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Abstract. In 1980, Erdős and Heilbronn posed the problem of estimating (from be-
low) the number of sums a+b where a ∈ A and b ∈ B range over given sets A,B ⊆ Z/pZ

of residues modulo a prime p, so that a 6= b. A solution was given in 1994 by Dias da
Silva and Hamidoune. In 1995, Alon, Nathanson and Ruzsa developed a polynomial
method that allows one to handle restrictions of the type f(a, b) 6= 0, where f is a
polynomial in two variables over Z/pZ.

In this paper we consider restricting conditions of general type and investigate
groups, distinct from Z/pZ. In particular, for A,B ⊆ Z/pZ and R ⊆ A × B of
given cardinalities we give a sharp estimate for the number of distinct sums a + b with
(a, b) /∈ R, and we obtain a partial generalization of this estimate for arbitrary Abelian
groups.

1. Background: mapping restrictions

For two subsets A and B of the set of elements of a group G we write

A +̇B = {a + b : a ∈ A, b ∈ B, a 6= b}.
(The group G = Z/pZ of residues modulo a prime p was historically first to emerge
in this context, hence the additive notation.) In other words, A +̇B is the set of all
elements of G, representable as a sum of two distinct elements from A and B.

The Erdős-Heilbronn conjecture (see [5, p. 95]), resolved (affirmatively) in [4] (cf. also
[1, 2]) is the following.
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Conjecture 1 (Erdős and Heilbronn). For any two sets A, B ⊆ Z/pZ,

|A +̇B| ≥ min{|A| + |B| − 3, p}.(1)

The set A +̇B is obtained from A + B = {a + b : a ∈ A, b ∈ B} by excluding those
sums with b = a. It seems plausible that (1) remains valid even if the sums to be
excluded are chosen according to a more general pattern.

Specifically, given a mapping τ : A → B, we define A
τ

+B to be the set of all the sums
a + b such that b 6= τ(a):

A
τ

+ B = {a + b : a ∈ A, b ∈ B, b 6= τ(a)}.
In [3], we conjectured the following.

Conjecture 2 (Lev). Let A and B be subsets of Z/pZ satisfying |A| ≤ |B|, and let

τ : A → B be an arbitrary mapping from A to B. Then

|A
τ

+B| ≥ min{|A| + |B| − 3, p}.
It turns out, however, that this latter conjecture was too optimistic. Fix two integers

k, d ≥ 1 such that (2k + 1)(2d − 1) ≤ 2p + 1 and let

A = {−1,−2,−3, . . . ,−kd} (mod p),

B = {0, d, 2d, . . . , (k + 1)d, (k + 1)d + 1, . . . , p − 1} (mod p).

Furthermore, define τ : A → B by

τ(−td + r) = td; 1 ≤ t ≤ k, 0 ≤ r < d.

This construction can be illustrated by the diagram below:
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We have then

|A| + |B| = kd + k + (p − (k + 1)d + 1) = p + k + 1 − d,

while

A
τ

+ B = {d, d + 1, d + 2, . . . , p − 1},
and therefore

|A
τ

+B| = p − d = |A| + |B| − k − 1.

This shows that some additional conditions are necessary in order for |A
τ

+B| ≥
|A| + |B| − 3 to hold.
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The situation might be somewhat better if τ is injective. In this case, we were only able

to construct A, B and τ so that |A|+ |B| is as large as ⌊4p/3⌋, and yet |A
τ

+B| = p− 2.
Specifically, assume for definiteness p = 3m + 2 (the case p ≡ 1(mod 3) can be dealt
with similarly) and let

A = {1, 3, 4, 6, 7, . . . , 3m, 3m + 1} (mod p),

B = {0,−1,−3,−4,−6,−7, . . . ,−3m + 2,−3m} (mod p).

Furthermore, define τ(ai) = bi, where ai and bi are ith elements of A and B, respectively,
in the above indicated order. Then

|A| + |B| = 2(2m + 1) =
1

3
(4p − 2) = ⌊4p/3⌋ ,

while A
τ

+ B consists of all residues modulo p, except 1 and 2, and therefore

|A
τ

+ B| = p − 2.

The following example (based on a suggestion of A. Dudek for p = 11) gives the largest

known value of |A| + |B| subject to |A
τ

+B| = p − 3. Let

A = B = {0, 1, 3, 4, 5, . . . , (p − 1)/2, (p + 1)/2},
τ(0) = 3, τ(1) = 1, τ(3) = 0,

τ(a) = (p + 9)/2 − a for a = 4, 5, . . . , (p − 1)/2, (p + 1)2.

The corresponding diagram:
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Here |A| + |B| = p + 1, and as indicated above, |A
τ

+B| = p − 3 (notice that 2, 3 and

(p + 9)/2 are not in A
τ

+ B).
Is it true that

|A
τ

+ B| ≥











|A| + |B| − 3, if |A| + |B| ≤ p,

p − 3, if |A| + |B| = p + 1,

p − 2, if |A| + |B| ≥ p + 2

(2)

for any injective τ? Though this may not be the case, there is little doubt that it is
close to the truth. Finding the best possible estimate of this kind seems to require fresh
ideas and is of certain interest.
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2. Summary of results

Below, we discuss the results that will be proved in Section 3.
We first bring into consideration restricting conditions of a more general sort. Let

A, B ⊆ G be subsets of a group G, and let R ⊆ A × B be any subset of the Cartesian

product A × B. We define A
R
+B to be the set of all sums a + b, such that (a, b) /∈ R:

A
R
+ B = {a + b : a ∈ A, b ∈ B, (a, b) /∈ R}.

To simplify the notation, we write throughout the rest of the paper

m = |A|, n = |B|, r = |R|,
and we tacitly assume r > 0 (that is, R 6= ∅). Plainly, when R is induced by a mapping
τ : A → B, we have r = m.

Our main result for the group Z/pZ is the following.

Theorem 1. Let A, B ⊆ Z/pZ, and let R ⊆ A × B. Assume for definiteness m ≤ n.

Then

|A
R
+ B| ≥











m + n − 2
√

r − 1, if m + n ≤ p +
√

r and
√

r ≤ m,

p − r
m+n−p

, if m + n ≥ p +
√

r,

n − r
m

, if
√

r ≥ m.

Observe, that m+n ≥ p+
√

r and
√

r ≥ m can occur simultaneously only when n = p
and m =

√
r, in which case the two last estimates of Theorem 1 coincide.

Theorem 1 is extremely sharp and in fact, establishes the minimum possible value of

the cardinality of the restricted sum A
R
+ B. To see this, consider the following example.

Example 1. Let A = {0, . . . , m − 1}(mod p) and B = {0, . . . , n − 1}(mod p), where
1 ≤ m ≤ n ≤ p. Fix a positive integer k such that

m + n − 1 − p

2
≤ k ≤ m + n − 1

2

and define

R := {(a, b) : a ∈ A, b ∈ B, a + b /∈ [k, m + n − 2 − k] (mod p)}.
(Notice, that R “eliminates” sums a + b with minimal number of representations. The

condition that k is positive ensures that R 6= ∅.) We have then A
R
+ B ⊆ [k, m+n−2−k]

(mod p), whence

|A
R
+B| ≤ m + n − 2k − 1.(3)

Now, if k is chosen to satisfy m ≤ k ≤ (m + n − 1)/2, one can verify that

r = m(2k + 1 − m) > m2,
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and by (3),

|A
R
+ B| ≤ n − r

m
.

If m + n − p ≤ k ≤ m − 1, then

r = k(k + 1) < m2, m + n ≤ p + k < p +
√

r;

by (3),

|A
R
+B| < m + n − 2

√
r.

Finally, if (m + n − p − 1)/2 ≤ k ≤ m + n − p − 1, then

r = (p + 2k + 1 − m − n)(m + n − p) < (m + n − p)2;

it follows that m + n > p +
√

r and

|A
R
+B| ≤ p − r

m + n − p
.

We now turn to generalizations onto groups, distinct from Z/pZ. The second estimate
of Theorem 1 has an analog even in the non-commutative case.

Theorem 2. Let A, B ⊆ G be subsets of a finite group G of order q = |G|, and let

R ⊆ A × B. Suppose that m + n ≥ q + 1. Then

|A
R
+B| ≥ q − r

m + n − q
.

Corollary 1. Let G, A, B and R be as in Theorem 2. Assume that m + n ≥ (1 + ε)q
and r ≤ C min{m, n} for some ε, C > 0.

|A
R
+ B| ≥ q − Cε−1.

Proof.

r

m + n − q
≤ C

2

m + n

(m + n) − q
≤ C

2

1

1 − (1 + ε)−1
=

C

2

(

1 +
1

ε

)

< Cε−1.

A refinement is possible when R is induced by an injective mapping and the sum
m + n only slightly exceeds q.

Theorem 3. Let A, B ⊆ G be subsets of a finite group G of order q = |G|, and let

τ : A → B be an injective mapping from A to B. Suppose that m + n ≥ q + 1. Then

|A
τ

+ B| > q −√
q − 1

2
.

In a certain (rather narrow) range of m, n and in the particular case of R induced by
an injective mapping, Theorem 3 improves Theorem 1.

To deal with the generalization of the most important and most difficult case of
Theorem 1 — that of small m+n — we make a simplifying assumption that R satisfies
the following conditions:
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(a) to any fixed a0 ∈ A there corresponds at most one b ∈ B such that (a0, b) ∈ R;
(b) to any fixed b0 ∈ B there corresponds at most one a ∈ A such that (a, b0) ∈ R.

We note that these conditions automatically hold when R is induced by an injective
mapping; in general, they are not vital, but make possible certain simplifications. Fur-
thermore, for real L > 0 we consider an additional condition:

(c) for any c ∈ G there are at most L pairs (a, b) ∈ R such that a + b = c.

The relevance of this condition for the estimates of |A
R
+B| is hinted to by [6, Conjecture

2] and [6, Theorem 3]: when R is induced by the equality relation, L can be chosen to
be the “doubling constant” of [6].

Our next result is parallel to [6, Theorem 3]. The difference is that in [6] we were only
concerned with the “classical” restriction b 6= a and considered only the case B = A; on
the other hand, the latter allowed us to cover non-commutative groups.

Theorem 4. Let G be an Abelian group, let A, B ⊆ G be subsets of G, and let R satisfy

conditions (a)–(c). Suppose that A
R
+ B 6= A + B. Then

|A
R
+B| > (1 − δ)(m + n) − (L + 2),(4)

where

δ =
mn

(m + n)2
≤ 1

4
.

The condition A
R
+B 6= A + B may look odd at first sight and is worth explanation.

The point is that there is such a powerful tool as Kneser’s theorem to estimate the

number of elements of the non-restricted sum A+B from below. If A
R
+ B = A+B, this

theorem automatically yields lower-bound estimates for the number of elements of the

restricted sum A
R
+B; Theorem 4 deals with the complementary case A

R
+B 6= A + B.

To be more specific, if (4) fails, while A
R
+B = A + B, then it follows immediately from

Kneser’s theorem that A and B posses a very rigid structure:

– either there exist elements a ∈ A, b ∈ B and a subgroup H ⊆ G such that A ⊆
a + H, B ⊆ b + H, m + n ≥ 4(|H| + L + 2)/3, and

A
R
+ B = A + B = a + b + H;

– or there exist elements a1, a2 ∈ A, b ∈ B and a subgroup H ⊆ G such that
A ⊆ (a1 + H) ∪ (a2 + H), B ⊆ b + H, m + n ≥ 8(|H| + L + 2)/3, and

A
R
+B = A + B = (a1 + b + H) ∪ (a2 + b + H),

– or there exist elements a ∈ A, b1, b2 ∈ B and a subgroup H ⊆ G such that A ⊆
a + H, B ⊆ (b1 + H) ∪ (b2 + H), m + n ≥ 8(|H| + L + 2)/3, and

A
R
+B = A + B = (a + b1 + H) ∪ (a + b2 + H).



the electronic journal of combinatorics 7 (2000), #R4 7

The coefficient 1− δ in Theorem 4 can be slightly improved using the methods of [6];
in particular, for B = A it can be increased to (

√
5 + 1)/4 ≈ 0.80.

The proofs of Theorems 1–4 are mostly combinatorial, with a somewhat surprising
interference of graph theory in the proof of Theorem 3 — see also Section 4, the Con-
clusion.

3. Proofs

Proof of Theorem 1. For i = 1, 2, . . . we denote by Ni the number of residues c ∈ A+B
with at least i representations of the form c = a+b (a ∈ A, b ∈ B), and by N ′

i the number

of residues c ∈ (A+B)\ (A
R
+ B) with at least i representations of this form. Obviously,

Ni −N ′
i counts the number of elements of A

R
+B with at least i representations, whence

Ni − N ′
i ≤ |A

R
+ B| and

t|A
R
+B| ≥ (N1 − N ′

1) + · · ·+ (Nt − N ′
t)(5)

for any integer t ≥ 1.
Now, by Pollard’s theorem (see [7]) we have

N1 + · · ·+ Nt ≥ t min{p, m + n − t},
provided t ≤ m, and at the same time, clearly

N ′
1 + · · · + N ′

t ≤ N ′
1 + · · ·+ N ′

t + · · · =
∑

c∈(A+B)\(A
R

+B)

ν(c) ≤ r,

where ν(c) is the number of representations of c. Comparing to (5) we conclude that

t|A
R
+ B| ≥ t min{p, m + n − t} − r,

|A
R
+ B| ≥ min{p − r/t, m + n − (t + r/t)},

and it remains to optimize in t by choosing

t =











⌈√r ⌉, if m + n ≤ p +
√

r and
√

r ≤ m,

m + n − p, if m + n ≥ p +
√

r,

m, if
√

r ≥ m.

Proof of Theorem 2. Let S be the complement of A
R
+B in G, so that |S| = q−|A

R
+B|.

By the Dirichlet boxing principle, to any s ∈ S there correspond at least m+n− q pairs
(a, b) (with a ∈ A, b ∈ B) such that a + b = s, and for any such pair we have (a, b) ∈ R.
Totally, we have at least |S|(m+n−q) pairs (a, b) ∈ R. On the other hand, the number
of these pairs is r, whence |S| ≤ r/(m + n − q), and the result follows.
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Proof of Theorem 3. We define S as above, and we want to prove that |S| < √
q + 1/2.

It is convenient to use graph-theoretic terminology. Consider the |S|-regular bipartite
graph Γ on two disjoint copies of G, obtained by joining each vertex x ∈ G of the first
copy to the |S| vertices −x + s; s ∈ S of the second copy. Formally, we write

Γ = (X ∪ Y, E); E = {(x, y) : x ∈ X, y ∈ Y, x + y ∈ S},
where X and Y are thought of as two disjoint copies of G. Furthermore, consider the
subgraph Γ0 ⊆ Γ, induced by all elements of A in the first copy and all elements of B in
the second copy:

Γ0 = 〈(X ∩ A) ∪ (Y ∩ B)〉.
We claim that Γ0 contains no paths of length two. Indeed, a path x1, y, x2 with

x1, x2 ∈ X ∩ A and y ∈ Y ∩ B would mean x1 + y ∈ S and x2 + y ∈ S, which is
impossible: either τ(x1) 6= y (in which case x1 + y /∈ S), or τ(x2) 6= y (in which case
x2 + y /∈ S). Similarly, a path of the type y1, x, y2 cannot occur in Γ0 as τ(x) = y1 and
τ(x) = y2 cannot happen simultaneously.

Our next observation is that Γ contains no rectangles. Indeed, any single rectangle
x1, y1, x2, y2 can be translated to produce q rectangles

x1 + u,−u + y1, x2 + u,−u + y2; u ∈ G,

each containing at most two vertices of Γ0: a subgraph induced by any three vertices of
a rectangle necessarily contains a path of length two. Summation over all u ∈ G gives
2(|A| + |B|) ≤ 2q, contradicting the assumptions.

We now essentially repeat an Erdős’ argument to show that if Γ contains no rectangles,
then |S| (the degree of Γ) is small. We first count all paths of the form x1, y, x2 (x1, x2 ∈
X, y ∈ Y ) in Γ. Obviously, there are totally q

(

|S|
2

)

such paths, as any vertex y ∈ Y

participates in
(

|S|
2

)

paths. On the other hand, there are only
(

q

2

)

pairs (x1, x2); xi ∈ X
with x1 6= x2. Since no two distinct paths can share a common pair (this would yield a
rectangle), we have

q

(|S|
2

)

≤
(

q

2

)

,

|S|2 − |S| + 1 ≤ q(6)

whence |S| <
√

q + 1/2, as required.
There is another way to complete the proof by making a funny observation that S is

a Sidon set in G: an equality s1 − s2 = s′1 − s′2 with s1 6= s2, s1 6= s′1 creates a rectangle
s1, 0, s2,−s2 + s′2 = −s1 + s′1. It is easy to verify, however, that the cardinality of any
Sidon set S ⊆ G satisfies (6).

Proof of Theorem 4. We break the proof in three steps.

i) Since A
R
+ B 6= A + B, there exist a0 ∈ A and b0 ∈ B such that c = a0 + b0 /∈ A

R
+ B.

Then

|(A − b0) ∩ (a0 − B)| ≤ L,
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as any equality a− b0 = a0 − b gives rise to the representation c = a + b with (a, b) ∈ R
(in view of c /∈ A

R
+B), and there are at most L such representations. Letting A − B =

{a − b : a ∈ A, b ∈ B} we obtain

|A − B| ≥ |(A − b0) ∪ (a0 − B)| ≥ m + n − L.(7)

ii) Fix any c = a0 − b0 ∈ A − B (where a0 ∈ A, b0 ∈ B) and let

A0 = {a ∈ A : (a, b0) /∈ R}, B0 = {b ∈ B : (a0, b) /∈ R},
so that |A0| ≥ m− 1 and |B0| ≥ n− 1 by the conditions (a) and (b). Write ν(c) for the
number of representations c = a − b (a ∈ A, b ∈ B). Then

ν(c) ≥ |(a0 + B0) ∩ (A0 + b0)| ≥ |A0| + |B0| − |A
R
+ B|

≥ m + n − 2 − |A
R
+B|,(8)

as (a0 + B0) ∪ (A0 + b0) ⊆ A
R
+B.

iii) By (7) and (8),

mn =
∑

c∈A−B

ν(c) ≥ (m + n − L)(m + n − 2 − |A
R
+B|),

|A
R
+B| ≥ m + n − 2 − mn

m + n − L

> m + n − mn

m + n
− (L + 2),

the latter inequality being equivalent to mn < (m + n)(m + n − L), which follows from
L < (1 − δ)(m + n) — otherwise, the assertion of the theorem is trivial.

The result follows.

4. Conclusion

We re-state here explicitly several problems that remain open.

Does (2) hold for any two sets A, B ⊆ Z/pZ and any injective mapping τ : A → B?

In particular, is it true that |A
τ

+ B| ≥ p − 2, provided |A| + |B| ≥ p + 2? Do similar

estimates hold when A and B are subsets of an arbitrary finite group? If some of the

answers are negative, what are the best possible estimates of this sort?

A slight modification of the approach used in the proof of Theorem 3 shows that for
|A| + |B| ≥ p + 2, this problem can be reformulated in the graph-theoretic language as
follows.

Let c 6= 0, 1 be any fixed residue modulo p. Consider a cubic bipartite graph Γ(c) on

two copies of Z/pZ such that any vertex x of the first copy is adjacent to the vertices

x, x + 1 and x+ c of the second copy. Is it true that any induced subgraph of order p + 2
of any such Γ(c) contains a path of length two?
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The answer is certainly positive if c = −1, 2 or (p+1)/2 (in which cases Γ(c) contains
a rectangle). In general, the situation is not clear, however.

The major open problem for generic restriction is that of improving the coefficient
1− δ in Theorem 4. Quite likely, this coefficient can be replaced by 1 or at least by 1−ε
for any positive ε, provided r is sufficiently (in terms of ε) small compared to m + n.
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