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Abstract. Branching programs are a well established computation model
for Boolean functions, especially read-once branching programs have
been studied intensively. In this paper the expressive power of nonde-
terministic read-once branching programs, i.e., the class of functions
representable in polynomial size, is investigated. For that reason two
restricted models of nondeterministic read-once branching programs are
defined and a lower bound method is presented. Furthermore, the first
exponential lower bound for integer multiplication on the size of a nonde-
terministic nonoblivious read-once branching program model is proven.
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1 Introduction and Results

Branching programs (BPs) or Binary Decision Diagrams (BDDs) are a well es-
tablished representation type or computation model for Boolean functions.

Definition 1. A branching program (BP) or binary decision diagram (BDD) on
the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source
and two sinks labelled by the constants 0 or 1, resp. Each non-sink node (or inner
node) is labelled by a Boolean variable and has two outgoing edges one labelled
by 0 and the other by 1. At each node v a Boolean function fv : {0, 1}n → {0, 1}
is represented. A c-sink represents the constant function c. If fv0

and fv1
are

the functions at the 0- or 1-successor of v, resp., and v is labelled by xi, fv

is defined by Shannon’s decomposition rule fv(a) := aifv0
(a) ∨ aifv1

(a). The
computation path for the input a in a BP G is the sequence of nodes visited
during the evaluation of a in G.

The size of a branching program G is equal to the number of its nodes and is
denoted by |G|. BP(f) denotes the size of the smallest BP for a function f . The
depth of a branching program is the maximum length of a path from the source
to one of the sinks.
? An extended abstract of this paper has been presented at MFCS 2000.
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The branching program size of Boolean functions f is known to be a measure
for the space complexity of nonuniform Turing machines and known to lie be-
tween the circuit size of f and its {∧,∨,¬}-formula size (see, e.g., [23]). Hence,
one is interested in exponential lower bounds for more and more general types
of BPs (for the latest breakthrough for semantic linear depth BPs see [1]). In
order to develop and strengthen lower bound techniques one considers restricted
computation models.

Definition 2. i) A branching program is called read k times (BPk) if each
variable is tested on each path at most k times.

ii) A BP is called oblivious if the node set can be partitioned into levels such
that edges lead from lower to higher levels and all inner nodes of one level
are labelled by the same variable.

Read-once branching programs (BP1s) have been investigated intensively.
Borodin, Razborov, and Smolensky [8] have proved one of the first exponential
lower bounds for BPks. For oblivious branching programs of restricted depth
exponential lower bounds have been proved, e.g., by Alon and Maass [2]. Nonde-
terminism is one of the most powerful concepts in computer science. In analogy
to the definition for Turing machines, different modes of acceptance can be stud-
ied for branching programs. The following definition of Ω-branching programs
[17] summarizes the most interesting modes of acceptance.

Definition 3. Let Ω be a set of binary Boolean operations. An Ω-branching
program on the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with
decision nodes for Boolean variables and nondeterministic nodes. Each nonde-
terministic node is labelled by some function ω ∈ Ω and has two outgoing edges
labelled by 0 and 1, resp. A c-sink represents the constant c. Shannon’s decom-
position rule is applied at decision nodes. If fv0

and fv1
are the functions at the

0- or 1-successor of v, resp., and v is labelled by ω, the function fv = ω(fv0
, fv1

)
is represented at v.

Definitions of nondeterministic variants of restricted BPs are derived in a
straightforward way by requiring that the decision nodes fulfill the usual re-
strictions as for deterministic BPs. In the following if nothing else is mentioned
nondeterministic BPs means OR-BPs. The results of Borodin, Razborov, and
Smolensky [8] for BPks hold (and have been stated by the authors) also for
OR-BPks. Moreover, Thathachar [22] has proved an exponential gap between
the size of OR-BPks and deterministic BP(k + 1)s.

Besides this complexity theoretical viewpoint people have used branching
programs in applications. Representations of Boolean functions which allow effi-
cient algorithms for many operations, in particular synthesis (combine two func-
tions by a binary operation) and equality test (do two representations represent
the same function?) are necessary. In his seminal paper Bryant [9] introduced or-
dered binary decision diagrams (OBDDs) which are up to now the most popular
representation for formal circuit verification.
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Definition 4. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

i) A π-OBDD for a variable ordering π is a BP where the sequence of tests on
a path is restricted by the variable ordering π, i.e., if an edge leads from an
xi-node to an xj-node, the condition π(i) < π(j) has to be fulfilled.

ii) An OBDD is a π-OBDD for some variable ordering π.

Unfortunately, several important and also quite simple functions have expo-
nential OBDD size. Therefore, more general representations with good algorith-
mic behavior are necessary. Gergov and Meinel [12] and Sieling and Wegener
[21] have shown independently how read-once branching programs can be used
for verification. In order to obtain efficient algorithms for many operations they
define a more general variable ordering.

Definition 5. A graph ordering is a branching program with a single sink la-
belled end. On each path from the source to the sink there is for each variable
xi exactly one node labelled xi. A graph ordering G0 is called a tree ordering
if G0 becomes a tree of polynomial size by eliminating the sink and replacing
multiedges between nodes by simple edges.

A graph-driven (tree-driven) BP1 with respect to a graph ordering G0 (tree
ordering T0), G0-BP1 (T0-BP1) for short, is a BP1 with the following additional
property. For an arbitrary input a ∈ {0, 1}n, let L(a) be the list of labels at the
nodes on the computation path for a in the BP1 and similarly let L0(a) be the
list of labels on the computation path for a in G0 (T0). We require that L(a) is
a subsequence of L0(a).

It is easy to see that an arbitrary read-once branching program G is ordered
with respect to a suitable chosen graph ordering. Sieling and Wegener [21] have
shown that sometimes tree-driven BP1s have nicer algorithmic properties. The
main problem for the application of graph-driven BP1s is to find a good graph
ordering. The only graph ordering algorithm tested in experiments is due to
Bern, Meinel, and Slobodová [3] and creates tree orderings.

Nondeterministic concepts also may be useful for applications. But one has
to restrict nondeterminism in the right way or to choose an appropriate mode
of nondeterminism. Partitioned BDDs (PBDDs) introduced by Jain, Bitner,
Fussell, and Abraham [15] are obtained by imposing strong structural restrictions
on nondeterministic read-once branching programs.

Definition 6. A k-PBDD (partitioned BDD with k parts where k may depend
on the number of variables) consists of k OBDDs whose variable orderings may
be different. The output value for an input a is defined as 1 iff at least one of
the OBDDs computes 1 on a. A PBDD is a k-PBDD for some k. The size of a
k-PBDD is the sum of the sizes of the k OBDDs.

Now, we present a new restricted nondeterministic read-once branching pro-
gram model which allows us to bound the power of nondeterminism.
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Definition 7. A nondeterministic graph-driven BP1 (tree-driven BP1), OR-
G0-BP1 (OR-T0-BP1) for short, is a nondeterministic BP1 where the Boolean
variables labelling the decision nodes are ordered according to a graph ordering
(tree ordering).

In the rest of this section we motivate our results. A nondeterministic Turing
machine can be simulated in polynomial time by a so-called guess-and-verify
machine. It is an open question whether the analogous simulation exists in the
context of space-bounded computation. Sauerhoff [19] has given a negative an-
swer to this question for OR-OBDDs. The requirement that all nondeterministic
nodes are at the top of the OBDD may blow-up the size exponentially. The ques-
tion is still open for OR-BP1s and seems to be difficult to answer. The known
lower bound techniques for OR-BP1s are not subtle enough to prove exponential
lower bounds on the size of guess-and-verify BP1s for functions representable by
OR-BP1s of polynomial size. In Section 2, we investigate the expressive power of
the different restrictions of OR-BP1s, i.e., the classes of functions representable in
polynomial size, in order to obtain more knowledge about their structural prop-
erties. We present an exponential lower bound for nondeterministic tree-driven
BP1s for a function even representable by deterministic BP1s of polynomial size.

For a lot of restricted variants of branching programs exponential lower
bounds are known. Sometimes the methods are subtle enough to prove hier-
archy results. Neverthelesss, the proof of exponential lower bounds on the size
of BDD models for natural functions is not always an easy task.

Definition 8. Integer multiplication is the Boolean function MULTn:{0, 1}2n →
{0, 1}2n that computes the product of two n-bit integers. That is, MULTn(x, y)=
z2n−1 . . . z0 where x = xn−1 . . . x0 and y = yn−1 . . . y0 and xy = z = z2n−1 . . . z0.
MULTi,n computes the ith bit of MULTn.

For OBDDs Bryant [10] has presented an exponential lower bound of size
2n/8 for MULTn−1,n. But people working on OBDDs agree on the conjecture
that the OBDD size is at least of order 2n. From the proof of Bryant’s lower
bound for OBDDs it follows by a simple communication complexity argument
that MULTn−1,n cannot be computed in polynomial size by k-OBDDs, which
consist of k layers of OBDDs respecting the same ordering, [4] or the various non-
deterministic OBDDs [11]. Incorporating Ramsey theoretic arguments of Alon
and Maass [2] and using the rank method of communication complexity Ger-
gov [11] extends the lower bound to arbitrary linear-length oblivious BPs. It
took quite a long time until Ponzio [18] was able to prove an exponential lower

bound of size 2Ω(n1/2)for MULTn−1,n for BP1s. He doubts that 2Θ(n1/2) is the
true read-once complexity of MULTn−1,n but the counting technique used in his
proof seems limited to this lower bound. Until now an exponential lower bound
on the size of MULTn−1,n for a nondeterministic nonoblivious branching pro-
gram model is unknown. For the lower bound technique based on the rectangle
method due to Borodin, Razborov, and Smolensky [8] we have to be able to
count the number of 1-inputs which seems to be difficult for MULTn−1,n. In
Section 3, we present an exponential lower bound for MULTn−1,n on the size of
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Fig. 1. The complexity landscape for nondeterministic (ordered) read-once branching
programs and the classification of MULTn−1,n.

nondeterministic tree-driven BP1s. From this result we obtain more knowledge
about the structure of MULTn which seems to be necessary to improve the lower
bounds.

Figure 1 summarizes the results (for more details see Section 2 of this paper
and Section 4 of [7]). For a branching program model M we denote by P (M)
the class of all (sequences of) Boolean functions representable by polynomial
size branching programs of type M . Solid arrows indicate inclusions and slashes
through the lines proper inclusions. A dotted line between two classes means
that these classes are not comparable. P (M) surrounded by an oval or an rect-
angle means MULTn−1,n 6∈ P (M). The ovals indicate known results while the
rectangles indicate our new results. A dotted rectangle means that it is unknown
whether the class contains MULTn−1,n. The numbers in the figure refer to the
results of this paper.

2 Restricted Models of Nondeterministic Read-Once

Branching Programs

Sauerhoff [19] has asked how much nondeterminism is required to exploit the
full power of a computation model and how the complexity of concrete problems
depends on the amount of available nondeterminism. He has investigated these
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questions for OR-OBDDs and has proved that the requirement to test all non-
deterministic nodes at the top, i.e., at the beginning of the computation, might
blow-up the size exponentially. In order to prove an exponential lower bound
for parity read-once branching programs Savický and Sieling [20] have recently
presented a hierarchy result for read-once branching programs with restricted
parity nondeterminism. Only at the top of the BDD parity nodes are allowed.
Their result also holds (and has been stated by the authors) for OR-BP1s. For
nondeterministic graph-driven read-once branching programs there cannot exist
such a hierarchy result.

Proposition 1. If a function fn on n Boolean variables is representable in poly-
nomial size by nondeterministic graph-driven BP1s with a constant number of
nondeterministic nodes, fn is contained in P (BP1).

Proof. It is easy to see that a function representable in polynomial size by a
nondeterministic graph-driven BP1 with a constant number of nondeterministic
nodes can also be represented in polynomial size by a nondeterministic graph-
driven BP1 with a constant number of nondeterministic nodes at the top of
the branching program. Let Gf be a nondeterministic graph-driven BP1 of this
kind for f and k be the number of nondeterministic nodes. A binary synthesis
step computing a graph-driven BP1 Gh according to a graph ordering G0 for
h = g1⊗g2 (⊗ is a binary Boolean operation) from G0-driven BP1s Gg1

and Gg2

for g1 resp. g2 can be done in time O(|G0| · |Gg1
| · |Gg2

|) which is also the bound
for the size of Gh [21]. This result also works for k-ary ORs. Therefore, we can
construct a deterministic BP1 for f whose size is bounded by O(|G0||Gf |

k). 2

The function 1-VECTORn is defined on n × n Boolean matrices X and
outputs 1 iff the matrix X contains an odd number of ones and a row consisting
of ones only or an even number of ones and a column consisting of ones only.

Proposition 2. The function 1-VECTORn on n2 Boolean variables can be rep-
resented by OR-OBDDs of size O(n3) and by OR-BP1s of size O(n2) with one
nondeterministic node but for OR-G0-BP1s with a constant number of nonde-

terministic nodes the size is 2Ω(n1/2).

Proof. Nondeterministic OBDDs are a restricted variant of nondeterministic
tree-driven BP1s. It is easy to see that the function 1-VECTORn can be rep-
resented by OR-OBDDs with O(n) nondeterministic nodes in size O(n3). We
can guess the row or the column consisting of ones only and check whether the
number of ones in the matrix is odd or even. The size does not depend on the
choice of the variable ordering.

Bollig and Wegener [7] have shown that 1-VECTORn can be represented by
2-PBDDs of size O(n2). Obviously, PBDDs are very restricted OR-BP1s with
nondeterministic nodes only at the top of the BDD. Furthermore, Bollig and

Wegener have proved that deterministic BP1s need size 2Ω(n1/2). Our result
follows from the proof of Proposition 1. 2
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Unfortunately, we are not able to prove whether there is a sequence of func-
tions fn : {0, 1}n → {0, 1} which can be represented by OR-BP1s of polynomial
size but for which OR-G0-BP1s without restriction of the number of nondeter-
ministic nodes require exponential size. But we conjecture that there exists such
a function. The situation is different for OR-G0-BP1 and OR-T0-BP1.

Sieling and Wegener [21] have shown that the hidden weighted bit function
HWB which computes xsum where sum is the number of ones in the input needs
deterministic tree-driven BP1s of exponential size but has polynomial-size de-
terministic graph-driven BP1s. Now, we prove that also in the nondeterministic
case the expressive power of the two models is different. Using communication
complexity Hromkovič and Sauerhoff [14] have presented an exponential lower
bound of size 2Ω(n) on the size of OR-OBDDs for the function monochromatic
rows or columns which is defined in the following way. Let X be an n×n Boolean
matrix and z be a Boolean variable. Then

MRCn(X) :=



z ∧
∧

1≤i≤n

(xi,1 ≡ · · · ≡ xi,n)



 ∨



z ∧
∧

1≤i≤n

(x1,i ≡ · · · ≡ xn,i)



 .

Here, we investigate a very similar function MRC∗
n : {0, 1}n2

→ {0, 1} which
is only defined on an n × n Boolean matrix X by

MRC∗
n(X) :=

∧

1≤i≤n

(xi,1 ≡ · · · ≡ xi,n) ∨
∧

1≤i≤n

(x1,i ≡ · · · ≡ xn,i).

We prove an exponential lower bound on the OR-OBDD size for MRC∗
n by

reducing the equality function EQn−1 : {0, 1}n−1×{0, 1}n−1 → {0, 1} to MRC∗
n.

Using the fact that the nondeterministic communication complexity of EQn−1

is n − 1 it follows that MRC∗
n 6∈ P (OR-OBDD). (See, e.g., [13] and [16] for the

theory of communication complexity.)

Theorem 1. There exists a function fn on n3 Boolean variables which needs
exponential size for OR-T0-BP1s but is contained in P (BP1) and P (2-PBDD).

Proof. The function fn : {0, 1}n3

→ {0, 1} is defined as disjunction of n disjoint
copies of MRC∗

n. Let Xi, 1 ≤ i ≤ n, be an n × n Boolean matrix and

fn(X1, . . . , Xn) := ORn(MRC∗
n(X1), . . . , MRC∗

n(Xn)).

The proof method is the following one. We assume that fn has nondeter-
ministic tree-driven BP1s of polynomial size with respect to a tree ordering
T0. In T0 there exists a path from the source to the sink which contains only
O(log n) branching nodes, i.e., nodes with different 0- and 1-successor. Fixing
the variables labelling these branching nodes in an appropriate way the result is
a subfunction of fn which has to be represented by a so-called nondeterministic
list-driven BP1, i.e., a nondeterministic OBDD. If for all subfunctions resulting
from fn by fixing O(log n) variables by constants the size of nondeterministic
OBDDs is exponential, there is a contradiction and we are done.
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For any subfunction resulting from fn by fixing O(log n) variables by con-
stants there are n− o(n) Boolean matrices Xi, 1 ≤ i ≤ n, for which all variables
are free, i.e., all n2 Boolean variables of Xi are not replaced by constants. We
choose one of these Boolean matrices Xi and fix all other variables not belonging
to Xi in such a way that the resulting subfunction of fn equals MRC∗

n(Xi). Now,
we use the above mentioned lower bound.

For the first upper bound we construct a BP1 for fn(X1, . . . , Xn) of size
O(n3). First, ORn is represented on the pseudo variables y1, . . . , yn by an OBDD
of size n. Afterwards, each yi-node is replaced by a BP1 for MRC∗

n on the Xi-
variables. In order to describe the BP1 for MRC∗

n we use an auxiliary tree odering
T0 which is defined in the following way. We start to test the variables according
to a rowwise variable ordering. If the first row contains only 0-entries or only 1-
entries, we can proceed with a rowwise variable ordering, otherwise we continue
with a columnwise ordering. The width of T0 is bounded above by 2n. It is not
difficult to see that the size of the tree ordering T0 as well as the size of the
T0-BP1 for MRC∗

n is O(n2).

Now, we prove an upper bound of O(n3) for the 2-PBDD size of fn. The first
part checks whether there exists a matrix with monochromatic rows. All Xi-
variables, 1 ≤ i ≤ n, are tested one after another in a rowwise variable ordering.
The second part uses a columnwise variable ordering and tests whether there is
a matrix consisting of monochromatic columns. 2

Proposition 2 and the proof of Theorem 1 also show that the class of functions
representable by deterministic tree-driven BP1 and P (OR-OBDD) are incom-
parable. The function 1-VECTORn can be represented by OR-OBDDs of size
O(n3) but even graph-driven BP1s need exponential size. On the other hand,
MRC∗

n has exponential OR-OBDD size but small representations by tree-driven
BP1s. Furthermore, it is not difficult to see that P (k-OBDD), k constant, is a
proper subclass of P (OR-OBDD) which has been already stated implicitly in
[7]. Proving that there are efficient algorithms for the manipulation of k-OBDDs
Bollig, Sauerhoff, Sieling, and Wegener [5] have decomposed a k-OBDD repre-
senting a function fn into an OR-OBDD of size O(|G|2k−1) for fn. Therefore,
all functions representable by polynomial size k-OBDDs, k constant, can also be
represented by OR-T0-BP1s of polynomial size. Moreover, Bollig and Wegener [7]
have shown that there are functions in P (2-OBDD) which cannot be represented
by k-PBDDs, k constant, of polynomial size. It follows that there are functions
in P (OR-OBDD) which cannot be represented by k-PBDDs of polynomial size.

If we relax the restriction for OR-T0-BP1s that the deterministic variables
have to be tested according to a tree ordering to the requirement that the labels
of nondeterministic and deterministic nodes respect a tree ordering, we obtain a
BDD model M which can represent all functions of P (PBDD) in polynomial size.
But until now no function with polynomial size for OR-BP1s but exponential
size for PBDDs with a polynomial number of parts is known.
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3 An Exponential Lower Bound for Multiplication

We prove that nondeterministic tree-driven read-once branching programs com-
puting integer multiplication require size 2Ω(n/ log n). This is the first nontrivial
lower bound for multiplication on nondeterministic branching programs that are
not oblivious. (See, e.g., [13] and [16] for the theory of communication complex-
ity.)

Lemma 1. The nondeterministic communication complexity of the problem to
decide for l-bit numbers x (given to Alice) and y (given to Bob) whether |x|+|y| ≥
2l − c, where c is a constant of length l with o(l) ones, is Ω(l).

Proof. We have to decide whether |x| ≥ 2l − c−|y|. If ci = 1, we set xi = 0 and
yi = 0. Hence, we are left with the problem to decide whether |x∗| ≥ 2l∗−|y∗| for
l∗-bit numbers x∗ and y∗ where l∗ = l − o(l). Excluding the cases |x∗| = 2l∗ − 1
and |y∗| = 0 this problem is identical to the decision whether |x∗| + 1 > |z∗| :=
2l∗ −|y∗|. It is well-known that the nondeterministic communication complexity
of the function GTl∗ which computes 1 for two l∗-bit numbers x′ and y′ iff
|x′| > |y′| is Ω(l∗). Using two more bits for the information whether |x∗| = 2l∗

and |y| = 0 we obtain the desired lower bound of size Ω(l∗) = Ω(l). 2

Theorem 2. The size of nondeterministic tree-driven read-once branching pro-
grams representing MULTn−1,n is 2Ω(n/ log n).

Proof.

Using the proof method of Theorem 1 we show that for each replacement of
O(log n) variables by arbitrary constants we find a subfunction of MULTn−1,n

which essentially equals the computation of the problem from Lemma 1. For
this we use the ideas of Bryant’s proof [10] but for our case we need some more
arguments to limit the influence of the already fixed variables.

We consider an arbitrary subset of O(log n) variables and an assignment of
these variables to constants. Let Cx and Cy be the sets of indices of these x- and
y-variables. Variables xj , j 6∈ Cx, and yj , j 6∈ Cy, are called free. Let c be the
result of MULTn if we additionally set all free variables to 0 and let C be the
set of indices of the 1-bits of c. Obviously |C| = O(log2 n).

The proof idea is the following one. We decompose x = (xn−1, . . . , x0) in
two numbers x′ = (x′

n−1, . . . , x′
0) and x′′ = (x′′

n−1, . . . , x′′
0) with x = x′ + x′′.

The first number x′ is created by setting all free x-variables to 0. For the second
number x′′ all variables xi, i ∈ Cx, are set to 0. Similarly y is decomposed into
y′ and y′′. Now, the product z := xy can be written as (x′ + x′′)(y′ + y′′). By
definition x′y′ is equal to c. Our aim is to find two subvectors in x′′ and y′′

consisting of free bits and to replace parts of these subvectors by 0 such that
the influence of the sum x′y′′ + x′′y′ to the output bit MULTn−1,n is limited.
Afterwards, we can use Bryant’s proof for the rest of x′′ and y′′.

Now, we make these ideas precise. First, we are looking for a sequence of
indices j, j + 1, . . . , j + l − 1 of maximal length such that the input variables
xj , . . . , xj+l−1 and yn−1−j−l+1, . . . , yn−1−j are free (see Figure 3 for the choice
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Fig. 2. A sequence of indices j, j + 1, . . . , j + l − 1 of maximal length such that
xj , . . . , xj+l−1 and yn−1−j−l+1, . . . , yn−1−j are free. Variables xi, i ∈ Cx, and yk,
k ∈ Cy, are labelled by ∗.

of the sequence). Using the pigeonhole principle we prove a lower bound on
the length of such a sequence by l = Ω(n/ log n). For the ease of descrip-
tion we assume that l can be divided by 10. Let X = {xj , . . . , xj+l−1} and
Y = {yn−1−j−l+1, . . . , yn−1−j} be the sets of free variables belonging to such a
sequence of maximal length. We choose X ′ = {xj+(2/5)l, . . . , xj+(3/5)l−1}. Later
we set almost all variables of Y and X\X ′ to 0 to avoid an undesirable influence
of the variables which are not free. In Figure 3 and 3 some of these replacements
are illustrated.

Let π be an arbitrary variable ordering. The top part T of π contains the first
(1/10)l X ′-variables with respect to π and the bottom part B the other (1/10)l
variables. The set of pairs P = {(xi1 , xi2)|xi1 ∈ T, xi2 ∈ B} has size (1/10 l)2. By
a counting argument we find some set I ⊆ {j+(2/5)l, . . . , j+(3/5)l−1} and some
distance parameter d such that P ′ = {(xi, xi+d)|i ∈ I} ⊆ P , |P ′| = |I| ≥ (1/20)l,
and max(I) < min(I) + d.

We replace the variables in the following way:

- yk is replaced by 1 for k = n − 1 − max(I) and k = n − 1 − max(I) − d,
- all other free y-variables are replaced by 0,
- xk is replaced by 1 iff k 6∈ I, min(i) ≤ k ≤ max(I), and k+(n−1−max(I)) 6∈

C,
- xmax(I)+d is replaced by 0 and xmax(I) is replaced by 1 if n−1 ∈ C, otherwise

xmax(I)+d and xmax(I) are both replaced by 0,
- all other free x-variables except xi, xi+d, i ∈ I, are replaced by 0.

All the replacements are possible since all considered variables are free.
What is the effect of these replacements? Since only two free y-variables

are replaced by 1, y contains these two ones and ones at the positions k where
yk ∈ Cy and yk is set to 1. Hence, multiplication is reduced to the addition
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Fig. 3. The choice of X ′ and some assignments to the other x- and y-variables.

of x shifted by n − 1 − max(I) positions and x shifted by n − 1 − max(I) − d
positions and x shifted by k positions if yk ∈ Cy and yk is set to 1. The vari-
ables xj , . . . , xj+(2/5)l−1 as well as the variables xj+(3/5)l, . . . , xj+l−1 and all
variables from Y except yn−1−max(I) and yn−1−max(I)−d are set to 0. There-
fore, the output bit of MULTn−1,n only depends on c and the assignments to
xj+(2/5)l, . . . , xj+(3/5)l−1, yn−1−max(I), and yn−1−max(I)−d. Carry bits resulting

from x′y′′+x′′y′ are eliminated, since there only exist O(log2 n) ones in C which
could propagate a possible carry bit.

We are left with the situation to add two numbers and the constant c.
MULTn−1,n equals the most significant bit of this sum. Variables xi, i ∈ {j +
(2/5)l, . . . , j +(3/5)l−1} and i /∈ I or i−d /∈ I, have no influence on the output
bit of MULTn−1,n since they are already replaced by constants. Together with
some bits of c these variables propagate a carry if existent.

Now the result follows from Lemma 1. 2

Since Lemma 1 can be extended to AND- and PARITY-nondeterminism, sim-
ilar lower bounds for MULTn−1,n can be proven for AND-T0-BP1 and PARITY-
T0-BP1 in a straightforward way. This is the first nontrivial lower bound even for
an important function on nonoblivious branching programs with an unlimited
number of parity nodes. Furthermore, an extension of the proof of Theorem 2
shows that all subfunctions of MULTn−1,n obtained by the replacement of up
to (1 − ε)n1/2 variables by constants have exponential size for nondeterministic
tree-driven BP1.
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Fig. 4. The x-vector after the replacement of some variables.

We only want to mention that we obtain similar exponential lower bounds for
the arithmetic functions squaring, inversion, and division by so-called read-once
projections [6].
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