observe that if V ∈ C̃q , then V ∈ Cq and

(2-2) Vλ =
⊕

λ:wt(λ)=λ

Vλ.

Moreover, if V is a highest-`-weight module of highest `-weight λ, then

(2-3) dim(Vwt(λ))= 1 and Vµ 6= 0 implies µ≤ wt(λ).

Define the concepts of `-weight vector and so on for g̃ in a similar way, and
denote by C̃ the category of all finite-dimensional g̃-modules. The next proposition
is easily established using (2-3).

Proposition 2.6. If V is a highest-`-weight module, then it has a unique proper
submodule and hence a unique irreducible quotient.

Definition 2.7. Let λ ∈ P+q and λ = wt(λ). The Weyl module Wq(λ) of highest
`-weight λ is the Uq(g̃)-module defined by the quotient of Uq(g̃) by the left ideal
generated by the elements x+i,r , (x−i,r )

λ(hi )+1, and η−9λ(η) for every i ∈ I , r ∈ Z,
and η ∈ Uq(h̃). Denote by Vq(λ) the irreducible quotient of Wq(λ). For λ ∈ P+,
the Weyl module W (λ) of g̃ and its irreducible quotient V (λ) are defined similarly.

The next theorem was proved in [CP 2001, Lemmas 4.6 and 4.7] for simply
laced g and in [Chari 2001, Proposition 2.2] for g with lacing number r∨ = 2.
For the sake of completeness, a proof for g of type G2 will appear in [Jakelić and
Moura 2009b].

Theorem 2.8. For each λ ∈ P+q , the module Wq(λ) is the universal finite-dimen-
sional Uq(g̃)-module with highest `-weight λ; every simple object of C̃q is highest-
`-weight. For every λ ∈ P+, the module W (λ) is the universal finite-dimensional
g̃-module with highest `-weight λ; every simple object of C̃ is highest-`-weight.

Remark. It is not true that the module Vq(λ) belongs to C̃q for every λ ∈ P+q .
This is so because C(q) is not algebraically closed. In fact, one can prove, using
some results of Section 4.8 below, that Vq(λ) is in C̃q if and only if λi (u) splits in
C(q)[u] for every i ∈ I . Otherwise, Vq(λ) is quasi-`-weight in a sense analogous
to that defined in [Jakelić and Moura 2009a] in the context of hyper loop algebras.

The following lemma is a consequence of the proof of Theorem 2.8.

Lemma 2.9. Let V be a highest-`-weight module of g̃ and v be a highest-`-weight
vector. Then V =U (g[t])v.

If J ⊆ I , we shall denote by Vq(λJ ) the Uq(g̃J )-irreducible module of highest
`-weight λJ . Similarly V (λJ ) denotes the corresponding irreducible g̃J -module.
Similar notations for the Weyl modules are defined in the obvious way.
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Proposition 2.10 [Frenkel and Mukhin 2001]. For every λ∈P+q , Vq(λ) is a lowest-
`-weight module with lowest `-weight (λ∗)−1. In particular,Vq(λ)

∗ ∼= Vq(λ
∗).

2.11. Evaluation modules and Cartan involution. Given a g-module V , let V (a)
be the g̃-module obtained by pulling back the evaluation map eva . Such modules
are called evaluation modules. If V = V (λ), we use the notation V (λ, a) for the
corresponding evaluation module.

Theorem 2.12 [Chari 1986; CP 1986; 2001]. Let λ ∈ P+.

(a) If λ= ωλ,a for some λ ∈ P+ and some a ∈ C×, then V (λ)∼= V (λ, a).

(b) If λ=
∏

j ωλ j ,a j as in (1-11), then

V (λ)∼=
⊕

j

V (λ j , a j ) and W (λ)∼=
⊕

j

W (ωλ j ,a j ).

Corollary 2.13. Every object in C̃ is an `-weight module.

Assume g is of type A and consider the C(q)-algebra U ′q(g) given by generators
x±i and k±1

µ with i ∈ I , µ ∈ P , and the defining relations

kµk−1
µ = k−1

µ kµ = 1, kµkν = kµ+ν, kµx±j k−1
µ = qµ(h j )x±j ,

[x+i , x−j ] = δi, j
kαi − k−1

αi

q − q−1 ,

1−ci j∑
k=0

(−1)k(x±i )
(1−ci j−k)x±j (x

±

i )
(k)
= 0 if i 6= j,

There is an obvious monomorphism of algebras Uq(g)→U ′q(g) taking ki 7→ kαi .
A U ′q(g)-module is said to be a weight module if the generators kν for ν ∈ P act
diagonally with eigenvalues of the form q(ν,µ) for some µ ∈ P , where ( · , · ) is the
bilinear form such that (αi , α j )= ci j . It is not hard to see that restriction establishes
an equivalence of categories from that of U ′q(g)-weight modules to Cq . Henceforth
we identify these two categories using this equivalence. The next proposition was
proved in [Jimbo 1986, Section 2] and [CP 1994b, Proposition 3.4].

Proposition 2.14. Let g be of type A. Then there exists an algebra homomorphism
qev : Uq(g̃)→ U ′q(g) such that if λ ∈ P+ and V is the pullback of Vq(λ) by qev,
then there exists l(λ) ∈ Z such that V is isomorphic to Vq(λ), where

λ=
∏
i∈I

ωi,ai ,λ(hi ) with a1 = ql(λ) and ai+1
ai
= qλ(hi )+λ(hi+1)+1 for i < n.

Given a ∈C(q)×, there exists a unique C(q)-algebra automorphism %a of Uq(g̃)

such that %a is the identity on Uq(g) and %a(x±i,r ) = ar x±i,r . Let qeva = qev ◦%a .
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Denote by Vq(λ, a) the pullback of Vq(λ) by the evaluation map qeva . It is easy
to see that Vq(λ, a)∼= Vq(λ) where

λ=
∏
i∈I

ωi,ai ,λ(hi ) with a1 = aql(λ) and
ai+1

ai
= qλ(hi )+λ(hi+1)+1 for i < n.

It turns out that, for g not of type A, there is no analogue of the map qev. In
fact, it is known (see [Chari 2001] for instance) that there exists i ∈ I and m ∈Z≥0

such that the action of Uq(g) on Vq(mωi ) cannot be extended to one of Uq(g̃).
One easily checks that there exists a unique algebra involution σ̃ of Uq(g̃) such

that σ̃ (x±i,r )= x∓i,−r , σ̃ (ki )= k−1
i , and σ̃ (hi,s)=−hi,−s for all i ∈ I , r, s ∈ Z and

s 6= 0. The involution σ̃ is called the Cartan involution and it is also a coalgebra
antiinvolution. The restriction of σ̃ to Uq(g) defines an involution σ of Uq(g) also
called the Cartan involution. Given a Uq(g̃)-module V , let V σ̃ be the pullback of
V by σ̃ . Similarly, V σ will denote the pullback of a Uq(g)-module V by σ . It
is not difficult to see that a highest-`-weight vector of Vq(λ) is a lowest-`-weight
vector of Vq(λ)

σ̃ . Moreover, it follows from (1-3) that

σ̃ (3±i (u))= (3
∓

i (u))
−1, where 3±i (u)=

∞∑
r=0

3i,±r ur

and the inverse is that of formal power series in u. It is now not difficult to complete
the proof of the next proposition.

Proposition 2.15. Let λ ∈ P+ and λ ∈ P+q . Then

Vq(λ)
σ ∼= Vq(λ

∗) and Vq(λ)
σ̃ ∼= Vq(

∗λ).

The analogous result in the classical case is established similarly.
We end this subsection with a remark. Let g be of type A, let λ ∈ P+q be such

that Vq(λ)∼= Vq(λ, a) for some a ∈ C(q)×, and set bn = (aql(λ)+n+1)−1. Then

(2-4) ∗λ=
∏
i∈I

ωi,bi ,λ∗(hi ) with bi
bi−1
= q−(λ

∗(hi )+λ
∗(hi−1)+1) for i > 1.

2.16. Classical limits.

Definition 2.17. Denote by P+A the subset of Pq consisting of n-tuples of poly-
nomials with coefficients in A. Let also P++A be the subset of P+A consisting of
n-tuples of polynomials whose leading terms are in CqZ

\{0}=A×. Given λ∈P+A ,
let λ be the element of P+ obtained from λ by evaluating q at 1.

Recall that an A-lattice (or form) of a C(q)-vector space V is a free A-submodule
L of V such that C(q)⊗A L = V . If V is a Uq(g̃)-module, a UA(g̃)-admissible
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lattice of V is an A-lattice of V that is also a UA(g̃)-submodule of V . Given a
UA(g̃)-admissible lattice of a Uq(g̃)-module V , define

(2-5) L = C⊗A L ,

where C is regarded as an A-module by letting q act as 1. Then L is a g̃-module by
Proposition 1.4 and dim(L)= dim(V ). The next theorem is essentially a corollary
of the proof of Theorem 2.8.

Theorem 2.18. Let V be a nontrivial quotient of Wq(λ) for some λ∈P++A , let v be
a highest-`-weight vector of V , and let L =UA(g̃)v. Then L is a UA(g̃)-admissible
lattice of V and ch(L)= ch(V ). In particular, L is a quotient of W (λ).

Definition 2.19. Let λ ∈P++A , let v be a highest-`-weight vector of Vq(λ), and let
L =UA(g̃)v. We denote by Vq(λ) the g̃-module L .

We shall also use the following straightforward lemma.

Lemma 2.20. Suppose V and V ′ are Uq(g̃)-modules, and L and L ′ are UA(g̃)-
submodules. Suppose φ : V → V ′ is a Uq(g̃)-module map such that φ(L) ⊆ L ′.
Then φ := 1⊗φ : L→ L ′ is a g̃-module map.

3. Minimal affinizations

3.1. Classification. Chari [1995] introduced the notion of minimal affinizations
of an irreducible Uq(g)-module, as follows.

Given λ ∈ P+, an object V ∈ C̃q is said to be an affinization of Vq(λ) if, as a
Uq(g)-module, V ∼= Vq(λ)⊕

⊕
µ<λ Vq(µ)

⊕mµ(V ) for some mµ(V ) ∈ Z≥0. We say
two affinizations of Vq(λ) are equivalent if they are isomorphic as Uq(g)-modules.
If λ ∈ P+q is such that wt(λ) = λ, then Vq(λ) is clearly an affinization of Vq(λ).
The partial order on P+ induces a natural partial order on the set of (equivalence
classes of) affinizations of Vq(λ). Namely, if V and W are affinizations of Vq(λ),
we say that V ≤W if either mµ(V )≤ mµ(W ) for all µ ∈ P+ or if for all µ ∈ P+

such that mµ(V ) > mµ(W ), there exists ν > µ such that mν(V ) < mν(W ). A
minimal element of this partial order is said to be a minimal affinization.

Suppose g is not of types D or E . Given λ ∈ P+q , set

λ◦ = λ∗ if g= sln+1 and λ◦ = ∗λ otherwise.

Recall that, in these cases, λ∗ = λ for all λ ∈ P+ except if g is of type A.
The following main result of [Chari 1995; CP 1996b; 1995] gives a partial

classification of the highest `-weights of the minimal affinizations, and gives the
complete classification when g is not of types D or E .

Theorem 3.2. Let λ ∈ P+q , λ = wt(λ), and V = Vq(λ). Suppose g is not of types
D or E. Then V is a minimal affinization of Vq(λ) if and only if V ∗ and V σ̃ are
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minimal affinizations of Vq(λ
∗). In that case, there exist a ∈C(q)× and µ∈ {λ, λ∗}

such that either λ or λ◦ is equal to

n∏
i=1

ωi,ai ,µ(hi ) with a1 = a and
ai+1

ai
= qdiµ(hi )+di+1µ(hi+1)+r∨i

for all i ∈ I, i < n, where r∨i = di − 1 − ci,i+1. Equivalently, V is a minimal
affinization of Vq(λ) if and only if there exist a ∈ C(q)× and ε ∈ {1,−1} such that

λ=

n∏
i=1

ωi,ai ,λ(hi ) with a1 = a and
ai+1

ai
= qε(diλ(hi )+di+1λ(hi+1)+r∨i )

for all i ∈ I with i < n. If g is of type D or E , suppose the support of λ is contained
in a connected subdiagram J ⊆ I of type A. Then V is a minimal affinization of
Vq(λ) if and only if Vq(λJ ) is a minimal affinization of Vq(λJ ).

The next corollary is immediate (recall from Section 1.1 that supp(λ) is the
minimal connected subdiagram of I containing supp(λ)).

Corollary 3.3. If λ ∈ P+ is such that supp(λ) does not contain a subdiagram of
type D4, then Vq(λ) has a unique equivalence class of minimal affinizations.

Remark. We warn that the conditions we give in Theorem 3.2 do not match the
ones given in [Chari 1995; CP 1996b; 1995], due to different normalizations in
some definitions. Our notation follows more closely that of [Hernandez 2007],
which is more uniform. We also note that r∨i = di+1−ci+1,i and r∨i ∈ {r

∨
−1, r∨}

for all i ∈ I with i < n. It is easy to check that r∨i = r∨ for all i < n if g is of types
A, B, or G. If g is of type C , then r∨i = r∨− 1 if and only if i < n− 1. Finally, if
g is of type F , then r∨i = r∨ if and only if αi is a long root.

Corollary 3.4. For every a ∈C(q)×, i ∈ I and m ∈ Z≥0, the module Vq(ωi,a,m) is
a minimal affinization of Vq(mωi ).

The modules Vq(ωi,a,m) are known as Kirillov–Reshetikhin modules.
In the cases not covered by Theorem 3.2, that is, when supp(λ) contains a sub-

diagram of type D4, then Vq(λ) may have more then one equivalence class of
minimal affinizations; see [CP 1996b; 1996a]. We shall briefly discuss these cases
in Sections 5.11 and 5.18.

We now state a few results that were used in the proof of Theorem 3.2 and will
be useful for us as well. The proofs can be found in [CP 1996b].

Lemma 3.5. Suppose ∅ 6= J ⊆ I is a connected subdiagram of the Dynkin diagram
of g. Let V = Vq(λ), let v be a highest-`-weight vector of V , and let VJ =Uq(g̃J )v.
Then VJ ∼= Vq(λJ ).
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Definition 3.6. Suppose g is not of type D or E . A connected subdiagram J ⊆ I
is said to be admissible if J is of type A. If g is of type D or E , let i0 ∈ I be the
unique element connected to three other nodes. A connected subdiagram J ⊆ I is
said to be admissible if J is of type A and J \ {i0} is connected.

Proposition 3.7. Suppose J ⊆ I is admissible and that λ ∈ P+q is such that Vq(λ)

is a minimal affinization of Vq(λ), where λ = wt(λ). Then Vq(λJ ) is a minimal
affinization of Vq(λJ ).

Proposition 3.8. Let λ ∈ P+q and λ = wt(λ). If Vq(λ) is a minimal affinization
of Vq(λ), then there exist ai ∈ C(q)× for i ∈ I such that λ =

∏
i∈I ωi,ai ,λ(hi ) and

ai/a j ∈ qZ for all i, j ∈ I .

Proof. The existence of ai ∈ C(q)× for i ∈ I such that λ=
∏

i∈I ωi,ai ,λ(hi ) follows
from Proposition 3.7 and the classification of minimal affinizations for sl2. The
condition ai/a j ∈ qZ for all i, j ∈ I can be proved from results of [Chari 2002] (see
Section 4.1 below). Alternatively, the proposition is immediate from Theorems 3.2
and 5.12 in the cases covered by them. �

Corollary 3.9. For every λ∈ P+, there exist λ∈P++A such that Vq(λ) is a minimal
affinization of Vq(λ).

3.10. Restricted limits.

Definition 3.11. Let V be a Z≥0-graded vector space and denote its s-th graded
piece by V [s]. A g[t]-module V is said to be Z≥0-graded if V is a Z≥0-graded
vector space and x ⊗ trv ∈ V [r + s] for every v ∈ V [s], x ∈ g, and r, s ∈ Z≥0. A
Z≥0-graded g[t]-module V satisfying V [r ] = 0 for r � 0 is said to be a restricted
g[t]-module. If V is a Z≥0-graded g[t]-module, denote by V (s) the quotient of V
by its g[t]-submodule

⊕
k>s V [k].

The next lemma follows immediately from Proposition 3.8.

Lemma 3.12. Suppose λ ∈P++A is such that Vq(λ) is a minimal affinization. Then
λ= ωλ,a for some a ∈ C×, where λ= wt(λ).

Proposition 3.13. Suppose λ ∈ P++A is such that Vq(λ) is a minimal affinization
and that J ⊆ I is an admissible subdiagram. Let v be a highest-`-weight vector of
V =Vq(λ), let λ=wt(λ), and let a∈C× be such that λ=ωλ,a . Then x−α,rv=ar x−α v
for every α ∈ R+J .

Proof. Let J be admissible, let α ∈ R+J , and let VJ =Uq(g̃J )v
′, where v′ ∈ Vq(λ)

is such that v′= v. Then VJ is a minimal affinization by Proposition 3.7 and, since
J is of type A, VJ is irreducible as a Uq(gJ )-module by Theorem 3.2. Hence, the
g̃J -submodule of V generated by v is isomorphic to V (λJ , a). �

Recall the definition of the maps τa : g[t] → g[t] from Section 1.1.
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Definition 3.14. Let λ∈P++A , let λ=wt(λ), and let a ∈C× be such that λ=ωλ,a .
The g[t]-module L(λ) is defined to be the pullback of Vq(λ) by τa . Define also
the module A(λ) to be the g[t]-module given by the quotient of U (g[t]) by the left
ideal generated by

n+[t], h⊗ tC[t], hi − λ(hi ), (x−αi
)λ(hi )+1, x−α,1

for all i ∈ I and all α ∈ R+J for some admissible subdiagram J ⊆ I . Denote by vλ
the image of 1 in A(λ), so that A(λ)=U (n−[t])vλ.

It immediately follows from Theorem 2.12, Proposition 3.13, and Lemma 2.9
that L(λ) is a quotient of A(λ). It is also clear that A(λ) is a Z≥0-graded g[t]-
module. We call the module L(λ) the restricted limit of Vq(λ). It is immediate
from Theorem 2.18 that

(3-1) ch(L(λ))= ch(Vq(λ)).

When λ = mωi for some m ∈ Z≥0 and some i ∈ I , the modules L(ωi,a,m) are the
restricted Kirillov–Reshetikhin modules of highest-weight mωi . Chari and Moura
studied these for g of classical type in [2006] and for g of type G2 in [2007].

Proposition 3.15. For every λ ∈ P+, the module A(λ) is finite-dimensional. In
particular, A(λ) is restricted.

Proof. Since A(λ)=U (n−[t])vλ, it immediately follows that (A(λ)[r ])µ is finite-
dimensional for every r ∈ Z≥0 and every µ ∈ P . The relations (x−αi )

λ(hi )+1vλ = 0
for all i ∈ I implies, as usual, that the elements x±αi

act locally nilpotently on A(λ)
and hence dim(A(λ)µ) = dim(A(λ)wµ) for every µ ∈ P and w ∈W. This in turn
implies that A(λ)µ 6= 0 if and only if w0λ≤ µ≤ λ. Hence A(λ) has only finitely-
many nontrivial weight spaces. Using the defining relations of A(λ) together with
basic commutation relations in g[t], it is trivial to see that x−α,rvλ= 0 for all α ∈ R+

if r � 0. This together with the PBW theorem then implies that (A(λ)[s])µ = 0
for every µ∈ P if s� 0. In fact, let r ∈Z≥0 be such that x−α,svλ= 0 for all α ∈ R+

and all s ≥ r . Fix a total order on R+ × Z≥0 such that (α, k) < (β, l) whenever
k < r and l ≥ r . The PBW monomials for U (n−[t]) are then formed such that x−β,l
occur to the right of x−α,k whenever (α, k) < (β, l). Hence, to get to the s-th graded
piece of A(λ) with s� r , one would have to apply elements of the form x−α,k with
k < r to vλ “too many times”, and the maximal possible weight of A(λ)[s] would
fall out of the set of weights lying in between w0λ and λ. �

3.16. Relations for L(λ). We now state our main results and conjectures.

Definition 3.17. Let m ∈ Z≥0 and i ∈ I . The g[t]-module M(mωi ) is the quotient
of U (g[t]) by the left ideal generated by

n+[t], h⊗ tC[t], h j , hi −m, x−α j
, (x−αi

)m+1, x−αi ,1 for all j 6= i.
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Quite clearly M(mωi ) is a Z≥0-graded g[t]-module, and A(mωi ) is a quotient
of M(mωi ). The next proposition follows from [Chari 2001; CM 2006; 2007].

Proposition 3.18. Suppose g is not of type E or F. Let i ∈ I , m ∈Z≥0, and a ∈C×.

(a) There exists bi ∈ {1, 2, 3} such that, if m = m1bi +m0 with 0 ≤ m0 < bi and
T (mωi ) is the g[t]-submodule of M(biωi )

⊗m1 ⊗ M(m0ωi ) generated by the
top weight space, then M(mωi )∼= T (mωi ).

(b) M(mωi )∼= A(mωi )∼= L(ωi,a,m).

Our goal is to generalize the proposition above for minimal affinizations other
than Kirillov–Reshetikhin modules. Let us introduce notation, as follows. Given
i ∈ I and m, r ∈ Z≥0, let vi,m be the image of 1 in M(mωi ) and set

R+(i,m, r)= {α ∈ R+ : x−α,rvi,m = 0}.

Since (h⊗ tC[t])vi,m = 0, it follows that

R+(i,m, r)⊆ R+(i,m, s) for all s ≥ r.

The sets R+(i,m, r) for g not of types E and F were explicitly described in
[Chari 2001; CM 2006; 2007]. We will eventually write them down precisely.
For the moment, let us just observe that R+(i,m, r)= R+ if r � 0 since A(mωi )

is restricted. In fact, if g is of classical type, then R(i,m, 2)= R+ for every i ∈ I
and m ∈ Z≥0. Observe also that R+(i, 0, 0) = R+ for all i ∈ I since L(0) is the
trivial representation. Now, given λ ∈ P+ and r ∈ Z≥0, set

R+(λ, r)=
⋂
i∈I

R+(i, λ(hi ), r).

Since R+( j, 0, s) = R+ for all j ∈ I and s ∈ Z≥0, it follows that R+(mωi , r) =
R+(i,m, r) for all i ∈ I and m, r ∈ Z≥0 and that

R+(λ, r)= R+ if r � 0.

Definition 3.19. Given λ∈ P+, let M(λ) be the g[t]-module given by the quotient
of U (g[t]) by the left ideal generated by

(3-2) n+[t], h⊗ tC[t], hi − λ(hi ), (x−αi
)λ(hi )+1, x−α,r

for all i ∈ I , r ∈ Z≥0, and α ∈ R+(λ, r). Let T (λ) be the g[t]-submodule of⊕
i∈I M(λ(hi )ωi ) generated by the top weight space.

Definitions 3.17 and 3.19 of M(mωi ) coincide since R+(mωi , r)= R+(i,m, r)
for all i ∈ I and m, r ∈Z≥0. The modules M(λ) are clearly Z≥0-graded. It follows
from Proposition 3.13 that M(λ) is a quotient of A(λ) and hence a restricted g[t]-
module. Also, T (λ) is clearly a restricted quotient of M(λ) by Proposition 3.18.
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The following is what we expect to be the generalization of Proposition 3.18
when g and λ are as in Theorem 3.2.

Conjecture 3.20. Let λ ∈ P+ be such that supp(λ) does not contain a subdiagram
of type D4, and suppose λ ∈ P++A is such that Vq(λ) is a minimal affinization of
Vq(λ). Then, T (λ)∼= M(λ)∼= L(λ).

Proposition 3.18 says the conjecture holds when λ is a multiple of a fundamental
weight and g is not of type E or F . It is quite simple to see that the conjecture
also holds when g is of type A for general λ ∈ P+. We now state our main partial
results in the direction of proving Conjecture 3.20.

Proposition 3.21. Let λ ∈ P++A be such that Vq(λ) is a minimal affinization of
Vq(λ), where λ= wt(λ). Then, T (λ) is a quotient of L(λ).

Proposition 3.22. Let λ∈ P+ be such that supp(λ) does not contain a subdiagram
of type D4, and suppose g is orthogonal. Then, L(λ) is a quotient of M(λ).

Corollary 3.23. In the conditions of Proposition 3.22, the first isomorphism of
Conjecture 3.20 implies the second.

Proposition 3.24. Conjecture 3.20 holds in the following cases:

(a) g is of type B and supp(λ)⊆ {1, 2, 3, n} with λ(hn)≤ 1 if n > 3.

(b) g is of type D and supp(λ) ⊆ ({1, 2, 3} ∩ J )∪ {m} with m ∈ {n− 1, n}. Here
J = I \ {n− 1, n}.

(c) g is of type D and supp(λ)⊆ {n− 2, n− 1, n}.

In proving Proposition 3.24, we obtain character formulas for M(λ). The proofs
of Propositions 3.21 and 3.22 are given in Sections 4.1 and 4.15, respectively.
Proposition 3.24 is proved in Sections 5.3 and 5.8.

Remark. If g is of classical type, then R+(λ, 2) = R+ for every λ ∈ P+ since
R(i,m, 2) = R+ for every i ∈ I and m ∈ Z≥0, as mentioned previously. This
implies that the modules M(λ) can be regarded as modules for the truncated algebra
g[t]/(g⊗t2C[t]) in this case. This was what motivated Chari and Greenstein [2009]
to study the relations between the finite-dimensional representation theory of Uq(g̃)

and Koszul algebras. We shall leave the discussion of how our methods are related
to theirs to a forthcoming publication.

4. Tensor products

4.1. Tensor products of Kirillov–Reshetikhin modules. The goal of this section
is to prove Proposition 3.21. The following fact is easily established from (1-7).

Proposition 4.2. Let λ,µ ∈ P+q . Then, the Uq(g̃)-submodule of Vq(λ)⊗ Vq(µ)

generated by the top weight space is a quotient of Wq(λµ).
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The following proposition follows from the results of [Chari 2002].

Proposition 4.3. Let l ∈Z≥1, i j ∈ I , m j ∈Z≥1, and a j ∈C(q)× for j =1, . . . , l. If
a j/ak /∈ qZ>0 for j > k, then Vq(ωi1,a1,m1)⊗· · ·⊗Vq(ωil ,al ,ml ) is a highest-`-weight
module.

Corollary 4.4. Let λ ∈ P+, ai ∈C(q)×, i ∈ I , and λ=
∏

i∈I ωi,ai ,λ(hi ). Then there
is an ordering i1, . . . , in of I such that Vq(λ) is isomorphic to the Uq(g̃)-submodule
of Vq(ωi1,ai1 ,λ(hi1 )

)⊗ · · ·⊗ Vq(ωin,ain ,λ(hin )) generated by the top weight space.

Proof. Let ω ∈ P+q be such that ω∗ = λ, and write ωi (u) = ωi,bi ,λ∗(hi ) for some
bi ∈P+q . Let also i ′ =w0 · i for all i ∈ I . It follows from Proposition 4.3 that there
is an ordering i1, . . . , in of I such that

V := Vq(ωi ′n,bi ′n
,λ∗(hi ′n

))⊗ · · ·⊗ Vq(ωi ′1,bi ′1
,λ∗(hi ′1

))

is highest-`-weight. Let W be the proper maximal submodule of V . Thus, we have
a short exact sequence 0→ W → V → Vq(ω)→ 0. Then, by Propositions 2.10
and 1.7, we also have the short exact sequence

0→ Vq(λ)→ Vq(ωi1,ai1 ,λ(hi1 )
)⊗ · · ·⊗ Vq(ωin,ain ,λ(hin ))→W ∗→ 0,

since V ∗ ∼= Vq(ωi1,ai1 ,λ(hi1 )
)⊗ · · ·⊗ Vq(ωin,ain ,λ(hin )) and Vq(ω)

∗ ∼= Vq(λ). �

Proof of Proposition 3.21. Given i ∈ I , let ai ∈A× be such that λ=
∏

i∈I ωi,ai ,λ(hi )

and let vi be a highest-`-weight vector of V (ωi,ai ,λ(hi )). Let also i1, . . . , in be an
ordering of I as in Corollary 4.4, and let

v = vi1 ⊗ · · ·⊗ vin ∈ Vq(ωi1,ai1 ,λ(hi1 )
)⊗ · · ·⊗ Vq(ωin,ain ,λ(hin )).

Consider L i =UA(g̃)vi , L =UA(g̃)v, and L ′= L i1⊗· · ·⊗L in . Let a ∈C× be such
that λ = ωλ,a , and observe that L(λ) ∼= τ ∗a (L) and M(λ(hi )ωi ) ∼= τ

∗
a (L i ), where

τ ∗a K denotes the pullback of a g[t]-module K by τa . Moreover, it is easy to see
that L ⊆ L ′ and that L ′ ∼= L i1 ⊗ · · ·⊗ L in .

Let φ : L→ L ′ be the map given by Lemma 2.20 with φ being the inclusion

Vq(λ)→ Vq(ωi1,ai1 ,λ(hi1 )
)⊗ · · ·⊗ Vq(ωin,ain ,λ(hin )),

after identifying Vq(λ)with Uq(g̃)v. It follows that τ ∗a (φ) : L(λ)→M(λ(hi1)ωi1)⊗

· · ·⊗M(λ(hin )ωin ) is a g[t]-module map whose image is T (λ). �

4.5. A smaller set of relations for M(λ). In this subsection, g is orthogonal. Let

R+1 = {α ∈ R+ : α =
∑

i∈I niαi with ni ≤ 1 for all i ∈ I }.
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Proposition 4.6. For every λ ∈ P+, the module M(λ) is isomorphic to the g[t]-
module N (λ) generated by a vector v satisfying, for all α ∈ R+1 ,

hiv = λ(hi )v and n+[t]v = h⊗ tC[t]v = (x−αi
)λ(hi )+1v = x−α,1v = 0.

Proof. Since every admissible J ⊆ I is of type A, it follows that N (λ) is a quotient
of A(λ) and hence a finite-dimensional restricted g[t]-module. Moreover, it is easy
to see that M(λ) is a quotient of N (λ). For the converse, set αi, j =

∑ j
k=i αk for

all i, j ∈ I and i ≤ j if g is of type B, and for all i ≤ j < n if g is of type D. If g

is of type D, set also αi,n = αi,n−2+αn for i < n−1 or i = n and ϑi = αi,n−1+αn

for i ≤ n− 2. Furthermore, given i ≤ j < n (or j < n− 2 if g is of type D) set

θi, j =

{
αi,n +α j+1,n if g is of type Bn,

αi,n−1+α j+1,n if g is of type Dn.

Then R+1 = {αi, j : i, j ∈ I } (or R+1 = {αi, j : i, j ∈ I } ∪ {ϑi : i ≤ n − 2} if g is of
type D) and R+ = R+1 ∪ {θi, j : i, j ∈ I }.

Denote by vi,m the image of 1 in M(mωi ) for i ∈ I and m ∈ Z≥0. Since
R+(i,m, 0) = R+ if m = 0, we shall assume m > 0. Moreover, since we already
know that Proposition 4.6 holds when λ is a multiple of a fundamental weight, we
assume from now on that λ ∈ P+ is not a multiple of a fundamental weight. From
here we split the proof that N (λ) is a quotient of M(λ) in separate cases according
to the type of g.

Case: g is of type B. It follows from [Chari 2001; CM 2006] that

R+(i,m, 0)= {α j,k : i < j or k < i} ∪ {θ j,k : i < j} and

R+(n, 1, 1)= R+(i,m, 2)= R+ for all i ∈ I and m > 0

and

R+(i,m, 1)= R+(i,m, 0)∪ {α j,k : j ≤ i ≤ k} ∪ {θ j,k : i ≤ k} if (i,m) 6= (n, 1).

Set

iλ =
{

min{i : λ(h j )= 0 for all j > i} if λ(hn) 6= 1,
min{i : λ(h j )= 0 for all i < j < n} otherwise.

It follows from the above that

(4-1) R+(λ, 1)= R+(iλ, λ(hiλ), 1)= R+ \ {θ j,k : k < iλ}.

Proposition 4.6 follows immediately in the case λ(hn) > 1.
To complete the proof of Proposition 4.6, assume first that λ(hn)= 0 and notice

that x−αi, j
v = x−θi, j

v = 0 if i > iλ. It follows that

x−θi, j ,rv = [x
−

αi,n,r , x−α j,n
]v = 0 for all i, j ∈ I, j > iλ and r ∈ Z>0.
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Also, if r > 1 and j ≤ iλ, then x−θi, j ,rv = [x
−

αi,n,r−1, x−α j+1,n,1]v = 0. This completes
the proof in this case.

If λ(hn) = 1, then x−αi, j
v = 0 if iλ < i ≤ j < n. Therefore, to conclude the

proof, it suffices to show that x−θi,n−1,1v= 0 for all i > iλ. We prove this inductively
on n− i . In fact, it follows from the PBW theorem that

N (λ)[1] ⊆
∑

i≤ j<n

U (g)x−θi, j ,1v.

In particular, the set of weights of N (λ)[1] is contained in S − Q+, where S =
{λ− θi, j : i ≤ j < n}. It is easy to see that λ− θn−1,n−1 is a maximal element
of S. Hence, if x−θn−1,n−1,1v were nonzero, V (λ− θn−1,n−1) would be an irreducible
constituent of N (λ)[1]. But the condition λ(hn) = 1 implies λ− θn−1,n−1 /∈ P+.
Since N (λ) is finite-dimensional, the inductive argument starts. Now suppose
x−θi,n−1,1v = 0 for all i ≥ j for some j ≤ n − 1 and observe that λ− θ j−1,n−1 is
a maximal element of S \ {λ− θi,n−1 : i ≥ j}. Once more λ− θ j−1,n−1 /∈ P+, and
we conclude the inductive argument as before.

Case: g is of type D. In this case we have

R+(i,m, 0)= {α j,k : i < j or k < i} ∪ {ϑ j , θ j,k : i < j} if i 6= n, n− 1,

R+(i,m, 0)= {α j,k : k < n− 1 or k = i ′} if {i, i ′} = {n, n− 1},

R+(1,m, 1)= R+(n− 1,m, 1)= R+(n,m, 1)= R+(i,m, 2)= R+ for all i ∈ I,

R+(i,m, 1)= R+(i,m, 0)∪ {α j,k : j ≤ i ≤ k} ∪ {θ j,k : i ≤ k} if i /∈ {1, n− 1, n}.

In particular,

(4-2) R+(λ, 1)= R+ if λ(hi )= 0 for all i /∈ {1, n− 1, n},

and hence M(λ) is an irreducible g-module. Set

iλ =
{

1 if λ(hi )= 0 for all i /∈ {1, n− 1, n},
min{i : λ(h j )= 0 for i < j < n− 1} otherwise.

It follows that R+(λ, 1) = R+(iλ, λ(hiλ), 1) = R+ \ {θ j,k : k < iλ}. We are left to
show that x−θi, j ,1v = 0 if j > iλ. But this is clear since x−α j,n−2

v = 0 if iλ < j and
x−θi, j ,1 = [x

−
α j,n−2

, x−ϑi ,1]. �

The following corollary is now immediate and proves the first isomorphism of
Conjecture 3.20 in some very particular cases.

Corollary 4.7. Suppose λ ∈ P+ is such that

(a) λ(hi )= 0 for all 1< i < n and λ(hn)≤ 1 if g is of type B, and

(b) λ(hi )= 0 for all i /∈ {1, n− 1, n} if g is of type D.

Then, M(λ) is irreducible as a g-module. In particular, M(λ)∼= T (λ).



384 ADRIANO MOURA

4.8. The `-characters. Let Z[Pq ] be the integral group ring over Pq . We define
the `-character of V ∈ C̃q to be the element ch`(V )=

∑
µ∈Pq

dim(Vµ)µ. of Z[Pq ].
The `-characters are better known as q-characters, since this was the name used
when they were first defined in [Frenkel and Reshetikhin 1999]. We prefer “`-
characters” for two reasons: they record information about the dimension of the
`-weight spaces of V (which are not known as q-weight spaces), and the definition
makes sense in the classical context as well. However, due to Theorem 2.12, the
study of `-characters in the classical case easily reduces to the study of characters,
and so `-characters are interesting only in the quantum case.

The proofs of the next four results can be found in [CM 2005; Frenkel and
Mukhin 2001].

Proposition 4.9. Let g= sl2, a ∈ C(q)×, and r ∈ Z≥0. Then

ch`(Vq(ωi,a,r ))= ωi,a,r

r∑
k=0

( k∏
j=1

ωi,aqr−2 j ,2

)−1

= ωi,a,r

r∑
k=0

( k∏
j=1

αi,aqr−2 j+1

)−1

.

Theorem 4.10. Let V be a quotient of Wq(λ) for some λ ∈ P+q . If Vµ 6= 0, then
µ≤ λ.

Proposition 4.11. Let V ∈ C̃q , v ∈ Vµ \ {0} for some µ ∈ Pq , and suppose i ∈ I
is such that x+i,rv = 0 for all r ∈ Z. Then, µi (u) ∈ C(q)[u], and if µi (u) =∏m

k=1 fi,ak ,rk (u) as in (1-14), then

x−i v ∈
m∑

k=1

rk∑
j=1

Vµ(α
i,ak q

rk+1−2 j
i

)−1 .

Moreover, dim(Vµ(α
i,ak qrk−1 )−1)≥ #{1≤ l ≤ k : al = ak}.

Given V ∈ C̃q , let wt`(V ) = {µ ∈ Pq : Vµ 6= 0}. A highest-`-weight module V
of highest `-weight λ ∈ P+q is said to be special if wt`(V )∩P+q = {λ}.

Theorem 4.12. If λ ∈ P+q is such that Vq(λ) is special, then the output of the
Frenkel–Mukhin algorithm with input λ is char`(Vq(λ)).

Theorem 4.13 [Hernandez 2007]. If g is of type A, B, or G, then all minimal
affinizations are special.

Let g be of type A, B, or G, and let λ ∈ P+. It follows from the above that
if Vq(λ) is a minimal affinization of Vq(λ), then char`(Vq(λ)) is given by the
Frenkel–Mukhin algorithm. We will actually need only the following corollary
of the algorithm. Let V ∈ C̃q and v ∈ Vµ \ {0} for some µ ∈ Pq , and suppose
i ∈ I is such that x+i,rv = 0 for all r ∈ Z. Using Proposition 4.11, we can write
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µi (u)=
∏m

k=1 fi,ak ,rk (u) as in (1-14). Then, the algorithm implies that

(4-3) µα−1
i,b ∈ wt`(Vq(λ)) if and only if b = akqrk−1

i for some k = 1, . . . ,m.

The next proposition will be crucial for the proof of Proposition 3.22.

Proposition 4.14. Suppose g is of type A; let λ ∈ P+, λ =
∏

i∈I ωi,ai ,λ(hi ),
µ ∈ wt`(Vq(λ)), and λµ−1

= α j,b jα j+1,b j+1 · · ·αk,bk for some j ≤ k and some
ai , bl ∈ C(q)× and i ∈ I, l = j, . . . , k.

(a) If ai+1/ai = qλ(hi )+λ(hi+1)+1 for all i < n, then bk = akqλ(hk)−1.

(b) If ai+1/ai = q−(λ(hi )+λ(hi+1)+1) for all i < n, then b j = a j qλ(h j )−1.

Proof. This is straightforward using induction on k− j together with (4-3). �

4.15. Quantized relations.

Proof of Proposition 3.22. We now assume that g is orthogonal. To make the
notation more uniform, we assume for the rest of the proof that g is of type Bn

or Dn+1 for n ≥ 2. Before we begin, let us record the following corollary of
Proposition 3.22 and Corollary 4.7.

Corollary 4.16. If λ satisfies the conditions of Proposition 3.22 and Corollary 4.7,
then Conjecture 3.20 holds. In particular, if Vq(λ) is a minimal affinization of
Vq(λ), then Vq(λ)∼= Vq(λ) as a Uq(g)-module.

If λ is supported on an admissible subdiagram, Proposition 3.22 easily follows
from Propositions 3.13 and 4.6. In particular, we can henceforth assume that the
support of λ contains a spin node and that there exists i < n such that λ(hi ) 6= 0.
If g is of type D, we will prove Proposition 3.22 in the case λ(hn+1)= 0; the other
cases are proved similarly. Set

(4-4) iλ =min{i : λ(h j )= 0 for all i < j < n}.

This definition of iλ does not coincide with the one given in Section 4.5 for g of
type B and λ(hn) > 1.

From now on we assume that λ ∈ P++A is such that V = Vq(λ) is a minimal
affinization of Vq(λ) and a ∈ C is such that λ = ωλ,a . We also fix a highest-
`-weight v vector of V and ai ∈ A× for i ∈ I , such that λ=

∏
i∈I ωi,ai ,λ(hi ).

Let v′ be the image of v in L(λ). It again follows from Proposition 3.13 that
x−αi, j ,1v

′
= 0 if i = j or if j < n. If g is of type B, this implies x−αi,n,1v

′
= 0 if i > iλ.

If g is of type D and iλ < i < n, it follows that x−αi,n,1v
′
= x−αi,n+1,1v

′
= x−ϑi ,1v

′
= 0.

We claim that it remains to show that x−αi,n,1v
′
= 0 for i ≤ iλ. In fact, if g is

of type B this is clear from Proposition 4.6. If g is of type D, it follows that
x−ϑi ,1v

′
= [x−αn+1

, x−αi,n,1]v
′
= 0 provided x−αi,n,1v

′
= 0.
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Denote by v̄ the image of v in V . It suffices to show that x−αi,n,1v̄ = ax−αi,n
v̄ for

all i ≤ iλ. Consider the elements

X−αi, j ,r = [x
−

j,r , [x
−

j−1, . . . [x
−

i+1, x−i ] . . . ]] and ki, j =
∏ j

l=i kl

for i ≤ j ≤ n and r ∈Z≥0. Set X−αi, j
:= X−αi, j ,0, and note that X−αi, j ,r = [x

−

j,r , X−αi, j−1
]

if i < j . Clearly

X−αi, j ,r ∈UA(ñ
−) and X−αi, j ,r = x−αi, j ,r .

Lemma 4.17. Suppose V ∈ Cq , µ ∈ P , w ∈ Vµ \ {0}, and i ∈ I are such that
µ(hl)= 0 and x+l w = 0 for l > i . Then X−αi, j

w = x−j x−j−1 · · · x
−

i w.

Proof. This is a straightforward computation using the commutation relations
[x−l,s, x−l ′,s′] = 0 for l, l ′ such that cl,l ′ = 0 and x−l w = 0 if l > i . �

Lemma 4.18. Supposew is a highest-`-weight vector of Vq(ωi,ai ,m) for some i ∈ I ,
and some m ∈ Z≥0. Then x−i,1w = ai qm

i x−i w.

Proof. Use the relation [hi,1, x−i ] = −[2]qi x
−

i,1 and Proposition 4.9. �

Let λ′ be such that λ = λ′ωn,an,λ(hn). Let also v1 and v2 be highest-`-weight
vectors of Vq(λ

′) and Vq(ωn,an,λ(hn)). By Proposition 4.3 and Corollary 4.4, either

Vq(λ)∼=Uq(g̃)(v1⊗ v2)⊆ Vq(λ
′)⊗ Vq(ωn,an,λ(hn)) or

Vq(λ)∼=Uq(g̃)(v2⊗ v1)⊆ Vq(ωn,an,λ(hn))⊗ Vq(λ
′).

We assume we are in the first case (the latter is proved similarly using part (b) of
Proposition 4.14 instead of part (a)). In particular, by Theorem 3.2, we must have

(4-5) ai+1/ai = qdiλ(hi )+di+1λ(hi+1)+r∨ for all i < n.

By Lemmas 1.5 and 1.6, modulo elements of the form x(v1 ⊗ v2) with x ∈
UA(g̃)⊗UA(g̃) such that x̄ = 0, we have

X−αi,n
(v1⊗ v2)= x−n X−αi,n−1

(v1⊗ v2)− X−αi,n−1
x−n (v1⊗ v2)

= x−n ((X
−

αi,n
v1)⊗ v2)− X−αi,n−1

(v1⊗ (x−n v2))

= (x−n X−αi,n−1
v1)⊗ (q−λ(hn)v2)+ (X−αi,n−1

v1)⊗ (x−n v2)

− (X−αi,n−1
v1)⊗ (k−1

i,n−1x−n v2)− v1⊗ (X−αi,n−1
x−n v2)

= q−λ(hn)(x−n X−αi,n−1
v1)⊗ v2+ (1− q−2)(X−αi,n−1

v1)⊗ (x−n v2)

− v1⊗ (X−αi,n−1
x−n v2).
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On the other hand,

X−αi,n,1(v1⊗ v2)= x−n,1 X−αi,n−1
(v1⊗ v2)− X−αi,n−1

x−n,1(v1⊗ v2)

= x−n,1((X
−

αi,n
v1)⊗ v2)− X−αi,n−1

(v1⊗ (x−n,1v2))

= (x−n,1 X−αi,n−1
v1)⊗ (qλ(hn)v2)+ (X−αi,n−1

v1)⊗ (x−n,1v2)

− (X−αi,n−1
v1)⊗ (k−1

i,n−1x−n,1v2)− v1⊗ (X−αi,n−1
x−n,1v2)

= qλ(hn)(x−n,1 X−αi,n−1
v1)⊗ v2+ (1− q−2)(X−αi,n−1

v1)⊗ (x−n,1v2)

− v1⊗ (X−αi,n−1
x−n,1v2).

Using Lemma 4.18 we get

X−αi,n,1(v1⊗ v2)

= qλ(hn)(x−n,1 X−αi,n−1
v1)⊗ v2

+ anqλ(hn)
(
(1− q−2)(X−αi,n−1

v1)⊗ (x−n v2)− v1⊗ (X−αi,n−1
x−n v2)

)
= anqλ(hn)X−αi,n

(v1⊗ v2)+ qλ(hn)(x−n,1 X−αi,n−1
v1)⊗ v2− an(x−n X−αi,n−1

v1)⊗ v2.

Hence, it suffices to show that

(4-6) qλ(hn)(x−n,1 X−αi,n−1
v1)⊗ v2 = an(x−n X−αi,n−1

v1)⊗ v2.

If i > iλ, both sides of the above equality vanish. If i ≤ iλ, we proceed as follows.
Notice that x+n,r X−αi,n−1

v1 = 0 for all r ∈ Z, and let W be the Uq(g̃n)-submodule of
Vq(λ

′) generated by X−αi,n−1
v1. Then, by Proposition 4.14(a), the highest-`-weight

of W is ωn,an−1qr∨λ(hn−1),r∨ . Moreover, by (4-3), W is a minimal affinization. Hence,
by Lemma 4.18,

x−n,1 X−αi,n−1
v1 = an−1qr∨(λ(hn−1)+1)x−n X−αi,n−1

v1.

This and (4-5) imply (4-6). �

5. Graded characters of restricted limits of minimal affinizations

5.1. Preliminaries. Although Theorem 3.2 tells which objects of C̃q correspond to
minimal affinizations, it does not say anything about their Uq(g)-structure, unless g

is of type A. In some few cases this is known; see [Chari 1995; CM 2006; 2007].
In principle, the Uq(g)-structure can be read off the `-character. In practice, this is
not so easy to do, even in the situations that the Frenkel–Mukhin algorithm does
produced the `-character. We will now apply the techniques of [CM 2006; 2007] to
prove Proposition 3.24 and, hence, Conjecture 3.20 in those cases. As a byproduct,
we obtain closed formulas for the character of the minimal affinizations if λ is as
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in Proposition 3.24. We shall also prove an analogue of Conjecture 3.20 in the case
of multiple minimal affinizations for g of type D4.

Lemma 5.2 [CM 2007, Section 1.5]. Consider the three-dimensional Heisenberg
algebra H spanned by elements x , y and z, where z is central and [x, y] = z.
Suppose that V is a representation of H, and let 0 6= v ∈ V be such that xrv = 0.
Then for all k, s ∈ Z≥0, the element ykzsv is in the span of elements of the form
xa ybzcv with 0≤ c < r , a+ c = s, and b+ c = k+ s.

Let V be a finite-dimensional g-module, and let λ ∈ P+. Denote by mλ(V ) the
multiplicity of the irreducible module V (λ) as an irreducible constituent of V . Set
d ′i = di/r∨. Hence, if g is simply laced, d ′i = di = 1. If g is of type B, d ′i = 1 if
i < n and d ′n = 1/2. The symbol [m] means the largest integer not greater than m.

5.3. Type B. Given i ∈ I and m ∈Z≥0, let vi,m be the image of 1 in M(mωi ). The
following was proved in.

Lemma 5.4 [Chari 2001; CM 2006]. (a) M(mω1)∼= V (mω1).

(b) M(mω2)[l] =
{

0 if l > [d ′2m],
U (n−)(x−θ1,1,1)

lv2,m ∼= V (mω2− lθ1,1) if 0≤ l ≤ [d ′2m].

(c) M(mω3)[l] =
{

0 if l > [d ′3m],
U (n−)(x−θ2,2,1)

lv3,m ∼= V (mω3− lθ2,2) if 0≤ l ≤ [d ′3m].

Also, (x−θ1,2,1)
r1,2(x−θ2,2,1)

r2,2v3,m is a multiple of (x−α1
)r1,2(x−θ2,2,1)

r1,2+r2,2v3,m .

The “also” part of this lemma can also be proved using Lemma 5.2.

Proposition 5.5. Suppose λ ∈ P+ is such that λ(hi )= 0 for i > 2. Then,

M(λ)[k] ∼=
{

V (λ− kθ1,1) if 0≤ k ≤ [d ′2λ(h2)],
0 otherwise.

Also, M(λ)∼= T (λ).

Proof. Let v be the image of 1 in M(λ). Equation (4-1) gives R+(λ, 1)⊇ R+\{θ1,1}.
Together with the PBW Theorem, this implies that

M(λ)=
⊕
k≥0

U (n−)(x−θ1,1,1)
kv.

It follows from Lemma 2.3 that mµ(M(λ)) ≤ 1 for every µ and that mµ(M(λ))
may be nonzero only when µ= λ−kθ1,1 for some k ∈Z≥0. Since θ1,1= (d ′2)

−1ω2,
µ− kθ1,1 ∈ P+ if and only if k ≤ [d ′2λ(h2)].

Let vi be a nonzero element in the top weight space of M(λ(hi )ωi ) for i = 1, 2.
Then, by [CM 2006], (x−θ1,1,1)

kv2 is the highest-weight vector of the irreducible
g-submodule of M(λ(h2)ω2)[k] for k = 0, . . . , [d ′2λ(h2)], while M(λ(h1)ω1) is an
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irreducible g-module itself. Therefore, (x−θ1,1,1)
k(v1⊗ v2) = v1⊗ (x−θ1,1,1)

kv2 6= 0,
proving that T (λ)[k] 6= 0. Hence, T (λ)[k] ∼= M(λ)[k] and we are done. �

Remark. This proposition reproves one of the main results of [Chari 1995] using
a different method.

Now assume n ≥ 3 and suppose λ ∈ P+ is such that λ(hi )= 0 for i > 3. In this
case, Equation (4-1) implies

(5-1) R+(λ, 1)⊇ R+ \ {θ2,2, θ1,2, θ1,1}.

Observe that θ1,1 = ω2, θ1,2 = ω1−ω2+ (d ′3)
−1ω3 and θ2,2 = (d ′3)

−1ω3−ω1. In
particular, {θ2,2, θ1,2, θ1,1} is a linearly independent subset of h∗. Let e j for j ∈Z≥0

be the standard basis of Z3
≥0, set

(5-2) A3(λ)=
{

r= (r1, r2, r3)∈Z3
≥0 : r3≤λ(h2), r2≤λ(h1), r1+r2≤[d ′3λ(h3)]

}
and, given r ∈ Z3

≥0, define

(5-3) yr = (x
−

θ2,2,1)
r1(x−θ1,2,1)

r2(x−θ1,1,1)
r3 .

Notice that the elements x−θ2,2,1, x−θ1,2,1, x−θ1,1,1 commute among themselves.

Lemma 5.6. Let v be the image of 1 in M(λ). For every s ∈ Z3
≥0,

ysv ∈
∑

r
U (n−)yrv

where the sum is over the elements r ∈ Z3
≥0 such that r3 ≤ λ(h2) and r2 ≤ λ(h1).

Proof. By Lemma 5.2 with x = x−α2
, y = x−θ1,2,1, and z = x−θ1,1,1, we have that ysv is

in the span of elements of the form (x−α2
)ays′v with a > 0 and s′ with s ′3 ≤ λ(h2).

Using Lemma 5.2 once more, this time with x = x−α1
, y = x−θ2,2,1, and z = x−θ1,2,1,

it follows that an element ys′v with s′ as above belongs to the span of elements of
the form (x−α1

)ayrv with a > 0 and r as claimed. �

Given r ∈ Z3
≥0, define

(5-4) wt(r)= r1θ2,2+ r2θ1,2+ r3θ1,1 and gr(r)= r1+ r2+ r3.

Since {θ2,2, θ1,2, θ1,1} is linearly independent, wt is an injective function.

Proposition 5.7. For every λ ∈ P+ as above, we have M(λ)∼= T (λ) and

M(λ)[l] ∼=
⊕

r∈A3(λ):gr(r)=l

V (λ−wt(r)).
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Proof. Let v be the image of 1 in M(λ). Equation (5-1), together with the PBW
theorem, implies that

M(λ)=
∑

r∈Z3
≥0

U (n−)yrv.

Lemma 5.6 implies that the this sum can be restricted to r such that r3 ≤ λ(h2)

and r2 ≤ λ(h1). This, together with Lemma 2.3, implies that mµ(M(λ)) ≤ 1 and
equality may occur only if µ= λ−wt(r) for some r as above. Also, wt(r) ∈ P+

only if r1+ r2 ≤ [d ′3λ(h3)], and hence r must be in A3(λ). It follows that M(λ)[l]
is a quotient of

⊕
r∈A3(λ):gr(r)=l V (λ−wt(r)). To complete the proof, it suffices

to show that T (λ)[l] contains a submodule isomorphic to V (λ−wt(r)) for every
r ∈A3(λ) such that gr(r)= l.

Thus, let vi = vi,λ(hi ), i = 1, 2, 3, and let v j
i be the image of vi in M(λ(hi )ωi )( j)

for j ≥ 0. Then, if r ∈A3(λ), Lemma 5.4 implies

(5-5)
yr(v1⊗ v2⊗ v

r1+r2
3 )= v1⊗ (x−θ1,1,1)

r3v2⊗ (x−θ2,2,1)
r1(x−θ1,2,1)

r2vr1+r2
3

= v1⊗ (x−θ1,1,1)
r3v2⊗ (x−α1

)r2(x−θ2,2,1)
r1+r2vr1+r2

3 6= 0.

Given r ≤ λ(h2) and s ≤ [d ′3λ(h3)], let Tr,s(λ) be the g[t]-submodule of

M(λ(h1)ω1)⊗M(λ(h2)ω2)(r)⊗M(λ(h3)ω3)(s)

generated by vr,s := v1⊗ v
r
2⊗ v

s
3. Clearly Tr,s(λ) is a quotient of T (λ)(r + s). Set

r0= (s, 0, r) and r j = r j−1+(e2−e1) for 1≤ j ≤ s ′ :=min(λ(h1), s). Notice that

Tr,s(λ)[r + s] =
s′∑

j=0

U (n−)yr j
vr,s and (λ−wt(r j ))(h1)= λ(h1)+ s.

In particular, λ−wt(r0) is the unique maximal weight of Tr,s(λ)[r + s]. We prove
inductively on k = 0, 1, . . . , s ′ that

k∑
j=0

U (n−)yr j
vr,s ∼=

k⊕
j=0

V (λ−wt(r j ))

as a g-module. Since every r ∈ A3(λ) is of the form r j for some r, s, j as above,
this completes the proof.

It is clear from Lemma 5.4 and (5-5) that n+yr0
vr,s = 0 and hence generates a

g-submodule isomorphic to V (λ−wt(r0)). In particular, we can assume s ′ > 0.
Notice that the weight space of V (λ−wt(r j )) of weight λ−wt(r j )− (k − j)α1

is one-dimensional for 0 ≤ j ≤ k. Using the induction hypothesis on k, we know
that the weight space of

∑k
j=0 U (n−)yr j

vr,s of weight λ − wt(r0) − (k + 1)α1

has dimension k + 1. Since the elements (x−α1
) j yrk+1− j

vr,s for 0 ≤ j ≤ k + 1 are
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clearly linearly independent, it follows that V (λ − wt(rk+1)) is a submodule of∑k+1
j=0 U (n−)yr j

vr,s . �

Remark. Suppose n > 3 and that λ ∈ P+ is such that supp(λ)⊆ {1, 2, 3, n} with
λ(hn)= 1. Since R+(n, 1, 1)= R+, it follows that all of the above can be carried
out and Proposition 5.7 remains valid (notice d ′3 = 1 in this case).

5.8. Type D. Define the set A3(λ) as in (5-2) and the maps wt and gr as in (5-4).

Proposition 5.9. If λ∈ P+ is such that λ(hi )=0 if 3< i<n−1, then M(λ)∼=T (λ).

(a) If n = 4, then

M(λ)[l] ∼=
{

V (λ− lθ1,1) if 0≤ l ≤ λ(h2),

0 otherwise.

(b) If n > 4, then

M(λ)[l] ∼=
⊕

r∈A3(λ):gr(r)=l

V (λ−wt(r)).

Proof. The proof is essentially the same as that of Proposition 5.7 using that
R+(mωi , 1)= R+ if i labels a spin node. �

In particular, Proposition 5.9 gives the description of the graded characters of
M(λ) in types D4 and D5 for any λ ∈ P+. If supp(λ) contains at most one of the
spin nodes, it follows that Proposition 5.9 describes the character of the minimal
affinizations of Vq(λ) as well. Otherwise, it is just a lower bound.

Now, let m ∈ Z≥0 and set

A(m)= {r = (r1, r2, . . . , r[(n−2)/2]) ∈ Z
[(n−2)/2]
≥0 : m ≥ r1 ≥ · · · ≥ r[(n−2)/2]}.

Define

wt(r)=
[(n−2)/2]∑

j=1

r jθn−2 j,n−2 j and gr(r)=
[(n−2)/2]∑

j=1

r j .

It was proved in [Chari 2001; CM 2006] that

M(mωn−2)[l] =
∑

r∈A(m):gr(r)=l

yrvn−2,m ∼=
⊕

r∈A(m):gr(r)=l

V (mωn−2−wt(r)),

where

yr =

[(n−2)/2]∏
j=1

(x−θn−2 j,n−2 j ,1)
r j .

Proceeding similarly to the proof of Proposition 5.7, one also proves the following.



392 ADRIANO MOURA

Proposition 5.10. Let λ∈ P+ such that λ(hi )= 0 if i < n−2. Then M(λ)∼= T (λ)
and

M(λ)[l] ∼=
⊕

r∈A(λ(hn−2)):gr(r)=l

V (λ−wt(r)).

5.11. Multiple minimal affinizations: The regular case. Let g be of types D or E
and i0 ∈ I be the unique node triply connected. Let also J1, J2, J3 ⊆ I be an
enumeration of the three maximal subdiagrams of type A of the Dynkin diagram
of g (they are not admissible). Let also J ′k = Jl ∩ Jm for {k, l,m} = {1, 2, 3}. It
follows from [CP 1996b, Theorem 6.1] that, if λ(hi0) 6= 0 and λ is supported on the
three connected components of I \ {i0}, then Vq(λ) has exactly three equivalence
classes of minimal affinizations. Moreover:

Theorem 5.12. Let λ ∈ P+q be such that wt(λ) = λ, where λ is as above. Then
Vq(λ) is a minimal affinization of Vq(λ) if and only if there exists k ∈ {1, 2, 3} such
that Vq(λJl ) is a minimal affinization of Vq(λJl ) for l 6= k.

Definition 5.13. Given λ∈ P+ and k ∈ {1, 2, 3}, let Mk(λ) be the quotient of A(λ)
by the submodule generated by the vectors x−α,1vλ for all α∈ R+Jl

with l 6=k. Suppose
λ ∈ P++A is such that Vq(λJl ) is a minimal affinization of Vq(λJl ) for l 6= k. Set
Tk(λ) to be the g[t]-submodule of M(λJ ′k )⊗ L(λI\J ′k ) generated by the top weight
space.

It is easy to see that Mk(λ) is a restricted g[t]-module and that M(λ) is a quotient
of Mk(λ) for all k. Also, proceeding similarly to the proofs of Propositions 3.21
and 3.22 we get the following analogue (we omit the details).

Proposition 5.14. Let λ ∈P++A and k ∈ {1, 2, 3} be such that Vq(λJl ) is a minimal
affinization of Vq(λJl ) for l 6= k. Then there exist surjective g[t]-module maps
Mk(λ)� L(λ)� Tk(λ).

Conjecture 5.15. Suppose λ∈ P+ is supported on the three connected components
of I \ {i0}. Then, Tk(λ) and Mk(λ) are isomorphic for every k ∈ {1, 2, 3}.

Corollary 5.16. Suppose λ∈P++A and k ∈ {1, 2, 3} are such that Vq(λJl ) is a min-
imal affinization of Vq(λJl ) for l 6= k and wt(λ) is supported on the three connected
components of I \ {i0}. Then, Tk(λ)∼= L(λ)∼= Mk(λ).

We now prove Conjecture 5.15 for g of type D4. Thus, let λ ∈ P+ be such that
λ(hi ) 6= 0 for all i 6= 2, and let λ be such that Vq(λ) is a minimal affinization of
Vq(λ). Set also J1 = {1, 2, 3}, J2 = {1, 2, 4}, and J3 = {2, 3, 4}. Without loss of
generality we can assume that Vq(λJ1) and Vq(λJ2) are minimal affinizations. We
want to show that T3(λ)∼= M3(λ) in this case. We also assume that

λ= ω1,a,λ(h1) ω2,aqλ(h1)+λ(h2)+1,λ(h2)
ω3,aqλ(h2)+λ(h3)+1,λ(h3)

ω4,aqλ(h2)+λ(h4)+1,λ(h4)
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for some a ∈ C×. The case

λ= ω1,a,λ(h1) ω2,aq−(λ(h1)+λ(h2)+1),λ(h2)
ω3,aq−(λ(h2)+λ(h3)+1),λ(h3)

ω4,aq−(λ(h2)+λ(h4)+1),λ(h4)

is proved similarly. If λ(h2) 6= 0, these two cases cover all minimal affinizations
such that Vq(λJ1) and Vq(λJ2) are also minimal affinizations. Otherwise, there are
two more possibilities for λ (see the closing remark of Section 5.18).

Let v be the image of 1 in M3(λ). By the definition of M3(λ), we have the
relations

(5-6) x−αi ,1v = x−α2+α j ,1v = x−α1+α2+α3,1v = x−α1+α2+α4,1v = 0

for all i, j ∈ I and j 6= 2. Using the commutation relations [x−α , x−β ] = x−α+β (up
to multiple) we also get

(5-7) x−α,2v = 0 for all α ∈ R+.

Let ϑ1 =
∑4

i=1 αi = ω1 + ω3 + ω4 − ω2, ϑ2 = ϑ1 − α1 = ω3 + ω4 − ω1, and
θ = θ1,1 = ϑ1+α2 = ω2. It follows that

M3(λ)=
∑

r∈Z3
≥0

U (n−)yrv, where yr = (x
−

θ,1)
r3(x−ϑ2,1)

r2(x−ϑ1,1)
r1 .

Since {ϑ1, ϑ2, θ} is a linearly independent subset of h∗, it follows as before that
mµ(M3(λ))≤ 1 for every µ ∈ P+, with equality only if µ= λ−r1ϑ1−r2ϑ2−r3θ

for some r j ∈ Z≥0. But such elements are dominant if and only if

r1 ≤ λ(h1)+ r2, r3 ≤ λ(h2)+ r1, r1+ r2 ≤min{λ(h3), λ(h4)}.

Set

(5-8) D3(λ)=
{

r ∈ Z3
≥0 : r1 ≤ λ(h1), r3 ≤ λ(h2), r1+ r2 ≤min{λ(h3), λ(h4)}

}
.

Proceeding similarly to the proof of Lemma 5.6, one proves that

M3(λ)=
∑

r∈D3(λ)

U (n−)yrv.

Given r ∈ Z3
≥0, define

(5-9) wt(r)= r1ϑ1+ r2ϑ2+ r3θ and gr(r)= r1+ r2+ r3.

Since {ϑ1, ϑ2, θ} is linearly independent, it follows that wt is an injective function.
To complete the proof of Conjecture 5.15 in this case, it suffices to prove that
mµ(T3(λ)) ≥ 1 if µ = λ−wt(r) for some r ∈ D3(λ). In particular, it will follow
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that

(5-10) M3(λ)[l] =
⊕

r∈D3(λ):gr(r)=l

V (λ−wt(r)).

Proposition 5.17. Let

b ∈ A×, µ= m3ω3+m4ω4 ∈ P+, µ= ω3,b,m3ω4,bqm4−m3 ,m4 .

Then, L(µ)[l] ∼= V (µ− lϑ2) for 0≤ l ≤min{m3,m4} and L(µ)[l] = 0 otherwise.

Proof. Let v be a highest-weight vector of L(µ). Clearly v satisfies relations (5-6)
and (5-7). Moreover, proceeding as above, we get

L(µ)=
∑

r∈D3(µ)

U (g)yrv =

min{m3,m4}⊕
r=0

U (n−)(x−ϑ2,1)
rv

and, by Lemma 5.2 once more,

(5-11) (x−ϑ1,1)
r1(x−ϑ2,1)

r2v = (x−α1
)r1(x−ϑ2,1)

r1+r2v.

Without loss of generality, assume m4 ≥ m3 ≥ 1 and observe that

µ=

(m3−1∏
j=0

ωω3+ω4,bq1−m3+2 j

)(m4−m3−1∏
j=0

ω4,bqm3+1+2 j

)
.

Then by Proposition 4.3 and its corollary, Vq(µ) is the Uq(g̃)-submodule of(
Vq(ωω3+ω4,bq1−m3 )⊗ · · ·⊗ Vq(ωω3+ω4,bqm3−1)

)
⊗
(
Vq(ω4,bqm3+1)⊗ · · ·⊗ Vq(ω4,bq2m4−m3−1)

)
that is generated by the top weight space. Let M ′(ω3 + ω4) be the pullback
of Vq(ωω3+ω4,bqm ) by τb, where m ∈ Z, and let T ′(µ) be the g[t]-submodule of
M ′(ω3+ω4)

⊗m3 ⊗M(ω4)
⊗m4−m3−1. As before, it follows from Lemma 2.20 that

T ′(µ) is a quotient of L(µ). Hence, we are left to show that T ′(µ) has V (µ− lϑ2)

as an irreducible g-submodule for every 0 ≤ l ≤ m3. Moreover, it suffices to
consider the case m4 = m3 = m ∈ Z>0. Observe that Vq(ωω3+ω4,bqm ) is not a
minimal affinization and that V (ω3)⊗ V (ω4) ∼= V (ω3 + ω4)⊕ V (ω1). In other
words, the proposition is proved for m3 =m4 = 1. Finally, let v j for j = 1, . . . ,m
be a highest-weight vector of the j-th copy of M ′(ω3+ω4) in M ′(ω3+ω4)

⊗m , and
let v0

j be its image in M ′(ω3+ω4)(0). Then

(x−ϑ2,1)
l(v1⊗ v2⊗ · · ·⊗ vl ⊗ v

0
l+1⊗ · · ·⊗ v

0
m)

= (x−ϑ2,1v1)⊗ (x−ϑ2,1v2)⊗ · · ·⊗ (x−ϑ2,1vl)⊗ v
0
l+1⊗ · · ·⊗ v

0
m

and we are done using a simple induction on l. �
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Let v1 be a highest-weight vector of M(λ{1,2}), and let v2 be a highest-weight
vector of L(λ{3,4}). It follows from Proposition 5.9 and (5-11) that if r ∈ D3(λ),
then

(5-12) yr(v1⊗ v2)= ((x−θ,1)
r3v1)⊗ ((x−α1

)r1(x−ϑ2,1)
r1+r2v2).

The proof of (5-10) is completed similarly to the end of the proof of Proposition 5.7.

5.18. Multiple minimal affinizations: The irregular case. Keep the notation of
Section 5.11. If λ is supported on the three connected components of I \ {i0} and
λ(hi0) = 0, it follows from [CP 1996a] that the number of equivalence classes of
minimal affinizations of Vq(λ) is not uniformly bounded (it grows as λ “grows”).
If g is of type E , write I as the disjoint union of two connected subdiagrams of
type A, say I1 and I2, and the subdiagram of type D4, say J . For g of type D we
write I as the disjoint union of a subdiagram I1 of type A and the subdiagram J
of type D4 (for convenience we set I2 =∅ and λ∅

= 0). Similarly to the proof of
Proposition 3.21, one proves this:

Proposition 5.19. Suppose λ ∈ P+ and λ ∈ P+q are such that Vq(λ) is a minimal
affinization of Vq(λ). Then L(λ) projects onto the g[t]-submodule of L(λI1) ⊗

L(λJ )⊗ L(λI2) generated by the top weight space.

We then have a natural conjecture, the discussion of which we postpone to a
forthcoming publication.

Conjecture 5.20. Suppose λ ∈ P+ and λ ∈ P+q are such that Vq(λ) is a minimal
affinization of Vq(λ). Then L(λ) is isomorphic to the g[t]-submodule of L(λI1)⊗

L(λJ )⊗ L(λI2) generated by the top weight space.

Remark. Let λ be as in [CP 1996a, Theorem 2.2 (a)3,4 or (b)3,4]. If conditions
(a)3,4 are satisfied, the results of Section 5.11 apply, and hence the graded character
of L(λ) is given by the right side of (5-10). To prove the conjecture of remark (1)
following that theorem, it suffices to show that if conditions (b)3,4 are satisfied,
then the graded character of L(λ) is also given by the right side of (5-10). The
proof is essentially the same as for the former case replacing Proposition 5.17 by
its appropriate obvious modification. We omit the details.
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