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Restricted Range Approximation
and Its Application to Digital Filter Design

By James T. Lewis*

Abstract.   The multiple exchange algorithm for restricted range approximation is discussed.
Efficient formulas are derived for the numerical implementation of the method.   Discretiza-
tion effects are analyzed mathematically.   The method is applied to a certain problem
arising in digital filter design.

1. Introduction.   Recently, there has been great interest in the electrical en-
gineering problem of designing nonrecursive digital filters having minimax error [4],
[6], [9].  The theory of restricted range approximation [11] in which the approxima-
tion is constrained to lie between prescribed upper and lower functions has proved
very useful.  Certain extensions of the Remes-like single-point exchange algorithm
[12] for computing the best approximation have been made.  In [5], the multiple
exchange algorithm was proposed (see also [3] ); this was natural because the multiple
exchange algorithm converges in fewer iterations than the single-point exchange
method.

Section 2 of this paper contains a statement of the restricted range problem,
a description of the multiple exchange algorithm, and a proof of the convergence
of the algorithm when the approximation is done on a set with a finite number of
points.  Section 3 contains a detailed analysis of the discretization error which re-
sults when the interval(s) of approximation are replaced by a finite point set.  In
Section 4, efficient formulas for computing the deviation and the approximation at
each iteration are developed; these depend on the form of the basis functions used
in the approximation.  In Section 5, the digital filter design problem is studied and
certain natural questions are considered.  Section 6 is a discussion of the results of
the implementation of the numerical method.

2. Convergence of the Multiple Exchange Algorithm on Finite Point Sets.  The
minimax approximation problem with restraining curves can be stated as follows:

(2.1) min       max
a0> '"'"N ie-^

N
f(x) - Z akhk(x)

k=0
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RESTRICTED RANGE APPROXIMATION 523

N
(2.2) subject to   l(x) < Z aklik(x) ^ "(*) f°r all x in X

fc=0

The following hypotheses are made:

HI. h0, "\ hN form a Chebyshev system on the closed, bounded interval
[a, b], that is,h0, •••, hN are continuous and every nontrivial linear combination

T,k=0akhk(x) has at most N zeros in [a, b].
H2. X is a closed subset of [a, b] with more thanN + 1 points.

H3. / /, u are given continuous functions on X and l(x) </(x) < u(x) for all
x in X

H4. There exist a0, '", aN such that l(x) < I,k=0akhk(x) < u(x) for all x
in jr.

Hypotheses Hl—H4 guarantee that the problem (2.1), (2.2) has a unique solution;
the proof using weaker hypotheses can be found in [11].

The following characterization theorem from [11] is the foundation for the
exchange algorithm.

Theorem 1 [Taylor]. Assume H1-H4 and let

P*(x) = Z a*hk(x)
k=0

satisfy

Set

l(x) < p*(x) < u(x)    for all x in X.

E+ = ixE X: f(x) - p*(x) = max |/(jc) - p*(x)\\,
I xSX )

E_ = {xE X: f(x) - p*(x) = - max \f(x) - p*(x)\\,
I xi=X )

C+=   {xEX:p*(x) = l(x)},

C_= {xEX:p*(x) = u(x)}.
Let

o(x)
+ 1     ifxEE+UC+,

- 1    ifxEE_ UC_.

Then p* is the solution of the problem (2.1), (2.2) if and only if there exist N + 2
points í0 < í! < • • • < tN+1 of E+ UE_ U C+ V C_ such that o(ti+ .) = - ofy),
/ = 0, •••, N.

p* is called a best approximation with restricted range, points in E+ U E_ U
C+ U C_ are called critical points, and points in E,  U E_ are called extremal points.

The intuitive interpretation of the characterization theorem is the following:
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524 JAMES T. LEWIS

a necessary and sufficient condition for p* to be a solution of problem (2.1), (2.2)
is the existence of N + 2 points of X where the error |/-p*| reaches its maximum
or p* hits one of the restraining curves / and u; these occurrences must happen with
alternating sign specified by the above o function.

The multiple exchange algorithm can be viewed as an iterative procedure to locate
the critical points of the best approximation; a description of the algorithm for the
problem with no restraining curves can be found in [2, p. 97].  To start the
algorithm, a set of N + 2 points r^0)< t[0) < ••• < t§l. of X is chosen (called a
reference set) and the set of N + 2 linear equations

N
f(t(io)) - z °k"k(t,o))=(- iy<*.  /=o, • • -, 7v+1,

k=0

is solved, yielding a^°\ •••, affl, d^°\  Assume the reference deviation d^ is
positive (if fi^0) < 0 the right-hand side of the equations would be changed to
(- l),+ 1fi).  Let p(°^ = 5/^_0 ak°^hk.  The search for a new reference set is carried
out as follows.  Consider the case that t\0) satisfies /(40)) -p(0)(^0)) = + d{0).
Then points x in X near f(°) are examined and maxx [f(x) - p^°\x)] and
maxx [l(x) - p^°\x)] are found (the search is stopped when / - p^ changes sign).
If [f(x) - p(0)(x)] < dw and p(0)Qc) > l(x) for all x near t¡0) no exchange is made
for rj°>.  If

max [f(x) - p(0)(x)] - fi(0) > max [/(*) - pW(x)],
X x

then a point where maxx[f(x) -p(°\x)] occurs is exchanged for f(°) in the
reference set.   If maxx [l(x) - p^(x)] > maxx [f(x) - p(-°^(x)] - c^0), then a point,
say y, where maxx [l(x) - p^(x)] occurs is exchanged for tj°' and the corresponding
reference equation is changed to lik=0akhk(y) = liy).

If t\0) had satisfied /(r<°>) - p(0)(í¿) = - d(0), then maxx [pi0)(x) - f(x)] and
maxx [p(°^(x) - u(x)] would have been located and the exchange effected in an
analogous fashion.  In this way, every reference point t)0^ is (possibly) exchanged.
(If no reference points are changed, the algorithm terminates and Theorem 1 guaran-
tees that the solution has been found.)  It is still possible that the point of X where

maximax [\f(x) - p(0)(x)| - ¿(0>], max [/(*) - p(0)(x)], max b(0)(*) - u(x)]\
\      X X X )

occurs has not been introduced into the reference set; this must be done.  The set
of linear equations involving the new reference set is then solved.  The procedure
is iterated, yielding a sequence {t^\ •••, t$+1 } of reference sets, reference deviations
d*-'\ and approximations p^ = Zk=0ak'^ hk.

In the numerical implementation of the exchange procedure, it is easier to locate
the required extrema if the interval(s) of approximation are replaced by a discrete
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RESTRICTED RANGE APPROXIMATION 525

subset consisting of a finite number of points.  In this case, it is easy to prove that
the exchange algorithm converges.

Theorem 2. Assume Hl—H4 and let X consist of a finite number of points.
Then the reference deviation cr'^ is strictly increasing and the multiple exchange
algorithm reaches the solution of the problem (2.1), (2.2) in a finite number of
iterations.

Proof.   Assume that the algorithm does not terminate at the ith iteration. We
now assume that, for some i, d(-'+1^ <fi^, and we seek a contradiction.

Now, p^x) -p(i+l)(x)= [f(x)~p{i+1\x)] - [f(x) - p(i)(x)] is alternately
> 0 and < 0 on the reference set {r</+l>,•••, $+ \>}.  By [10, p. 61 ], p(f) = p(i+ !>,
a contradiction to the assumption that the algorithm did not terminate (that an
exchange was made).  Hence, d^'+i^ > d^ for all i.   Since X is finite, there are
only a finite number of systems of reference set equations possible. Since d^ is
strictly increasing, no system of reference set equations can be repeated.  Hence, the
algorithm reaches the solution in a finite number of iterations.  This proves the
theorem.

It should be noted that the tedious proof of the convergence of the multiple
exchange method for the case that X is an interval has been carried out in [3].

3.  Discretization Error Analysis.  In this section, the error which arises from
solving a sequence of discrete problems (approximation over finite point sets) instead
of the continuous problem (approximation over interval(s)) is studied.

Let Xm = {x0, x., "•, xm } be a finite point subset of X with x0 < x. < •••
< xm.  The problem we actually solve computationally is

C3 n minimize max    \f(x)-p(x)\,
V  '  ' pespani/in,"-,/!^}  x^Xm

(3-2) subject to   l(xj) < p(xf) < u(xj) for all x¡ E Xm.

Let us consider a sequence Xm, m = 1, 2, • • •, of discrete subsets of X such that

bm = max     min    |x - jr. | —> 0    as m —► °°.
X fc .A      X í t A ™

One would expect that a solution of the discretized problem (3.1), (3.2) would
converge to the solution of the original problem (2.1), (2.2) as m —>• °°; this con-
vergence is established by the subsequent results of this section. We have one further
hypothesis to add to Hl— H4.

H5.  For m = 1, 2, •••, Xm = {;r0, jcx, •••, xm } is a subset of X with x0 <
jCj < ••• < jrm and such that Sm = maxxex minx.GX   \x -x¡\ tends to 0 as m
tends to °°.

In the following, the norm used is the uniform norm on X, i.e., ||/|| =

maxx(EX\f(x)\.
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526 JAMES T. LEWIS

Lemma 1. Assume H1-H5. For each positive integer m, let pm be a solution
of problem (3.1), (3.2).   Then there exists a constant A such that supm>1||pm|| < A

The proof of this lemma will be omitted since it is similar to the proof of
Lemma 2 in [7].

Even though /(jcy) < Pm(x¡) < "(*,) for all jr;- G Xm, it may happen that pm
does not satisfy the constraints on all of X.  We now develop bounds on the con-
straint violation.  Let u>ig; 6) denote the modulus of continuity of a function g on
X; i.e.,

co(g; Ô) = max{|g(jc) -giy)\: x, y in X, \x -y\ < 6 }.

Denote by Í2(5) the joint modulus of continuity of the Chebyshev system {h0, •••,
hN};i.e.,

Í2(o) =   max co(h¡; S).
0<i<N

For a continuous function g on the closed, bounded set X, co(g; 5) —► 0 as 5 —► 0.
Furthermore, Í2(S) —*■ 0 as S —► 0 since the h¡ are continuous on X and there are a
finite number of them.

Theorem 3. Assume H1-H5 and letpm, m = 1, 2, •••, be a solution of
problem (3.1), (3.2). Then there is a constant C independent of m such that for
all x in X

(i)  «(*) -pmix) >-C- Í2(5m) - co(M; 8m),
(ii) pm(x) -l(x)>-C- Í2(5m) - o*/; 8m).
Proof.   For jr E X let xj in Xm satisfy \x - xf | < §m.  Then

[pm - u] (x) < [pm - u] (x,) + oj(pm - u; 8m) < co(pm; 8m) + u(u; Sm)

since xf EXm.  Let pmix) = 2^0a(. mh¡ix).  Then for x, y E X with br - y | < 8m,

N N

\Pm(x) -Pm(y)\ < 2 \aUm I • \ht(x) - hfy)\ < Í2(6m) • Z l«,,m I-
1=0 ;=0

Since {pm} is uniformly bounded by Lemma 1, 2^0|flim| is uniformly bounded
in m. So there exists C such that co(pm ; 5m) < C • Œ(om). This completes the
proof of (i); (ii) is established similarly.

If we make further assumptions on X, Xm, I, u, and {h0, •••, hN }, we can ob-
tain better estimates of the constraint violation.

Theorem 4. Assume H1-H5 and let pm be a solution of problem (3.1), (3.2).
Assume that X is the union of a finite number of closed intervals.  Assume each Xm
contains the endpoints of these intervals.  Let I, u, h0, •••, hN be twice continuously
differentiable on X.   Then there exists a constant B independent of m such that for
all x in X
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(i) u(x)-Pm(x)>-B-(5m)2,
(ii) Pm(x)-l(x)>-B-(8m)2.
Proof.   Let x be an interior point of X at which u -pm attains its minimum (if

this occurs at an endpoint of the intervals of X, (i) is clearly true).  Let x¡ E Xm be
in the interval containing x and satisfy \x - x¡ | < 8m. Then, by Taylor's Theorem,

[pm - «] "00
[Pm ~ "1 (*/) = \Pm - "1 (*) + b»m - «I (*)(*/ - *) + -1-(*/ ~ *)  »

where z is between jr- and x.   So

bm - «] "00
[Pm - "] (*) = &>m ~ "1 (*/)-2-(X/ ~ X) '

since [pm - u] '(x) = 0,

<*• [hp;ii + n«"ii] -(sm)2.
Since ¿p = p" is a continuous linear operator on span {h0, •••, Ajy }, it is bounded,
i.e., there exists a constant G such that ||p"|| = \\Lp\\ < G||p||. Using Lemma 1, we
see supm>1||p^ || < °° and (i) follows,  (ii) is established similarly.

The purpose of the next lemma is to get a polynomial close to pm which satisfies
the constraints on all of X.

Lemma 2. Assume Hl—H5, let pm, m = 1, 2, •••, be a solution of problem (3.1),
(3.2), assume that u(x) - pm(x) >~em and pm(x) - l(x) >~em (where em > 0)
for all x in X.  Let q = X^L0a¡h¡ be as in H4 and set

y = min<Jmin (¿¡"(jr) - l(x)), min (u(x) - q(x))\.
[x(EX xex j

Then
em

Qm(x) = Pm(x) +       . [?(*) - Pm(x)\
' m

satisfies l(x) < qm(x) < u(x) for all x in X.
Proof.  Note that y > 0 by H4 and continuity.  Since

, . y , . em
««(*)= r^T- Pm(x) + —r— Q(X),

•       cm I T em

qm is a convex combination of pm and q and hence its graph lies between that of pm
and q.   So, if l(x) < Pm(x) < u(x), then we still have l(x) < f7m0<) < «(^).  Assume
l(x) ~em< pm(x) < l(x) for some xEX.   Then pm(jc) = l(x) - Xm(x)em where

Kx)-Pm(x)
Xm(x) =-     satisfies  0 < Xm(x) < 1.
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528 JAMES T. LEWIS

Now

<7m00 - /(*) - K Wem +    ,      feto - pm(x)\ ■
t m

So

qm(x) - l(x) = - Xm(x)em + -~~ [(q(x) - l(x)) + (l(x) - pm(x))]

>- \»W • em + -^- [7 + Am(*) • em] > 0
1 m

if and only if

Amtoem < —T7~ ^ + X™W ' €™ ]      Íf and °nly Íf Xm(X>my < em  ' ?'

if and only if Àmto < 1.

Similarly, it can be shown that qm(x) < u(x) for all x E X.
The following theorem is the main result on the discretization error.
Theorem 5. Assume H1-H5. Let pm, m - 1, 2, ••• , be a solution of problem

(3.1), (3.2). Assume that u(x) - pm(x) > - em and pm(x) - l(x) > - em for all x E X,
where em > 0 (cf. Theorems 3 and A). Let

y = min \min (q(x) - l(x)), min (u(x) - q(x))> ,
\x(EX x<EX )

where q is as in HA.  Then {pm } converges uniformly to p*, the unique solution of
problem (2.1), (2.2), as m —► °°, according to the following estimates:

(0  11/- P*ll - 11/- Pjl < (ej(y + em)) • C.,
00 ll/-pmll-|l/-p*ll<oj(/;6m) + C2 -Í2(5m),
(ni) ||pm - p*||< C3 • em/(y + em) + C4 co(/; 8m) + Cs • S2(Sm).

Here, Cx, •••, Cs are independent of m and £2(5) is the joint modulus of continuity of
ih0' •••<hN}.

Proof.  We first note that for qm as defined in Lemma 2, l(x) < Rm(x) < u(x)
for all jr in X and

' m !        em

• Cx    from Lemma 1.
y + e

Hence, ||/-p*|| < ||/- qj\ < ll/-pmll + ||pm - qm\\.  So
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RESTRICTED RANGE APPROXIMATION 529

\\f-P*\\-\\f-pm\\<-~— -c,
y + em

and (i) is established.  Now, let jr E X be such that \f- pm \(x) = \\f- pm\\ and jr. E
Xm satisfy ]x - x¡ \ < 8m. Then

Il/-Pmll = l/to -Pmtoi

< l/to -/(*,)! + l/(*/) - Pm(*/)l + IPW(*/) - Pmtol

<co(/;5m)+   max  \f(Xj)~ pm(xf)\ + Sl(8m) • C2
xjexm

<co(/;5m)+  max  \f(x,)-p*(x,)\ + Sl(6m)C2
xj&xm

by the definition of pm and the fact that /(x-) < p*(x;) < u(x¡) for all jc^ G Xm,

<co(/;Sm) + ||/-p*||+i2(Sm)-C2,

which proves (ii).
In order to establish (iii), we need the strong uniqueness theorem for approxima-

tion with restricted range, cf. [11] :  There exists a constant t? > 0 such that for all
p = Z^qû,-/!,. satisfying l(x) < p(x) < u(x) for all x in X,

IIP-P*II<(1/T?)[II/-PI|-|I/-P*II].

Now

IIPw-P*ll<IIPm-?mll + ll</m-P*ll

< «P», - 9« II + QW I"/ - 1m » - HZ - P*«]

< HP« -im« + (1/T?)[ll/-Pmll + \\pm -qm\\ - ll/-p*ll]

<^..Pm-,JI+(l/ri)[../-pJ|-H/-pl].

(iii) now follows from the above estimate of pm - qm and from (ii).  Now co(/; 5m)-
0 as aw —► °°, £2(5m) —»-Oasm —► °°.  From Theorem 3, we may take em = C •
£2(Sm) + (ao(u; 8m) which tends to 0 as m —> °°. Hence \\pm - p*\\ —> 0 as m —> °°,
i.e., pm converges uniformly to p* as m —*■ °°.

A. Computational Formulas. An essential part of the numerical procedure de-
scribed in Section 2 is to solve a set of Af + 2 linear equations for each iteration of
the algorithm.  In the digital filter problem to be discussed in detail later, hk(x) =
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cos 2itkx, k = 0, 1, •••, N, (x in [0, 0.5]) is a basis for the set of approximations and,
for hk having this form, special formulas can be derived for solving the reference set
equations. The idea is to first calculate the reference deviation d by a certain formula;
then p(x) is obtained by interpolation. The analysis is basically an extension of results,
known for the problem with no constraints, to the problem with restraining curves.
The formulas are very efficient computationally, and are useful for the analysis of
Section 5.

Let {r0, •••, tN+l } be the reference set at a certain iteration (for convenience,
the superscripts have been dropped).  The linear equations can be written in general

f(lj) - Z ak cos 2llktj = d> J gip>
k=0

N
f(tj) -  Z "k C0S 2nktj   =~d> 1 e 7Af>

k=0

N
Z ak cos 2ttktj = l(tj),      )EIL,
k=0

N
Z ak cos 2nktj = u(tj),    j E Iy,
k=0

where Ip,IM,IL, Iv is a partition of the set of indices {0, •••, N + 1}.  Rearranging
and using Cramer's Rule, we obtain

d =

1    cos 2ut0       • • • cos 2nNt0 r0

1    cos2trtN+1 -•• cos2nNtN+1    rN+1

1    cos 2îrr0       • • • cos 27rM0 e0

1    cos 2tttN+l ■" cos 2ttNtN+l    eN+.

where

rJ =

(fit,),    jeip,
fit,),     jEIM,

l(tf),       jEIL,
and   €j
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Expanding the determinants by minors of the last column, we obtain

531

(4.1)

where

d =

1    cos 27rr0    • • •    cos 2ttNt0

1    cos 2tttj_. "•    cos 2itNtj_.

1    cos27Ti+1  •••    cos 2nNtj+.

1    cos 27rrN+l cos 2nNtN+l

II        [cos 2tttl - cos 2tttk].
I>k;l±j,k±j

If we divide numerator and denominator of (4.1) by v = Ul>k [cos 2ttt¡ - cos 2tttk],
we obtain

(4.2)

where

(4.3)

YN+lr-A
Z^/=o  TjAj

ZN+leA¿-•j=0    *jAj

(-OS
U^o1,k*j[^2Tttk-cos2utj]

The reference deviation d can be calculated using (4.2), (4.3) and the definitions
of r ■ and e •.  Then the polynomial p(jc) satisfying the reference set equations can be
obtained by interpolation at .¡V + 1 of the N + 2 reference points.  If we denote by
t    the reference point not used in the interpolation, we have

Af+ln cos 27TJ: - cos 2itthN+l

P(*       ,=0;/ím   ' k=0;JÍ,k*m    COS 2^. - COS 2^

where

Ri =

f(tj)-d, jElp,

J f(t¡) + d, jEIM,
Ktf), /e/L,

"('/). f'GIu-
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This can be written in terms of the previously computed A,'s by dividing by

N+l N+l COS 27TJC - COS 2ttt^i-   Z   i n
/=0;/#m     k=0;k*j;k±m   cos 2lrtj ~ cos 2jrt*

and multiplying numerator and denominator by

JV+1n i
k=0;k^mCOs2nX-COs2^k

After some algebra, we obtain

N+l

Z    R,A,
cos 27rf„ cos 2tttj

(4.4) Pto =
j=Oji=m   '   ' C0S 27rix ~ C0S 2lTtj

N+l

j=0;j¥=m

cos 2ntm - cos 27if •

cos 27TJT - cos 2nt ■

Formula (4.4) is valid for jt ¥= t-, j = 0, •••, m - l, m + 1, • •♦, AT + 1.  For x = t■,
we simply set p(i.) ~R,,j = 0, '••, m~ l, m + 1, •• •, Ar' + 1.  The above formulas
for d and p are valid for X, the region of approximation, consisting of intervals, a
finite point set, or any other closed subset of [0, 0.5].  It should be noted that
formulas analogous to the above can also be derived if the approximating functions
are algebraic polynomials, hk(x)=xk.

5.   Error Trade-Off.  We now discuss in detail the prototype problem arising in
the design of digital filters:

mm       max
a0,---,aN    x(EX

N
subject to   - e < Z it cos 2nkx < e     for jr. < x < 0.5,

(5.1)

(5.2)

where X= [0, xp] U [xs, 0.5] and

/to =

¿v
/to - Z ak cos t-^kx

k=0

k=0

1,      0 <jc <xp,

0, xs <x <0.5.

Here N, x , xs, and e are given parameters (chosen by the filter designer).   [0, JCp] is
called the passband, [jCy, 0.5] the stopband, and (xp, jts) the transition region.  (5.1),
(5.2) is a digital filter design problem with horizontal lines as restraining curves in
the stopband; see Fig. 1.  To obtain the effect of no constraints in the passband, we
formally set « = large positive constant, / - large negative constant in the passband.
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Figure 1.  Constrained approximation p* is shown with unconstrained
approximation p.   a is the gain and L(a) the loss due to the restraining

lines in the stopband

It is straightforward to verify that hypotheses H1-H4 are satisfied for the problem
(5.1), (5.2).  The solution of (5.1) is labeled p in Fig. 1.  The magnitude of the
ripples in the passband is equal to the magnitude of the ripples in the stopband ; let
d be this deviation.  The solution of the constrained problem (5.1), (5.2) is denoted
by p* and is also shown in Fig. 1.  e is prescribed and satisfies 0 < e < cf.   a=d~e
is the gain (decrease in stopband ripple) resulting from the constraints.   Let da be the
deviation (passband ripple) resulting from the constrained problem (5.1), (5.2).   Then
1(a) = da - d is the loss (increase in passband ripple) due to the constraints.  We now
develop some properties of the loss function L(a).

Theorem 6.   The loss function L(a) described above is an increasing, continuous
function for 0 < a < d.  Furthermore, lima^.0Lia) = 0 and lima_>dZ,(a) = I - d.

Proof,   (i)  To show L is increasing, let 0 <a. <a2 <d.   If Lia2) < L(a{),
then d     < da .  Hence, the solution of the problem (5.1), (5.2) with e = d - a2
has smaller deviation than the solution of the problem (5.1), (5.2) with e = d - a.,
a contradiction. So L(a2) >Lia1), and L is an increasing function.

(ii)  Let 0 < a0 <d;to show L is continuous at a0.
Case 1. a > a0.  Let p     be the solution of the problem (5.1), (5.2) with e =

d - aQ.  Consider

t?(jr)
d- an Panto-
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Since q satisfies the constraints of the problem (5.1), (5.2) with e = d - a, we have

da <     max   |1-<7(x)|<1
0<x<xr

= d«o+

p
I ~d„

\Hï\*-v
d - a,oJ

(a - a0).

So

(5.3)

£(a)-L(a0)|=Z(a)-L(a0)
1 -d

".o*T
«0

(a - a0).

Case 2. a < a0.  Interchanging a0 and a in the analysis of Case 1 yields

(5.4) |¿(a0)-¿(a)|<
e? -a

(a0 - a) <
fi-an

[a0 - a]

Inequalities (5.3) and (5.4) imply the continuity of ¿(a) at a0.
(iii)  As in the analysis of Case 1 above, it can be shown that ¿(a) = da - d <

[(1 - fi)/fi] a and lima^.0L(a) = 0 follows.  It can be shown that if |p(jr)| < e for all
x in [xs, 0.5], then there exists a constant K such that |p(jr)| < Ke for all jr.   Hence,
as a —> d  (e —► 0), the solution of the problem (5.1), (5.2) tends to p(jr) = 0 and
so da —► 1.  Hence, lima_>dZ,(a) = 1 - d.   This completes the proof.

From the analysis of Theorem 6, the following rough bound emerges:

Lia) < (1 - d)a/d,       0<a<d.

In the case that the transition region (jt , jt^) is symmetric about 0.25, further re-
sults can be obtained.  A lemma is proved giving information about the unconstrained
low pass filter problem (5.1).

Lemma 3. Let X = [0, x ] U [xs, 0.5] and assume the transition region
(x , xs) has 0.25 as its midpoint.   Then

fl)  The solution of the unconstrained problem (5.1) is of the form

p(x) = 0.5 + Z
kodd;Kk<N

ak cos 27TÄ:jr.

(2) If N is even, there exists a set of N + 2 extremal points {t0, •• ; tN+. } of
the error curve f(x) - p(x) associated with the solution of the problem (5.1) which
are symmetric about 0.25 and satisfy a(t) = - a(r_j),/ = 1, •••, N + 1.

(3) Let N be even and t0, ••*, tN+. the extremal points of fix) - p(x) as in (2).
If tj and t[ are symmetric about 0.25, then \A¡ \=\At\ where A, and A. are defined
by Eq. (4.3).

Proof.   (1)  Let
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N
p(x) = Z ak cos 2nkx

k=0

be the solution of the problem (5.1).  Then 1 - p(0.5 - jt) is also a solution of the
problem (5.1).  By uniqueness,

N N
Z tf/c cos 2-nkx = 1-^ flfc cos 27ifc[0.5 - jt]

fc=0 fc=0
(5.5)

N
= i - z (~ l)kakcos 2nkx-

fc=0

Hence a0 = 0.5, a2 =0,a4 =0, •••.
(2)  From (5.5), we obtain

N
1 - Z ak cos 27rfcc =

fc=0

N "I
0_ Z "k cos27rÄ:[0.5 -x]    .

fc=0

It is clear from this equation that an error extremal in the passband has a corresponding
symmetric (about 0.25) extremal of opposite sign in the stopband and vice versa.

(3)  From Eq. (4.3),

/ Af+l
A- = I /     Yi    (cos 2ntk ~ cos 2lTtj)

I k=0;ki=j

and

//  N+lW   (cos 2ntk - cos 27rr;).
fc=0;fc#/

If t- and tl are symmetric about 0.25, since cos 2îrjr is antisymmetric about 0.25, and
since the extremal points are symmetric about 0.25, to each factor |cos 27rrfc   -
cos 2nt-1 of [4-1 there corresponds an equal factor |cos 27rrk   - cos 27rrz| of \AA and
vice versa.  This completes the proof of the lemma.

Theorem 7. Let X = [0, x ] U [xs, 0.5] and assume the transition region
(xp, xs) has 0.25 as its midpoint.   Then the loss function satisfies L(a) > a for 0 <
a<d.

Proof.
Case I. N even.  The formula for the reference deviation, cf. Section 4 for the

notation and derivation, for the problem with restraining curves / and u is

Z    f(ti)Ai + Z   KtdAi + Z "(ifMf
d =

teipuiM /e/L ie/y

teiPuiM
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where {t0, ••', tN+. } is the reference set described in Lemma 3.  If we use the
same reference set but new restraining curves / and u, we have

Z      f(ti)Ai + Z JitJAi +  Z ¡¡(t^A,i€'
d

teipUiM i&tL /e/y

e,v4.
ieipviM

Subtracting, we have

Z  [Rtl)-l(ti)]A¡+  Z [ü(ti)-u(t¡)]Ai
(5-6) d-d=-

i<=I, 0=1U

Z   M,-
i^IpUIM

The reference deviation d for the unconstrained problem can be interpreted as the
reference deviation for a constrained problem with l(x) = - d,  u(x) = d in the stop-
band.  If we have a gain of a, then the new restraining curves would be / (jt) = - d +
a, u(x) = d - a.  If {t0, •••, tN+l } is taken as the initial reference set for the
problem with restraining curves / and u, we have from Eq. (5.6)

d^-d = «• IZeiy^J /Izeiy'^l
{i:t^lxy0.5]}   j     [i:t¡e[0,xp]}

Since the A¡ alternate in sign, using Lemma 3, parts 2 and 3, we see d^ - d = a.
Since the reference deviation increases with successive iterations

L(a)=da -d>dw-d = a.

Case 2. N odd.  Then N + 1 is even.  Part (1) of Lemma 3 shows that the
solution of the unconstrained problem using approximating functions 1, •••,
cos 2tt(N + l)x is the same as the solution using 1, •••, cos 2ttNx.   Let da N+1 he
the deviation of the solution of the constrained problem using 1, •••, cos 2tt(N + l)x
and da N the deviation of the solution of the constrained problem using 1, • • •,
cos 27rA/x   Then, since daN+1 <daN,

L(0L)=da,N-d>da,N+i-d>a     by Case 1.

This completes the proof.
Theorem 7 lends itself to the interpretation that the imposition of constraints

is somewhat unfavorable, since loss is greater than or equal to gain (in the symmetric
case). On the other hand, numerical examples have shown that the loss may be
less than the gain if the stopband is shorter than the passband; this is intuitively
plausible because the constraints are imposed on less than half of the length of X.

The foregoing theory on trade-off error was developed for X = [0,x  ] U
[jrs, 0.5].  Analogous results can be developed for the case (of computational interest)
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10 di

9d   d(=.004l)

Figure 2.  Two plots of L(a).   Curve A results from parameters N = 9, xp =
0.0885, xs = 0.2345.  Curve B results from N=9,xp= 0.2655, xs = 0.4115

that X is a finite point set.  To obtain Lemma 3 and Theorem 7, it is necessary to
assume that the points of X axe symmetric about 0.25.

6.  Numerical Implementation and Examples.  The numerical procedure for
solving the constrained approximation problem, for a finite point set, has been
implemented as a double-precision Fortran program and tested numerically on the
University of Rhode Island IBM 360/50.  The numerical procedure consists of the
following steps:

(1) Input ofxp,xs,N, I, u.
(2) Choice of an initial reference set.
(3) Calculation of d and p at each iteration using formulas (4.2) and (4.4).
(4) Exchange of the reference set at each iteration.
(5) Output of the filter coefficients and deviation (after the procedure has con-

verged).
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It should be noted that the program also solves the unconstrained problem

mm       max
N

/to - Z akhk(x)
Jt=0

This is effected by setting the restraining curve u equal to a large positive constant and
/ equal to a large negative constant.  In solving the unconstrained problem, the initial
reference set was chosen as follows.  The points in the reference set were equally
spaced in the passband and in the stopband.  The number to be placed in the passband
was determined by using the proportion xp/(xp + (0.5 - xj) of the length of the
passband to the length of the approximation region, with the proviso that if fractions
arose, the "odd" point was placed in the shorter region.  The number of iterations to
reach convergence was quite dependent on having the correct number of reference
points in each region.

In choosing an initial set for solving the special constrained problem (5.1), (5.2),
if a was small, the final reference set (critical points) for the unconstrained problem
was found to be an excellent choice.   However, for a larger, e.g., a = 0.9fi in Fig. 2,
it was often found that more points should be placed in the stopband (the constrained
region).

P
N    = 9

0.177 x   = 0.323s

d    = .006482

0.03

50

X    = 0.06s

d    =  .002213

I/o) L(o)

.Id = .000648

.2d = .001296

.3d = .001945

.4d =  .002593

.5d = .003241

.6d =  .003889

.7d =  .004537

.8d =  .005186

.9d =  .005834

.000650

.001308

.001974

.002653

.003348

.00407 2

.004850

.005770

.033259

.Id =

.2d =

.3d =

.4d =
,5d =
,6d =
.7d =
.8d =
.9d =

.000221

.000443

.000664

.000885

.001106

.001328

.001549

.001770

.001991

.000672

.001359

.002079

.002829

.003626

.004447

.005331

.006423

.028695

x = 0.0885
P

x = 0.2345s

d = .004111

x = 0.2655
P x = 0.4115s

.004111
L(ci) a L(a)

.Id =

.2d =

.3d =

.4d =

.5d =

.6d =

.7d =
,8d =
.9d =

.000411

.000822

.001233

.001644

.002056

.002467

.002878

.003289

.003700

.003811

.008283

.012966

.017744

.022576

.027456

.032438

.037587

.043465

.Id =

.2d =

.3d =

.4d -■=

.5d =

.6d =

.7d =
,8d =
.9d -

.000411

.000822

.001233

.001644

.002056

.002467

.002878

.003289

.003700

.000058

.000122

.000859

.004436

.008911

.013765

.018813

.023960

.029270

Table 1. Loss function L(a) for four numerical examples
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Plots of the loss function L(a) defined and studied in Section 5 are shown in
Fig. 2 for various values of the parameters.  A striking feature of the graph B is the
abrupt change of slope; this occurred when a critical point moved from the passband
to the stopband (constrained region).  The slope must become large as the gain a
approaches the reference deviation d since L(ot) approaches 1 - d, which is large in
comparison with d.   Table 1 contains computed values of the loss function ¿(a) for
various values of the parameters.   All the numerical examples resulted in ¿(a) being a
convex function.
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