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data. It turns out that the gradient calculations require hardly any extra storage,
and only a small multiple of the number of operations needed to calculate the
function values alone.
The analytic gradient procedure was integrated into the VCE package for co-
variance component estimation in large animal breeding models. It resulted in
dramatic improvements of performance over the previous implementation with
finite difference gradients. An example with more than 250 000 normal equations
and 55 covariance components took hours instead of days of CPU time, and this
was not an untypical case.
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1 Introduction

In animal breeding, selection of parents of the next generation is based on their
predicted additive genetic value. Best linear unbiased prediction of genetic merit
[29] requires the covariance structure of the model elements involved. In practical
situations, these are usually unknown and must be estimated. During the last
years restricted maximum likelihood (REML) [49, 27] has emerged as the method
of choice in animal breeding for variance component estimation [40, 41, 42, 20,
21, 22, 52].

Initially, the expectation maximization (EM) algorithm (Dempster [8] was used
for the optimization of the REML objective function [30, 53]. Applications were
written for special cases, and Fellner [13] made large-scale applications possible
through sparse matrix techniques. However, the slow (linear) convergence renders
it a procedure for problems with relatively few covariance components only. A
recent accelerated version using Aitken extrapolation and fast gradients (similar
to those proposed here) performed well in a comparison by Misztal [45], though
the numerical results given there estimate only few covariance components.
In 1987 Graser et al. [18] introduced the derivative free optimization, which in
the following years led to the development of rather general computing algorithms
and packages [40, 20, 34, 32] that were mostly based on the simplex algorithm
of Nelder & Mead [47]. Kovac [34] made modifications that turned it into
a stable algorithm that no longer converge to noncritical points, but this did
not improve its inherent inefficiency for increasing dimensions. Ducos et al. [9]
used for the first time the more efficient quasi-Newton procedure approximating
gradients by finite differences. While this procedure was faster than the simplex
algorithm it was also less robust for higher-dimensional problems because the
covariance matrix could become indefinite, often leading to false convergence.
Thus, either for lack of robustness and/or excessive computing time often only
subsets of the covariance matrices could be estimated simultaneously.
Lindstrom & Bates [37] used analytic formulas for first and second deriva-
tives (no sparsity considerations), and pointed out that optimization on the
Cholesky factor of the covariance matrices, together with Goldstein-Armijo line
searches overcomes the robustness problems within a Newton-Raphson algorithm.
Groeneveld [23] showed the efficiency of this procedure and implemented it in
a general purpose package. A comparison of different packages [52] confirmed
the general observation of Gill et al. [17] that simplex based optimization al-
gorithms suffer from lack of stability, sometimes converging to noncritical points
while the quasi-Newton procedure with optimization on the Cholesky factor was
stable and much faster than any of the other general purpose algorithms. While
this led to a speed-up of between 2 and (for some examples) 200 as compared to
the simplex procedure, approximating gradients on the basis of finite differences
was still exceedingly costly for higher dimensional problems [22].
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It is well-known that optimization algorithms generally perform better with ana-
lytic gradients if the latter are cheaper to compute than finite difference approx-
imations. General results on automatic differentiation (see, e.g., Griewank &

Corliss [19]) imply that for every computable function it is possible to get re-
cursively analytical gradients at the cost of a few function evaluations, and hence
much cheaper than with finite differences. This is achieved at the cost of storage
space of the order of the number of operations; but at some penalty on the eval-
uation cost, storage space can be held at a reasonable size. A common way of
doing this is by differentiating the whole program by a package like Adifor [1].
However, Adifor could not cope with our animal breeding code and produced
no derivative code. Moreover, standard arguments predict larger overhead in ei-
ther storage or runtime when differentiating a sparse matrix package, compared
to the approach presented below.

In this paper we derive, in the context of a general statistical model, cheap an-
alytical gradients for problems with a large number p of unknown covariance
components. Because of the inherent sparsity of the equations in many applica-
tions, our implementation makes use of sparse matrix techniques, in particular
sparse inverse calculations from a sparse Cholesky factorization. With hardly
any additional storage requirements, the cost of a combined function and gradi-
ent evaluation is only three times that of the function value alone. This gives
analytic gradients a huge advantage over finite difference gradients. A similar fast
gradient technique has been proposed by Misztal & Perez-Enciso [46] (see
also Thompson et al. [54] for an improvement in its space complexity), using an
LDLT factorization and the Takahashi inverse [11]; no results in a REML appli-
cation were given. Fellner [14] precedes this development but is less efficient
since he computes the full inverse columnwise, saving storage but not time.
A recent paper by Fraley & Burns [15] provides a different approach to the
computation of function values and analytic gradients based on sparse matrix
indefinite factorization techniques; no test results are given. Their derivation is
in terms of the W transformation introduced by Hemmerle & Hartley [28]
and first used in a REML context by Corbeil & Searle [6]. Other recent
papers by Wolfinger et al. [55] (based again on the W transformation) and
Meyer [43] (based on the simpler REML objective formulation of Graser et
al. [18]) also provide this information (and even Hessians), but there a gradient
computation needs a factor of O(p) more work and space than in our approach,
where the complete gradient is found with hardly any additional space and with
(depending on the implementation) 2–4 times the work for a function evaluation.
(In automatic differentiation terms, this is the gain in complexity expected for
switching from forward differentiation to backward differentiation.) Meyer [43]
used her analytic second derivatives in a Newton-Raphson algorithm for optimiza-
tion. Because the optimization was not restricted to positive definite covariance
matrix approximations, she found the algorithm to be markedly less robust than
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(the already not very robust) simplex algorithm, even for univariate models.

We test the usefulness of our new formulas by integrating it into the VCE co-
variance component estimation package for animal (and plant) breeding models
(Groeneveld [22]). Here the gradient routine is combined it with a quasi-
Newton optimization method and with a parametrization of the covariance pa-
rameters by the Cholesky factor that ensures definiteness of the covariance ma-
trix. In the past, this combination was most reliable and had the best convergence
properties of all techniques used in this context (Spilke & Groeneveld [52]).
Typical problem sizes in animal breeding applications are of the order of 200
000 least squares variables and perhaps 60 nonlinear variables in the covariance
matrices. (The variables occuring linearly constitute breeding values and esti-
mates of fixed and random effects.) But in some problem areas, millions of linear
unknowns may have to be estimated, while an upper limit for the nonlinear pa-
rameters could be set to around 400.
In the past, the largest animal breeding problem ever solved ([25], using a quasi-
Newton procedure with optimization on the Cholesky factor) comprised 233 796
linear unknowns and 55 covariance components and required 48 days of CPU time
on a 100MHz HP 9000/755 workstation. Clearly, speeding up the algorithm is of
paramount importance. In our preliminary implementation of the new method
(not yet optimized for speed), we successfully solved this (and an even larger
problem of more than 257 000 unknowns) in only 41 hours of CPU time, with a
speed-up factor of nearly 28 with respect to the finite difference approach. In the
mean time, the new VCE implementation is being used world wide and has been
applied successfully to hundreds of animal breeding problems, with comparable
performance advantages [2, 3, 4, 24, 44, 38].

In Section 2 we fix notation for linear stochastic models and mixed model equa-
tions. In Section 3 we define the REML objective function, and review closed
formulas for its gradient and Hessian. We then derive a new theorem that shows
why minimization of the REML function can be expected to give good estimates
for the covariance matrix under very weak conditions on the noise. In Sections
4–8 we discuss a general setting for practical large scale modeling, and derive an
efficient way for the calculation of REML function values and gradients for large
and sparse linear stochastic models.
All our results are completely general, not restricted to animal breeding. However,
for the formulas used in our implementation, it is assumed that the covariance
matrices to be estimated are block diagonal with no restrictions on the (distinct)
diagonal blocks.
The final section applies the method to a simple demonstration case and several
large breeding models.
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2 Linear stochastic models

In the following, AT denotes the transposed matrix of A. The expression 〈x〉
denotes the expectation of a random variable x (or random vector, etc.). The
statement

ε = noise(C)

expresses that the noise vector ε is a realization of a random vector with covari-

ance matrix

〈εεT 〉 = C.

(Strictly speaking, the name ‘covariance matrix’ is appropriate only when also
〈ε〉 = 0, which is usually assumed as well, but not really needed.) Several such
statements are taken to imply the assumption that the respective random vectors
are uncorrelated. The covariance matrix C is assumed to be symmetric and
positive definite; in particular, the inverse exists and is symmetric and definite,
too.

We shall consider the linear stochastic model in the simple form

Ax = b + ε, ε = noise(C), (1)

where A ∈ IRm×n, x ∈ IRn, b, ε ∈ IRm and C ∈ IRm×m. The normal equations for
the model (1) have the form

Bx = a, (2)

where
B = AT C−1A,

a = AT C−1b.

By solving the normal equations (2), we obtain the best linear unbiased estimate
(BLUE)

x̂ = B−1a = B−1AT C−1b (3)

for the state vector x, and the noise ε = Ax − b is estimated by the residual

r = Ax̂ − b .

More generally, many applications (including those to animal breeding) are based
on the generalized linear stochastic model

y = Xβ + Zu + η, u = noise(D), η = noise(G), (4)

with fixed effects β and random effects u. Usually, D and G are block diagonal,
with many identical blocks.
By combining the two noise terms, the model is seen to be equivalent to the
simple model y = Xβ + η′, η′ = noise(V ), with the mixed model covariance
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matrix V = ZDZT +G. Usually, V is huge and no longer block diagonal, leading
to hardly manageable normal equations involving the inverse of V . However,
Henderson [7] showed that the normal equations are equivalent to the mixed
model equations

(

XT G−1X XT G−1Z
ZT G−1X ZT G−1Z + D−1

)(

β
u

)

=

(

XT G−1y
ZT G−1y

)

. (5)

This formulation avoids the inverse of the mixed model covariance matrix V and
is the basis of most modern methods for solving (4).

Fellner [12] observed that Henderson’s mixed model equations are the normal
equations of an augmented model in the simple form (1). The augmented model
uses the state vector

x =

(

β
u

)

and the noise vector

ε =

(

−η
u

)

,

with resulting coefficient matrix

A =

(

X Z
0 I

)

,

data vector

b =

(

y
0

)

,

and covariance matrix

C =

(

G 0
0 D

)

.

Thus, without loss in generality, we may base our analysis and our algorithms on
the simple model (1), with a covariance matrix C that is typically block diagonal.
This automatically produces the formulas that previously had to be derived in a
less transparent way by means of the W transformation [28, 6, 55, 15].

3 Restricted loglikelihood

If the covariance matrix C = C(ω) contains unknown parameters ω, these can
be estimated by minimizing the restricted loglikelihood

f := rT C−1r + log det C + log det B, (6)
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quoted in the following as the REML objective function, as a function of the
parameters ω. (Note that all quantities in the right hand side of (6) depend on
C and hence on ω.)
More precisely, (6) is the logarithm of the restricted likelihood, scaled by a factor
of −1

2
and shifted by a constant depending only on the problem dimension. Under

the assumption of Gaussian noise, the restricted likelihood can be derived from
the ordinary likelihood restricted to a maximal subspace of independent error
contrasts (cf. Harville [27]). Under the same assumption, another derivation
as a limiting form of a parametrized maximum likelihood estimate was given
by Laird [36]. However, as we shall show below, minimizing the restricted
loglikelihood is also justified when the distribution of the noise is unknown.
When applied to the generalized linear stochastic model (4) in the augmented
formulation discussed above, the REML objective function (6) takes the compu-
tationally most useful form given by Graser et al. [18].

In order to be able to use fast numerical optimization techniques, we need to
derive a formula for the computation of its gradient. The following proposition
contains the relevant derivative information; equivalent formulas have been given
earlier by [27, 37, 55]. We write

2̇ = ∂µ2 =
∂2

∂ωµ

.

for the derivative with respect to a parameter ωµ occuring in the covariance
matrix.
In the following, the symbols tr and det for traces and determinants take prece-
dence over +, − and =, but not over products and parentheses.

Proposition. Let
P = M − MAB−1AT M, (7)

where
M := C−1.

Then
Pε := P − PεεT P = P − PbbT P = P − MrrT M (8)

and
∂µf = tr Pε(∂µC), (9)

∂µ∂νf = sT
µPsν + δµν , (10)

where
sµ = (∂µC)Mr, (11)

δµ,ν = tr Pε(δµδνC) − tr Pε(∂µC)P (∂νC). (12)
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Proof. Since CM = I, we have ĊM + CṀ = İ = 0, hence

Ṁ = −MĊM.

Since
ṙT Mr = (Ax̂·)T M(Ax̂ − b) = (x̂·)T (AT MAx̂ − AT Mb) = 0,

we conclude that

(rT Mr)· = ṙT Mr + rT Ṁr + rT Mṙ = rT Ṁr = −rT MĊMr = − tr(MrrT MĊ).

Now,
(log det C)· = tr C−1Ċ = tr MĊ.

Since Ḃ = AT ṀA = −AT MĊMA, we have

(log det B)· = tr B−1Ḃ = − tr B−1AT MĊMA = − tr MAB−1AT MĊ.

Since ḟ = (rT Mr)· + (log det C)· + (log det B)·, we find

ḟ = tr
[

M − MrrT M − MAB−1AT M
]

Ċ (13)

as expression for the derivative. Now

PA = MA − MAB−1(AT MA) = MA − MA = 0,

hence
PCP = P − PAB−1AT M = P (14)

and

Pε = P (Ax − b) = −Pb = −Mb + MAB−1AT Mb = −Mb + MAx̂ = Mr.

This implies (8), and (9) follows directly using (13).

In order to derive (10), let Q = B−1AT M . Then CP + AQ = I, and by differen-
tiation,

ĊP + CṖ + AQ̇ = 0, so that P (ĊP + CṖ ) = 0.

Since AT Ṗ = (AT P )· = 0 by symmetry of P , we conclude that

Ṗ = (I − MAB−1AT )Ṗ = PCṖ = −PĊP.

Therefore,

Ṗε = Ṗ − PbbT Ṗ − Ṗ bbT P = −PĊP + PbbT ĊP + PĊPbbT P

= −PεĊP + PĊPbbT P,

8



and differentiation of (9) with ν in place of µ gives

∂µ∂νf = tr Pε(∂µ∂νC) + tr(∂µPε)(∂νC)

= tr Pε(∂µ∂νC) − tr Pε(∂µĊ)P (∂νC) + tr P (∂µC)PbbT P (∂νC)
= δµν + tr Psµs

T
ν ,

hence (10). 2

Remarks. (i) A little work can be saved in the computation of Pε (and numerical
symmetry ensured) by noting that in terms of a Cholesky factorization

B = RT R

we can write Pε as
Pε = M − ssT − NNT

where
s = Mr

and N is a solution of the triangular linear system

NR = MA.

(ii) After having computed Pε, we can find the derivative of f with respect to
any parameter in the covariance matrix C by differentiating C with respect to
this variable and taking the trace (9). When B is a dense matrix or the number
n of variables xj in the linear model (1) is not too large (n < 100, say) then
this formula for the derivative can be implemented directly. In this case, also the
formula for the second derivatives is practical.
(iii) For large-scale problems, the computation of Pε is very expensive, and im-
proved techniques, such as those given in later sections, are needed for efficient
gradient calculation.
(iv) Since (12) is expensive to compute and its expectation vanishes at ω∗ (see the
next proof), it is appropriate to use in place of (10) the cheaper approximation

f ′′(ω) ≈ ST PS = ST MS − UT U,

where S is defined by its columns (11) and U = R−T (AT MS) is obtained by
multiple back substitution. This is a good initial Hessian approximation for
a quasi-Newton method, and it can be recomputed aposteriori for estimating
confidence intervals. Johnson & Thompson [33] use this approximation in a
modified Newton method.

The proposition allows us to give a new and elegant derivation of the REML
approach.
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Theorem. Let x and b be random vectors with residuals ε = Ax − b. If

〈εεT 〉 = C(ω∗) (15)

then ω∗ is a stationary point of

Φ(ω) := 〈f(x̂(ω), ω)〉,

where x̂(ω) is the solution of the normal equations

AT C(ω)−1Ax̂ = AT C(ω)−1b

and

f(x, ω) = (Ax − b)T C(ω)−1(Ax − b) + log det C(ω) + log det AT C(ω)−1A.

Moreover, ω∗ satisfies the second order necessary conditions for minimizers of

Φ.

Proof. For ω = ω∗, (14) implies

〈Pε〉 = 〈P − PεεT P 〉 = P − PCP = 0.

Since C is independent of ε we find ∂µΦ(ω∗) = 〈∂µf(ω∗)〉 = 0, so that 〈f〉 is
stationary at ω∗. Moreover, 〈δµν〉 = 0, hence

∂µ∂νΦ(ω∗) = 〈∂µ∂νf(ω∗)〉 = sT
µPsν .

Thus the Hessian is Φ′′(ω∗) = ST PS, where S has the sν as columns. But as a
Schur complement of the positive semidefinite matrix

(

AT MA AT M
MA M

)

= (A I)T M(A I),

P and hence ST PS is positive semidefinite. Thus the second order necessary
conditions hold. 2

By the theorem, the optimal covariance parameter vector ω∗ is a stationary point
(and very likely a minimizer) of 〈f(x̂(ω), ω)〉. Since in practice, we only have one
particular realization of the random vector b, it is natural to estimate ω∗ from
this realization as a stationary point of ω̂ of f(x̂(ω), ω). Now, as one easily sees,
ω̂ is also a stationary point of f(x, ω) as a function of x and ω (the original
formulation of REML). Indeed, variation with respect to x only gives precisely
the normal equations (2), and substitution of the solution into f(x, ω) gives the
previous objective function.
Since, for fixed ω, the stationary point is in fact the global minimizer, it is natural
to drop the expectation and calculate the estimate ω̂ as the global minimizer of
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f , too. This is precisely the REML procedure. Of course, in practice, one usually
only calculates a local minimizer, but in practice, the minimizer often seems to be
unique; at least this is suggested by results obtained with repeated minimization
from multiple starting points.
We emphasize that this justification of the REML approach, unlike in the tra-
ditional derivation of the REML approach, nowhere needs assumptions such as
that the noise should be Gaussian. This is due to the fact that our derivation
is not based on maximum likelihood arguments. Thus the REML method has
now a similarly broad justification for covariance component estimation in linear
models as the least square method (and its variation for general covariance matri-
ces) is justified as best linear unbiased estimator (BLUE) by the Gauss-Markov
theorem.

4 Full and incomplete element formulation

For the practical modeling of linear stochastic systems, it is useful to split a
model (1) into blocks of uncorrelated model equations which we call element

equations. The element equations usually fall into several types, distinguished by
their covariance matrices. The model equation for an element ν of type γ has the
form

Aνx = bν + εν , εν = noise(Cγ). (16)

Here Aν is the coefficient matrix of the block of equations for element number ν.
Generally, Aν is very sparse with few rows and many columns, most of them zero,
since only a small subset of the variables occurs explicitly in the νth element.
Each model equation has only one noise term. Correlated noise must be put
into one element. All elements of the same type are assumed to have statistically
independent noise vectors, realizations of (not necessarily Gaussian) distributions
with zero mean and the same covariance matrix. (In our implementation, there
are no constraints on the parametrization of the Cγ, but it is not difficult to
modify the formulas to handle more restricted cases.) Thus the various elements
are assigned to the types according to the covariance matrices of their noise
vectors.
For elements numbered by ν = 1, ..., N , the full matrix formulation of the model
(16) is the model (1) with

A =









A1
...

AN









, b =









b1
...

bN









, C =









Cγ(1) 0
. . .

0 Cγ(N)









,

where γ(ν) denotes the type of element ν.

A practical algorithm must be able to account for the situation that some compo-
nents of bν are missing. We allow for incomplete data vectors b by simply deleting

11



from the full model the rows of A and b for which the data in b are missing. This
is appropriate whenever the data are missing at random (Rubin [50]); note that
this assumption is also used in the missing data handling by the EM approach
(Dempster et al. [8], p.11; Jennrich & Schluchter [31]). However, in view
of our distribution-free justification of REML given above, it is likely that the
REML estimates computed with this deletion technique are reliable also in situ-
ations where the data are missing in a systematic, but measurement independent
way. (An example from animal breeding is a sex limited trait like milk yield that
can be measured only on females, if it is included in an analysis together with
other traits that are measured on both sexes.)
Since dropping rows changes the affected element covariance matrices and their
Cholesky factors in a nontrivial way, the derivation of the formulas for incomplete
data must be done carefully in order to obtain correct gradient information. We
therefore formalize the incomplete element formulation by introducing projection
matrices Pν coding for missing data pattern (Laird et al. [35]). If we define
Pν as the (0, 1) matrix with exactly one 1 per row (one row for each component
present in bν), at most one 1 per column (one column for each component of bν),
then PνAν is the matrix obtained from Aν by deleting the rows for which data
are missing, and Pνbν is the vector obtained from bν by deleting the rows for
which data are missing. Multiplication by P T

ν on the right of a matrix removes
the columns corresponding to missing components. Conversely, multiplication by
P T

ν on the left or P on the right restores missing rows or columns, respectively,
by filling them with zeros.
Using the appropriate projection operators, the model resulting from the full
element formulation (16) in case of some missing data has the incomplete element

equations

PνAνx = Pνbν + ε′ν , ε′ν = noise(C ′
ν) (17)

where
C ′

ν = PνCγ(ν)P
T
ν . (18)

The incomplete element equations can be combined to full matrix form (1), with

A =

















P1A1

·
·
·

PNAN

















, b =

















P1b1

·
·
·

PNbN

















, C =









C ′
1 0

. . .

0 C ′
N









. (19)

and the inverse covariance matrix takes the form

M =









M1 0
. . .

0 MN









. (20)
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where
Mν = C ′

ν
−1

.

Note that C ′
ν , Mν , and log det C ′

ν (a byproduct of the inversion via a Cholesky
factorization, needed for the gradient calculation) depend only on type γ(ν) and
missing data pattern Pν , and can be computed in advance, before the calculation
of the restricted loglikelihood begins.

5 The normal equations in element form

From the explicit representation (19), (20), we get the following formulas for the
coefficients of the normal equations.

a =
∑

ν

(PνAν)
T Mν(Pνbν),

B =
∑

ν

(PνAν)
T Mν(PνAν).

After assembling the contributions of all elements into these sums, the coefficient
matrix is factored into a product of triangular matrices,

B = RT R,

using sparse matrix routines [26, 10]. Prior to the factorization, the matrix is re-
ordered by the multiple minimum degree algorithm in order to reduce the amount
of fill in. This ordering need to be done only once, before the first function evalu-
ation, together with doing a symbolic factorization to allocate storage. Without
loss of generality, and for the sake of simplicity in the presentation, we may
assume that the variables are already in the correct ordering; our programs of
course perform this ordering automatically, using the multiple minimum degree
ordering genmmd as used in Sparsepak [5].
Note that R is the transposed Cholesky factor of B. (Alternatively, one can
obtain R from a sparse QR factorization of A, see, e.g., Matstoms [39].)

To take care of dependent (or nearly dependent) linear equations in the model
formulation, we replace in the factorization small pivots ≤ εBii by 1. (The choice
ε = (macheps)2/3, where macheps is the machine accuracy, proved to be suitable.
The exponent is less than 1 to allow for some accumulation of roundoff errors,
but still guarantees 2/3 of the maximal accuracy.)
To justify this replacement, note that in case of consistent equations, an exact
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linear dependence results in a factorization step looking like


























× R
×

× × × × ×
× 0 0 0 0

RT ×
×
×





















































y

×
0



























.

In the presence of rounding errors (or in case of near dependence) we get entries
of order εBii in place of the diagonal zero. (This even holds when Bii is small
but nonzero, since the usual bounds on the rounding errors scale naturally when
the matrix is scaled symmetrically, and we may choose the scaling such that
nonzero diagonal entries get the value one. Zero diagonal elements in a positive
semidefinite matrix occur for zero rows only, and remain zero in the elimination
process.) If we add Bii to Rii when Rii < εBii and set Rii = 1 when Bii = 0, the
near dependence is correctly resolved in the sense that the extreme sensitivity or
arbitrariness in the solution is removed by forcing a small entry into the ith entry
of the solution vector, thus avoiding the introduction of large components in null
space directions. (It is useful to issue diagnostic warnings giving the indices of
the column indices i where such near dependence occurred.)

The determinant

log det B = log det RT R = 2
∑

log |Rii|

is available as a byproduct of the factorization. The above modifications to
cope with near linear dependence amount to adding prior information on the
distribution of the parameters with those indices where pivots changed. Hence,
provided that the set of indices where pivots are modified does not change with
the iteration, they produce a correct behavior for the restricted loglikelihood. If
this set of indices changes, the problem is ill-posed, and would have to be treated
by regularization methods such as ridge regression, which is far too expensive
for the large-scale problems for which our method is designed. In practice we
haven’t seen a failure of the algorithm because of the possible discontinuity in
the objective function caused by our procedure for handling (near) dependence.

Once we have the factorization, we can solve the normal equations RT Rx = a for
the state vector cheaply by solving the two triangular systems

RT y = a and Rx = y.

(In case of an orthogonal factorization one has instead to solve Rx = y, where
y = QT b.)
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It turns out that, although the formula for the gradient involves B−1, the gradient
calculation can be done using the sparse inverse of B = RT R only, i.e., the
components of B−1 within the sparsity pattern of RT + R. This part of B−1 is
called the sparse inverse of B. A cheap way to compute the sparse inverse is
based on the relation

RB̄ = R−T (21)

for the inverse B̄ = B−1. By comparing coefficients in the upper triangle of this
equation, noting that (R−1)ii = (Rii)

−1, we find that

∑

j≥i

RijB̄jk = R−1
ii δik for i ≤ k,

where δik denotes the Kronecker symbol; hence

B̄ki = B̄ik = R−1
ii (R−1

ii δik −
∑

j>i

RijB̄jk) for i ≤ k. (22)

To compute B̄ik from this formula, we need to know the B̄jk for all j > i with
Rij 6= 0. Since the factorization process produces a sparsity structure with the
property

Rij 6= 0, Rik 6= 0, i ≤ j ≤ k ⇒ Rjk 6= 0

(ignoring accidental zeros from cancellation that are treated as explicit zeros),
one can compute the components of the inverse B̄ within the sparsity pattern of
RT +R by (22) without calculating any of its entries outside this sparsity pattern.
If (22) is used in the ordering i = n, n−1, ...., 1, the only additional space needed
is that for a copy of the Rij 6= 0, (j > i), which must be saved before we compute
the B̄ik(Rik 6= 0, k ≥ i) and overwrite them over Rik. (A similar analysis is
done for the Takahashi inverse by Erisman & Tinney [11], based on an LDLT

factorization.) Thus the number of additional storage locations needed is only
the maximal numbers of nonzeros in a row of R.
The cost is a small multiple of the cost for factoring B, excluding the symbolic
factorization; the proof of this by Misztal & Perez-Enciso [46] for the sparse
inverse of an LDLT factorization applies almost without change. As described in
the final part of the paper, measurements with our implementation confirm the
low cost for a variety of animal breeding problems.

6 Function and gradient accumulation

Once we have the best estimate x̂ for the state vector, we may calculate the
residual as

r = Ax̂ − b =









r1
...

rN









,
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with the element residuals

rν = PνAν x̂ − Pνbν .

Then we obtain the objective function as

f = log det RT R +
∑

ν

(

rT
ν Mνrν + log | det C ′

ν |
)

.

The calculation of the gradient is more involved. For the derivative with respect
to a variable that occurs in Cγ only, (18) implies that

Ċ ′
ν =

{

PνĊγP
T
ν if ν is an element of type γ,

0 otherwise.

Using the notation [...]ν for the νth diagonal block of [...] and tr P T X = tr XP T ,
we find from (13) the formula

ḟ =
∑

γ(ν)=γ

tr P T
ν

[

M − MrrT M − MAB−1AT M
]

ν
PνĊγ =

∑

γ(ν)=γ

tr P T
ν M ′

νPνĊγ

with the symmetric matrices

K ′
ν := Mν − Mν(rνr

T
ν + AνB

−1AT
ν )Mν . (23)

Therefore,
ḟ = tr KγĊγ, where Kγ :=

∑

γ(ν)=γ

P T
ν M ′

νPν . (24)

Up to this point, the dependence of the covariance matrix Cγ on parameters
was arbitrary. For an implementation, one needs to decide on the independent
parameters in which to express the covariance matrices. We made the following
choice in our implementation, assuming that there are no constraints on the
parametrization of the Cγ; other choices can be handled similarly, with a similar
cost resulting for the gradient. Our parameters are, for each type γ, the nonzero
entries of the Cholesky factor Lγ of Cγ, defined by the equation

Cγ = LγL
T
γ

together with the conditions

(Lγ)ik = 0 if i < k, (Lγ)ii > 0,

since this automatically guarantees positive definiteness.

We now consider derivatives

2̇ = ∂2/∂(Lγ)ik
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with respect to the parameter

ωµ = (Lγ)ik,

where γ is one of the types, and the indices i, k satisfy i ≥ k.
Clearly, L̇γ is zero except for a 1 in position (i, k), and, using the notation ei for
the ith column of an identity matrix, we can express this as

L̇γ = ei(ek)T .

Therefore,

Ċγ = (LγL
T
γ )· = L̇γL

T
γ + LγL̇

T
γ = ei(ek)T LT

γ + Lγe
k(ei)T . (25)

If we insert this into (24), we find

ḟ = tr KγĊγ = tr Kγe
i(ek)T LT

γ + tr KγLγe
k(ei)T

= (ek)T LT
γ Kγe

i + (ei)T KγLγe
k = (LT

γ Kγ)ki + (KγLγ)ik,

so that
∂f/∂(Lγ)ik = 2(KγLγ)ik. (26)

In order to make good use of the sparsity structure of the problem, we have to
look in more detail at the calculation of M ′

ν . The first interior term in M ′
ν is easy

since
(rνr

T
ν )ij = (rν)i(rν)j.

Correct treatment of the other interior term is crucial for good speed. Suppose
the ith row of Aν has nonzeros in positions k ∈ Iν,i only. Then the term of K ′

ν

involving the inverse B̄ := B−1 can be reformulated as

(AνB
−1AT

ν )ij =
∑

k,l

(Aν)ik(B̄)kl(A
T
ν )lj

=
∑

k∈Iν,i, l∈Iν,j

(Aν)ik(B̄)kl(A
T
ν )lj

=
∑

k∈Iν,i, l∈Iν,j

(Aν)ik([B̄]ν)kl(A
T
ν )lj.

Hence AνB
−1AT

ν is a product of small submatrices. Under our assumption that
all entries of Cγ are estimated, C ′

ν and hence Mν and [B̄]ν are structurally full.
Therefore, [R + RT ]ν is full, too, and [B̄]ν is part of the sparse inverse and hence
cheaply available. Since the factorization is no longer needed at this stage, the
sparse inverse can be stored in the space allocated to the factorization.
The resulting algorithm for the calculation of a REML function value and its
gradient is given in Table 1, in a form that makes good use of dense matrix
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Table 1: Calculation of REML function value and gradient

% preprocess covariance information
do for all types γ

initialize Lγ ;
Cγ = LγLT

γ ;

do for all elements ν of type γ
% (a loop over the distinct missing data patterns is
% sufficient if a suitable reference list is prepared)
C ′

ν = PνCγP T
ν ;

Mν = C ′
ν
−1;

λν = log |detC ′
ν |;

end
end

% assemble normal equations
a = 0;B = 0;
do for all types γ

do for all elements ν of type γ
gather PνAν , Pνbν as dense matrix/vector
N = (PνAν)

T Mν ;
a′ = N(Pνbν); a = a

⊕

a′;
B′ = N(PνAν); B = B

⊕

B′;
end

end

% sparse factorization and sparse inverse
factorize B = RT R;
f = 2

∑

log |Rii|; % = log det RT R;
solve RT y = a and Rx = y;
compute the sparse part of B̄;
% (overwrite factorization by sparse inverse)

% accumulate function value and gradient
do for all types γ

K = 0;
do for all elements ν of type γ

gather [B̄]ν , PνAν , Pνbν as dense matrices/vector
r = (PνAν)x − Pνbν ;
f = f + rT Mνr + λν ;
W = rrT + ((PνAν)[B̄]ν)(PνAν)

T ;
M ′ = Mν(I − WMν);
K = K + P T

ν M ′Pν ;
end
∂f/∂(Lγ)ik = 2(KLγ)ik;

end

18



algebra in case of larger covariance matrix blocks Cγ. The symbol
⊕

denotes
adding a dense subvector (or submatrix) to the corresponding entries of a large
vector (or matrix). In the calculation of the symmetric matrices B′, W , M ′ and
K ′, it suffices to calculate the upper triangle.
Symbolic factorization and matrix reordering are not present in Table 1 since
these are done only once before the first function evaluation. In large-scale appli-
cations, the bulk of the work is in the computation of the Cholesky factorization
and the sparse inverse. As mentioned above, this implies that the work for func-
tion and gradient calculation is about three times the work for function evaluation
alone (where the sparse inverse is not needed). In particular, when the number
p of estimated covariance components is large, the analytic gradient takes only a
small fraction 2/p of the time needed for finite difference approximations.
Note also that for a combined function and gradient evaluation, only two sweeps
through the data are needed, an important asset when the amount of data is so
large that it cannot be held in main memory.

7 Animal breeding applications

In covariance component estimation problems from animal breeding, the state
vector x splits into small vectors βk of (in our present implementation constant)
size ntrait called effects. The right-hand side b contains measured data vectors
yν and zeros. Each index ν corresponds to some animal. The various types of
elements are as follows:

Measurement elements: The measurement vectors yν ∈ IRntrait are explained in
terms of a linear combination of effects βi ∈ IRntrait ,

neff
∑

l=1

µνlβiνl
= yν + εν , εν = noise(C1).

Here the iνl form an nrec×neff index matrix, the µνl form an nrec×neff coefficient
matrix, and the data records yT

ν are the rows of an nrec × ntrait measurement
matrix. In the current implementation, corresponding rows of the coefficient
matrix and the measurement matrix are concatenated so that a single matrix
containing the floating point numbers results. If the set of traits splits into
groups that are measured on different sets of animals, the measurement elements
split accordingly into several types.

Pedigree elements: For some animals, identified by the index T of their additive
genetic effect βT , we may know the parents, with corresponding indices V (father)
and M (mother). Their genetic dependence is modeled by an equation

1

2
βV (ν) +

1

2
βM(ν) − βT (ν) = 0 + εν , εν = noise(C2).

19



Table 2: Data

pedigree indep var dep var
1 6 7 90.1 1 1 1 10.5 790
2 1 7 87.3 1 2 2 13.2 -
3 1 4 93.5 2 1 3 12.6 881
4 2 1 88.6 2 3 4 14.4 751
5 3 4 91.8 2 4 5 12.0 834
6 - -
7 8 -
8 - -

pedigree: parents of entry in column one
indep var: independent variable
dep var: dependent variable

The indices are stored in pedigree records which contain a column of animal indices
T (ν) and two further columns for their parents (V (ν),M(ν)).

Random effect elements: Certain effects βR(γ) (γ = 3, 4, ...) are considered as
random effects by including trivial model equations

βR(γ) = 0 + εγ, εγ = noise(Cγ).

As part of the model (16), these trivial elements automatically produce the tra-
ditional mixed model equations, as explained in Section 2.

In the following we shall give a small numerical example to demonstrate the setup
of various matrices, and give less detailed results on two large problems. Many
other animal breeding problems have been solved, with similar advantages for
the new algorithm as in the examples given below [2, 3, 4, 24, 44, 38].

Small numerical example. Table 2 gives the data used for a numerical exam-
ple. There are in all 8 animals which are listed with their parent codes in the first
block under ‘pedigree’. The first 5 of them have measurements, i.e., dependent
variables listed under ‘dep var’. Each animal has two traits measured except for
animal 2 for which the second measurement is missing. Structural information for
independent variables is listed under ‘indep var’. The first column in this block
denotes a continuous independent variable, like weight, for which a regression
is to be fitted. The following columns are some fixed effect, like sex, a random
component, like herd and the animal identification. Not all effects were fitted
for both traits. In fact, weight was only fitted for the first trait as shown by the
model matrix in Table 3.
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Table 3: Model matrix

effect trait 1 trait 2
weight 1 0
sex 1 1
herd 1 1
animal 1 1

The input data are translated into a series of matrices given in Table 4. To
improve numerical stability, dependent variables are scaled by their standard
deviation and mean, while the continuous dependent variable is shifted by its
mean only.

Since there is only one random effect, the full element formulation (16) has three
types of model equations, each with an independent covariance structure Cγ.

Measurement elements (type γ = 1): the dependent variables give rise to type
γ = 1 as listed in the second column in Table 4. The second entry is special
in that it denotes the residual covariance matrix for this record with a missing
observation. To take care of this, a new mtype is created for each pattern of
missing values (with mtype = type if no value is missing) [26]; i.e., the different
values of mtype correspond to the different matrices C ′

ν . However, it is still based
on C1 as given in Table 5 which lists all types in this example.
Pedigree elements (type γ = 2): The next 9 rows in Table 4 are generated from
the pedigree information. With both parents known, three entries are generated
in both the address and coefficient matrices. With only one parent known, two
addresses and coefficients are needed, while only one entry is required if no parent
information is available. For all entries the type is γ = 2 with the covariance
matrix C2.
Random effect elements (type γ = 3): The last 4 rows in Table 4 are the entries
due to random effects which comprise three herd levels in this example. They
have type γ = 3 with the covariance matrix C3.
All covariance matrices are 2× 2, so that p = 3 + 3 + 3 = 9 nonlinear parameters
need to be estimated.

The addresses in the following columns in Table 4 are derived directly from the
level codes in the data (Table 2) allocating one equation for each trait within
each level pointing to the beginning of first trait in the respective effect level. For
linear covariables only one equation is created, leading to the address of 0 for all
5 measurements.
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Table 4: Derived matrices

dep var∗ mtype addresses coefficients
-0.98 -1.24 1 0 2 6 14 -0.16 1.00 1.00 1.00
-0.66 - 4 0 2 8 16 -2.96 1.00 1.00 1.00
0.38 0.59 1 0 4 6 18 3.24 1.00 1.00 1.00
1.54 1.00 1 0 4 10 20 -1.66 1.00 1.00 1.00
-0.27 -0.35 1 0 4 12 22 1.54 1.00 1.00 1.00

2 14 24 26 1.41 -0.71 -0.71
2 16 14 26 1.41 -0.71 -0.71
2 18 14 20 1.41 -0.71 -0.71
2 20 16 14 1.41 -0.71 -0.71
2 22 18 20 1.41 -0.71 -0.71
2 24 0 0 1.00 0 0
2 26 28 0 1.15 -0.58 0
2 28 0 0 1.00 0 0
3 6 1.00
3 8 1.00
3 10 1.00
3 12 1.00

dep var∗: (dependent variable − mean)/(standard deviation)

Table 5: Types of covariance matrices

mtype type γ missing value
1 1 -
2 2 -
3 3 -
4 1 2

Table 6: Gradients

γ gradient
1 0.4099 -1.5086 -2.2794
2 0.1629 -0.2669 -0.7693
3 1.1274 -0.3431 -2.2794
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Table 7: Solutions for nonlinear parameters

γ (co)variance components

σ̂11
2 σ̂12 σ̂22

2

1 0.750 48.610 3149.049
2 0.735 -37.009 1863.490
3 +0.000 +0.000 0.004

The coefficients corresponding to the above addresses are stored in another matrix
as given in Table 4. The entries are 1 for class effects and continuous variables
in the case of regression (shifted by the mean).
The address matrices and coefficient matrices in Table 4 form a sparse represen-
tation of the matrix A of (1) and can thus be used directly to set up the normal
equations. Note that only one pass through the model equations is required to
handle data, random effects and pedigree information. As an example for how to
set up the normal equations, we look at line 12 of Table 4 (because it does not
generate as many entries as the first five lines, say). For the animal labelled T in
Table 4, the variables associated with the two traits have index T + 1 and T + 2.
The contributions generated from line 12,

(2 26 28 0 1.15 − 0.58 0),

are given in Table 8.

Table 8: Aν corresponding to line 12 of Table 4

27 28 29 30
27 1.15 × 1.15 × 3 1.15 × 1.15 × (−.0009) 1.15 × (−.58) × 3 1.15 × (−.58) × (−.0009)
28 1.15 × 1.15 × (−.0009) 1.15 × 1.15 × 3 1.15 × (−.58) × (−.0009) 1.15 × (−.58) × 3
29 1.15 × (−.58) × 3 1.15 × (−.58) × (−.0009) (−.58) × (−.58) × 3 (−.58) × (−.58) × (−.0009)
30 1.15) × (−.58) × (−.0009) 1.15 × (−.58) × 3 (−.58) × (−.58) × (−.0009) (−.58) × (−.58) × 3

Starting values for all Cν for the scaled data were chosen 1
3

for all variances and
.0001 for all covariances, amounting to a point in the middle of the parameter
space. With Cν specified as above we have for its inverse

Mν =

(

3. −.0009
−.0009 3.

)

Optimization was done with a BFGS algorithm as implemented by Gay [16]. For
the first function evaluation we get a gradient given in Table 6 with a function
value of 17.0053530. Convergence was reached after 51 iterations with solutions
given in Table 7 at a loglikelihood of 15.47599750.
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Table 9: Structure of big problem

Effect T no equ trait 1 trait 2 trait 3 trait 4 trait 5 trait 6
effect 1 C 6 1 1 1 1 0 0
effect 2 C 6 0 0 0 0 1 1
effect 3 F 504 1 1 1 1 0 0
effect 4 F 12 1 1 1 1 1 1
effect 5 F 114 1 1 1 1 1 1
effect 6 F 30 1 1 1 1 0 0
effect 7 F 3 090 0 0 0 0 1 1
effect 8 R 50 256 1 1 1 1 1 1
effect 9 A 179 778 1 1 1 1 1 1
total no eqn 233 796

T: kind of effect with:
C: fixed continuous effect
F: fixed class effect
R: random effect with covariance matrix C3

A: random effect with pedigree with covariance matrix C2

no equ: number of equations

A large problem. A large problem from the area of pig breeding has been used
to test an implementation of the above algorithm in the VCE package (groe-

neveld [22]). The data set comprised 26 756 measurement records with 6 traits.
Table 9 gives the number of levels for each effect leading to 233 796 normal
equations. The columns headed by “trait” represent the model matrix (cf. Table
3) mapping the effects on the traits. As can be seen, the statistical model is
different for the various traits.
Because traits 1 through 4 and traits 5 and 6 are measured on different animals
no residual covariances can be estimated, resulting in two types 1a and 1b, with
4×4 and 2×2 covariance matrices C1a and C1b. Together with the 6×6 covariance
matrices C2 and C3 for pedigree effect 9 and random effect 8, respectively, a total
of 55 covariance components have to be estimated. The coefficient matrix of the
normal equations resulted in 3 961 594 nonzero elements in the upper triangle,
which lead to 5 993 686 entries in the Cholesky factor.

We compared the finite difference implementation of VCE [22] with an analytic
gradient implementation based on the techniques of the present paper. An un-
constrained minimization algorithm written by Schnabel et al. [51] that
approximates the first derivatives by finite differences was used to estimate all
55 components simultaneously. The run performed 37 021 function evaluations
at 111.6 sec each on a Hewlett Packard 755 model amounting to a total CPU
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Table 10: CPU timings per task and iteration

task CPU time (sec)
Assemble normal equations 81.64
Numerical factorization 118.45
Solving 2.49
Sparse inverse 470.11
Assembling gradients 129.44

time of 47.8 days. To our knowledge, it was the first estimate of more than 50
covariance components simultaneously for such a big data set with a completely
general model. Factorization was done by a block sparse Cholesky algorithm due
to Ng & Peyton [48].
Using analytic gradients, convergence was reached after 185 iterations taking
13 minutes each; the less efficient factorization from Misztal & Perez-Enciso

was used here because of the availability of their sparse inverse code [46]. An even
slightly better solution was reached and only 41 hours of CPU time were used,
amounting to a measured speed-up factor of nearly 28. However, this speed-up
underestimates the superiority of analytical gradients because the factorization
used in the Misztal & Perez-Enciso’s code is less efficient than Ng & Peyton’s
block sparse Cholesky factorization used for approximating the gradients by finite
differences. Therefore, the following comparison will be based on CPU time
measurements made on Misztal & Perez-Enciso’s factorization code.
For the above data set the CPU usage of the current implementation - which has
not yet been tuned for speed (so the sparse inverse takes three to four times
the time for the numerical factorization) - is given in Table 10. As can be
seen from this table computing one approximated gradient by finite differenc-
ing takes around 202.6 ∗ 55 = 11143 seconds, while one analytical gradient costs
only around four times the setup and solving of the normal equations, i.e., 812
seconds. Thus, the expected speedup would be around 14. The 37021 function
evaluations required in the run with approximated gradients (which include some
linear searches) would have taken 86.8 days with the Misztal & Perez-Enciso code.
Thus, the resultant superiority of our new algorithm is nearly 51 for the model
under consideration. This is much larger than the expected speedup of 14 mainly
because, with approximated gradients, 673 optimization steps were performed as
compared to the 185 with analytical gradients.
Such a high number of iterations with approximated gradients could be observed
in many runs with higher numbers of nonlinear unknowns and can be attributed to
the reduced accuracy of the approximated gradients. In some extreme cases, the
optimization process even aborted when using approximated gradients whereas
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Table 11: Data on some runs with analytical gradients

unknowns nze (in millions) number of
dataset linear non linear coeff.matrix factor iterations
Groe1s 2908 2 .03 .03 19
Groe3s 8724 12 .28 .31 60
Duck1 24713 2 .11 .11 18
DanaP 18674 9 .16 .23 31
Groe8s 23264 72 1.82 2.91 138
Groe1a 181635 2 .82 2.01 23
Groe3a 544905 12 6.97 18.7 90
Hung1 233796 55 3.96 5.99 185
Hung2 257190 55 4.38 6.41 132
Die1a 4240 3 .02 .03 25
Die2a 8480 9 .09 .12 59
Die3a 12720 18 .21 .28 79
Die4a 16960 30 .37 .51 119
Die5a 21200 45 .57 .79 163
Die6a 25440 63 .82 1.15 126
Die7a 29680 84 1.11 1.55 104
Die8a 33920 108 1.45 2.03 115
Die9a 38160 135 1.83 2.58 177
Beans 7599 12 .08 .08 31

nze - number of non zero elements (in millions)
coeff.matrix - half stored coefficient matrix
factor - half stored Cholesky factor of the coefficient matrix

analytical gradients yielded correct solutions.

Another large problem. Another test was done on an even larger problem
of a similar structure, again with 55 covariance components. For this problem,
there were 257 190 normal equations and 4 380 522 and 6 405 934 nonzero ele-
ments in the coefficient matrix and factor, respectively. Convergence was reached
here after 132 iterates. A direct comparison to the corresponding run based on
finite differences is not possible, since (for reasons of time) we started the finite
difference run not at the middle of the parameter space but closer to the (now
known) solution. Nonetheless, the finite difference run needed 21 129 function
evaluations in 384 optimization steps.

Further evidence. Table 11 presents data on a number of different runs that
have been performed with our new algorithm. The statistical models used in
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the datasets vary substantially and cover a large range of problems in animal
breeding. The new algorithm showed the same behaviour also on a plant breeding
dataset (beans) which has a quite different structure as compared to the animal
data sets.
The data sets (details can be obtained from the second author) cover a whole
range of problem sizes both in terms of linear and nonlinear unknowns. Accord-
ingly, the number of nonzero elements vary substantially from a few ten thousends
up to many millions. Clearly, the number of iterations increases with the number
of nonlinear unknowns with a maximum well below 200. Some of the runs esti-
mated covariance matrices with very high correlations well above .9. Although
this is close to the boarder of the parameter space it did not seem to slow down
convergence, a behaviour that contrasts markedly with that of EM algorithms.

For the above datasets the ratio of obtaining the gradient after and relative to the
factorization was between 1.51 and 3.69 substantiating our initial claim that the
analytical gradient can be obtained at a small multiple of the CPU time needed
to calculate the function value alone. (For the large animal breeding problem
described in Table 10, this ratio was 2.96.) So far, we have not experienced
any ratios that were above the value of 4. From this we can conclude that with
increasing numbers of nonlinear unknowns our algorithm is inherently superior
to approximated gradients by finite differences.

In conclusion, the new version of VCE not only computes analytical gradients
much faster than the finite difference approximations (with the superiority in-
creasing with the number of covariance components), but also reduces the number
of iterations by a factor of around three, thereby expanding the scope of REML
covariance component estimation in animal breeding models considerably. No
previous code was able to solve problems of the size that can be handled with
this implementation.
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