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Abstract

In this paper, we introduce and develop the theory of restricted normal cones which gener-
alize the classical Mordukhovich normal cone. We thoroughly study these objects from the
viewpoint of constraint qualifications and regularity. Numerous examples are provided to il-
lustrate the theory. This work provides the theoretical underpinning for a subsequent article
in which these tools are applied to obtain a convergence analysis of the method of alternating
projections for nonconvex sets.
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1 Introduction and auxiliary results

Throughout this paper, we assume that
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(i.e., finite-dimensional real Hilbert space) with inner product ⟨·, ·⟩, induced norm ∥ · ∥, and in-
duced metric d.

Let A and B be nonempty closed subsets of X. Let us assume that A and B are convex and
that A ∩ B ̸= ∅. In this case, the projection operators PA and PB (a.k.a. projectors or nearest point
mappings) corresponding to A and B, respectively, are single-valued with full domain. In order
to find a point in the intersection A and B, it is very natural to simply alternate the operator PA
and PB resulting in the famous method of alternating projections (MAP). Thus, given a starting point
b−1 ∈ X, sequences (an)n∈N and (bn)n∈N are generated as follows:

(2) (∀n ∈N) an := PAbn−1, bn := PBan.

In the present consistent convex setting, it is known that both sequences have a common limit
in A ∩ B. Not surprisingly, because of its elegance and usefulness, the MAP has attracted many
famous mathematicians, including John von Neumann [18] and Norbert Wiener [19] and it has
been independently rediscovered repeatedly.

In this article we lay the groundwork for a comprehensive analysis of the MAP when A and B
are possibly nonconvex. We point readers interested in reviewing the rich history of this algorithm
to [2], [6], [9], and the references therein. The results in this paper are crucial for the analysis of
the MAP which we present in the follow-up paper [4].

A careful study of restricted normal cones and related notions is carried out in this paper. We
also allow for constraint sets that are unions of superregular (or even convex) sets; in the follow-up
paper [4], we recover the known optimal convergence rate for the method of alternating projec-
tions for two subspaces. In a parallel paper [3], we apply the tools developed here to the important
problem of sparsity optimization with affine constraints.

The paper is organized as follows. The restricted normal cones are introduced in Section 2.
Section 3 focuses on normal cones that are restricted by affine subspaces. Further examples and
results are provided in Section 4 and Section 5, where we illustrate that the restricted normal cone
cannot be obtained by intersections with various natural conical supersets. Section 6 and Section 7
are devoted to constraint qualifications which describe how well the sets A and B relate to each
other. In Section 8, we discuss regularity and superregularity, notions that extend the idea of
convexity, for sets and collections of sets.

In the remainder of this section, we fix notation and collect various auxiliary results that are
useful later and to make the later analysis less cluttered.

Notation

The notation employed in this article is quite standard and follows largely [5], [15], [16], and [17];
these books also provide exhaustive information on variational analysis. The real numbers are
R, the integers are Z, and N :=

{
z ∈ Z

∣∣ z ≥ 0
}

. Further, R+ :=
{

x ∈ R
∣∣ x ≥ 0

}
, R++ :={

x ∈ R
∣∣ x > 0

}
and R− and R−− are defined analogously. Let R and S be subsets of X. Then the
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closure of S is S, the interior of S is int(S), the boundary of S is bdry(S), and the smallest affine
and linear subspaces containing S are aff S and span S, respectively. The linear subspace parallel
to aff S is par S := (aff S)− S = (aff S)− s, for every s ∈ S. The relative interior of S, ri(S), is the
interior of S relative to aff(S). The negative polar cone of S is S⊖ :=

{
u ∈ X

∣∣ sup ⟨u, S⟩ ≤ 0
}

. We
also set S⊕ := −S⊖ and S⊥ := S⊕ ∩ S⊖. We also write R⊕ S for R + S :=

{
r + s

∣∣ (r, s) ∈ R× S
}

provided that R ⊥ S, i.e., (∀(r, s) ∈ R × S) ⟨r, s⟩ = 0. The identity mapping on X is Id : X →
X : x 7→ x. We write F : X ⇒ X, if F is a mapping from X to its power set, i.e., gr F, the graph
of F, lies in X × X. Abusing notation slightly, we will write F(x) = y if F(x) = {y}. If f : X →
]−∞,+∞], then the epigraph of f is epi f :=

{
(x, ρ) ∈ X×R

∣∣ f (x) ≤ ρ
}

. A nonempty subset K
of X is a cone if (∀λ ∈ R+) λK :=

{
λk

∣∣ k ∈ K
}
⊆ K. The smallest cone containing S is denoted

cone(S); thus, cone(S) := R+ · S :=
{

ρs
∣∣ ρ ∈ R+, s ∈ S

}
if S ̸= ∅ and cone(∅) := {0}. The

smallest convex and closed and convex subset containing S are conv(S) and conv (S), respectively.
If z ∈ X and ρ ∈ R++, then ball(z; ρ) :=

{
x ∈ X

∣∣ d(z, x) ≤ ρ
}

is the closed ball centered at z with
radius ρ while sphere(z; ρ) :=

{
x ∈ X

∣∣ d(z, x) = ρ
}

is the (closed) sphere centered at z with radius
ρ. If u and v are in X, then [u, v] :=

{
(1− λ)u + λv

∣∣ λ ∈ [0, 1]
}

is the line segment connecting u
and v.

Projections

Since X is finite-dimensional and A and B are closed, the convexity of A and B is actually not
needed in order to guarantee existence of nearest points. This gives rise to set-valued projection
operators which for convenience we also denote by PA and PB.

Definition 1.1 (distance and projection) Let A be a nonempty subset of X. Then

(3) dA : X → R : x 7→ inf
a∈A

d(x, a)

is the distance function of the set A and

(4) PA : X ⇒ X : x 7→
{

a ∈ A
∣∣ dA(x) = d(x, a)

}
is the corresponding projection.

Proposition 1.2 (existence) Let A be a nonempty closed subset of X. Then (∀x ∈ X) PA(x) ̸= ∅.

Proof. Let z ∈ X. The function f : X → R : x 7→ ∥x− z∥2 is continuous and lim∥x∥→+∞ f (x) = +∞.
Let (xn)n∈N be a sequence in A such that f (xn) → inf f (A). Then (xn)n∈N is bounded. Since A is
closed and f is continuous, every cluster point of (xn)n∈N is a minimizer of f over the set A, i.e.,
an element in PAz. ■

The following result is well known.

Fact 1.3 (projection onto closed convex set) Let C be a nonempty closed convex subset of X, and let x,
y and p be in X. Then the following hold:
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(i) PC(x) is a singleton.

(ii) PC(x) = p if and only if p ∈ C and sup ⟨C− p, x− p⟩ ≤ 0.

(iii) ∥PC(x)− PC(y)∥2 + ∥(Id−PC)(x)− (Id−PC)(y)∥2 ≤ ∥x− y∥2.

(iv) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥.

Proof. (i)&(ii): [2, Theorem 3.14]. (iii): [2, Proposition 4.8]. (iv): Clear from (iii). ■

Example 1.4 (sphere) Let z ∈ X and ρ ∈ R++. Set S := sphere(z; ρ). Then

(5) (∀x ∈ X) PS(x) =

{
z + ρ x−z

∥x−z∥ , if x ̸= z;

S, otherwise.

Proof. Let x ∈ X. The formula is clear when x = z, so we assume x ̸= z. Set

(6) c := z + ρ
x− z
∥x− z∥ ∈ S,

and let s = z + ρb ∈ S ∖ {c}, i.e., ∥b∥ = 1 and b ̸= (x − z)/∥x − z∥. Hence, using that |∥u∥ −
∥v∥| < ∥u− v∥ ⇔ ⟨u, v⟩ < ∥u∥∥v∥ and because of Cauchy-Schwarz, we obtain

∥x− c∥ =
∣∣∥x− z∥ − ρ

∣∣ = ∣∣∥x− z∥ − ∥ρb∥
∣∣ = ∣∣∥x− z∥ − ∥s− z∥

∣∣(7a)

< ∥x− s∥.(7b)

We have thus established (5). ■

Miscellany

Lemma 1.5 Let A and B be subsets of X, and let K be a cone in X. Then the following hold:

(i) cone(A ∩ B) ⊆ cone A ∩ cone B.

(ii) cone(K ∩ B) = K ∩ cone B.

Proof. (i): Clear. (ii): By (i), cone(K ∩ B) ⊆ (cone K) ∩ (cone B) = K ∩ cone B. Now assume that
x ∈ (K ∩ cone B)∖ {0}. Then there exists β > 0 such that x/β ∈ B. Since K is a cone, x/β ∈ K.
Thus x/β ∈ K ∩ B and therefore x ∈ cone(K ∩ B). ■

Note that the inclusion in Lemma 1.5(i) may be strict: indeed, consider the case when X = R,
A := {1}, and B := {2}.

Lemma 1.6 (Bunt–Motzkin characterization of convexity) Let A be a nonempty closed subset of X.
Then the following are equivalent:
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(i) A is convex.

(ii) P−1
A (a)− a is a cone, for every a ∈ A.

(iii) PA(x) is a singleton, for every x ∈ X.

Proof. “(i)⇒(ii)”: Indeed, it is well known in convex analysis (see, e.g., [17, Proposition 6.17]) that
for every a ∈ A, P−1

A (a)− a is equal to the normal cone (in the sense of convex analysis) of A at a.

“(ii)⇒(iii)”: Let x ∈ X. By Proposition 1.2, PAx ̸= ∅. Take a1 and a2 in PAx. Then ∥x − a1∥ =
∥x− a2∥ and x− a1 ∈ P−1

A a1− a1. Since P−1
A a− a is a cone, we have 2(x− a1) ∈ P−1

A a1− a1. Hence
y := 2x− a1 ∈ P−1

A a1 and y− x = x− a1. Thus,

⟨y− a2, a1 − a2⟩ = ⟨(y− x) + (x− a2), (a1 − x) + (x− a2)⟩(8a)

= ⟨y− x, a1 − x⟩+ ⟨y− x, x− a2⟩+ ⟨x− a2, a1 − x⟩+ ∥x− a2∥2(8b)

= ⟨x− a1, a1 − x⟩+ ⟨x− a1, x− a2⟩+ ⟨x− a2, a1 − x⟩+ ∥x− a2∥2(8c)

= −∥x− a1∥2 + ∥x− a2∥2(8d)
= 0.(8e)

Since a1 ∈ PAy, it follows that

∥y− a1∥2 = ∥y− a2∥2 + 2 ⟨y− a2, a2 − a1⟩+ ∥a1 − a2∥2(9a)

= ∥y− a2∥2 + ∥a1 − a2∥2(9b)

≥ ∥y− a2∥2(9c)

≥ ∥y− a1∥2.(9d)

Hence equality holds throughout (9). Therefore, a1 = a2.

“(iii)⇒(i)“: This classical result due to Bunt and to Motzkin on the convexity of Chebyshev sets
is well known; for proofs, see, e.g., [9, Chapter 12] or [2, Corollary 21.13]. ■

Proposition 1.7 Let S be a convex set. Then the following are equivalent.

(i) 0 ∈ ri S.

(ii) cone S = span S.

(iii) cone S = span S.

Proof. Set Y = span S. Then (i)⇔ 0 belongs to the interior of S relative to Y.

“(i)⇒(ii)”: There exists δ > 0 such that for every y ∈ Y ∖ {0}, δy/∥y∥ ∈ S. Hence y ∈ cone S.

“(ii)⇒(i)”: For every y ∈ Y, there exists δ > 0 such that δy ∈ S. Now [16, Corollary 6.4.1] applies
in Y.
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“(ii)⇔(iii)”: Set K = cone S, which is convex. By [16, Corollary 6.3.1], we have ri K = ri Y ⇔
K = Y ⇔ ri Y ⊆ K ⊆ Y. Since ri Y = Y = Y, we obtain the equivalences: ri K = Y ⇔ K = Y ⇔
K = Y. ■

2 Restricted normal cones: basic properties

Normal cones are fundamental objects in variational analysis; they may be used to construct sub-
differential operators, and they have found many applications in optimization, optimal control,
nonlinear analysis, convex analysis, etc.; see, e.g., [2], [5], [7], [14], [15], [16], [17]. One of the key
building blocks is the Mordukhovich (or limiting) normal cone NA, which is obtained by limits
of proximal normal vectors. In this section, we propose a new, very flexible, normal cone of A,
denoted by NB

A, by constraining the proximal normal vectors to a set B.

Definition 2.1 (normal cones) Let A and B be nonempty subsets of X, and let a and u be in X. If a ∈ A,
then various normal cones of A at a are defined as follows:

(i) The B-restricted proximal normal cone of A at a is

(10) N̂B
A(a) := cone

((
B ∩ P−1

A a
)
− a

)
= cone

((
B− a

)
∩
(

P−1
A a− a

))
.

(ii) The (classical) proximal normal cone of A at a is

(11) Nprox
A (a) := N̂X

A (a) = cone
(

P−1
A a− a

)
.

(iii) The B-restricted normal cone NB
A(a) is implicitly defined by u ∈ NB

A(a) if and only if there exist
sequences (an)n∈N in A and (un)n∈N in N̂B

A(an) such that an → a and un → u.

(iv) The Fréchet normal cone NFré
A (a) is implicitly defined by u ∈ NFré

A (a) if and only if (∀ε > 0)
(∃ δ > 0) (∀x ∈ A ∩ ball(a; δ)) ⟨u, x− a⟩ ≤ ε∥x− a∥.

(v) The normal convex from convex analysis Nconv
A (a) is implicitly defined by u ∈ Nconv

A (a) if and
only if sup ⟨u, A− a⟩ ≤ 0.

(vi) The Mordukhovich normal cone NA(a) of A at a is implicitly defined by u ∈ NA(a) if and only if
there exist sequences (an)n∈N in A and (un)n∈N in Nprox

A (an) such that an → a and un → u.

If a /∈ A, then all normal cones are defined to be empty.
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AaNprox
A (a)

The proximal
normal cone AaN̂B

A(a)B
The restricted

proximal normal coneP−1
A (a) ∩ B

Remark 2.2 Some comments regarding Definition 2.1 are in order.

(i) Clearly, the restricted proximal normal cone generalizes the notion of the classical proximal
normal cone. The name “restricted” stems from the fact that the pre-image P−1

A a is restricted
to the set B.

(ii) See [17, Example 6.16] and [15, Subsection 2.5.2.D on page 240] for further information re-
garding the classical proximal normal cone, including the fact that

(12) u ∈ Nprox
A (a) ⇔ a ∈ A and (∃ δ > 0)(∀x ∈ A) ⟨u, x− a⟩ ≤ δ∥x− a∥2.

This also implies that: Nprox
A (a) + (A− a)⊖ ⊆ Nprox

A (a).

(iii) Note that gr NB
A = (A × X) ∩ gr N̂B

A. Put differently, NB
A(a) is the outer (or upper Kura-

towski) limit of N̂B
A(x) as x → a in A, written

(13) NB
A(a) = lim

x→a
x∈A

N̂B
A(x).

See also [17, Chapter 4].

(iv) See [15, Definition 1.1] or [17, Definition 6.3] (where this is called the regular normal cone)
for further information regarding NFré

A (a).

(v) The Mordukhovich normal cone is also known as the basic or limiting normal cone. Note
that NA = NX

A and gr NA = (A× X) ∩ gr N̂X
A = (A× X) ∩ gr Nprox

A and once again NA(a)
is the outer (or upper Kuratowski) limit of N̂X

A (x) or Nprox
A (x) as x → a in A. See also [15,

page 141] for historical notes.

The next result presents useful characterizations of the Mordukhovich normal cone.

Proposition 2.3 (characterizations of the Mordukhovich normal cone) Let A be a nonempty closed
subset of X, let a ∈ A, and let u ∈ X. Then the following are equivalent:
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(i) u ∈ NA(a).

(ii) There exist sequences (λn)n∈N in R+, (bn)n∈N in X, (an)n∈N in A such that an → a, λn(bn −
an)→ u, and (∀n ∈N) an ∈ PAbn.

(iii) There exist sequences (λn)n∈N in R+, (xn)n∈N in X, (an)n∈N in A such that xn → a, λn(xn −
an)→ u, and (∀n ∈N) an ∈ PAxn. (This also implies an → a.)

(iv) There exist sequences (an)n∈N in A and (un)n∈N in X such that an → a, un → u, and (∀n ∈N)
un ∈ NFré

A (an).

Proof. “(i)⇔(ii)”: Clear from Definition 2.1(vi).

“(iii)⇔(iv)”: Noting that the definition of NA(a) in [15] is the one given in (iv), we see that this
equivalence follows from [15, Theorem 1.6].

“(ii)⇒(iii)”: Let (λn)n∈N, (an)n∈N, and (bn)n∈N be as in (ii). For every n ∈N, since an ∈ PAbn,
[17, Example 6.16] implies that an ∈ PA[an, bn]. Now let (εn)n∈N be a sequence in ]0, 1[ such that
εnan → 0 and εnbn → 0. Set

(14) (∀n ∈N) xn = (1− εn)an + εnbn = an + εn(bn − an) ∈ [an, bn].

Then xn → a and (∀n ∈N) an ∈ PAxn. Furthermore, (λn/εn)n∈N lies in R+ and

(15) (λn/εn)(xn − an) = λn(bn − an)→ u.

“(iii)⇒(ii)”: Let (λn)n∈N, (xn)n∈N, and (an)n∈N be as in (iii). Since xn → a and a ∈ A, we
deduce that 0 ≤ ∥xn − an∥ = dA(xn) ≤ ∥xn − a∥ → 0. Hence xn − an → 0 which implies that
an − a = an − xn + xn − a→ 0 + 0 = 0. Therefore, (ii) holds with (bn)n∈N = (xn)n∈N. ■

Here are some basic properties of the restricted normal cone and its relation to various classical
cones.

Lemma 2.4 (basic inclusions among the normal cones) Let A and B be nonempty subsets of X, and
let a ∈ A. Then the following hold:

(i) Nconv
A (a) ⊆ Nprox

A (a).

(ii) N̂B
A(a) = cone((B− a) ∩ (P−1

A a− a)) ⊆ (cone(B− a)) ∩ Nprox
A (a).

(iii) N̂B
A(a) ⊆ N̂X

A (a) = Nprox
A (a) and NB

A(a) ⊆ NA(a).

(iv) N̂B
A(a) ⊆ NB

A(a).

(v) If A is closed, then Nprox
A (a) ⊆ NFré

A (a).

(vi) If A is closed, then NFré
A (a) ⊆ NA(a).
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(vii) If A is closed and convex, then N̂X
A (a) = Nprox

A (a) = NFré
A (a) = Nconv

A (a) = NA(a).

(viii) If a ∈ ri(A), then N̂aff(A)
A (a) = Naff(A)

A (a) = {0}.

(ix) (aff(A)− a)⊥ ⊆ (A− a)⊖.

(x) (A− a)⊖ ∩ cone(B− a) ⊆ N̂B
A(a) ⊆ cone(B− a).

Proof. (i): Take u ∈ Nconv
A (a) and fix an arbitrary δ > 0. Then (∀x ∈ A) ⟨u, x− a⟩ ≤ 0 ≤ δ∥x− a∥2.

In view of (12), u ∈ Nprox
A (a).

(ii): In view of Lemma 1.5, the definitions yield

N̂B
A(a) = cone

(
(B ∩ P−1

A a)− a
)
= cone

(
(B− a) ∩ (P−1

A a− a)
)

(16a)

⊆ cone
(
(B− a) ∩ cone(P−1

A a− a)
)
= cone

(
(B− a) ∩ Nprox

A (a)
)

(16b)

= cone(B− a) ∩ Nprox
A (a).(16c)

(iii), (iv) and (ix): This is obvious.

(v): Assume that A is closed and take u ∈ Nprox
A (a). By (12), there exists ρ > 0 such that

(∀x ∈ A) ⟨u, x− a⟩ ≤ ρ∥x − a∥2. Now let ε > 0 and set δ = ε/ρ. If x ∈ A ∩ ball(a; δ), then
⟨u, x− a⟩ ≤ ρ∥x− a∥2 ≤ ρδ∥x− a∥ = ε∥x− a∥. Thus, u ∈ NFré

A (a).

(vi): This follows from Proposition 2.3.

(vii): Since A is closed, it follows from (i), (v), and (vi) that

(17) Nconv
A (a) ⊆ Nprox

A (a) ⊆ NFré
A (a) ⊆ NA(a).

On the other hand, by [15, Proposition 1.5], NA(a) ⊆ Nconv
A (a) because A is convex.

(viii): By assumption, (∃ δ > 0) ball(a; δ) ∩ aff(A) ⊆ A. Hence aff(A) ∩ P−1
A a = {a} and thus

N̂aff(A)
A (a) = {0}. Since a ∈ ri(A), it follows that (∀x ∈ ball(a; δ/2) ∩ aff(A)) N̂aff(A)

A (x) = {0}.
Therefore, Naff(A)

A (a) = {0}.

(x): Take u ∈ ((A− a)⊖ ∩ cone(B− a))∖ {0}, say u = λ(b− a), where b ∈ B and λ > 0. Then
0 ≥ sup ⟨A− a, u⟩ = λ sup ⟨A− a, b− a⟩ = sup λ ⟨conv A− a, b− a⟩. By Fact 1.3(ii), a = Pconv Ab
and hence a = PAb. It follows that u ∈ cone((B ∩ P−1

A a)− a). The left inclusion thus holds. The
right inclusion is clear. ■

Remark 2.5 (on closedness of normal cones) Let A be a nonempty subset of X, let a ∈ A, and
let B be a subset of X. Then NB

A(a), NA(a), and Nconv
A (a) are obviously closed—this is also true

for NFré
A (a) but requires some work (see [17, Proposition 6.5]). On the other hand, the classical

proximal normal cone Nprox
A (a) = N̂X

A (a) is not necessarily closed (see, e.g., [17, page 213]), and
hence neither is N̂B

A(a). For a concrete example, suppose that X = R2, that A = {(0, 0)}, that
B = R × {1} and that a = (0, 0). Then N̂B

A(a) =
(
R × R++

)
∪ {(0, 0)}, which is not closed;

however, the classical proximal normal cone Nprox
A (a) = R2 is closed.
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The sphere is a nonconvex set for which all classical normal cones coincide:

Example 2.6 (classical normal cones of the sphere) Let z ∈ X and ρ ∈ R++. Set S := sphere(z; ρ)
and let s ∈ S. Then Nprox

S (s) = N̂X
S (s) = NFré

S (s) = NS(s) = R(s− z).

Proof. By Example 1.4, we have P−1
S (s) = z + R+(s− z) and so P−1

S (s)− s = [−1,+∞[ · (s− z).
Hence, using Lemma 2.4(v)&(vi), we have

Nprox
S (s) = N̂X

S (s) = R(s− z) ⊆ NFré
S (s) ⊆ NS(s)(18a)

= lim
s′→s
s′∈S

Nprox
S (s′) = lim

s′→s
s′∈S

R(s′ − z) = R(s− z)(18b)

= Nprox
S (s),(18c)

as announced. ■

Here are some elementary yet useful calculus rules.

Proposition 2.7 Let A, A1, A2, B, B1, and B2 be nonempty subsets of X, let c ∈ X, and suppose that
a ∈ A ∩ A1 ∩ A2. Then the following hold:

(i) If A and B are convex, then N̂B
A(a) is convex.

(ii) N̂B1∪B2
A (a) = N̂B1

A (a) ∪ N̂B2
A (a) and NB1∪B2

A (a) = NB1
A (a) ∪ NB2

A (a).

(iii) If B ⊆ A, then N̂B
A(a) = NB

A(a) = {0}.

(iv) If A1 ⊆ A2, then N̂B
A2
(a) ⊆ N̂B

A1
(a).

(v) −N̂B
A(a) = N̂−B

−A(−a), −NB
A(a) = N−B

−A(−a), and −NA(a) = N−A(−a).

(vi) N̂B
A(a) = N̂B−c

A−c(a− c) and NB
A(a) = NB−c

A−c(a− c).

Proof. It suffices to establish the conclusions for the restricted proximal normal cones since the
restricted normal cone results follows by taking closures (or outer limits). (i): We assume that
B ∩ P−1

A a ̸= ∅, for otherwise the conclusion is clear. Then P−1
A (a) = P−1

A
a = (Id+NA)a is convex

(as the image of the maximally monotone operator Id+NA at a). Hence (B ∩ P−1
A a)− a is convex

as well, and so is its conical hull, which is N̂B
A(a). (ii): Since ((B1 ∪ B2) ∩ P−1

A a) − a = ((B1 ∩
P−1

A a)− a) ∪ ((B2 ∩ P−1
A a)− a), the result follows by taking the conical hull. (iii): Clear, because

(B ∩ P−1
A a) − a is either empty or equal to {0}. (iv): Suppose λ(b − a) ∈ N̂B

A2
(a), where λ ≥ 0,

b ∈ B, and a ∈ PA2 b. Since a ∈ A1 ⊆ A2, we have a ∈ PA1 b. Hence λ(b− a) ∈ N̂B
A1
(a). (v): This

follows by using elementary manipulations and the fact that P−A = (− Id) ◦ PA ◦ (− Id). (vi): This
follows readily from the fact that P−1

A−c(a− c) = P−1
A (a)− c. ■

Remark 2.8 The restricted normal cone counterparts of items (i) and (iv) are false in general; see
Example 4.1 (and also Example 4.4(iv)) below.
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The Mordukhovich normal cone (and hence also the Clarke normal cone which contains the
Mordukhovich normal cone) strictly contains {0} at boundary points (see [15, Corollary 2.24] or
[17, Exercise 6.19]); however, the restricted normal cone can be {0} at boundary points as we
illustrate next.

Example 2.9 (restricted normal cone at boundary points) Suppose that X = R2, set A :=
ball(0; 1) =

{
x ∈ R2

∣∣ ∥x∥ ≤ 1
}

and B := R× {2}, and let a = (a1, a2) ∈ A. Then

(19) N̂B
A(a) =

{
R+a, if ∥a∥ = 1 and a2 > 0;
{(0, 0)}, otherwise.

Consequently,

(20) NB
A(a) =

{
R+a, if ∥a∥ = 1 and a2 ≥ 0;
{(0, 0)}, otherwise.

Thus the restricted normal cone is {(0, 0)} for all boundary points in the lower half disk that do
not “face” the set B.

Remark 2.10 In contrast to Example 2.9, we shall see in Corollary 3.11(ii) below that if A is closed,
B is the affine hull of A, and a belongs to the relative boundary of A, then the restricted normal
cone NB

A(a) strictly contains {0}.

3 Restricted normal cones and affine subspaces

In this section, we consider the case when the restricting set is a suitable affine subspace. This
results in further calculus rules and a characterization of interiority notions.

The following four lemmas are useful in the derivation of the main results in this section.

Lemma 3.1 Let A and B be nonempty subsets of X, and suppose that c ∈ A ∩ B. Then

(21) aff(A ∪ B)− c = span(B− A).

Proof. Since c ∈ A ∩ B ⊆ A ∪ B, it is clear that the aff(A ∪ B) − c is a subspace. On the one
hand, if a ∈ A and b ∈ B, then b − a = 1 · b + (−1) · a + 1 · c − c ∈ aff(A ∪ B) − c. Hence
B − A ⊆ aff(A ∪ B) − c and thus span(B − A) ⊆ aff(A ∪ B) − c. On the other hand, if x ∈
aff(A ∪ B), say x = ∑i∈I λiai + ∑j∈J µjbj, where each ai belongs to A, each bj belongs to B, and
∑i∈I λi + ∑j∈J µj = 1, then x − c = ∑i∈I(−λi)(c − ai) + ∑j∈I µj(bj − c) ∈ span(B − A). Thus
aff(A ∪ B)− c ⊆ span(B− A). ■

Lemma 3.2 Let A be a nonempty subset of X, let a ∈ A, and let u ∈ (aff(A)− a)⊥. Then

(22) (∀x ∈ X) PA(x + u) = PA(x).
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Proof. Let x ∈ X. For every b ∈ A, we have

∥u + x− b∥2 = ∥u∥2 + 2 ⟨u, x− b⟩+ ∥x− b∥2(23a)

= ∥u∥2 + 2 ⟨u, x− a⟩+ 2 ⟨u, a− b⟩+ ∥x− b∥2(23b)

= ∥u∥2 + 2 ⟨u, x− a⟩+ ∥x− b∥2.(23c)

Hence PA(x + u) = argminb∈A ∥u + x− b∥2 = argminb∈A ∥x− b∥2 = PAx, as announced. ■

Lemma 3.3 Let A be a nonempty subset of X, and let L be an affine subspace of X containing A. Then

(24) PA = PA ◦ PL.

Proof. Let a ∈ A and x ∈ X, and set b = PLx. Using [2, Corollary 3.20(i)], we have x − b ∈
(L− a)⊥ ⊂ (aff(A)− a)⊥. In view of Lemma 3.2, we deduce that (PA ◦ PL)x = PA(b) = PA(b +
(x− b)) = PAx. ■

Lemma 3.4 Let A be a nonempty subset of X, let a ∈ A, and let L be an affine subspace of X containing
A. Then the following hold:

(i) N̂L
A(a)⊥(L− a)⊥.

(ii) NL
A(a)⊥(L− a)⊥.

Proof. Observe that L− a = par(A) does not depend on the concrete choice of a ∈ A. (i): Using
Lemma 2.4(x), we see that N̂L

A(a) ⊆ cone(L− a) ⊆ span(L− a) ⊥ (span(L− a))⊥ = (L− a)⊥ =

(par A)⊥. (ii): By (i), ran N̂L
A ⊆ par A. Since ran NL

A ⊆ ran N̂L
A, it follows that ran NL

A ⊆ par A =
L− a. ■

For a normal cone restricted to certain affine subspaces, it is possible to derive precise relation-
ships to the Mordukhovich normal cone.

Theorem 3.5 (restricted vs Mordukhovich normal cone) Let A and B be nonempty subsets of X,
suppose that a ∈ A, and let L be an affine subspace of X containing A. Then the following hold:

N̂X
A (a) = N̂L

A(a)⊕ (L− a)⊥ = N̂X
A (a) + (L− a)⊥,(25a)

N̂L
A(a) = N̂X

A (a) ∩ (L− a),(25b)

NA(a) = NL
A(a)⊕ (L− a)⊥ = NA(a) + (L− a)⊥,(25c)

NL
A(a) = NA(a) ∩ (L− a).(25d)

Consequently, the following hold as well:

N̂X
A (a) = N̂aff(A)

A (a)⊕ (aff(A)− a)⊥ = N̂X
A (a) + (aff(A)− a)⊥,(26a)

N̂aff(A)
A (a) = N̂X

A (a) ∩ (aff(A)− a),(26b)
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NA(a) = Naff(A)
A (a)⊕

(
aff(A)− a

)⊥
= NA(a) +

(
aff(A)− a

)⊥,(26c)

Naff(A)
A (a) = NA(a) ∩

(
aff(A)− a

)
,(26d)

a ∈ A ∩ B ⇒ Naff(A∪B)
A (a) = NA(a) ∩ span(A− B).(26e)

Proof. (25a): Take u ∈ N̂X
A (a). Then there exist λ ≥ 0, x ∈ X, and a ∈ PAx such that λ(x− a) = u.

Set b = PLx. By Lemma 3.3, we have a ∈ PAx = (PA ◦ PL)x = PAb. Using [2, Corollary 3.20(i)], we
thus deduce that λ(b− a) ∈ N̂L

A(a) and λ(x− b) ∈ (L− b)⊥ = (L− a)⊥. Hence u = λ(b− a) +
λ(x− b) ∈ N̂L

A(a) + (L− a)⊥ = N̂L
A(a)⊕ (L− a)⊥ by Lemma 3.4(i). We have thus shown that

(27) N̂X
A (a) ⊆ N̂L

A(a)⊕ (L− a)⊥.

On the other hand, Lemma 2.4(iii) implies that N̂L
A(a) ⊆ N̂X

A (a) and thus

(28) N̂L
A(a) + (L− a)⊥ ⊆ N̂X

A (a) + (L− a)⊥.

Altogether,

(29) N̂X
A (a) ⊆ N̂L

A(a)⊕ (L− a)⊥ ⊆ N̂X
A (a) + (L− a)⊥.

To complete the proof of (25a), it thus suffices to show that N̂X
A (a) + (L− a)⊥ ⊆ N̂X

A (a). To this
end, let u ∈ N̂X

A (a) and v ∈ (L− a)⊥ ⊆ (aff(A)− a)⊥. Then there exist λ ≥ 0, b ∈ X, and a ∈ PAb
such that u = λ(b − a). If λ = 0, then u = 0 and u + v = v ∈ (aff(A) − a)⊥ ⊆ (A − a)⊖ =
(A− a)⊖ ∩ X = (A− a)⊖ ∩ cone(X − a) ⊆ N̂X

A (a) by Lemma 2.4(ix)&(x). Thus, we assume that
λ > 0. By Lemma 3.2, we have a ∈ PAb = PA(b + λ−1v). Hence b + λ−1v − a ∈ N̂X

A (a) and
therefore λ(b + λ−1v− a) = λ(b− a) + v = u + v ∈ N̂X

A (a), as required.

(25b): By Lemma 2.4(iii)&(x), N̂L
A(a) ⊆ N̂X

A (a) ∩ (L − a). Now let u ∈ N̂X
A (a) ∩ (L − a). By

(25a), we have u = v + w, where v ∈ N̂L
A(a) ⊆ L − a and w ∈ (L − a)⊥. On the other hand,

w = u − v ∈ (L − a) − (L − a) = L − a. Altogether w ∈ (L − a) ∩ (L − a)⊥ = {0}. Hence
u = v ∈ N̂L

A(a).

(25c): Let u ∈ NA(a). By definition, there exist sequences (an)n∈N in A and (un)n∈N in X such
that an → a, un → u, and (∀n ∈N) un ∈ N̂X

A (an). By (25a), there exists a sequence (vn, wn)n∈N

such that (an, vn)n∈N lies in gr N̂L
A, (wn)n∈N lies in (L − a)⊥, and (∀n ∈N) un = vn + wn and

vn ⊥ wn. Since ∥u∥2 ← ∥un∥2 = ∥vn∥2 + ∥wn∥2, the sequences (vn)n∈N and (wn)n∈N are bounded.
After passing to subsequences and relabeling if necessary, we assume (vn)n∈N and (wn)n∈N are
convergent, with limits v and w, respectively. It follows that v ∈ NL

A(a) and w ∈ (L − a)⊥;
consequently, u = v + w ∈ NL

A(a)⊕ (L− a)⊥ by Lemma 3.4(ii). Thus NA(a) ⊆ NL
A(a)⊕ (L− a)⊥.

On the other hand, by Lemma 2.4(iii), NL
A(a)⊕ (L− a)⊥ ⊆ NA(a) + (L− a)⊥. Altogether,

(30) NA(a) ⊆ NL
A(a)⊕ (L− a)⊥ ⊆ NA(a) + (L− a)⊥.

It thus suffices to prove that NA(a) + (L − a)⊥ ⊆ NA(a). To this end, take u ∈ NA(a) and v ∈
(L− a)⊥. Then there exist sequences (an)n∈N in A and (un)n∈N in X such that an → a, un → u,

13



and (∀n ∈N) un ∈ N̂X
A (an). For every n ∈N, we have L − a = L − an and hence un + v ∈

N̂X
A (an) + (L− an)⊥ = N̂X

A (an) by (25a). Passing to the limit, we conclude that u + v ∈ NA(a).

(25d): First, take u ∈ NL
A(a). On the one hand, by Lemma 2.4(iii), u ∈ NA(a). On the other

hand, by Lemma 3.4(ii), u ∈ (L− a)⊥⊥ = L− a. Altogether, we have shown that

(31) NL
A(a) ⊆ NA(a) ∩ (L− a).

Conversely, take u ∈ NA(a) ∩ (L− a) ⊆ NA(a). By (25c), there exist v ∈ NL
A(a) and w ∈ (L− a)⊥

such that u = v + w and v ⊥ w. By (31), v ∈ L − a. Hence w = u − v ∈ (L − a) − (L − a) =
L − a. Since w ∈ (L − a)⊥, we deduce that w = 0. This implies u = v ∈ NL

A(a). Therefore,
NA(a) ∩ (L− a) ⊆ NL

A(a).

“Consequently” part: Consider (25) when L = aff(A) or L = aff(A ∪ B), and recall Lemma 3.1
in the latter case. ■

An immediate consequence of Theorem 3.5 (or of the definitions) is the following result.

Corollary 3.6 (the X-restricted and the Mordukhovich normal cone coincide) Let A be a nonempty
subset of X, and let a ∈ A. Then

(32) NX
A (a) = NA(a).

The next two results provide some useful calculus rules.

Corollary 3.7 (restricted normal cone of a sum) Let C1 and C2 be nonempty closed convex subsets of
X, let a1 ∈ C1, let a2 ∈ C2, and let L be an affine subspace of X containing C1 + C2. Then

(33) NL
C1+C2

(a1 + a2) = NL−a2
C1

(a1) ∩ NL−a1
C2

(a2).

Proof. Set C = C1 + C2 and a = a1 + a2. Then (25d) and [17, Exercise 6.44] yield

NL
C(a) = NC(a) ∩ (L− a) = NC1

(a1) ∩ NC2
(a2) ∩ (L− a)(34a)

=
(

NC1
(a1) ∩ (L− a)

)
∩
(

NC2
(a2) ∩ (L− a)

)
.(34b)

Note that L− a is a linear subspace of X containing C1− a1 and C2− a2. Thus, L− a2 = L− a + a1
is an affine subspace of X containing C1, and L − a1 = L − a + a2 is an affine subspace of X
containing C2. By (25d),

(35) NL−a2
C1

(a1) = NC1
(a1) ∩ (L− a) and NL−a1

C2
(a2) = NC2

(a2) ∩ (L− a).

The conclusion follows by combining (34) and (35). ■

Corollary 3.8 (an intersection formula) Let A and B be nonempty closed convex subsets of X, and sup-
pose that a ∈ A ∩ B. Let L be an affine subspace of X containing A ∪ B. Then

(36) NL
A(a) ∩

(
− NL

B(a)
)
= NL−a

A−B(0).
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Proof. Using (25d), Proposition 2.7(v), [17, Exercise 6.44], and again (25d), we obtain

NL
A(a) ∩

(
− NL

B(a)
)
= NA(a) ∩ (L− a) ∩

(
− NB(a)

)
∩ (L− a)(37a)

=
(

NA(a) ∩
(
− NB(a)

))
∩ (L− a)(37b)

=
(

NA(a) ∩ N−B(−a)
)
∩ (L− a)(37c)

= NA−B(0) ∩ (L− a)(37d)

= NL−a
A−B(0),(37e)

as required. ■

Let us now work towards relating the restricted normal cone to the (relative and classical) inte-
rior and to the boundary of a given set.

Proposition 3.9 Let A be a nonempty subset of X, let a ∈ A, let L be an affine subspace containing A,
and suppose that NL

A(a) = {0}. Then L = aff(A).

Proof. Using 0 ∈ Naff(A)
A (a) ⊆ NL

A(a) = {0} and applying (25c) and (26c), we have

(38) NA(a) = 0 + (L− a)⊥ = 0 + (aff(A)− a)⊥.

So L− a = aff(A)− a, i.e., L = aff(A). ■

Theorem 3.10 Let A and B be nonempty subsets of X, and let a ∈ A. Then

(39) NB
A(a) = {0} ⇔ (∃ δ > 0)

(
∀x ∈ A ∩ ball(a; δ)

)
P−1

A (x) ∩ B ⊆ {x}.

Furthermore, if A is closed and B is an affine subspace of X containing A, then the following are equivalent:

(i) NB
A(a) = {0}.

(ii) (∃ ρ > 0) ball(a; ρ) ∩ B ⊆ A.

(iii) B = aff(A) and a ∈ ri(A).

Proof. Note that NB
A(a) = {0} ⇔ (∃ δ > 0) (∀x ∈ A ∩ ball(a; δ)) N̂B

A(x) = {0}. Hence (39) follows
from the definition of N̂B

A(x).

Now suppose that A is closed and B is an affine subspace of X containing A.

“(i)⇒(ii)”: Let δ > 0 be as in (39) and set ρ := δ/2. Let b ∈ B(a; ρ) ∩ B, and take x ∈ PAb, which
is possible since A is closed. Then ∥b− x∥ = dA(b) ≤ ∥b− a∥ ≤ ρ and hence

(40) ∥x− a∥ ≤ ∥x− b∥+ ∥b− a∥ ≤ ρ + ρ = 2ρ = δ.

Using (39), we deduce that b ∈ P−1
A (x) ∩ B ⊆ {x} ⊆ A.
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“(ii)⇒(iii)”: It follows that B = aff(B) ⊆ aff(A) ⊆ B; hence, B = aff(A). Thus ball(a; ρ) ∩
aff(A) ⊆ A, which means that a ∈ ri(A).

“(iii)⇒(i)”: Lemma 2.4(viii). ■

Corollary 3.11 (interior and boundary characterizations) Let A be a nonempty closed subset of X,
and let a ∈ A. Then the following hold:

(i) Naff(A)
A (a) = {0} ⇔ a ∈ ri(A).

(ii) Naff(A)
A (a) ̸= {0} ⇔ a ∈ A ∖ ri(A).

(iii) NA(a) = {0} ⇔ a ∈ int(A).

(iv) NA(a) ̸= {0} ⇔ a ∈ A ∖ int(A).

Proof. (i): Apply Theorem 3.10 with B = aff(A). (ii): Clear from (i). (iii): Apply Theorem 3.10 with
B = X, and recall Corollary 3.6. (iv): Clear from (iii). ■

A second look at the proof of (i)⇒(ii) in Theorem 3.10 reveals that this implication does actually
not require the assumption that B be an affine subspace of X containing A. The following example
illustrates that the converse implication fails even when B is a superset of aff(A).

Example 3.12 Suppose that X = R2, and set A := R× {0}, a = (0, 0), and B = R× {0, 2}. Then
A = aff(A) ⊆ B and ball(a; 1) ∩ B ⊆ A; however, (∀x ∈ A) N̂B

A(x) = {0} ×R+ and therefore
NB

A(a) = {0} ×R+ ̸= {(0, 0)}.

Two convex sets

It is instructive to interpret the previous results for two convex sets:

Theorem 3.13 (two convex sets: restricted normal cones and relative interiors) Let A and B be
nonempty convex subsets of X. Then the following are equivalent:

(i) ri A ∩ ri B ̸= ∅.

(ii) 0 ∈ ri(B− A).

(iii) cone(B− A) = span(B− A).

(iv) NA(c) ∩ (−NB(c)) ∩ cone(B− A) = {0} for some c ∈ A ∩ B.

(v) NA(c) ∩ (−NB(c)) ∩ cone(B− A) = {0} for every c ∈ A ∩ B.

(vi) NA(c) ∩ (−NB(c)) ∩ span(B− A) = {0} for some c ∈ A ∩ B.
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(vii) NA(c) ∩ (−NB(c)) ∩ span(B− A) = {0} for every c ∈ A ∩ B.

(viii) Naff(A∪B)
A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for some c ∈ A ∩ B.

(ix) Naff(A∪B)
A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for every c ∈ A ∩ B.

(x) Nspan(B−A)
A−B (0) = {0}.

Proof. By [16, Corollary 6.6.2], (ii)⇔ ri A ∩ ri B ̸= ∅⇔ 0 ∈ ri A− ri B⇔ (ii).

Applying Proposition 1.7 to B− A, and [1, Proposition 3.1.3] to cone (B− A), we obtain

(ii)⇔ (iii) ⇔ cone (B− A) = span(B− A)(41a)

⇔ cone (B− A) ∩
(
cone (B− A)

)⊕
= {0}.(41b)

Let c ∈ A ∩ B. Then Corollary 3.8 (with L = X) yields NA(c) ∩
(
− NB(c)

)
= NA−B(0) = (A−

B)⊖ = (B− A)⊕ = (cone(B− A))⊕. Hence

(42) (∀c ∈ C) NA(c) ∩
(
− NB(c)

)
∩ cone (B− A) =

(
cone (B− A)

)⊕ ∩ cone (B− A)

and

(43) (∀c ∈ C) NA(c) ∩
(
− NB(c)

)
∩ span(B− A) =

(
cone (B− A)

)⊕ ∩ span(B− A).

Combining (41), (42), and (43), we see that (ii)–(vii) are equivalent.

Next, Lemma 3.1 and Corollary 3.8 yield the equivalence of (viii)–(x).

Finally, (x)⇔(ii) by Corollary 3.11(i). ■

Corollary 3.14 (two convex sets: normal cones and interiors) Let A and B be nonempty convex sub-
sets of X. Then the following are equivalent:

(i) 0 ∈ int(B− A).

(ii) cone(B− A) = X.

(iii) NA(c) ∩ (−NB(c)) = {0} for some c ∈ A ∩ B.

(iv) NA(c) ∩ (−NB(c)) = {0} for every c ∈ A ∩ B.

(v) NA−B(0) = {0}.

Proof. We start by notating that if C is a convex subset of X, then 0 ∈ int C ⇔ 0 ∈ ri C and
span C = X. Consequently,

(44) (i) ⇔ 0 ∈ ri(B− A) and span(B− A) = X.

Assume that (i) holds. Then (44) and Theorem 3.13 imply that cone(B − A) = cone (B − A) =
span(B− A) = X. Hence (ii) holds, and from Theorem 3.13 we obtain that (ii)⇒(iii)⇔(iv)⇔(v).
Finally, Corollary 3.11(iii) yields the implication (v)⇒(i). ■
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4 Further examples

In this section, we provide further examples that illustrate particularities of restricted normal
cones.

As announced in Remark 2.8, when a ∈ A2 ⫋ A1, it is possible that the nonconvex restricted
normal cones satisfy NB

A1
(a) ̸⊆ NB

A2
(a) even when A1 and A2 are both convex. This lack of inclusion

is also known for the Mordukhovich normal cone (see [15, page 5], where however one of the sets
is not convex). Furthermore, the following example also shows that the restricted normal cone
cannot be derived from the Mordukhovich normal cone by the simple relativization procedure of
intersecting with naturally associated cones and subspaces.

Example 4.1 (lack of convexity, inclusion, and relativization) Suppose that X = R2, and define
two nonempty closed convex sets by A := A1 := epi(| · |) and A2 := epi(2| · |). Then a := (0, 0) ∈
A2 ⫋ A1. Furthermore, set B := R× {0}. Then

(
∀x = (x1, x2) ∈ A1

)
N̂B

A1
(x) =


R+(1,−1), if x2 = x1 > 0;
R+(−1,−1), if x2 = −x1 > 0;
{(0, 0)}, otherwise,

(45a)

(
∀x = (x1, x2) ∈ A2

)
N̂B

A2
(x) =


R+(2,−1), if x2 = 2x1 > 0;
R+(−2,−1), if x2 = −2x1 > 0;
{(0, 0)}, otherwise.

(45b)

Consequently,

NB
A1
(a) = cone

{
(1,−1), (−1,−1)

}
,(46a)

NB
A2
(a) = cone

{
(2,−1), (−2,−1)

}
.(46b)

Note that NB
A1
(a) ̸⊆ NB

A2
(a) and NB

A2
(a) ̸⊆ NB

A1
(a); in fact, NB

A1
(a) ∩ NB

A2
(a) = {(0, 0)}. Fur-

thermore, neither NB
A1
(a) nor NB

A2
(a) is convex even though A1, A2, and B are. Finally, observe

that cone(B − a) = span(B − a) = B, that cone(B − A) = R × R−, that span(B − A) = X,
and that NA(a) = cone[(1,−1), (−1,−1)] ̸= NB

A(a). Consequently, cone(B − a) ∩ NA(a) =
span(B− a) ∩ NA(a) = {(0, 0)}, cone(B− A) ∩ NA(a) = NA(a) = span(B− A) ∩ NA(a). There-
fore, NB

A(a) cannot be obtained by intersecting the Mordukhovich normal cone with one of the sets
cone(B− a), span(B− a), cone(B− A), and span(B− A).

We shall present some further examples. The proof of the following result is straightforward
and hence omitted.

Proposition 4.2 Let K be a closed cone in X, and let B be a nonempty cone of X. Then

(47) NB
K(0) =

∪
x∈K

N̂B
K(x) =

∪
x∈bdry K

N̂B
K(x) =

∪
x∈K

NB
K(x) =

∪
x∈bdry K

NB
K(x).
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Example 4.3 Let K be a closed convex cone in X, suppose that u0 ∈ int(K) and that K ⊆ {u0}⊕,
and set B := {u0}⊥. Then:

(i) (∀x ∈ K ∩ B) N̂B
K(x) = {0}.

(ii) (∀x ∈ K ∖ B) N̂B
K(x) = NB

K(x) = NK(x) = K⊖ ∩ {x}⊥.

(iii) NB
K(0) =

∪
x∈K N̂B

K(x) =
∪

x∈K∖B(K⊖ ∩ {x}⊥) = K⊖ ∩∪
x∈K∖B{x}⊥.

If one of these unions is closed, then all closures may be omitted.

Proof. (i): Let x ∈ K∩ B. It suffices to show that B∩ P−1
K (x) = {x}. To this end, take y ∈ B∩ P−1

K (x).
By definition of B, we have ⟨u0, x⟩ = 0 and ⟨u0, y⟩ = 0. Hence

(48) ⟨u0, y− x⟩ = 0.

Furthermore, x = PKy and hence, using e.g. [2, Proposition 6.27], we have y − x ∈ K⊖. Since
u0 ∈ int K, there exists δ > 0 such that ball(u0; δ) ⊆ K. Thus y− x ∈ (ball(u0; δ))⊖. In view of (48),
δ∥y− x∥ ≤ 0. Therefore, y = x.

(ii): Let x ∈ K ∖ B. Using Lemma 2.4(iii)&(iv), Corollary 3.6, Lemma 2.4(vii), and [2, Exam-
ple 6.39], we have

(49) N̂B
K(x) ⊆ N̂X

K (x) ⊆ NX
K (x) = NK(x) = Nconv

K (x) = K⊖ ∩ {x}⊥.

Since x ∈ K ⊆ {u0}⊕ and x /∈ B, we have ⟨u0, x⟩ > 0. Now take u ∈ (K⊖ ∩ {x}⊥)∖ {0}. Since
u ∈ K⊖ and u0 ∈ int(K), we have ⟨u, u0⟩ < 0. Now set

(50) b := x− ⟨u0, x⟩
⟨u0, u⟩u.

Then b ∈ B and b− x = − ⟨u0, x⟩ ⟨u0, u⟩−1 u ∈ R++u ⊆ K⊖ ∩ {x}⊥ = Nconv
K (x). By [2, Proposi-

tion 6.46], x = PKb. Hence b− x ∈ N̂B
K(x) and thus u ∈ N̂B

K(x). Therefore, K⊖ ∩ {x}⊥ ⊆ N̂B
K(x). In

view of (49), and since N̂B
K(x) ⊆ NB

K(x) ⊆ NK(x) by Lemma 2.4(iii)&(iv), we have established (ii).

(iii): Combine (i), (ii), and Proposition 4.2. ■

Example 4.4 (ice cream cone) Suppose that X = Rm = Rm−1×R, where m ∈ {2, 3, 4, . . .}, and let
β > 0. Define the corresponding closed convex ice cream cone by

(51) K :=
{

x ∈ Rm
∣∣∣ β

√
x2

1 + · · ·+ x2
m−1 ≤ xm

}
,

and set B := Rm−1 × {0}. Then the following hold:

(i) N̂B
K(0, 0) = {(0, 0)}.
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(ii) NK(0, 0) =
{

y ∈ Rm
∣∣ β−1

√
y2

1 + · · ·+ y2
m−1 ≤ −ym

}
=

∪
z∈Rm−1
∥z∥≤1

R+(βz,−1).

(iii) (∀z ∈ Rm−1 ∖ {0}) N̂B
K(z, β∥z∥) = NB

K(z, β∥z∥) = NK(z, β∥z∥) = R+(βz,−∥z∥).

(iv) NB
K(0, 0) =

∪
z∈Rm−1
∥z∥=1

R+(βz,−1), which is a closed cone that is not convex.

Proof. Clearly, K is closed and convex. Note that K is the lower level set of height 0 of the continu-
ous convex function

(52) f : Rm = Rm−1 ×R→ R : x = (z, xm) 7→ β∥z∥ − xm;

hence , by [20, Exercise 2.5(b) and its solution on page 205],

(53) int(K) =
{

x = (z, xm) ∈ Rm−1 ×R
∣∣ β∥z∥ < xm

}
.

Lemma 2.4(iii)&(iv), Corollary 3.6, and Corollary 3.11(iii) imply that

(54)
(
∀x ∈ int(K)

)
N̂B

K(x) ⊆ N̂X
K (x) ⊆ NX

K (x) = NK(x) = {0}.

Write x = (z, xm) ∈ Rm−1×R = X, and assume that x ∈ K. We thus assume that x ∈ bdry(K), i.e.,
β∥z∥ = xm by (53), i.e., x = (z, β∥z∥). Combining [2, Proposition 16.8] with [20, Corollary 2.9.5]
(or [2, Lemma 26.17]) applied to f , we obtain

(55) NK
(
z, β∥z∥

)
= cone

(
β∂∥ · ∥(z)× {−1}

)
,

where ∂∥ · ∥ denotes the subdifferential operator from convex analysis applied to the Euclidean
norm in Rm−1. In view of [2, Example 16.25] we thus have

(56) NK
(
z, β∥z∥

)
=

{
cone

(
β∥z∥−1z× {−1}

)
, if z ̸= 0;

cone
(

ball(0; β)× {−1}
)
, if z = 0.

The case z = 0 in (56) readily leads to (ii).

Now set u0 := (0, 1) ∈ Rm−1 ×R. Then {u0}⊥ = B and {u0}⊕ = Rm−1 ×R+ ⊇ K. Note that
(0, 0) ∈ K ∩ B and thus N̂B

K(0, 0) = {(0, 0)} by Example 4.3(i). We have thus established (i).

Now assume that z ̸= 0. Then NK(z, β∥z∥) = R+(βz,−∥z∥). Note that βz ̸= 0 and so
(z, β∥z∥) /∈ B. The formulas announced in (iii) therefore follow from Example 4.3(ii).

Next, combining (53), (54), and Example 4.3(iii) as well as utilizing the compactness of the unit
sphere in Rm−1, we see that

(57) NB
K(0, 0) =

∪
z∈Rm−1∖{0}

R+(βz,−∥z∥) =
∪

z∈Rm−1
∥z∥=1

R+(βz,−1) =
∪

z∈Rm−1
∥z∥=1

R+(βz,−1).

This establishes (iv). ■

Remark 4.5 Consider Example 4.4. Note that NB
K(0, 0) is actually the boundary of NK(0, 0). Fur-

thermore, since NK(0, 0) = Nconv
K (0, 0) by Lemma 2.4(vii), the formulas in (ii) also describe K⊖,

which is therefore an ice cream cone as well.
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5 Cones containing restricted normal cones

In this section, we provide various examples illustrating that the restricted (proximal) normal cone
does not naturally arise by considering various natural cones containing it.

Let A and B be nonempty subsets of X, and let a ∈ A. We saw in Lemma 2.4(ii) that

(58) N̂B
A(a) = cone

(
(B− a) ∩ (P−1

A a− a)
)
⊆ cone(B− a) ∩ Nprox

A (a).

This raises the question whether or not the inclusion in (58) is strict. It turns out and as we shall
now illustrate, both conceivable alternatives (equality and strict inclusion) do occur. Therefore,
N̂B

A(a) is a new construction.

We start with a condition sufficient for equality in (58),

Proposition 5.1 Let A and B be nonempty subsets of X. Let A be closed and a ∈ A. Assume that one of
the following holds:

(i) P−1
A (a)− a is a cone.

(ii) A is convex.

Then N̂B
A(a) = cone(B− a) ∩ Nprox

A (a).

Proof. (i): Lemma 1.5(ii). (ii): Combine (i) with Lemma 1.6. ■

The next examples illustrates that equality in (58) can occur even though P−1
A (a) − a is not a

cone. Consequently, the assumption that P−1
A (a)− a be a cone in Proposition 5.1 is sufficient—but

not necessary—for equality in (58).

Example 5.2 Suppose that X = R2, and let A := X ∖ R2
++, B := R+(1, 1), and a := (0, 1). Then

one verifies that

P−1
A (a)− a = [0, 1]× {0},(59a)

Nprox
A (a) = cone(P−1

A a− a) = R+ × {0},(59b)

cone(B− a) =
{
(t1, t2) ∈ R2 ∣∣ t1 ≥ 0, t2 < t1

}
∪ {(0, 0)},(59c)

N̂B
A(a) = R+ × {0}.(59d)

Hence N̂B
A(a) = R+ × {0} = cone(B− a) ∩ Nprox

A (a).

We now provide an example where the inclusion in (58) is strict.
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Example 5.3 Suppose that X = R2, let A := cone{(1, 0), (0, 1)} = bdry R2
+, B := R+(2, 1), and

a := (0, 1) ∈ A. Then one verifies that

P−1
A (a)− a = ]−∞, 1]× {0},(60a)

Nprox
A (a) = cone(P−1

A a− a) = R× {0},(60b)

cone(B− a) =
{
(x1, x2) ∈ R2 ∣∣ x1 ≥ 0, 2x2 < x1

}
∪ {(0, 0)},(60c)

N̂B
A(a) = {(0, 0)}.(60d)

Hence N̂B
A(a) = {(0, 0)} ⫋ R+×{0} = cone(B− a)∩ Nprox

A (a), and therefore the inclusion in (58)
is strict. In accordance with Proposition 5.1, neither is P−1

A (a)− a a cone nor is A convex.

Let us now turn to the restricted normal cone NB
A(a). Taking the outer limit in (58) and recalling

(13), we obtain

NB
A(a) = lim

x→a
x∈A

N̂B
A(x)(61a)

⊆ lim
x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)

(61b)

⊆
(

lim
x→a
x∈A

cone(B− x)
)
∩ NA(a).(61c)

The inclusions in (61) are optimal in the sense that all possible combinations (strict inclusion and
equality) can occur:

• For results and examples illustrating equality in (61b) and equality in (61c), see Proposi-
tion 5.5 and Example 5.6 below.

• For an example illustrating equality in (61b) and strict inequality in (61c), see Example 5.7
below.

• For an example illustrating strict inequality in (61b) and equality in (61c), see Example 5.10
below.

• For examples illustrating strict inequality in (61b) and strict inequality in (61c), see Exam-
ple 5.8 and Example 5.9 below.

The remainder of this section is devoted to providing these examples.

Proposition 5.4 Let A and B be nonempty subsets of X. Let A be closed a ∈ A. Assume that one of the
following holds:

(i) P−1
A (x)− x is a cone for every x ∈ A sufficiently close to a.

(ii) A is convex.
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Then (61b) holds with equality, i.e., NB
A(a) = lim x→a

x∈A

(
cone(B− x) ∩ Nprox

A (x)
)

Proof. Indeed, if x ∈ A is sufficiently close to a, then Proposition 5.1 implies that N̂B
A(x) = cone(B−

x) ∩ Nprox
A (x). Now take the outer limit as x→ a in A. ■

Proposition 5.5 Let A be a nonempty closed convex subset of X, let B be a nonempty subset of X, and let
a ∈ A. Assume that x 7→ cone(B− x) is outer semicontinuous at a relative to A, i.e.,

(62) lim
x→a
x∈A

cone(B− x) = cone(B− a),

Then (61) holds with equalities, i.e.,

(63) NB
A(a) = lim

x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)
=

(
lim
x→a
x∈A

cone(B− x)
)
∩ NA(a).

Proof. The convexity of A and Lemma 2.4(vii) yield

(64) cone(B− a) ∩ NA(a) = cone(B− a) ∩ Nprox
A (a).

On the other hand, Proposition 5.1(ii) and Lemma 2.4(iv) imply

(65) cone(B− a) ∩ Nprox
A (a) = N̂B

A(a) ⊆ NB
A(a).

Altogether, cone(B− a) ∩ NA(a) ⊆ NB
A(a). In view of (62),

(66)
(

lim
x→a
x∈A

cone(B− x)
)
∩ NA(a) ⊆ NB

A(a).

Recalling (61), we therefore obtain (63). ■

Example 5.6 Let A be a linear subspace of X, set B := A, and a := (0, 0). Then NB
A(a) = {0} by

(25d), NA(a) = A⊥, and cone(B− x) = A, for every x ∈ A. Hence (lim x→a
x∈A

cone(B− x))∩NA(a) =
{0} and (61) holds with equalities.

In Proposition 5.5, the convexity and the outer semicontinuity assumptions are both essential in
the sense that absence of either assumption may make the inclusion (61c) strict; we shall illustrate
this in the next three examples.

Example 5.7 Suppose that X = R2, and let A := epi(| · |), B := R× {0}, and a := (0, 0). If x =
(x1, x2) ∈ A ∖ {a}, then x2 > 0, B− x = R× {−x2}, and so cone(B− x) = R×R−− ∪ {(0, 0)}.
Hence

(67) lim
x→a
x∈A

cone(B− x) = R×R− ̸= R× {0} = cone(B− a),
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i.e., (62) fails. Since A is closed and convex, Lemma 2.4(vii) implies that NA(a) = Nconv
A (a) = −A.

Thus

(68)
(

lim
x→a
x∈A

cone(B− x)
)
∩ NA(a) = −A.

Proposition 5.4(ii) yields equality in (61b), i.e.,

(69) NB
A(a) = lim

x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)
.

We observed already in Example 4.1 that

(70) NB
A(a) = cone{(1,−1), (−1,−1)}.

Therefore we have

(71) NB
A(a) = lim

x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)
⫋

(
lim
x→a
x∈A

cone(B− x)
)
∩ NA(a),

i.e., the inclusion (61c) is strict.

Example 5.8 Suppose that X = R2, and let A := cone{(1, 0), (0, 1)} = bdry R2
+, B := R× {1} ∪

{(1, 0), (−1, 0)}, and a := (0, 0). Clearly, A is not convex. If x = (x1, x2) ∈ A is sufficiently close
to a, we have

(72) cone(B− x) =

{
R×R+, if x1 ≥ 0;
R×R++ ∪ cone{(1,−x2), (−1,−x2)}, if x2 > 0.

This yields

(73) lim
x→a
x∈A

cone(B− x) = R×R+ = cone(B− a),

i.e., (62) holds. Next, if x = (x1, x2) ∈ A, then

(74) P−1
A (x) =


{x1} × ]−∞, x1] , if x1 > 0 and x2 = 0;
]−∞, x2]× {x2}, if x1 = 0 and x2 > 0;
R2
−, if x1 = x2 = 0,

and so

(75) Nprox
A (x) = cone

(
P−1

A (x)− x
)
=


{0} ×R, if x1 > 0 and x2 = 0;
R× {0}, if x1 = 0 and x2 > 0;
R2
−, if x1 = x2 = 0.

It follows that

(76) NA(a) = lim
x→a
x∈A

Nprox
A (x) = R2

− ∪
(
{0} ×R

)
∪
(
R× {0}

)
.
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If x ∈ A is sufficiently close a, then

(77) N̂B
A(x) =

{
{(0, 0)}, if x ̸= a;
R− × {0}, if x = a.

It follows that

(78) NB
A(a) = R− × {0}.

Combining (72) and (75), we obtain for every x = (x1, x2) ∈ A sufficiently close to a that

(79) cone(B− x) ∩ Nprox
A (x) =


{0} ×R+, if x1 > 0 and x2 = 0;
{(0, 0)}, if x1 = 0 and x2 > 0;
R− × {0}, if x1 = x2 = 0.

Thus

(80) lim
x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)
=

(
{0} ×R+

)
∪
(
R− × {0}

)
.

Using (78), (80), (73), and (76), we conclude that

NB
A(a) = R− × {0}(81a)

⫋
(
{0} ×R+

)
∪
(
R− × {0}

)
= lim

a′→a
a′∈A

(
cone(B− x) ∩ Nprox

A (x)
)

(81b)

⫋
(
{0} ×R+

)
∪
(
R× {0}

)
=

(
lim
x→a
x∈A

cone(B− x)
)
∩ NA(a).(81c)

Therefore, both inclusions in (61) are strict; however, A is not convex while (62) does hold.

Example 5.9 Suppose that X = R2, let A := cone{(1, 0), (0, 1)} = bdry R2
+, B := R+(2, 1) and

a := (0, 0). Let x = (x1, x2) ∈ A. Then (see Example 5.8)

(82) P−1
A (x)− x =


{0} × ]−∞, x1] , if x1 > 0 and x2 = 0;
]−∞, x2]× {0}, if x1 = 0 and x2 > 0;
R2
−, if x1 = x2 = 0,

(83) Nprox
A (x) =


{0} ×R, if x1 > 0 and x2 = 0;
R× {0}, if x1 = 0 and x2 > 0;
R2
−, if x1 = x2 = 0,

and

(84) NA(a) = lim
x→a
x∈A

Nprox
A (x) = R2

− ∪
(
{0} ×R

)
∪
(
R× {0}

)
.
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Thus

(85) N̂B
A(x) = cone

(
(P−1

A (x)− x) ∩ (B− x)
)
=

{
{0} ×R+, if x1 > 0 and x2 = 0;
{(0, 0)}, if x1 = 0 and x2 ≥ 0.

Hence

(86) NB
A(a) = lim

x→a
x∈A

N̂B
A(x) = {0} ×R+.

On the other hand,

(87) cone(B− x) =


{
(y1, y2)

∣∣ y2 ≥ 0, y1 < 2y2
}
∪ {(0, 0)}, if x1 > 0 and x2 = 0;{

(y1, y2)
∣∣ y1 ≥ 0, 2y2 < y1

}
∪ {(0, 0)}, if x1 = 0 and x2 > 0;

B, if x1 = x2 = 0.

Combining (83) and (87), we deduce that

(88) cone(B− x) ∩ Nprox
A (x) =


{0} ×R+, if x1 > 0 and x2 = 0;
R+ × {0}, if x1 = 0 and x2 > 0;
{(0, 0)}, if x1 = x2 = 0.

Using (87) and (88), we compute

(89) lim
x→a
x∈A

cone(B− x) =
{
(y1, y2)

∣∣ y1 ≥ 0 or y2 ≥ 0
}
= X ∖ R2

−− ̸= B = cone(B− a)

and

(90) lim
x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)
=

(
{0} ×R+

)
∪
(
R+ × {0}

)
= cone{(0, 1), (1, 0)}.

Using (86), (90), (89), and (84), we conclude that

NB
A(a) = {0} ×R+(91a)

⫋
(
{0} ×R+

)
∪
(
R+ × {0}

)
= lim

x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)

(91b)

⫋
(
{0} ×R

)
∪
(
R× {0}

)
=

(
lim
x→a
x∈A

cone(B− x)
)
∩ NA(a).(91c)

Therefore, both inclusions in (61) are strict; however, A is not convex and (62) does not hold (see
(89)).

Finally, we provide an example where the inclusion (61b) is strict while the inclusion (61c) is an
equality.
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Example 5.10 Suppose that X = R2, let A := cone{(1, 0), (0, 1)}, B :=
{
(y1, y2)

∣∣ y1 + y2 = 1
}

,
and a := (0, 0). Let x = (x1, x2) ∈ A be sufficiently close to a. We compute

cone(B− x) =
{
(y1, y2)

∣∣ y1 + y2 > 0
}
∪ {(0, 0)},(92a)

Nprox
A (x) =


{0} ×R, if x1 > 0 and x2 = 0;
R× {0}, if x1 = 0 and x2 > 0;
R2
−, if x1 = x2 = 0,

(92b)

N̂B
A(x) = {(0, 0)}.(92c)

Furthermore, Example 5.8 (see (76)) implies that NA(a) = R2
− ∪

(
{0} ×R

)
∪
(
R× {0}

)
. We thus

deduce that

NB
A(a) = {(0, 0)}(93a)

⫋
(
{0} ×R+

)
∪
(
R+ × {0}

)
= lim

x→a
x∈A

(
cone(B− x) ∩ Nprox

A (x)
)

(93b)

=
(
{0} ×R+

)
∪
(
R+ × {0}

)
=

(
lim
x→a
x∈A

cone(B− x)
)
∩ NA(a).(93c)

Therefore, the inclusion (61b) is strict while the inclusion (61c) is an equality.

6 Constraint qualification conditions and numbers

Utilizing restricted normal cones, we introduce in this section the notions of CQ-number, joint-CQ-
number, CQ condition, and joint-CQ condition, where CQ stands for “constraint qualification”.

CQ and joint-CQ numbers

Definition 6.1 (CQ-number) Let A, Ã, B, B̃, be nonempty subsets of X, let c ∈ X, and let δ ∈ R++.
The CQ-number at c associated with (A, Ã, B, B̃) and δ is

(94) θδ := θδ

(
A, Ã, B, B̃

)
:= sup

{
⟨u, v⟩

∣∣∣∣ u ∈ N̂ B̃
A(a), v ∈ −N̂ Ã

B (b), ∥u∥ ≤ 1, ∥v∥ ≤ 1,
∥a− c∥ ≤ δ, ∥b− c∥ ≤ δ.

}
.

The limiting CQ-number at c associated with (A, Ã, B, B̃) is

(95) θ := θ
(

A, Ã, B, B̃
)

:= lim
δ↓0

θδ

(
A, Ã, B, B̃

)
.

Clearly,

(96) θδ

(
A, Ã, B, B̃

)
= θδ

(
B, B̃, A, Ã

)
and θ

(
A, Ã, B, B̃

)
= θ

(
B, B̃, A, Ã

)
.
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Note that, δ 7→ θδ is increasing; this makes θ well defined. Furthermore, since 0 belongs to
nonempty B-restricted proximal normal cones and because of the Cauchy-Schwarz inequality,
we have

(97) c ∈ A ∩ B and 0 < δ1 < δ2 ⇒ 0 ≤ θ ≤ θδ1 ≤ θδ2 ≤ 1,

while θδ, and hence θ, is equal to −∞ if c /∈ A ∩ B and δ is sufficiently small (using the fact that
sup∅ = −∞). Using Proposition 2.7(ii)&(vi), we see that

(98) Ã ⊆ A′ and B̃ ⊆ B′ ⇒ θδ(A, Ã, B, B̃) ≤ θδ(A, A′, B, B′)

and, for every x ∈ X,

(99) θδ

(
A, Ã, B, B̃

)
at c = θδ

(
A− x, Ã− x, B− x, B̃− x

)
at c− x.

To deal with unions, it is convenient to extend this notion as follows.

Definition 6.2 (joint-CQ-number) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J , B̃ := (B̃j)j∈J be
nontrivial collections1 of nonempty subsets of X, let c ∈ X, and let δ ∈ R++. The joint-CQ-number at c
associated with (A, Ã,B, B̃) and δ is

(100) θδ = θδ

(
A, Ã,B, B̃

)
:= sup

(i,j)∈I×J
θδ

(
Ai, Ãi, Bj, B̃j

)
,

and the limiting joint-CQ-number at c associated with (A, Ã,B, B̃) is

(101) θ = θ
(
A, Ã,B, B̃

)
:= lim

δ↓0
θδ

(
A, Ã,B, B̃

)
.

For convenience, we will simply write θδ, θ and omit the possible arguments (A, Ã, B, B̃) and
(A, Ã,B, B̃) when there is no cause for confusion. If I and J are singletons, then the notions of
CQ-number and joint-CQ-number coincide. Also observe that

(102) c ∈
∪
i∈I

Ai ∩
∪
j∈J

Bj ⇒ (∀δ ∈ R++) 0 ≤ θ ≤ θδ ≤ 1

while θ = θδ = −∞ when δ > 0 is sufficiently small and c does not belong to both
∪

i∈I Ai
and

∪
j∈J Bj. Furthermore, the joint-CQ-number (and hence the limiting joint-CQ-number as well)

really depends only on those sets Ai and Bj for which c ∈ Ai ∩ Bj.

To illustrate this notion, let us compute the CQ-number of two lines. The formula provided
is the cosine of the angle between the two lines — as we shall see in Theorem 7.12 below, this
happens actually for all linear subspaces although then the angle must be defined appropriately
and the proof is more involved.

1The collection (Ai)i∈I is said to be nontrivial if I ̸= ∅.
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Proposition 6.3 (CQ-number of two distinct lines through the origin) Suppose that wa and wb are
two vectors in X such that ∥wa∥ = ∥wb∥ = 1. Let A := Rwa, B := Rwb, and δ ∈ R++. Assume that
A ∩ B = {0}. Then the CQ-number at 0 is

(103) θδ(A, A, B, B) = | ⟨wa, wb⟩ |.

Proof. Set s := ⟨wa, wb⟩.

Assume first that s ̸= 0. Let a = αwa ∈ A and b = βwb ∈ B. Then P−1
A (a)− a = NA(a) = {wa}⊥;

considering (B− a) ∩ {wa}⊥ leads to βs = α. Hence (P−1
A (a)− a) ∩ (B− a) = βwb − αwa and

(104) N̂B
A(a) = cone

(
αs−1wb − αwa).

Similarly,

(105) −N̂A
B (b) = cone

(
βwb − βs−1wa).

Now set u := αs−1wb − αwa ∈ N̂B
A(a) and v := βwb − βs−1wa ∈ −N̂A

B (b). One computes

(106) ∥u∥ = |α|
√

1− s2

|s| , ∥v∥ = |β|
√

1− s2

|s| , and ⟨u, v⟩ = αβ(1− s2)

s
.

Hence

(107)
⟨u, v⟩
∥u∥ · ∥v∥ = sgn(α) sgn(β)s.

Choosing α and β in {−1, 1} appropriately, we arrange for ⟨u, v⟩ /(∥u∥ · ∥v∥) = |s|, as claimed.

Now assume that s = 0. Arguing similarly, we see that

(108) (∀a ∈ A) N̂B
A(a) =

{
{0}, if a ̸= 0;
B, if a = 0,

and (∀b ∈ B) N̂A
B (b) =

{
{0}, if b ̸= 0;
A, if b = 0.

This leads to θδ(A, A, B, B) = 0 = |s|, again as claimed. ■

Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections of
nonempty closed subsets of X and let δ ∈ R++. Set A :=

∪
i∈I Ai, Ã :=

∪
i∈I Ãi, B :=

∪
j∈J Bj,

B̃ :=
∪

j∈J B̃j, and suppose that c ∈ A ∩ B. It is interesting to compare the joint-CQ-number of
collections, i.e., θδ

(
A, Ã,B, B̃

)
, to the CQ-number of the unions, i.e., θδ

(
A, Ã, B, B̃

)
. We shall see in

the following two examples that neither of them is smaller than the other; in fact, one of them can be
equal to 1 while the other is strictly less than 1. These examples will illustrate the independence
of the two types of CQ-numbers (for the collection and for the union). In some cases, such as
Example 6.4, it is beneficial to work with a suitable partition to obtain a CQ-number that is less
than one, which in turn is very desirable in applications (see [3] and [4]).

29



Example 6.4 (joint-CQ-number < CQ-number of the unions) Suppose that X = R3, let I :=
J := {1, 2}, A1 := R(0, 1, 0), A2 := R(2, 0,−1), B1 := R(0, 1, 1), B2 := R(1, 0, 0), c := (0, 0, 0),
and let δ > 0. Furthermore, set A := (Ai)i∈I , B := (Bj)j∈J , A := A1 ∪ A2, and B := B1 ∪ B2. Then

(109) θδ

(
A,A,B,B

)
= 2√

5
< 1 = θδ

(
A, A, B, B

)
.

Proof. Using Proposition 6.3, we compute, for the reference point c,

θδ(A1, A1, B1, B1) =
∣∣⟨(0, 1, 0), 1√

2
(0, 1, 1)

⟩∣∣ = 1√
2
,(110a)

θδ(A1, A1, B2, B2) = | ⟨(0, 1, 0), (1, 0, 0)⟩ | = 0,(110b)

θδ(A2, A2, B1, B1) =
∣∣⟨ 1√

5
(2, 0,−1), 1√

2
(0, 1, 1)

⟩∣∣ = 1√
10

,(110c)

θδ(A2, A2, B2, B2) =
∣∣⟨ 1√

5
(2, 0,−1), (1, 0, 0

⟩∣∣ = 2√
5
.(110d)

Hence θδ(A,A,B,B) = max(i,j)∈I×J θδ(Ai, Ai, Bj, Bj) =
2√
5
< 1.

To estimate the CQ-number of the union, set

(111) a := (0, δ, 0) ∈ A1 ⊆ A and b := (δ, 0, 0) ∈ B2 ⊆ B.

Note that ∥a− c∥ = ∥a∥ = δ and ∥b− c∥ = ∥b∥ = δ. Now define

(112) ã := (δ, 0,−δ/2) ∈ A2 ⊆ A and b̃ := (0, δ, δ) ∈ B1 ⊆ B.

Since ∥ã− PB2 ã∥ < ∥ã− PB1 ã∥ and PB2 ã = b, we have b = PB ã. Since ∥b̃− PA1 b̃∥ < ∥b̃− PA2 b̃∥ and
PA1 b̃ = a, we have a = PAb̃. Therefore, b̃ ∈ B ∩ P−1

A (a) and ã ∈ A ∩ P−1
B (b). It follows that

u := 1
δ (b̃− a) = (0, 0, 1) ∈ N̂B

A(a),(113a)

v := 2
δ (b− ã) = (0, 0, 1) ∈ −N̂A

B (b).(113b)

Since ∥u∥ = ∥v∥ = 1, we obtain 1 = ⟨u, v⟩ ≤ θδ(A, A, B, B) ≤ 1. ■

Example 6.5 (CQ-number of the unions < joint-CQ-number) Suppose that X = R, let I := J :=
{1, 2}, A1 := B1 := R−, A2 := B2 := R+, c := 0, and δ > 0. Furthermore, set A := (Ai)i∈I ,
B := (Bj)j∈I , A := A1 ∪ A2 = R, and B := B1 ∪ B2 = R. Then

(114) θδ

(
A, A, B, B

)
= 0 < 1 = θδ

(
A,A,B,B

)
.

Proof. Lemma 2.4(viii) implies that (∀x ∈ R) N̂R
R (x) = {0}. Hence θδ(R, R, R, R) = 0 as claimed.

On the other hand, N̂R−
R+

(0) = R− and N̂R+
R−

(0) = R+. Hence θδ(R−, R−, R+, R+) = 1 and
therefore θδ

(
A,A,B,B

)
= 1 as well. ■
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CQ and joint-CQ conditions

Definition 6.6 (CQ and joint-CQ conditions) Let c ∈ X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. Then the (A, Ã, B, B̃)-CQ condition holds at c if

(115) N B̃
A(c) ∩

(
− N Ã

B (c)
)
⊆ {0}.

(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections of
nonempty subsets of X. Then the (A, Ã,B, B̃)-joint-CQ condition holds at c if for every (i, j) ∈
I × J, the (Ai, Ãi, Bj, B̃j)-CQ condition holds at c, i.e.,

(116)
(
∀(i, j) ∈ I × J

)
N

B̃j
Ai
(c) ∩

(
− N Ãi

Bj
(c)

)
⊆ {0}.

In view of the definitions, the key case to consider is when c ∈ A ∩ B (or when c ∈ Ai ∩ Bj in
the joint-CQ case). The CQ-number is based on the behavior of the restricted proximal normal
cone in a neighborhood of the point under consideration — a related notion is that of the exact
CQ-number, where we consider the restricted normal cone at the point instead of nearby restricted
proximal normal cones.

Definition 6.7 (exact CQ-number and exact joint-CQ-number) Let c ∈ X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. The exact CQ-number at c associated with
(A, Ã, B, B̃) is 2

(117) α := α
(

A, Ã, B, B̃
)

:= sup
{
⟨u, v⟩

∣∣∣∣ u ∈ N B̃
A(c), v ∈ −N Ã

B (c), ∥u∥ ≤ 1, ∥v∥ ≤ 1
}

.

(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections of
nonempty subsets of X. The exact joint-CQ-number at c associated with (A,B, Ã, B̃) is

(118) α := α(A, Ã,B, B̃) := sup
(i,j)∈I×J

α(Ai, Ãi, Bj, B̃j).

The next result relates the various condition numbers defined above.

Theorem 6.8 Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (Bj)j∈J and B̃ := (B̃j)j∈J be nontrivial collections
of nonempty subsets of X. Set A :=

∪
i∈I Ai and B :=

∪
j∈J Bj, and suppose that c ∈ A ∩ B. Denote

the exact joint-CQ-number at c associated with (A, Ã,B, B̃) by α (see (118)), the joint-CQ-number at c
associated with (A, Ã,B, B̃) and δ > 0 by θδ (see (100)), and the limiting joint-CQ-number at c associated
with (A, Ã,B, B̃) by θ (see (101)). Then the following hold:

2Note that if c /∈ A ∩ B, then α = sup∅ = −∞.
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(i) If α < 1, then the (A, Ã,B, B̃)-CQ condition holds at c.

(ii) α ≤ θδ.

(iii) α ≤ θ.

Now assume in addition that I and J are finite. Then the following hold:

(iv) α = θ.

(v) The (A, Ã,B, B̃)-joint-CQ condition holds at c if and only if α = θ < 1.

Proof. (i): Suppose that α < 1. The condition for equality in the Cauchy-Schwarz inequality

implies that for all (i, j) ∈ I × J, the intersection N
B̃j
Ai
(c) ∩ (−N Ãi

Bj
(c)) is either empty or {0}. In

view of Definition 6.6, we see that the (A, Ã,B, B̃)-joint-CQ holds at c.

(ii): Let (i, j) ∈ I × J. Take u ∈ N
B̃j
Ai
(c) and v ∈ −N Ãi

Bj
(c) such that ∥u∥ ≤ 1 and ∥v∥ ≤ 1. Then,

by definition of the restricted normal cone, there exist sequences (an)n∈N in Ai, (bn)n∈N in Bj,

(un)n∈N and (vn)n∈N in X such that an → c, bn → c, un → u, vn → v, and (∀n ∈N) un ∈ N̂
B̃j
Ai
(an)

and vn ∈ −N̂ Ãi
Bj
(bn). Note that since δ > 0, eventually an and bn lie in ball(c; δ); consequently,

⟨un, vn⟩ ≤ θδ(Ai, Ãi, Bj, B̃j). Taking the limit as n→ +∞, we obtain ⟨u, v⟩ ≤ θδ(Ai, Ãi, Bj, B̃j) ≤ θδ.
Now taking the supremum over suitable u and v, followed by taking the supremum over (i, j), we
conclude that α ≤ θδ.

(iii): This is clear from (ii) and (101).

(iv): Let (δn)n∈N be a sequence in R++ such that δn → 0. Then for every n ∈N, there exist

(119) in ∈ I, jn ∈ J, an ∈ Ain , bn ∈ Bjn , un ∈ N̂
B̃jn
Ain

(an), vn ∈ −N̂ Ãin
Bjn

(bn)

such that

(120) ∥an − c∥ ≤ δn, ∥bn − c∥ ≤ δn, ∥un∥ ≤ 1, ∥vn∥ ≤ 1, and ⟨un, vn⟩ > θδn − δn.

Since I and J are finite, and after passing to a subsequence and relabeling if necessary, we can and

do assume that there exists (i, j) ∈ I× J such that un → u ∈ N
B̃j
Ai
(c) and vn → v ∈ −N Ãi

Bj
(c). Hence

θ ← θδn − δn < ⟨un, vn⟩ → ⟨u, v⟩ ≤ α. Hence θ ≤ α. On the other hand, α ≤ θ by (iii). Altogether,
α = θ.

(v): “⇒”: Let (i, j) ∈ I × J. If c ̸∈ Ai ∩ Bj, then α(Ai, Ãi, Bj, B̃j) = −∞. Now assume that

c ∈ Ai ∩ Bj. Since the (A, Ã,B, B̃)-joint-CQ condition holds, we have N
B̃j
Ai
(c) ∩ −N Ãi

Bj
(c) = {0}.

By Cauchy-Schwarz,

(121) α(Ai, Ãi, Bj, B̃j) = sup
{
⟨u, v⟩

∣∣∣∣ u ∈ N
B̃j
Ai
(c), v ∈ −N Ãi

Bj
(c), ∥u∥ ≤ 1, ∥v∥ ≤ 1

}
< 1.
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Since I and J are finite and because of (iv), we deduce that θ = α < 1.
“⇐”: Combine (i) with (iv). ■

7 CQ conditions and CQ numbers: examples

In this section, we provide further results and examples illustrating CQ conditions and CQ num-
bers.

First, let us note that the assumption that the sets of indices be finite in Theorem 6.8(iv) is
essential:

Example 7.1 (α < θ) Suppose that X = R2, let Γ ⊆ R++ be such that sup Γ = +∞, set (∀γ ∈ Γ)
Aγ := epi( 1

2 γ| · |2), B := R+ × R, A := (Aγ)γ∈Γ, Ã := (X)γ∈Γ, B := (B), B̃ := (X), and
c := (0, 0). Denote the exact joint-CQ-number at c associated with (A, Ã,B, B̃) by α (see (118)),
the joint-CQ-number at c associated with (A, Ã,B, B̃) and δ > 0 by θδ (see (100)), and the limiting
joint-CQ-number at c associated with (A, Ã,B, B̃) by θ (see (101)). Then

(122) α = 0 < 1 = θδ = θ.

Proof. Let γ ∈ Γ and pick x > 0 such that a := (x, 1
2 γx2) ∈ Aγ satisfies ∥a∥ = ∥a− c∥ = δ, i.e.,

x > 0 and

(123) γ2x2 = 2
(√

1 + γ2δ2 − 1
)
→ +∞ as γ→ +∞ in Γ.

Hence

(124) γx → +∞, as γ→ +∞ in Γ.

Since Aγ is closed and convex, it follows from Lemma 2.4(vii) that

(125) u :=
(γx,−1)√

γ2x2 + 1
∈ R+(γx,−1) = Nconv

Aγ
(a) = N̂X

Aγ
(a) = NX

Aγ
(a) = NAγ

(a).

Furthermore, v := (1, 0) ∈ −(R− × {0}) = −N̂X
B (c) = −NX

B (c) = −NB(c), ∥u∥ = ∥v∥ = 1, and,
in view of (124),

1 ≥ θδ ≥ θδ(Aγ, X, B, X) ≥ ⟨u, v⟩ = γx√
γ2x2 + 1

(126a)

→ 1 as γ→ +∞ in Γ.(126b)

Thus θδ = 1, which implies that θ = 1. Finally, NAγ
(c) = ({0} ×R−) ⊥ (R+ × {0}) = −NB(c),

which shows that α = 0. ■
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For the eventual application of these results to the method of alternating projections, the condi-
tion α = θ < 1 is critical to ensure linear convergence.

The following example illustrates that the CQ-number can be interpreted as a quantification of
the CQ condition.

Example 7.2 (CQ-number quantifies CQ condition) Let A and B be subsets of X, and suppose
that c ∈ A ∩ B. Let L be an affine subspace of X containing A ∪ B. Then the following are equiva-
lent:

(i) NL
A(c) ∩ (−NL

B(c)) = {0}, i.e., the (A, L, B, L)-CQ condition holds at c (see (115)).

(ii) NA(c) ∩ (−NB(c)) ∩ (L− c) = {0}.

(iii) θ < 1, where θ is the limiting CQ-number at c associated with (A, L, B, L) (see (95)).

Proof. The identity (25d) of Theorem 3.5 yields NL
A(c) = NA(c) ∩ (L − c) and NL

B(c) = NB(c) ∩
(L− c). Hence

(127) NL
A(c) ∩

(
− NL

B(c)
)
= NA(c) ∩

(
− NB(c)

)
∩ (L− c),

and the equivalence of (i) and (ii) is now clear. Finally, Theorem 6.8(iv)&(v) yields the equivalence
of (i) and (iii). ■

Depending on the choice of the restricting sets Ã and B̃, the (A, Ã, B, B̃)-CQ condition may
either hold or fail:

Example 7.3 (CQ condition depends on restricting sets) Suppose that X = R2, and set A :=
epi(| · |), B := R × {0}, and c := (0, 0). Then we readily verify that NA(c) = NX

A (c) = −A,
NB

A(c) = − bdry A, NB(c) = NX
B (c) = {0} ×R, and NA

B (c) = {0} ×R+. Consequently,

(128) NX
A (c) ∩

(
− NX

B (c)
)
= {0} ×R− while NB

A(c) ∩
(
− NA

B (c)
)
= {(0, 0)}.

Therefore, the (A, A, B, B)-CQ condition holds, yet the (A, X, B, X)-CQ condition fails.

For two spheres, it is possible to quantify the convergence of θδ to δ = α:

Proposition 7.4 (CQ-numbers of two spheres) Let z1 and z2 be in X, let ρ1 and ρ2 be in R++, set
S1 := sphere(z1; ρ1) and S2 := sphere(z2; ρ2) and assume that c ∈ S1 ∩ S2. Denote the limiting
CQ-number at c associated with (S1, X, S2, X) by θ (see Definition 6.1), and the exact CQ-number at c
associated with (S1, X, S2, X) by α (see Definition 6.7). Then the following hold:

(i) θ = α =
| ⟨z1 − c, z2 − c⟩ |

ρ1ρ2
.

(ii) α < 1 unless the spheres are identical or intersect only at c.
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Now assume that α < 1, let ε ∈ R++, and set δ := (
√
(ρ1 + ρ2)2 + 4ρ1ρ2ε− (ρ1 + ρ2))/2 > 0. Then

(129) α ≤ θδ ≤ α + ε,

where θδ is the CQ-number at c associated with (S1, X, S2, X) (see Definition 6.1).

Proof. (i): This follows from Theorem 6.8(iv) and Example 2.6.

(ii): Combine (i) with the characterization of equality in the Cauchy-Schwarz inequality.

Let us now establish (129). By Theorem 6.8(ii), we have α ≤ θδ. Let s1 ∈ S1 be such that
∥s1 − c∥ ≤ δ, let u1 ∈ N̂X

S1
(s1) be such that ∥u1∥ = 1, let s2 ∈ S2 be such that ∥s2 − c∥ ≤ δ, and let

u2 ∈ N̂X
S2
(s2) be such that ∥u2∥ = 1. By Example 2.6,

(130) u1 = ± s1 − z1

∥s1 − z1∥
= ± s1 − z1

ρ1
and u2 = ± s2 − z2

∥s2 − z2∥
= ± s2 − z2

ρ2
.

Hence

ρ1ρ2 ⟨u1, u2⟩ ≤ | ⟨s1 − z1, s2 − z2⟩ |(131a)
= | ⟨(s1 − c) + (c− z1), (s2 − c) + (c− z2)⟩ |(131b)
≤ | ⟨s1 − c, s2 − c⟩ |+ | ⟨s1 − c, c− z2⟩ |(131c)

+ | ⟨c− z1, s2 − c⟩ |+ | ⟨c− z1, c− z2⟩ |(131d)

≤ δ2 + δ(ρ1 + ρ2) + ρ1ρ2α(131e)

and thus, using the definition of δ,

(132) ⟨u1, u2⟩ ≤ α +
δ2 + δ(ρ1 + ρ2)

ρ1ρ2
= α + ε.

Therefore, by the definition of θδ, we have θδ ≤ α + ε. ■

Two convex sets

Let us turn to the classical convex setting. We start by noting that well known constraint qualifi-
cations are conveniently characterized using our CQ conditions.

Proposition 7.5 (classical convex setting I) Let A and B be nonempty convex subsets of X such that
A ∩ B ̸= ∅, and set L = aff(A ∪ B). Then the following are equivalent:

(i) ri A ∩ ri B ̸= ∅.

(ii) The (A, L, B, L)-CQ condition holds at some point in A ∩ B.

(iii) The (A, L, B, L)-CQ condition holds at every point in A ∩ B.
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Proof. This is clear from Theorem 3.13. ■

Proposition 7.6 (classical convex setting II) Let A and B be nonempty convex subsets of X such that
A ∩ B ̸= ∅. Then the following are equivalent:

(i) 0 ∈ int(B− A).

(ii) The (A, X, B, X)-CQ condition holds at some point in A ∩ B.

(iii) The (A, X, B, X)-CQ condition holds at every point in A ∩ B.

Proof. This is clear from Corollary 3.14. ■

In stark contrast to Proposition 7.5 and 7.6, if the restricting sets are not both equal to L or to X,
then the CQ-condition may actually depend on the reference point as we shall illustrate now:

Example 7.7 (CQ condition depends on the reference point) Suppose that X = R2, and let
f : R → R : x 7→ (max{0, x})2, which is a continuous convex function. Set A := epi f and
B := R×{0}, which are closed convex subsets of X. Consider first the point c := (−1, 0) ∈ A∩ B.
Then NB

A(c) = {(0, 0)} and NA
B (c) = {0} ×R+; hence,

(133) NB
A(c) ∩

(
− NA

B (c)
)
= {(0, 0)},

i.e., the (A, A, B, B)-CQ condition holds at c. On the other hand, consider now d := (0, 0) ∈ A∩ B.
Then NB

A(d) = {0} ×R− and NA
B (d) = {0} ×R+; thus,

(134) NB
A(d) ∩

(
− NA

B (d)
)
= {0} ×R−,

i.e., the (A, A, B, B)-CQ condition fails at d.

Two linear (or intersecting affine) subspaces

We specialize further to two linear subspaces of X. A pleasing connection between CQ-number
and the angle between two linear subspaces will be revealed. But first we provide some auxiliary
results.

Proposition 7.8 Let A and B be linear subspaces of X, and let δ ∈ R++. Then

(135)
∪

a∈A∩(B+A⊥)∩ball(0;δ)

N̂B
A(a) =

∪
a∈A∩ball(0;δ)

N̂B
A(a) =

∪
a∈A

N̂B
A(a) = A⊥ ∩ (A + B).

Proof. Let a ∈ A. Then P−1
A (a) = a + A⊥ and hence P−1

A (a)− a = A⊥. If B ∩ (a + A⊥) = ∅, then
N̂B

A(a) = {0}. Thus we assume that B ∩ (a + A⊥) ̸= ∅, which is equivalent to a ∈ A ∩ (B + A⊥).
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Next, by Lemma 2.4(ii), N̂B
A(a) = A⊥ ∩ cone(B− a). This implies (∀λ ∈ R++) cone(B− λa) =

cone(λ(B− a)) = cone(B− a). Thus,

(136) (∀λ ∈ R++) N̂B
A(λa) = A⊥ ∩ cone(B− λa) = A⊥ ∩ cone(B− a) = N̂B

A(a).

This establishes not only the first two equalities in (135) but also the third because∪
a∈A

N̂B
A(a) =

∪
a∈A

(
A⊥ ∩ cone(B− a)

)
= A⊥ ∩

∪
a∈A

cone(B− a)(137a)

= A⊥ ∩ cone
( ∪

a∈A

(B− a)
)
= A⊥ ∩ cone(B− A) = A⊥ ∩ (B− A)(137b)

= A⊥ ∩ (B + A).(137c)

The proof is complete. ■

We now introduce two notions of angles between subspaces; for further information, we highly
recommend [8] and [9].

Definition 7.9 Let A and B be linear subspaces of X.

(i) (Dixmier angle) [10] The Dixmier angle between A and B is the number in [0, π
2 ] whose cosine is

given by

(138) c0(A, B) := sup
{
| ⟨a, b⟩ |

∣∣ a ∈ A, b ∈ B, ∥a∥ ≤ 1, ∥b∥ ≤ 1
}

.

(ii) (Friedrichs angle) [11] The Friedrichs angle (or simply the angle) between A and B is the number
in [0, π

2 ] whose cosine is given by

c(A, B) := c0(A ∩ (A ∩ B)⊥, B ∩ (A ∩ B)⊥)(139a)

= sup
{
| ⟨a, b⟩ |

∣∣∣∣ a ∈ A ∩ (A ∩ B)⊥, ∥a∥ ≤ 1,

b ∈ B ∩ (A ∩ B)⊥, ∥b∥ ≤ 1

}
.(139b)

Let us gather some properties of angles.

Fact 7.10 Let A and B be linear subspaces of X. Then the following hold:

(i) If A ∩ B = {0}, then c(A, B) = c0(A, B).

(ii) If A ∩ B ̸= {0}, then c0(A, B) = 1.

(iii) c(A, B) < 1.

(iv) c(A, B) = c0(A, B ∩ (A ∩ B)⊥) = c0(A ∩ (A ∩ B)⊥, B).

(v) (Solmon) c(A, B) = c(A⊥, B⊥).
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Proof. (i)–(iii): Clear from the definitions. (iv): See, e.g., [8, Lemma 2.10(1)] or [9, Lemma 9.5]. (v):
See, e.g., [8, Theorem 2.16]. ■

Proposition 7.11 (CQ-number of two linear subspaces and Dixmier angle) Let A and B be linear
subspaces of X, and let δ > 0. Then

θδ(A, A, B, B) = c0
(

A⊥ ∩ (A + B), B⊥ ∩ (A + B)
)
,(140a)

θδ(A, X, B, B) = c0
(

A⊥ ∩ (A + B), B⊥
)
,(140b)

θδ(A, A, B, X) = c0
(

A⊥, B⊥ ∩ (A + B)
)
,(140c)

where the CQ-numbers at 0 are defined as in (94).

Proof. This follows from Proposition 7.8. ■

We are now in a position to derive a striking connection between the CQ-number and the
Friedrichs angle, which underlines a possible interpretation of the CQ-number as a generalized
Friedrichs angle between two sets.

Theorem 7.12 (CQ-number of two linear subspaces and Friedrichs angle) Let A and B be linear
subspaces of X, and let δ > 0. Then

(141) θδ(A, A, B, B) = θδ(A, X, B, B) = θδ(A, A, B, X) = c(A, B) < 1,

where the CQ-number at 0 is defined as in (94).

Proof. On the one hand, using Fact 7.10(v), we have

c(A, B) = c(A⊥, B⊥)(142a)

= c0
(

A⊥ ∩ (A⊥ ∩ B⊥)⊥, B⊥ ∩ (A⊥ ∩ B⊥)⊥
)

(142b)

= c0
(

A⊥ ∩ (A + B), B⊥ ∩ (A + B)
)
.(142c)

On the other hand, Fact 7.10(iv) yields

c0
(

A⊥ ∩ (A + B), B⊥
)
= c0

(
A⊥ ∩ (A⊥ ∩ B⊥)⊥, B⊥

)
(143a)

= c(A⊥, B⊥)(143b)

= c0
(

A⊥, B⊥ ∩ (A⊥ ∩ B⊥)⊥
)

(143c)

= c0
(

A⊥, B⊥ ∩ (A + B)
)
.(143d)

Altogether, recalling Proposition 7.11, we obtain the result. ■

The results in this subsection have a simple generalization to intersecting affine subspaces. In-
deed, if A and B are intersecting affine subspaces, then the corresponding Friedrichs angle is

(144) c(A, B) := c(par A, par B).

Combining (99) with Theorem 7.12, we immediately obtain the following result.
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Corollary 7.13 (CQ-number of two intersecting affine subspaces and Friedrichs angle) Let A and
B be affine subspaces of X, suppose that c ∈ A ∩ B, and let δ > 0. Then

(145) θδ(A, A, B, B) = θδ(A, X, B, B) = θδ(A, A, B, X) = c(A, B) < 1,

where the CQ-number at c is defined as in (94).

8 Regularities

In this section, we study a notion of set regularity that is based on restricted normal cones.

Definition 8.1 (regularity and superregularity) Let A and B be nonempty subsets of X, and let c ∈ X.

(i) We say that B is (A, ε, δ)-regular at c ∈ X if ε ≥ 0, δ > 0, and

(146)
(y, b) ∈ B× B,

∥y− c∥ ≤ δ, ∥b− c∥ ≤ δ,
u ∈ N̂A

B (b)

 ⇒ ⟨u, y− b⟩ ≤ ε∥u∥ · ∥y− b∥.

If B is (X, ε, δ)-regular at c, then we also simply speak of (ε, δ)-regularity.

(ii) The set B is called A-superregular at c ∈ X if for every ε > 0 there exists δ > 0 such that B is
(A, ε, δ)-regular at c. Again, if B is X-superregular at c, then we also say that B is superregular at c.

Remark 8.2 Several comments on Definition 8.1 are in order.

(i) Superregularity with A = X was introduced by Lewis, Luke and Malick in [12, Section 4].
Among other things, they point out that amenability and prox regularity are sufficient con-
ditions for superregularity, while Clarke regularity is a necessary condition. Moreover, an
important subclass of prox regular sets are C2 manifolds [13].

(ii) The reference point c does not have to belong to B. If c ̸∈ B, then for every δ ∈ ]0, dB(c)[, B is
(0, δ)-regular at c; consequently, B is superregular at c.

(iii) If ε ∈ [1,+∞[, then Cauchy-Schwarz implies that B is (ε,+∞)-regular at every point in X.

(iv) It follows from Proposition 2.7(ii) that B is (A1 ∪ A2, ε, δ)-regular at c if and only if B is both
(A1, ε, δ)-regular and (A2, ε, δ)-regular at c.

(v) If B is convex, then it follows with Lemma 2.4(vii) that B is (A, 0,+∞)-regular at c; conse-
quently, B is superregular.

(vi) Similarly, if B is locally convex at c, i.e., there exists ρ ∈ R++ such that B ∩ ball(c; ρ) is
convex, then B is superregular at c.
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(vii) If B is (A, 0, δ)-regular at c, then B is A-superregular at c; the converse, however, is not true
in general (see Example 8.3 below).

As a first example, let us consider the sphere, which is a C2 manifold and which allows us to
explicitly quantify regularity.

Example 8.3 (sphere) Let z ∈ X and ρ ∈ R++. Set S := sphere(z; ρ), suppose that s ∈ S, let
ε ∈ R++, and let δ ∈ R++. Then S is (ε, ρε)-regular at s; consequently, S is superregular at s (see
Definition 8.1). However, S is not (0, δ)-regular at s.

Proof. Let b ∈ S and y ∈ S. Then ρ2 = ∥z − y∥2 = ∥z − b∥2 + ∥y − b∥2 − 2 ⟨z− b, y− b⟩ =
ρ2 + ∥y− b∥2 − 2 ⟨z− b, y− b⟩, which implies

(147) 2 ⟨z− b, y− b⟩ = ∥y− b∥2.

On the other hand, by Example 2.6, we have

(148) N̂X
S (b) ∩ sphere(0; 1) =

{
± z− b
∥z− b∥

}
=

{
± z− b

ρ

}
.

Suppose that u ∈ N̂X
S (b) ∩ sphere(0; 1). Combining (147) and (148), we obtain

(149)
⟨

N̂X
S (b) ∩ sphere(0; 1), y− b

⟩
=

{
± 1

2ρ
∥y− b∥2

}
.

Thus if ∥y− s∥ ≤ ρε, ∥b− s∥ ≤ ρε, and u ∈ N̂X
S (b) ∩ sphere(0; 1), then

⟨u, y− b⟩ ≤ 1
2ρ
∥y− b∥2 ≤ 1

2ρ

(
∥y− s∥+ ∥s− b∥

)
∥y− b∥ ≤ ρε + ρε

2ρ
∥y− b∥(150)

= ε∥u∥ · ∥y− b∥,(151)

which verifies the (ε, ρε)-regularity of S at s. Finally, by (149),

(152) max
{
⟨N̂X

S (b) ∩ sphere(0; 1), y− b⟩
}
=

1
2ρ
∥y− b∥2 > 0

and therefore S is not (0, δ)-regular at s. ■

We now characterizes A-superregularity using restricted normal cones.

Theorem 8.4 (characterization of A-superregularity) Let A and B be nonempty subsets of X, and let
c ∈ X. Then B is A-superregular at c if and only if for every ε ∈ R++, there exists δ ∈ R++ such that

(153)
(y, b) ∈ B× B

∥y− c∥ ≤ δ, ∥b− c∥ ≤ δ
u ∈ NA

B (b)

 ⇒ ⟨u, y− b⟩ ≤ ε∥u∥ · ∥y− b∥.
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Proof. “⇐”: Clear from Lemma 2.4(iv). “⇒”: We argue by contradiction; thus, we assume there
exists ε ∈ R++ and sequences (yn, bn, un)n∈N in B× B×X such that (yn, bn)→ (c, c) and for every
n ∈N,

(154) un ∈ NA
B (bn) and ⟨un, yn − bn⟩ > ε∥un∥ · ∥yn − bn∥.

By the definition of the restricted normal cone, for every n ∈N, there exists a sequence
(bn,k, un,k)k∈N in B×X such that limk∈N bn,k = bn, limk∈N un,k = un, and (∀k ∈N) un,k ∈ N̂A

B (bn,k).
Hence there exists a subsequence (kn)n∈N of (n)n∈N such that bn,kn → c and

(155) (∀n ∈N) ⟨un,kn , yn − bn,kn⟩ >
ε

2
∥un,kn∥ · ∥yn − bn,kn∥.

However, this contradicts the A-superregularity of B at c. ■

When B = X, then Theorem 8.4 turns into [12, Proposition 4.4]:

Corollary 8.5 (Lewis-Luke-Malick) Let B be a nonempty subset of X and let c ∈ B. Then B is super-
regular at c if and only if for every ε ∈ R++ there exists δ ∈ R++ such that

(156)
(y, b) ∈ B× B

∥y− c∥ ≤ δ, ∥b− c∥ ≤ δ
u ∈ NB(b)

 ⇒ ⟨u, y− b⟩ ≤ ε∥u∥ · ∥y− b∥.

We now introduce the notion of joint-regularity, which is tailored for collections of sets and
which turns into Definition 8.1 when the index set is a singleton.

Definition 8.6 (joint-regularity) Let A be a nonempty subset of X, let B := (Bj)j∈J be a nontrivial
collection of nonempty subsets of X, and let c ∈ X.

(i) We say that B is (A, ε, δ)-joint-regular at c if ε ≥ 0, δ > 0, and for every j ∈ J, Bj is (A, ε, δ)-regular
at c.

(ii) The collection B is A-joint-superregular at c if for every j ∈ J, Bj is A-superregular at c.

As in Definition 8.1, we may omit the prefix A if A = X.

Here are some verifiable conditions that guarantee joint-(super)regularity.

Proposition 8.7 Let A := (Aj)j∈J and B := (Bj)j∈J be nontrivial collections of nonempty subsets of X,
let c ∈ X, let (ε j)j∈J be a collection in R+, and let (δj)j∈J be a collection in ]0,+∞]. Set A :=

∩
j∈J Aj,

ε := supj∈J ε j, and δ := infj∈J δj. Then the following hold:

(i) If δ > 0 and (∀j ∈ J) Bj is (Aj, ε j, δj)-regular at c, then B is (A, ε, δ)-joint-regular at c.

(ii) If J is finite and (∀j ∈ J) Bj is (Aj, ε j, δj)-regular at c, then B is (A, ε, δ)-joint-regular at c.

41



(iii) If J is finite and (∀j ∈ J) Bj is Aj-superregular at c, then B is A-joint-superregular at c.

Proof. (i): Indeed, by Remark 8.2(iv), Bj is (A, ε, δ)-regular at c for every j ∈ J.

(ii): Since J is finite, we have δ > 0 and so the conclusion follows from (i).

(iii): This follows from (ii) and the definitions. ■

Corollary 8.8 (convexity and regularity) Let B := (Bj)j∈J be a nontrivial collection of nonempty con-
vex subsets of X, let A ⊆ X, and let c ∈ X. Then B is (0,+∞)-joint-regular, (A, 0,+∞)-joint-regular,
joint-superregular, and A-joint-superregular at c.

Proof. By Remark 8.2(v), Bj is (0,+∞)-regular, superregular, and A-superregular at c, for every
j ∈ J. Now apply Proposition 8.7(i)&(iii). ■

The following example illustrates the flexibility gained through the notion of joint-regularity.

Example 8.9 (two lines: joint-superregularity ̸⇒ superregularity of the union) Suppose that d1
and d2 are in sphere(0; 1). Set B1 := Rd1, B2 := Rd2, and B := B1 ∪ B2, and assume that B1 ∩ B2 =
{0}. By Corollary 8.8, (B1, B2) is joint-superregular at 0. Let δ ∈ R++, and set b := δd1 and
y := δd2. Then ∥y− 0∥ = δ, ∥b− 0∥ = δ, and 0 < ∥y− b∥ = δ∥d2− d1∥. Using Proposition 2.3(iii),
we see that NB(b) = {d1}⊥. Note that there exists v ∈ {d1}⊥ such that ⟨v, d2⟩ ̸= 0 (for otherwise
{d1}⊥ ⊆ {d2}⊥ ⇒ B2 ⊆ B1, which is absurd). Hence there exists u ∈ {d1}⊥ = {b}⊥ = NB(b)
such that ∥u∥ = 1 and ⟨u, d2⟩ > 0. It follows that ⟨u, y− b⟩ = ⟨u, y⟩ = δ ⟨u, d2⟩ = ⟨u, d2⟩ ∥u∥∥y−
b∥/∥d2 − d1∥. Therefore, B is not superregular at 0.

Let us provide an example of an A-superregular set that is not superregular. To do so, we
require the following elementary result.

Lemma 8.10 Consider in R2 the sets C := [(0, 1), (m, 1 + m2)] =
{
(x, 1 + mx)

∣∣ x ∈ [0, m]
}

and
D := [(m, 1), (m, 1 + m2)], where m ∈ R++. Let z ∈ R. Then

(157) PC∪D(z, 0) =


(0, 1), if z < m/2;
{(0, 1), (m, 1)}, if z = m/2;
(m, 1), if z > m/2.

Proof. It is clear that PD(z, 0) = (m, 1). We assume that 0 < z < m for otherwise (157) is clearly
true. We claim that PC(z, 0) = (0, 1). Indeed, f : x 7→ ∥(x, 1 + mx)− (z, 0)∥2 is a convex quadratic
with minimizer xz := (z− m)/(1 + m2). The requirement xz ≥ 0 from the definition of C forces
z ≥ m, which is a contradiction. Hence PC(z, 0) is a subset of the relative boundary of C, i.e., of
{(0, 1), (m, 1 + m2)}. Clearly, (0, 1) is the closer to (z, 0) than (m, 1 + m2). This verifies the claim.
Since PC∪D(z, 0) is the subset of points in PC(z, 0)∪ PD(z, 0) closest to (z, 0), the result follows. ■
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Example 8.11 (A-superregularity ̸⇒ superregularity) Suppose that X = R2. As in [12, Exam-
ple 4.6], we consider c := (0, 0) ∈ X and B := epi f , where

(158) f : R→ ]−∞,+∞] : x 7→


2k(x− 2k), if 2k ≤ x < 2k+1 and k ∈ Z;
0, if x = 0;
+∞, if x < 0.

Then B is not superregular at c; however, B is A-superregular at c, where A := R× {−1}.

Proof. It is stated in [12, Example 4.6] that B is not superregular at c (and that B is Clarke regular
at c).

To tackle A-superregularity, let us determine PB(A). Let us consider the point a = (α,−1),
where α ∈

[
2−1, 1

[
. Then Lemma 8.10 (see also the picture below) implies that

(159) PB(α,−1) =


( 1

2 , 0), if 1
2 ≤ α < 3

4 ;{
( 1

2 , 0), (1, 0)
}

, if α = 3
4 ;

(1, 0), if 3
4 < α < 1;

B = epi f
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and more generally,

(160) 2k ≤ α < 2k+1 ⇒ PB(α,−1) =


(2k, 0), if 2k ≤ α < 2k + 2k−1;{
(2k, 0), (2k+1, 0)

}
, if α = 2k + 2k−1;

(2k+1, 0), if 2k + 2k−1 < α < 2k+1.

Clearly, if a ∈ R− × {−1}, then PB(a) = (0, 0). Let b ∈ B. Then

(161) A ∩ P−1
B (b) =


[
2k−2 + 2k−1, 2k−1 + 2k]× {−1}, if b = (2k, 0) and k ∈ Z;

R− × {−1}, if b = (0, 0);
∅, otherwise.

Thus

(162) N̂A
B (b) =


cone

([
− 2k−2, 2k−1]× {−1}

)
, if b = (2k, 0) and k ∈ Z;

{(0, 0)} ∪
(
R− ×R−−

)
, if b = (0, 0);

{(0, 0)}, otherwise.

Let ε ∈ R++. Let K ∈ Z be such that 2K−1 ≤ ε, and let δ ∈
]
0, 2K]. Furthermore, let y = (y1, y2) ∈

B, let b = (b1, b2) ∈ B, let u ∈ N̂A
B (b), and assume that ∥y − c∥ ≤ δ and that ∥b − c∥ ≤ δ. We

consider three cases.

Case 1: b = (0, 0). Then u ∈ R2
− and y ∈ R2

+; consequently, ⟨u, y− b⟩ = ⟨u, y⟩ ≤ 0 ≤ ε∥u∥ · ∥y−
b∥.

Case 2: b /∈ ({0} ∪ 2Z) × {0}. Then N̂A
B (b) = {(0, 0}; hence u = 0 and so ⟨u, y− b⟩ = 0 ≤

ε∥u∥ · ∥y− b∥.

Case 3: b ∈ 2Z × {0}, say b = (2k, 0), where k ∈ Z. Since 2k = ∥b− 0∥ = ∥b− c∥ ≤ δ ≤ 2K,
we have k ≤ K. Furthermore, y2 ≥ 0, max{|y1 − b1|, |y2 − b2|} ≤ ∥y− b∥, and u = λ(t,−1) =
(λt,−λ) where t ∈ [−2k−2, 2k−1] and λ ≥ 0. Hence λ ≤ ∥u∥ and

⟨u, y− b⟩ = λt(y1 − b1)− λ(y2 − b2) = λt(y1 − b1)− λ(y2 − 0)(163a)
≤ λt(y1 − b1) ≤ λ|t| · |y1 − b|(163b)

≤ ∥u∥ · 2k−1 · ∥y− b∥ ≤ 2K−1∥u∥ · ∥y− b∥ ≤ ε · ∥u∥ · ∥y− b∥.(163c)

Therefore, in all three cases, we have shown that ⟨u, y− b⟩ ≤ ε∥u∥ · ∥y− b∥. ■

Finally, we use Example 8.11 to construct an example complementary to Example 8.9.

Example 8.12 (superregularity of the union ̸⇒ joint-superregularity) Suppose that X = R2, set
B1 := epi f , where f is as in Example 8.11, B2 := X ∖ B1, and c := (0, 0). Since B1 ∪ B2 = X is
convex, it is clear from Remark 8.2(v) that B1 ∪ B2 is superregular at c. On the other hand, since B1
is not superregular at c (see Example 8.11), it is obvious that (B1, B2) is not joint-superregular at c.
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