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Abstract. Let fr

n
(k) be the number of 132-avoiding permutations on n letters that

contain exactly r occurrences of 12 . . . k, and let Fr(x; k) and F (x, y; k) be the generat-
ing functions defined by Fr(x; k) =

P
n>0

fr

n
(k)xn and F (x, y; k) =

P
r>0

Fr(x; k)yr.

We find an explicit expression for F (x, y; k) in the form of a continued fraction. This
allows us to express Fr(x; k) for 1 6 r 6 k via Chebyshev polynomials of the second
kind.
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1. Introduction

Let [p] = {1, . . . , p} denote a totally ordered alphabet on p letters, and let α =
(α1, . . . , αm) ∈ [p1]

m, β = (β1, . . . , βm) ∈ [p2]
m. We say that α is order-isomorphic

to β if for all 1 6 i < j 6 m one has αi < αj if and only if βi < βj . For
two permutations π ∈ Sn and τ ∈ Sk, an occurrence of τ in π is a subsequence
1 6 i1 < i2 < · · · < ik 6 n such that (πi1 , . . . , πik

) is order-isomorphic to τ ; in such
a context τ is usually called the pattern. We say that π avoids τ , or is τ -avoiding , if
there is no occurrence of τ in π. The set of all τ -avoiding permutations of all possible
sizes including the empty permutation is denoted S(τ). Pattern avoidance proved
to be a useful language in a variety of seemingly unrelated problems, from stack
sorting [5] to singularities of Schubert varieties [6]. A complete study of pattern
avoidance for the case τ ∈ S3 is carried out in [11]. For the case τ ∈ S4 see [14,
11, 12, 1].

A natural generalization of pattern avoidance is the restricted pattern inclusion,
when a prescribed number of occurrences of τ in π is required. Papers [8] and [3]
contain simple expressions for the number of permutations containing exactly one
123 and 132 patterns, respectively. The main result of [B2] is that the generating
function for the number of permutations containing exactly r 132 patterns is a
rational function in variables x and

√
1 − 4x. This proves a particular case of the

general conjecture of Noonan and Zeilberger [9] which is that for any set T of
patterns, the sequence of numbers enumerating permutations having a prescribed
number of occurrences of patterns in T is P -recursive. Recent paper [10] presents
the generating function for the number of 132-avoiding permutations that contain
a prescribed number of 123 patterns. The generating function is given in the form
of a continued fraction. In the present note we generalize the argument of [10]
to get the generating function for the number of 132-avoiding permutations that
contain a prescribed number of 12 . . . k patterns for arbitrary k > 3. The study of
the obtained continued fraction allows us to recover and to generalize the result of
[4] that relates the number of 132-avoiding permutations that contain no 12 . . . k
patterns to Chebyshev polynomials of the second kind.

The authors are grateful to C. Krattenthaler, H. Wilf, and anonymous referee
for useful comments concerning Theorems 4.1 and 4.2.

2. Continued fractions

Let fr
n(k) stand for the number of 132-avoiding permutations on n letters that

contain exactly r occurrences of 12 . . . k. We denote by F (x, y; k) the generating
function of the sequence {fr

n(k}), that is,

F (x, y; k) =
∑

n>0

∑

r>0

fr
n(k)xnyr.

Our first result is a natural generalization of the main theorem of [10].
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Theorem 2.1. The generating function F (x, y; k) for k > 1 is given by the con-

tinued fraction

F (x, y; k) =
1

1 − xyd1

1 − xyd2

1 − xyd3

. . .

,

where di =
(

i−1
k−1

)

, and
(

a
b

)

is assumed 0 whenever a < b or b < 0.

Proof. Following [10] we define ηj(π), j > 1, as the number of occurrences of 12 . . . j
in π. Define η0(π) = 1 for any π, which means that the empty pattern occurs
exactly once in each permutation. The weight of a permutation π is a monomial in
k independent variables q1, . . . , qk defined by

wk(π) =
k

∏

j=1

q
ηj(π)
j .

The total weight is a polynomial

Wk(q1, . . . , qk) =
∑

π∈S(132)

wk(π).

The following proposition is implied immediately by the definitions.

Proposition 2.1. F (x, y; k) = Wk(x, 1, . . . , 1, y) for k > 2, and F (x, y; 1) =
W1(xy).

We now find a recurrence relation for the numbers ηj(π). Let π ∈ Sn, so that
π = (π′, n, π′′).

Proposition 2.2. For any j > 1 and any nonempty π ∈ S(132)

ηj(π) = ηj(π
′) + ηj(π

′′) + ηj−1(π
′).

Proof. Let l = π−1(n). Since π avoids 132, each number in π′ is greater than any
of the numbers in π′′. Therefore, π′ is a 132-avoiding permutation of the numbers
{n−l+1, n−l+2, . . . , n−1}, while π′′ is a 132-avoiding permutation of the numbers
{1, 2, . . . , n− l}. On the other hand, if π′ is an arbitrary 132-avoiding permutation
of the numbers {n− l + 1, n− l + 2, . . . , n− 1} and π′′ is an arbitrary 132-avoiding
permutation of the numbers {1, 2, . . . , n − l}, then π = (π′, n, π′′) is 132-avoiding.
Finally, if (i1, . . . , ij) is an occurrence of 12 . . . j in π then either ij < l, and so it
is also an occurrence of 12 . . . j in π′, or i1 > l, and so it is also an occurrence of
12 . . . j in π′′, or ij = l, and so (i1, . . . , ij−1) is an occurrence of 12 . . . j − 1 in π′.
The result follows. �
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Now we are able to find the recurrence relation for the total weight W . Indeed,
by Proposition 2.2,

Wk(q1, . . . , qk) = 1 +
∑

∅6=π∈S(132)

k
∏

j=1

q
ηj(π′)+ηj(π

′′)+ηj−1(π′)
j

= 1 +
∑

π′∈S(132)

∑

π′′∈S(132)

k
∏

j=1

q
ηj(π

′′)
j · q1

k−1
∏

j=1

(qjqj+1)
ηj(π

′) · qηk(π′)
k

= 1 + q1Wk(q1, . . . , qk)Wk(q1q2, q2q3, . . . , qk−1qk, qk). (1)

For any d > 0 and 1 6 m 6 k define

qd,m =
k

∏

j=1

q
( d

j−m)
j ;

recall that
(

a
b

)

= 0 if a < b or b < 0. The following proposition is implied immedi-
ately by the well-known properties of binomial coefficients.

Proposition 2.3. For any d > 0 and 1 6 m 6 k

qd,mqd,m+1 = qd+1,m.

Observe now that Wk(q1, . . . , qk) = Wk(q0,1, . . . ,q0,k) and that by (1) and
Proposition 2.3

Wk(qd,1, . . . ,qd,k) = 1 + qd,1Wk(qd,1, . . . ,qd,k)Wk(qd+1,1, . . . ,qd+1,k),

therefore

Wk(q1, . . . , qk) =
1

1 − q0,1

1 − q1,1

1 − q2,1

. . .

.

To obtain the continued fraction representation for F (x, y; k) it is enough to use
Proposition 2.1 and to observe that

qd,1

∣

∣

∣

∣

q1=x,q2=···=qk−1=1,qk=y

= xy( d

k−1). �

Remark. For k = 1 one recovers from Theorem 2.1 the well-known generating
function for the Catalan numbers, (1 −

√
1 − 4z)/2z. This result also follows im-

mediately from Proposition 2.1 and equation (1), which for k = 1 is reduced to
W1(q) = 1 + qW 2

1 (q).
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3. Chebyshev polynomials

Let us denote by Fr(x; k) the generating function of the sequence {fr
n(k)} for a

given r, that is,

Fr(x; k) =
∑

n>0

fr
n(k)xn.

Recall that F (x, y; k) =
∑

r>0 Fr(x; k)yr. In this section we find explicit expressions

for Fr(x; k) in the case 0 6 r 6 k.
Consider a recurrence relation

Tj =
1

1 − xTj−1
, j > 1. (2)

The solution of (2) with the initial condition T0 = 0 is denoted by Rj(x), and the
solution of (2) with the initial condition

T0 = G(x, y; k) =
y

1 − xy(k

1)

1 − xy(k+1

2 )

1 − xy(k+2

3 )

. . .

is denoted by Sj(x, y; k), or just Sj when the value of k is clear from the context. Our
interest in (2) is stipulated by the following relation, which is an easy consequence
of Theorem 2.1:

F (x, y; k) = Sk(x, y; k). (3)

First of all, we find an explicit formula for the functions Rj(x). Let Uj(cos θ) =
sin(j + 1)θ/ sin θ be the Chebyshev polynomials of the second kind.

Lemma 3.1. For any j > 1

Rj(x) =
Uj−1

(

1
2
√

x

)

√
xUj

(

1
2
√

x

) . (4)

Proof. Indeed, it follows immediately from (2) that Rj(x) is the jth approximant
for the continued fraction

1

1 − x

1 − x

1 − x

. . .

.
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Hence, by [7, Theorem 2, p. 194], for any j > 1 one has Rj(x) = Aj(x)/Aj+1(x),
where

Aj(x) =

(

1 +
√

1 − 4x

2

)j

−
(

1 −
√

1 − 4x

2

)j

.

Using substitution x → 1/4t2 one gets (2t)jAj(1/4t2) = 2
√

t2 − 1Uj−1(t), which

gives Aj(x) =
√

1/x− 4xj/2Uj−1(1/2
√

x), and the result follows. �

Next, we find an explicit expression for Sj in terms of G and Rj .

Lemma 3.2. For any j > 1 and any k > 1

Sj(x, y; k) = Rj(x)
1 − xRj−1(x)G(x, y; k)

1 − xRj(x)G(x, y; k)
. (5)

Proof. Indeed, from (2) and S0 = G we get S1 = 1/(1 − xG). On the other hand,
R0 = 0, R1 = 1, so (5) holds for j = 1. Now let j > 1, then by induction

Sj =
1

1 − xSj−1
=

1

1 − xRj−1
· 1 − xRj−1G

1 − x(1 − xRj−2)Rj−1G

1 − xRj−1

.

Relation (2) for Rj and Rj−1 yields (1 − xRj−2)Rj−1 = (1− xRj−1)Rj = 1, which
together with the above formula gives (5). �

As a corollary from Lemma 3.2 and (3) we get the following expression for the
generating function F (x, y; k).

Corollary.

F (x, y; k) = Rk(x) +
(

Rk(x) − Rk−1(x)
)

∑

m>1

(

xRk(x)G(x, y; k)
)m

.

Now we are ready to express the generating functions Fr(x; k), 0 6 r 6 k, via
Chebyshev polynomials.

Theorem 3.1. For any k > 1, Fr(x; k) is a rational function given by

Fr(x; k) =
x

r−1

2 Ur−1
k−1

(

1
2
√

x

)

Ur+1
k

(

1
2
√

x

) , 1 6 r 6 k,

F0(x; k) =
Uk−1

(

1
2
√

x

)

√
xUk

(

1
2
√

x

) ,
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where Uj is the jth Chebyshev polynomial of the second kind.

Proof. Observe that G(x, y; k) = y + yk+1P (x, y), so from Corollary we get

F (x, y; k) = Rk(x) +
(

Rk(x) − Rk−1(x)
)

k
∑

m=1

(

xRk(x)
)m

ym + yk+1P ′(x, y),

where P (x, y) and P ′(x, y) are formal power series. To complete the proof, it suffices
to use (4) together with the identity U2

n−1(z) − Un(z)Un−2(z) = 1, which follows

easily from the trigonometric identity sin2 nθ− sin2 θ = sin(n + 1)θ sin(n− 1)θ. �

For the case r = 0 this result was proved by a different method in [4].

4. Further results

There are several ways to generalize the results of the previous sections. First,
one can try to get exact formulas for Fr(x; k) in the case r > k. The method
described in Section 3 allows, in principle, to obtain such formulas, though they
become more and more complicated. For example, the following theorem gives an
explicit expression for Fr(x; k) when r 6 k(k + 3)/2.

Theorem 4.1. For any k > 1 and 1 6 r 6 k(k + 3)/2, Fr(x; k) is a rational

function given by

Fr(x; k) =
x

r−1

2 Ur−1
k−1

(

1
2
√

x

)

Ur+1
k

(

1
2
√

x

)

⌊(r−1)/k⌋
∑

j=0

(

r − kj + j − 1

j

)





Uk

(

1
2
√

x

)

x
k−2

2k Uk−1

(

1
2
√

x

)





kj

,

where Uj is the jth Chebyshev polynomial of the second kind.

Proof. Indeed, the explicit expression for G(x, y; k) gives

G(x, y; k) = y(1 + xyk + · · ·+ xsyks) + ytP (x, y),

where s = ⌈(k + 1)/2⌉, t = 1 + k(k + 3)/2, and P (x, y) is a formal power series.
Hence, by Corollary,

F (x, y; k)− Rk(x)

Rk(x) − Rk−1(x)
=

∑

m>1

(

xRk(x)
)m

ym(1 + xyk + · · ·+ xsyks)m + ytP ′(x, y)

=
∑

m>1

(

xRk(x)
)m

ym
ms
∑

j=0

(

m + j − 1

j

)

xjykj + ytP ′(x, y)

=
∑

r>1

yr
(

xRk(x)
)r

⌊(r−1)/k⌋
∑

j=0

(

r−kj+j−1
j

)

xj

(

xRk(x)
)kj

+ ytP ′′(x, y),
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where P ′(x, y) and P ′′(x, y) are formal power series. The rest of the proof follows
the proof of Theorem 3.1. �

Another possibility is to analyze the case of permutations containing exactly
one 132 pattern and r 12 . . . k patterns. Introducing the modified total weight
Ωk(q1, . . . , qk) as the sum of the weights wk(π) over all permutations containing
exactly one 132 pattern, we get the following equation:

Ωk(q1, . . . , qk) = q1Wk(q1q2, . . . , qk−1qk, qk)Ωk(q1, . . . , qk)

+ q1Wk(q1, . . . , qk)Ωk(q1q2, . . . , qk−1qk, qk)

+ q2
1q

2
2Wk(q1q2, . . . , qk−1qk, qk)

(

Wk(q1, . . . , qk) − 1
)

;

for the case k = 3 see [10]. By (1) and Proposition 2.3 this is equivalent to

Ωk(qd,1, . . . ,qd,k) = qd,1
(

qd,2
)2 (

Wk(qd,1, . . . ,qd,k) − 1
)2

+ qd,1W 2
k (qd,1, . . . ,qd,k)Ωk(qd+1,1, . . . ,qd+1,k).

(6)

Let now ϕr
n(k) be the number of permutations on n letters that contain exactly

one 132 pattern and r 12 . . . k patterns, and Φr(x; k) be the generating function
of the sequence {ϕr

n(k)} for a given r. In general, equation (6) allows us to find
explicit expressions for Φr(x; k). However, they are rather cumbersome, so we
restrict ourselves to the case r = 0.

Theorem 4.2. For any k > 3, Φ0(x; k) is a rational function given by

Φ0(x; k) =
x

U2
k

(

1
2
√

x

)

k−2
∑

j=1

U2
j

(

1
2
√

x

)

=
1

16 sin2(k + 1)t cos2 t

(

2k − 5 + 4 cos2 t − sin(2k − 1)t

sin t

)

,

where Uj is the jth Chebyshev polynomial of the second kind and cos t = 1/2
√

x.
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247–262.


