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Abstract
We consider the matrix completion problem under a form of row/column weighted entrywise sam-
pling, including the case of uniform entrywise sampling as aspecial case. We analyze the associated
random observation operator, and prove that with high probability, it satisfies a form of restricted
strong convexity with respect to weighted Frobenius norm. Using this property, we obtain as corol-
laries a number of error bounds on matrix completion in the weighted Frobenius norm under noisy
sampling and for both exact and near low-rank matrices. Our results are based on measures of
the “spikiness” and “low-rankness” of matrices that are less restrictive than the incoherence con-
ditions imposed in previous work. Our technique involves anM-estimator that includes controls
on both the rank and spikiness of the solution, and we establish non-asymptotic error bounds in
weighted Frobenius norm for recovering matrices lying withℓq-“balls” of bounded spikiness. Us-
ing information-theoretic methods, we show that no algorithm can achieve better estimates (up to
a logarithmic factor) over these same sets, showing that ourconditions on matrices and associated
rates are essentially optimal.
Keywords: matrix completion, collaborative filtering, convex optimization

1. Introduction

Matrix completion problems correspond to reconstructing matrices, either exactly or approximately,
based on observing a subset of their entries (Laurent, 2001; Deza and Laurent, 1997). In the sim-
plest formulation of matrix completion, the observations are assumed to be uncorrupted, whereas a
more general formulation (as considered in this paper) allows for noisiness in these observations.
Matrix recovery based on only partial information is an ill-posed problem, and accurate estimates
are possible only if the matrix satisfies additional structural constraints, with examples including
bandedness, positive semidefiniteness, Euclidean distance measurements, Toeplitz, and low-rank
structure (see the survey paper by Laurent (2001) and references therein for more background).

The focus of this paper is low-rank matrix completion based on noisy observations. This prob-
lem is motivated by a variety of applications where an underlying matrix is likely to have low-rank,
or near low-rank structure. The archetypal example is the Netflix challenge, a version of the col-
laborative filtering problem, in which the unknown matrix is indexed by individuals and movies,
and each observed entry of the matrix corresponds to the rating assignedto the associated movie
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by the given individual. Since the typical person only watches a tiny numberof movies (compared
to the total Netflix database), it is only a sparse subset of matrix entries that are observed. In this
context, one goal of collaborative filtering is to use the observed entries tomake recommendations
to a person regarding movies that they havenot yet seen. We refer the reader to Srebro (2004)
(and references therein) for further discussion and motivation for collaborative filtering and related
problems.

In this paper, we analyze a method for approximate low-rank matrix recovery using anM-
estimator that is a combination of a data term, and a weighted nuclear norm as a regularizer. The
nuclear norm is the sum of the singular values of a matrix (Horn and Johnson, 1985), and has
been studied in a body of past work, both on matrix completion and more general problems of
low-rank matrix estimation (e.g., Fazel, 2002; Srebro, 2004; Srebro et al.,2005, 2004; Recht et al.,
2010; Bach, 2008; Candes and Tao, 2010; Recht, 2011; Keshavanet al., 2010a,b; Negahban and
Wainwright, 2011; Rohde and Tsybakov, 2011). A parallel line of workhas studied computation-
ally efficient algorithms for solving problems with nuclear norm constraints (e.g, Mazumber et al.,
2010; Nesterov, 2007; Lin et al., 2009). Here we limit our detailed discussion to those papers that
study various aspects of the matrix completion problem. Motivated by various problems in col-
laborative filtering, Srebro (2004) and Srebro et al. (2005) studied various aspects nuclear norm
regularization, and established generalization error bounds under certain conditions. Cand̀es and
Recht (2009) studied the exact reconstruction of a low-rank matrix given perfect (noiseless) obser-
vations of a subset of entries, and provided sufficient conditions for exact recovery via nuclear norm
relaxation, with later refinements provided by various authors (Candes and Tao, 2010; Recht, 2011;
Gross, 2011). In particular, Gross (2011) recognized the utility of the Ahlswede-Winter matrix con-
centration bounds, and the simplest argument to date is provided by Recht (2011). In a parallel line
of work, Keshavan et al. (2010a,b) have studied a method based on thresholding and singular value
decomposition, and established various results on its behavior, both for noiseless and noisy matrix
completion. Among other results, Rohde and Tsybakov (2011) establish prediction error bounds for
matrix completion, a different metric than the matrix recovery problem of interest here. In recent
work, Salakhutdinov and Srebro (2010) provided various motivations for the use of weighted nu-
clear norms, in particular showing that the standard nuclear norm relaxation can behave very poorly
when the sampling is non-uniform. The analysis of this paper applies to both uniform and non-
uniform sampling, as well as a form of reweighted nuclear norm as suggested by these authors, one
which includes the ordinary nuclear norm as a special case. We providea more detailed comparison
between our results and some aspects of past work in Section 3.4.

As has been noted before (Candès and Plan, 2010), a significant theoretical challenge is that
conditions that have proven very useful for sparse linear regression—among them the restricted
isometry property—arenot satisfied for the matrix completion problem. For this reason, it is natu-
ral to seek an alternative and less restrictive property that might be satisfied in the matrix completion
setting. In recent work, Negahban et al. (2009) have isolated a weaker and more general condition
known asrestricted strong convexity(RSC), and proven that certain statistical models satisfy RSC
with high probability when the associated regularizer satisfies adecomposabilitycondition. When
anM-estimator satisfies the RSC condition, it is relatively straightforward to derive non-asymptotic
error bounds on parameter estimates (Negahban et al., 2009). The classof decomposable regulariz-
ers includes the nuclear norm as particular case, and the RSC/decomposability approach has been
exploited to derive bounds for various matrix estimation problems, among them multi-task learning,
autoregressive system identification, and compressed sensing (Negahban and Wainwright, 2011).
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To date, however, an open question is whether or not an appropriate form of RSC holds for
the matrix completion problem. If it did hold, then it would be possible to derive non-asymptotic
error bounds (in Frobenius norm) for matrix completion based on noisy observations. Within this
context, the main contribution of this paper is to prove that with high probability, aform of the
RSC condition holds for the matrix completion problem, in particular over an interesting set of
matricesC, as defined in Equation (4) to follow, that have both low nuclear/Frobeniusnorm ratio
and low “spikiness”. Exploiting this RSC condition then allows us to derive non-asymptotic error
bounds on matrix recovery in weighted Frobenius norms, both for exactly and approximately low-
rank matrices. The theoretical core of this paper consists of three main results. Our first result
(Theorem 1) proves that the matrix completion loss function satisfies restricted strong convexity
with high probability over the setC. Our second result (Theorem 2) exploits this fact to derive a
non-asymptotic error bound for matrix recovery in the weighted Frobeniusnorm, one applicable
to general matrices. We then specialize this result to the problem of estimating exactly low-rank
matrices (with a small number of non-zero singular values), as well as nearlow-rank matrices
characterized by relatively swift decay of their singular values. To the best of our knowledge, our
results on near low-rank matrices are the first for approximate matrix recovery in the noisy setting,
and as we discuss at more length in Section 3.4, our results on the exactly low-rank case are sharper
than past work on the problem. Indeed, our final result (Theorem 3) uses information-theoretic
techniques to establish that up to logarithmic factors, no algorithm can obtain faster rates than our
method over theℓq-balls of matrices with bounded spikiness treated in this paper.

The remainder of this paper is organized as follows. We begin in Section 2 withbackground
and a precise formulation of the problem. Section 3 is devoted to a statement of our main results,
and discussion of some of their consequences. In Sections 4 and Section5, we prove our main
results, with more technical aspects of the arguments deferred to appendices. We conclude with a
discussion in Section 6.

2. Background and Problem Formulation

In this section, we introduce background on low-rank matrix completion problem, and also provide
a precise statement of the problem studied in this paper.

2.1 Uniform and Weighted Sampling Models

Let Θ∗ ∈ R
dr×dc be an unknown matrix, and consider an observation model in which we maken

i.i.d. observations of the form

ỹi = Θ∗
j(i)k(i)+

ν√
drdc

ξ̃i , (1)

Here the quantities ν√
dr dc

ξ̃i correspond to additive observation noises with variance appropriately
scaled according to the matrix dimensions. In defining the observation model, one can either allow
the Frobenius norm ofΘ∗ to grow with the dimension, as in done in other work (Candès and Plan,
2010; Keshavan et al., 2010b), or rescale the noise as we have done here. This choice is consistent
with our assumption thatΘ∗ has constant Frobenius norm regardless of its rank or dimensions.
With this scaling, each observation in the model (1) has a constant signal-to-noise ratio regardless
of matrix dimensions.
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In the simplest model, the rowj(i) and columnk(i) indices are chosen uniformly at random
from the sets{1,2, . . . ,dr} and{1,2, . . . ,dc} respectively. In this paper, we consider a somewhat
more general weighted sampling model. In particular, letR∈ R

dr×dr andC∈ R
dc×dc be diagonal

matrices, with rescaled diagonals{Rj/dr , j = 1,2, . . . ,dr} and{Ck/dc,k= 1,2, . . . ,dc} representing
probability distributions over the rows and columns of andr ×dc matrix. We consider the weighted
sampling model in which we make a noisy observation of entry( j,k) with probabilityRjCk/(drdc),
meaning that the row indexj(i) (respectively column indexk(i)) is chosen according to the proba-
bility distribution R/dr (respectivelyC/dc). Note that in the special case thatR= 1dr andC = 1dc,
the observation model (1) reduces to the usual model of uniform sampling.

We assume that each row and column is sampled with positive probability, in particular that
there is some constant 1≤ L < ∞ such thatRa ≥ 1/L andCb ≥ 1/L for all rows and columns.
However, apart from the constraints∑dr

a=1Raa = dr and∑dc
b=1Cbb = dc, we do not require that the

row and column weights remain bounded asdr anddc tend to infinity.

2.2 The Observation Operator and Restricted Strong Convexity

We now describe an alternative formulation of the observation model (1) that, while statistically
equivalent to the original, turns out to be more natural for analysis. For eachi = 1,2, . . . ,n, define
the matrix

X(i) =
√

drdc εi ea(i)e
T
b(i),

whereεi ∈ {−1,+1} is a random sign, and consider the observation model

yi = 〈〈X(i), Θ∗〉〉+νξi , for i = 1, . . . ,n, (2)

where〈〈A, B〉〉 := ∑ j,k A jkB jk is the trace inner product, andξi is an additive noise from the same
distribution as the original model. The model (2) is can be obtained from the original model (1) by
rescaling all terms by the factor

√
drdc, and introducing the random signsεi . The rescaling has no

statistical effect, and nor do the random signs, since the noise is symmetric (so thatξi = εi ξ̃i has the
same distribution as̃ξi). Thus, the observation model (2) is statistically equivalent to the original
one (1).

In order to specify a vector form of the observation model, let us define alinear operator
Xn : Rdr×dc → R

n via

[Xn(Θ)]i := 〈〈X(i), Θ〉〉, for i = 1,2, . . .n.

We refer toXn as theobservation operator, since it maps any matrixΘ ∈ R
dr×dc to ann-vector of

samples. With this notation, we can write the observations (2) in a vectorized form as
y= Xn(Θ∗)+νξ.

The reformulation (2) is convenient for various reasons. For any matrixΘ ∈ R
dr×dc, we have

E[〈〈X(i), Θ〉〉] = 0 and

E
[
〈〈X(i), Θ〉〉2]=

dr

∑
j=1

dc

∑
k=1

RjΘ2
jkCk = |||

√
RΘ

√
C|||2F︸ ︷︷ ︸

|||Θ|||2ω(F)

,
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where we have defined theweighted Frobenius norm||| · |||ω(F) in terms of the rowR and columnC
weights. As a consequence, the signal-to-noise ratio in the observation model (2) is given by the

ratio SNR=
|||Θ∗|||2ω(F)

ν2 .
As shown by Negahban et al. (2009), a key ingredient in establishing error bounds for the obser-

vation model (2) is obtaining lower bounds on the restricted curvature of thesampling operator—in
particular, to establish the existence of a constantc> 0, which may be arbitrarily small as long as it
is positive, such that

‖Xn(Θ)‖2√
n

≥ c|||Θ|||ω(F). (3)

For sample sizes of interest for matrix completion (n≪ drdc) , one cannot expect such a bound to
hold uniformly over all matricesΘ ∈ R

dr×dc, even when rank constraints are imposed. Indeed, as
noted by Cand̀es and Plan (2010), the condition (3) is violated with high probability by the rank one
matrixΘ∗ such thatΘ∗

11= 1 with all other entries zero. Indeed, for a sample sizen≪ drdc, we have
a vanishing probability of observing the entryΘ∗

11, so thatXn(Θ∗) = 0 with high probability.

2.3 Controlling the Spikiness and Rank

Intuitively, one must exclude matrices that are overly “spiky” in order to avoid the phenomenon just
described. Past work has relied on fairly restrictive matrix incoherenceconditions (see Section 3.4
for more discussion), based on specific conditions on singular vectors of the unknown matrixΘ∗.
In this paper, we formalize the notion of “spikiness” in a natural and less restrictive way—namely
by comparing a weighted form ofℓ∞-norm to the weighted Frobenius norm. In particular, for any
non-zero matrixΘ, let us define (for any non-zero matrix) theweighted spikiness ratio

αsp(Θ) :=
√

drdc
|||Θ|||ω(∞)

|||Θ|||ω(F)
,

where|||Θ|||ω(∞) := ‖
√

RΘ
√

C‖∞ is the weighted elementwiseℓ∞-norm. Note that this ratio is in-
variant to the scaling ofΘ, and satisfies the inequalities 1≤ αsp(Θ)≤

√
drdc. We haveαsp(Θ) = 1

for any non-zero matrix whose entries are all equal, whereas the opposite extremeαsp(Θ) =
√

drdc

is achieved by the “maximally spiky” matrix that is zero everywhere except for a single position.
In order to provide a tractable measure of how closeΘ is to a low-rank matrix, we define (for

any non-zero matrix) the ratio

βra(Θ) :=
|||Θ|||ω(1)
|||Θ|||ω(F)

which satisfies the inequalities 1≤ βra(Θ)≤
√

min{dr ,dc}. By definition of the (weighted) nuclear
and Frobenius norms, note thatβra(Θ) is simply the ratio of theℓ1 to ℓ2 norms of the singular values
of the weighted matrix

√
RΘ

√
C. This measure can also be upper bounded by the rank ofΘ: indeed,

sinceR andC are full-rank, we always have

β2
ra(Θ)≤ rank(

√
RΘ

√
C) = rank(Θ),

with equality holding if all the non-zero singular values of
√

RΘ
√

C are identical.
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3. Main Results and Their Consequences

We now turn to the statement of our main results, and discussion of their consequences. Section 3.1
is devoted to a result showing that a suitable form of restricted strong convexity holds for the ran-
dom sampling operatorXn, as long as we restrict it to matrices∆ for which βra(∆) andαsp(∆) are
not “overly large”. In Section 3.2, we develop the consequences of theRSC condition for noisy
matrix completion, and in Section 3.3, we prove that our error bounds are minimax-optimal up to
logarithmic factors. In Section 3.4, we provide a detailed comparison of our results with past work.

3.1 Restricted Strong Convexity for Matrix Sampling

Introducing the convenient shorthandd = 1
2(dr +dc), let us define the constraint set

C(n;c0) :=

{
∆ ∈ R

dr×dc, ∆ 6= 0 | αsp(∆) βra(∆)≤
1

c0L

√
n

d logd

}
, (4)

wherec0 is a universal constant. Note that as the sample sizen increases, this set allows for matrices
with larger values of the spikiness and/or rank measures,αsp(∆) andβra(∆) respectively.

Theorem 1 There are universal constants(c0,c1,c2,c3) such that as long as n> c3d logd, we have

‖Xn(∆)‖2√
n

≥ 1
8
|||∆|||ω(F)

{
1− 128αsp(∆)L√

n

}
for all ∆ ∈ C(n;c0) (5)

with probability greater than1−c1exp(−c2d logd).

Roughly speaking, this bound guarantees that the observation operatorcaptures a substantial
component of any matrix∆∈C(n;c0) that is not overly spiky. More precisely, as long as128Lαsp(∆)√

n ≤
1
2, the bound (5) implies that

‖Xn(∆)‖2
2

n
≥ 1

256
|||∆|||2ω(F) for any∆ ∈ C(n;c0). (6)

This bound can be interpreted in terms ofrestricted strong convexity(Negahban et al., 2009). In
particular, given a vectory∈ R

n of noisy observations, consider the quadratic loss function

L(Θ;y) =
1
2n

‖y−Xn(Θ)‖2
2.

Since the Hessian matrix of this function is given byXn
∗
Xn/n, the bound (6) implies that the

quadratic loss is strongly convex in a restricted set of directions∆.
As discussed previously, the worst-case value of the “spikiness” measure is αsp(∆) =

√
drdc,

achieved for a matrix that is zero everywhere except a single position. Inthis most degenerate of
cases, the combination of the constraintsαsp(∆)√

n < 1 and the membership condition∆∈C(n;c0) imply

that even for a rank one matrix (so thatβra(∆) = 1), we need sample sizen≫ d2 for Theorem 1 to
provide a non-trivial result, as is to be expected.
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3.2 Consequences for Noisy Matrix Completion

We now turn to some consequences of Theorem 1 for matrix completion in the noisy setting. In
particular, assume that we are givenn i.i.d. samples from the model (2), and letΘ̂ be some estimate
of the unknown matrixΘ∗. Our strategy is to exploit the lower bound (5) in application to the error
matrix Θ̂−Θ∗, and accordingly, we need to ensure that it has relatively low-rank andspikiness.
Based on this intuition, it is natural to consider the estimator

Θ̂ ∈ arg min
|||Θ|||ω(∞)≤ α∗√

dr dc

{ 1
2n

‖y−Xn(Θ)‖2
2+λn|||Θ|||ω(1)

}
, (7)

whereα∗ ≥ 1 is a measure of spikiness, and the regularization parameterλn > 0 serves to control
the nuclear norm of the solution. In the special case when bothR andC are identity matrices (of
the appropriate dimensions), this estimator is closely related to the standard oneconsidered in past
work on the problem, with the only difference between the additionalℓ∞-norm constraint. In the
more general weighted case, anM-estimator of the form (7) using the weighted nuclear norm (but
without the elementwise constraint) was recently suggested by Salakhutdinovand Srebro (2010),
who provided empirical results to show superiority of the weighted nuclear norm over the standard
choice for the Netflix problem.

Past work on matrix completion has focused on the case of exactly low-rankmatrices. Here we
consider the more general setting of approximately low-rank matrices, including the exact setting
as a particular case. We begin by stating a general upper bound that applies to any matrixΘ∗, and
involves a natural decomposition into estimation and approximation error terms. The only relevant
quantity is the signal-to-noise ratio, as measured by the ratio of the Frobeniusnorm of Θ∗ to the
noise variance, so that we allow the noise variance to be free, while assuming that|||∆̃|||ω(F) remains
bounded.

Theorem 2 Suppose that n≥ Ld logd, and consider any solution̂Θ to the weighted SDP(7) using
regularization parameter

λn ≥ 2ν |||1
n

n

∑
i=1

ξiR
− 1

2 X(i)C− 1
2 |||op, (8)

and defineλ∗
n = max{λn,L

√
d logd

n }. Then with probability greater than1− c2exp(−c2 logd), for

each r= 1, . . . ,dr , the error∆̃ = Θ̂−Θ∗ satisfies

|||∆̃|||2ω(F) ≤ c1 α∗ λ∗
n

[√
r|||∆̃|||ω(F)+

dr

∑
j=r+1

σ j(
√

RΘ∗√C)

]
+

c1(α∗L)2

n
. (9)

Apart from the trailingO(n−1) the term, the bound (9) shows a natural splitting into two terms.
The first can be interpreted as theestimation errorassociated with a rankr matrix, whereas the
second term corresponds toapproximation error, measuring how far

√
RΘ∗√C is from a rankr

matrix. Of course, the bound holds for any choice ofr, and in the corollaries to follow, we chooser
optimally so as to balance the estimation and approximation error terms.

In order to provide concrete rates using Theorem 2, it remains to address two issues. First,
we need to specify an explicit choice ofλn by bounding the operator norm of the noise matrix
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1
n ∑n

i=1 ξi
√

RX(i)
√

C, and secondly, we need to understand how to choose the parameterr so as
to achieve the tightest possible bound. WhenΘ∗ is exactly low-rank, then it is obvious that we
should chooser = rank(Θ∗), so that the approximation error vanishes—more specifically, so that
∑dr

j=r+1 σ j(
√

RΘ∗√C) j = 0. Doing so yields the following result:

Corollary 1 (Exactly low-rank matrices) Suppose that the noise sequence{ξi} is i.i.d., zero-mean
and sub-exponential, andΘ∗ has rank at most r, Frobenius norm at most1, and spikiness at most

αsp(Θ∗) ≤ α∗. If we solve the SDP(7) with λn = 4ν
√

d logd
n then there is a numerical constant c′

1
such that

|||Θ̂−Θ∗|||2ω(F) ≤ c′1 (ν
2∨L2) (α∗)2 rd logd

n
+

c1(α∗L)2

n
(10)

with probability greater than1−c2exp(−c3 logd).

Note that this rate has a natural interpretation: since a rankr matrix of dimensiondr × dc has
roughly r(dr +dc) free parameters, we require a sample size of this order (up to logarithmic fac-
tors) so as to obtain a controlled error bound. An interesting feature of thebound (10) is the term
ν2∨1= max{ν2,1}, which implies that we do not obtain exact recovery asν → 0. As we discuss at
more length in Section 3.4, under the mild spikiness condition that we have imposed, this behavior
is unavoidable due to lack of identifiability within a certain radius, as specified inthe setC. For
instance, consider the matrixΘ∗ and the perturbed versioñΘ = Θ∗+ 1√

dr dc
e1eT

1 . With high prob-

ability, we haveXn(Θ∗) = Xn(Θ̃), so that the observations—even if they were noiseless—fail to
distinguish between these two models. These types of examples, leading to non-identifiability, can-
not be overcome without imposing fairly restrictive matrix incoherence conditions, as we discuss at
more length in Section 3.4.

As with past work (Cand̀es and Plan, 2010; Keshavan et al., 2010b), Corollary 1 applies to the
case of matrices that have exactly rankr. In practical settings, it is more realistic to assume that the
unknown matrix is not exactly low-rank, but rather can be well approximated by a matrix with low
rank. One way in which to formalize this notion is via theℓq-“ball” of matrices

Bq(ρq) :=

{
Θ ∈ R

dr×dc |
min{dr ,dc}

∑
j=1

|σ j(
√

RΘ
√

C)|q ≤ ρq

}
. (11)

For q= 0, this set corresponds to the set of matrices with rank at mostr = ρ0, whereas for values
q∈ (0,1], it consists of matrices whose (weighted) singular values decay at a relatively fast rate. By
applying Theorem 2 to this matrix family, we obtain the following corollary:

Corollary 2 (Estimation of near low-rank matrices) Suppose that the noise{ξi} is zero-mean
and sub-exponential, Consider a matrixΘ∗ ∈ Bq(ρq) with spikiness at mostαsp(Θ∗) ≤ α∗, and
Frobenius norm at most one. With the same choice ofλn as Corollary 1, there is a universal con-
stant c′1 such that

|||Θ̂−Θ∗|||2ω(F) ≤ c1ρq

(
(ν2∨L2)(α∗)2d logd

n

)1− q
2
+

c1(α∗L)2

n
(12)

with probability greater than1−c2exp(−c3 logd).
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Note that this result is a strict generalization of Corollary 1, to which it reduces in the caseq= 0.
(Whenq= 0, we haveρ0 = r so that the bound has the same form.) Note that the price that we pay
for approximately low rank is a smaller exponent—namely, 1−q/2 as opposed to 1 in the caseq= 0.
The proof of Corollary 2 is based on a more subtle application of Theorem 2, one which chooses
the effective rankr in the bound (9) so as to trade off between the estimation and approximation
errors. In particular, the choicer ≍ ρq(

n
d logd)

q/2 turns out to yield the optimal trade-off, and hence
the given error bound (12).

Although we have stated our results in terms of bounds on the weighted squared Frobenius norm
|||Θ|||2ω(F) = |||

√
RΘ

√
C|||2F , our assumed lower bound on the entriesRandC implies that|||Θ|||2ω(F) ≥

|||Θ|||2F
L2 . Consequently, as long as each row and column is sampled a constant fraction of the time, our

results also yield bounds on the Frobenius norm. In some applications, certain rows and columns
might be heavily sampled, meaning that some entries ofR and/orC could be relatively large. Since
we requireonly a lower boundon the row/column sampling frequencies, our Frobenius norm bounds
would not degrade if some rows and/or columns were heavily sampled. In contrast, a RIP-type
analysis would not be valid in this setting, since heavy sampling means that the Frobenius norm
could not be uniformly bounded from above.

In order to illustrate the sharpness of our theory, let us compare the predictions of our two
corollaries to the empirical behavior of theM-estimator. In particular, we applied the nuclear norm
SDP to simulated data, using Gaussian observation noise with varianceν2 = 0.25 and the uniform
sampling model. In all cases, we solved the nuclear norm SDP using a non-smooth optimization
procedure due to Nesterov (2007), via our own implementation in MATLAB. For a given problem
sized, we ranT = 25 trials and computed the squared Frobenius norm error|||Θ̂−Θ∗|||2F averaged
over the trials.

Figure 1 shows the results in the case of exactly low-rank matrices (q = 0), with the matrix
rank given byr = ⌈log2(d)⌉. Panel (a) shows plots of the mean-squared Frobenius error versus
the raw sample size, for three different problem sizes with the number of matrix elements sizes
d2 ∈ {402,602,802,1002}. These plots show that theM-estimator is consistent, since each of the
curves decreases to zero as the sample sizen increases. Note that the curves shift to the right as
the matrix dimensiond increases, reflecting the natural intuition that larger matrices require more
samples. Based on the scaling predicted by Corollary 1, we expect that themean-squared Frobenius
error should exhibit the scaling|||Θ̂−Θ∗|||2F ≍ rd logd

n . Equivalently, if we plot the MSE versus the
rescaled sample size N:= n

rd logd , then all the curves should be relatively well aligned, and decay at
the rate 1/N. Panel (b) of Figure 1 shows the same simulation results re-plotted versus thisrescaled
sample size. Consistent with the prediction of Corollary 1, all four plots are now relatively well-
aligned. Figure 2 shows the same plots for the case of approximately low-rank matrices (q= 0.5).
Again, consistent with the prediction of Corollary 2, we see qualitatively similarbehavior in the
plots of the MSE versus sample size (panel (a)), and the rescaled sample size (panel (b)).

3.3 Information-theoretic Lower Bounds

The results of the previous section are achievable results, based on a particular polynomial-time
estimator. It is natural to ask how these bounds compare to the fundamental limitsof the problem,
meaning the best performance achievable by any algorithm. As various authors have noted (Candès
and Plan, 2010; Keshavan et al., 2010b), a parameter counting argument indicates that roughly
n≈ r (dr +dc) samples are required to estimate andr ×dc matrix with rankr. This calculation can
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Figure 1: Plots of the mean-squared error in Frobenius norm forq= 0. Each curve corresponds to
a different problem sized2 ∈ {402,602,802,1002}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the right asd increases, since more samples should be
required to achieve a given MSE for larger problems. (b) The same MSE plotted versus
the rescaled sample sizen/(rd logd). Consistent with Corollary 1, all the plots are now
fairly well-aligned.

be made more formal by metric entropy calculations for the Grassman manifold (e.g., Szarek, 1983);
see also Rohde and Tsybakov (2011) for results on approximation numbers for the more generalℓq-
balls of matrices. Such calculations, while accounting for the low-rank conditions, donot address
the additional “spikiness” constraints that are essential to the setting of matrixcompletion. It is
conceivable that these additional constraints could lead to a substantial volume reduction in the
allowable class of matrices, so that the scalings suggested by parameter counting or metric entropy
calculation for Grassman manifolds would be overly conservative.

Accordingly, in this section, we provide a direct and constructive argument to lower bound the
minimax rates of Frobenius norm over classes of matrices that are near low-rank and not overly
spiky. This argument establishes that the bounds established in Corollaries1 and 2 are sharp up to
logarithmic factors, meaning that no estimator performs substantially better than the one considered
here. More precisely, consider the matrix classes

B̃(ρq) =

{
Θ ∈ R

d×d |
d

∑
j=1

σ j(Θ)q ≤ ρq, αsp(Θ)≤
√

32logd

}
,

corresponding to squared×d matrices that are near low-rank (belonging to theℓq-balls previously
defined (11)), and have a logarithmic spikiness ratio. The following resultapplies to theminimax
risk in Frobenius norm, namely the quantity

Mn(B̃(ρq)) := inf
Θ̃

sup
Θ∗∈B̃(ρq)

E
[
|||Θ̃−Θ∗|||2F

]
,

where the infimum is taken over all estimatorsΘ̃ that are measurable functions ofn samples.
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Figure 2: Plots of the mean-squared error in Frobenius norm forq= 0.5. Each curve corresponds to
a different problem sized2 ∈ {402,602,802,1002}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the right asd increases, since more samples should be
required to achieve a given MSE for larger problems. (b) The same MSE plotted versus

the rescaled sample sizen/(ρ
1

1−q/2
q d logd). Consistent with Corollary 2, all the plots are

now fairly well-aligned.

Theorem 3 There is a universal numerical constant c5 > 0 such that

Mn(B̃(ρq))≥ c5 min

{
ρq

(
ν2d
n

)1− q
2

,
ν2d2

n

}
.

The term of primary interest in this bound is the first one—namely,ρq
(ν2d

n

)1− q
2 . It is the dominant

term in the bound whenever theℓq-radius satisfies the bound

ρq ≤
(

ν2d
n

) q
2

d. (13)

In the special caseq = 0, corresponding the exactly low-rank case, the bound (13) always holds,
since it reduces to requiring that the rankr = ρ0 is less than or equal tod. In these regimes,
Theorem 3 establishes that the upper bounds obtained in Corollaries 1 and2 are minimax-optimal
up to factors logarithmic in matrix dimensiond.

3.4 Comparison to Other Work

We now turn to a detailed comparison of our bounds to those obtained in past work on noisy matrix
completion, in particular the papers by Candès and Plan (2010) (hereafter CP) and Keshavan et al.
(2010b) (hereafter KMO). Both papers considered only the case of exactly low-rank matrices, cor-
responding to the special case ofq= 0 in our notation. Since neither paper provided results for the
general case of near-low rank matrices, nor the general result (with estimation and approximation
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errors) stated in Theorem 2, our discussion is mainly limited to comparing Corollary 1 to their re-
sults. So as to simplify discussion, we restate all results under the scalings used in this paper1 (i.e.,
with |||Θ∗|||F = 1).

3.4.1 COMPARISON OFRATES

Under the strong incoherence conditions required for exact matrix recovery (see below for discus-
sion), Theorem 7 in CP give an bound on|||Θ̂−Θ∗|||F that depends on the Frobenius norm of the
potentially adversarial error matrixΞ ∈ R

d1×d2, as defined by the noise variables[Ξ] j(i) k(i) = ξ̃i in
our case. In the special case of stochastic noise, under the observation model (1) and the scalings of
our paper, as long asn> d, whered = d1+d2—a condition certainly required for Frobenius norm
consistency—we have|||Ξ|||F = Θ(ν

√
n/d) with high probability. Given this scaling, the CP upper

bound takes the form

|||Θ̂−Θ∗|||F . ν
{√

d+

√
n

d

}
.

Note that if the noise standard deviationν tends to zero while the sample sizen, matrix sizep and
rank r all remain fixed, then this bound guarantees that the Frobenius error tends to zero. This
behavior asν → 0 is intuitively reasonable, given that their proof technique is an extrapolation from
the case of exact recovery for noiseless observations (ν = 0). However, note that for any fixed noise
deviationν > 0, the first term increases to infinity as the matrix dimensiond increases, whereas
the second term actually grows as the sample sizen increases. Consequently, the CP results do not
guarantee statistical consistency, unlike the bounds proved here.

Turning to a setting with adversarial noise, suppose that the error vectorhas Frobenius norm
at mostδ. A modification of our analysis yields error bounds of the form|||Θ̂−Θ∗|||F .

{
d2√

nδ+√
rd logd

n

}
. In the setting of square matrices withδ ≥

√
r logd

d , our result yields an upper bound

tighter by a factor of order
√

d better than those presented in CP. Last, as pointed out by a reviewer,
the CP analysis does yield bounds for approximately low-rank matrices, in particular by writing
Θ∗ = Πr(Θ∗)+∆, whereΠr is the Frobenius norm projection onto the space of rankr matrices,
and∆ = Θ∗−Πr(Θ∗) is the approximation error. With this notation, their analysis guarantees error
bounds of the form

√
d|||∆|||F with high probability, which is a weaker guarantee than our bound

whenever|||∆|||F ≥ c
√

r logd
n andn= Ω(d logd).

Keshavan et al. (2010b) analyzed alternative methods based on trimming and applying the SVD.
For Gaussian noise, their methods guarantee bounds (with high probability)of the form

|||Θ̂−Θ∗|||F . νmin
{

α
√

d2

d1
,κ2(Θ∗)

}
√

rd2

n
, (14)

whered2/d1 is the aspect ratio ofΘ∗, andκ(Θ∗) = σmax(Θ∗)
σmin(Θ∗) is the condition number ofΘ∗. This

result is more directly comparable to our Corollary 1; apart from the additional factor involving
either the aspect ratio or the condition number, it is sharper since it does not involve the factor logd
present in our bound. For a fixed noise standard deviationν, the bound (14) guarantees statistical

1. The paper CP and KMO use two different sets of scaling, one with|||Θ∗|||F = Θ(d) and the other with|||Θ∗|||F =
√

r,
so that some care is required in converting between results.
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consistency as long asrd2
n tends to zero. The most significant differences are the presence of the

aspect ratiod2/d1 or the condition numberκ(Θ∗) in the upper bound (14). The aspect ratio is a
quantity that can be as small as one, or as large asd2, so that the pre-factor in the bound (14)
can scale in a dimension-dependent way. Similarly, for any matrix with rank larger than one, the
condition number can be made arbitrarily large. For instance, in the rank two case, define a matrix
with σmax(Θ∗) =

√
1−δ2 andσmin(Θ∗) = δ, and consider the behavior asδ → 0. In contrast, our

bounds are invariant to both the aspect ratio and the condition number ofΘ∗.

3.4.2 COMPARISON OFMATRIX CONDITIONS

We now turn to a comparison of the variousmatrix incoherence assumptionsinvoked in the analysis
of CP and KMO, and comparison to our spikiness condition. As before, for clarity, we specialize our
discussion to the square case (dr = dc= d), since the rectangular case is not essentially different. The
matrix incoherence conditions are stated in terms of the singular value decomposition Θ∗ =UΣVT

of the target matrix. HereU ∈R
d×r andV ∈R

d×r are matrices of the left and right singular vectors
respectively, satisfyingUTU =VTV = Ir×r , whereasΣ ∈ R

r×r is a diagonal matrix of the singular
values. The purpose of matrix incoherence is to enforce that the left andright singular vectors
should not be aligned with the standard basis. Among other assumptions, the CP analysis imposes
the incoherence conditions

‖UUT − r
d

Id×d‖∞ ≤ µ

√
r

d
, ‖VVT − r

d
Id×d‖∞ ≤ µ

√
r

d
, and ‖UVT‖∞ ≤ µ

√
r

d
, (15)

for some constantµ> 0. Parts of the KMO analysis impose the related incoherence condition

max
j=1,...,d

|UUT | j j ≤ µ0
r
d
, and max

j=1,...,d
|VVT | j j ≤ µ0

r
d
. (16)

Both of these conditions ensure that the singular vectors are sufficiently “spread-out”, so as not to
be aligned with the standard basis.

A remarkable property of conditions (15) and (16) is that they exhibitno dependenceon the
singular values ofΘ∗. If one is interested only in exact recovery in the noiseless setting, then this
lack of dependence is reasonable. However, if approximate recoveryis the goal—as is necessarily
the case in the more realistic setting of noisy observations—then it is clear that aminimal set of
sufficient conditions should also involve the singular values, as is the casefor our spikiness measure
αsp(Θ∗). The following example gives a concrete demonstration of an instance where our condi-
tions are satisfied, so that approximate recovery is possible, whereas theincoherence conditions are
violated.
Example. Let Γ ∈ R

d×d be a positive semidefinite symmetric matrix with rankr − 1, Frobenius
norm|||Γ|||F = 1 and‖Γ‖∞ ≤ c0/d. For a scalar parametert > 0, consider the matrix

Θ∗ := Γ+ te1eT
1

wheree1 ∈ R
d is the canonical basis vector with one in its first entry, and zero elsewhere. By

construction, the matrixΘ∗ has rank at mostr. Moreover, as long ast = O(1/d), we are guaranteed
that our spikiness measure satisfies the boundαsp(Θ∗) = O(1). Indeed, we have|||Θ∗|||F ≥ |||Γ|||F −
t = 1− t, and hence

αsp(Θ∗) =
d‖Θ∗‖∞

|||Θ∗|||F
≤ d

(
‖Γ‖∞ + t

)

1− t
≤ c0+dt

1− t
= O(1).
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Consequently, for any choice ofΓ as specified above, Corollary 1 implies that the SDP will recover

the matrixΘ∗ up to a toleranceO(
√

rd logd
n ). This captures the natural intuition that “poisoning” the

matrix Γ with the termteT
1 e1 should have essentially no effect, as long ast is not too large.

On the other hand, suppose that we choose the matrixΓ such that itsr − 1 eigenvectors are
orthogonal toe1. In this case, we haveΘ∗e1 = te1, so thate1 is also an eigenvector ofΘ∗. Letting
U ∈ R

d×r be the matrix of eigenvectors, we haveeT
1UUTe1 = 1. Consequently, for any fixedµ (or

µ0) and rankr ≪ d, conditions (15) and (16) are violated.
♦

4. Proofs for Noisy Matrix Completion

We now turn to the proofs of our results. This section is devoted to the resultsthat apply directly
to noisy matrix completion, in particular the achievable result given in Theorem2, its associated
Corollaries 1 and 2, and the information-theoretic lower bound given in Theorem 3. The proof of
Theorem 1 is provided in Section 5 to follow.

4.1 A Useful Transformation

We begin by describing a transformation that is useful both in these proofs, and the later proof of
Theorem 1. In particular, we consider the mappingΘ 7→ Γ :=

√
RΘ

√
C, as well as the modified

observation operatorXn
′ : Rd×d → R

n with elements

[Xn
′(Γ)]i = 〈〈X̃(i), Γ〉〉, for i = 1,2, . . . ,n,

whereX̃(i) := R−1/2X(i)C−1/2. Note thatXn
′(Γ) = Xn(Θ) by construction, and moreover

|||Γ|||F = |||Θ|||ω(F), |||Γ|||1 = |||Θ|||ω(1), and |||Γ|||∞ = |||Θ|||ω(∞),

which implies that

βra(Θ) =
|||Γ|||1
|||Γ|||F︸ ︷︷ ︸
β′

ra(Γ)

, and αsp(Θ) =
d ‖Γ‖∞

|||Γ|||F︸ ︷︷ ︸
α′

sp(Γ)

.

Based on this change of variables, let us define a modified version of the constraint set (4) as follows

C
′(n;c0) =

{
0 6= Γ ∈ R

d×d | α′
sp(Γ) β′

ra(Γ)≤
1
c0

√
n

d logd

}
. (17)

In this new notation, the lower bound (5) from Theorem 1 can be re-statedas

‖Xn
′(Γ)‖2√

n
≥ 1

8
|||Γ|||F

{
1−

128Lα′
sp(Γ)√
n

}
for all Γ ∈ C

′(n;c0). (18)

4.2 Proof of Theorem 2

We now turn to the proof of Theorem 2. Defining the estimateΓ̂ :=
√

RΘ̂
√

C, we have

Γ̂ ∈ arg min
‖Γ‖∞≤ α∗√

dr dc

{ 1
2n

‖y−Xn
′(Γ)‖2

2+λn|||Γ|||1
}
, (19)
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and our goal is to upper bound the ordinary Frobenius norm|||Γ̂−Γ∗|||F .
We now state a useful technical result. Parts (a) and (b) of the following lemma were proven by

Recht et al. (2010), and Negahban and Wainwright (2011), respectively. We recall that we adopt the
shorthand̂∆ = Γ̂−Γ∗ throughout the analysis.

Lemma 1 Let (Ũ ,Ṽ) represent a pair of r-dimensional subspaces of left and right singular vectors
of Γ∗. Then there exists a matrix decomposition∆̂ = ∆̂′+ ∆̂′′ of the error∆̂ such that

(a) The matrix̂∆′ satisfies the constraintrank(∆̂′)≤ 2r, and

(b) Given the choice(8), the nuclear norm of̂∆′′ is bounded as

|||∆̂′′|||1 ≤ 3|||∆̂′|||1 + 4
dr

∑
j=r+1

σ j(Γ∗). (20)

Note that the bound (20), combined with triangle inequality, implies that

|||∆̂|||1 ≤ |||∆̂′|||1+ |||∆̂′′|||1 ≤ 4|||∆̂′|||1 + 4
dr

∑
j=r+1

σ j(Γ∗)

≤ 8
√

r|||∆̂|||F +4
dr

∑
j=r+1

σ j(Γ∗) (21)

where the second inequality uses the fact that rank(∆̂′)≤ 2r.
We now split into two cases, depending on whether or not the error∆̂ belongs to the setC′(n;c0).

4.2.1 CASE 1

First suppose that̂∆ /∈ C
′(n;c0). In this case, by the definition (17), we have

|||∆̂|||2F ≤ c0L
(√

drdc‖∆̂‖∞
)
|||∆̂|||1

√
d logd

n

≤ 2c0Lα∗|||∆̂|||1
√

d logd
n

,

since‖∆̂‖∞ ≤ ‖Γ∗‖∞ +‖Γ̂‖∞ ≤ 2α∗√
dr dc

. Now applying the bound (21), we obtain

|||∆̂|||2F ≤ 2c0Lα∗
√

d logd
n

{
8
√

r|||∆̂|||F +4
dr

∑
j=r+1

σ j(Γ∗)
}
. (22)

4.2.2 CASE 2

Otherwise, we must havê∆ ∈ C
′(n;c0). Recall the reformulated lower bound (18). On one hand, if

128Lα′
sp(∆̂)√
n > 1/2, then we have

|||∆̂|||F ≤ 256L
√

drdc‖∆̂‖∞√
n

≤ 512Lα∗
√

n
. (23)
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On the other hand, if
128Lα′

sp(∆̂)√
n ≤ 1/2, then from the bound (18), we have

‖Xn
′(∆̂)‖2√

n
≥ |||∆̂|||F

16
(24)

with high probability. Note that̂Γ is optimal andΓ∗ is feasible for the convex program (19), so that
we have the basic inequality

1
2n

‖y−Xn
′(Γ̂)‖2

2+λn|||Γ̂|||1 ≤
1
2n

‖y−Xn
′(Γ∗)‖2

2+λn|||Γ∗|||1.

Some algebra then yields the inequality

1
2n

‖Xn
′(∆̂)‖2

2 ≤ ν〈〈∆̂, 1
n

n

∑
i=1

ξiX̃
(i)〉〉+λn|||Γ∗|||1−λn|||Γ∗+ ∆̂|||,

Substituting the lower bound (24) into this inequality yields

‖∆̂‖2
F

512
≤ ν〈〈∆̂, 1

n

n

∑
i=1

ξiX̃
(i)〉〉+λn|||Γ∗|||1−λn|||Γ∗+ ∆̂|||.

From this point onwards, the proof is identical (apart from constants) toTheorem 1 in Negahban
and Wainwright (2011), and we obtain that there is a numerical constantc1 such that

|||∆̂|||2F ≤ c1 α∗ λn

{√
r|||∆̂|||F +

dr

∑
j=r+1

σ j(Γ∗)

}
. (25)

4.2.3 PUTTING TOGETHER THEPIECES

Summarizing our results, we have shown that with high probability, one of the three bounds (22),
(23) or (25) must hold. Sinceα∗ ≥ 1, these claims can be summarized in the form

|||∆̂|||2F ≤ c1 max

{
λn,

√
d logd

n

} [√
r|||∆̂|||F +

dr

∑
j=r+1

σ j(Γ∗)
]
.

for a universal positive constantc1. Translating this result back to the original co-ordinate system
(Γ∗ =

√
RΘ∗√C) yields the claim (9).

4.3 Proof of Corollary 1

WhenΘ∗ (and hence
√

RΘ∗√C) has rankr < dr , then we have∑dr
j=r+1 σ j(

√
RΘ∗√C) = 0. Conse-

quently, the bound (9) reduces to|||∆̃|||ω(F) ≤ c1 α∗ λ∗
n
√

r. To complete the proof, it suffices to show
that

P
[
|||1

n

n

∑
i=1

ξiR
−1/2X(i)C−1/2|||2 ≥ c1 ν

√
d logd

n

]
≤ c2exp(−c2d logd).
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We do so via the Ahlswede-Winter matrix bound, as stated in Appendix F. Defining the ran-
dom matrixY(i) := ξiR−1/2X(i)C−1/2, we first note thatξi is sub-exponential with parameter 1,
and|R−1/2X(i)C−1/2| has a single entry with magnitude at mostL

√
drdc, which implies that

‖Y(i)‖ψ1 ≤ Lν
√

drdc ≤ 2νLd.

(Here‖·‖ψ1 denotes the Orlicz norm (Ledoux and Talagrand, 1991) of a random variable, as defined
by the functionψ1(x) = exp(x)−1; see Appendix F). Moreover, we have

E[(Y(i))TY(i)] = ν2
E

[ drdc

Rj(i)Ck(i)
ek(i)e

T
j(i)ej(i)e

T
k(i)

]

= ν2
E

[ drdc

Rj(i)Ck(i)
ek(i)e

T
k(i)

]

= ν2dr Idc×dc.

so that|||E[(Y(i))TY(i)]|||2 ≤ 2ν2d, recalling that 2d = dr + dc ≥ dr . The same bound applies to
|||E[Y(i)(Y(i))T ]|||2, so that applying Lemma 7 witht = nδ, we conclude that

P
[
|||1

n

n

∑
i=1

ξiR
−1/2X(i)C−1/2|||2 ≥ δ

]
≤ (dr ×dc) max

{
exp(−nδ2/(16ν2d), exp(− nδ

4νLd
)
}
.

Since
√

drdc ≤ dr + dc = 2d, if we setδ2 = c2
1ν2 d logd

n for a sufficiently large constantc1, the re-

sult follows. (Here we also use the assumption thatn = Ω(Ld logd), so that the term
√

d logd
n is

dominant.)

4.4 Proof of Corollary 2

For this corollary, we need to determine an appropriate choice ofr so as to optimize the bound (9).
To ease notation, let us make use of the shorthand notationΓ∗ =

√
RΘ∗√C. With the singular

values ofΓ∗ ordered in non-increasing order, fix some thresholdτ > 0 to be determined, and set
r = max{ j | σ j(Γ∗)> τ}. This choice ensures that

dr

∑
j=r+1

σ j(Γ∗) = τ
dr

∑
j=r+1

σ j(Γ∗)

τ
≤ τ

dr

∑
j=r+1

(σ j(Γ∗)

τ
)q ≤ τ1−qρq.

Moreover, we haver τq ≤ ∑r
j=1

{
σ j(Γ∗)

}q ≤ ρq, which implies that
√

r ≤√ρqτ−q/2. Substituting
these relations into the upper bound (9) leads to

|||∆̃|||2ω(F) ≤ c1 α∗ λ∗
n

[√ρqτ−q/2|||∆̃|||ω(F)+ τ1−qρq
}
.

In order to obtain the sharpest possible upper bound, we setτ = α∗λ∗
n. Following some algebra, we

find that there is a universal constantc1 such that

|||∆̃|||2ω(F) ≤ c1ρq
(
(α∗)2(λ∗

n)
2)1− q

2 .

As in the proof of Corollary 1, it suffices to chooseλn=Ω(ν
√

d logd
n ), so thatλ∗

n = O

√
(ν2+L)d logd

n ),
from which the claim follows.
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4.5 Proof of Theorem 3

Our proof of this lower bound exploits a combination of information-theoretic methods
(Yu, 1997; Yang and Barron, 1999), which allow us to reduce to a multiwayhypothesis test, and an
application of the probabilistic method so as to construct a suitably large packing set. By Markov’s
inequality, it suffices to prove that

sup
Θ∗∈B̃(ρq)

P

[
|||Θ̂−Θ∗|||2F ≥ δ2

4

]
≥ 1

2
.

In order to do so, we proceed in a standard way—namely, by reducing theestimation problem to
a testing problem over a suitably constructed packing set contained withinB̃(ρq). In particular,
consider a set{Θ1, . . . ,ΘM(δ)} of matrices, contained withiñB(ρq), such that|||Θk − Θℓ|||F ≥ δ
for all ℓ 6= k. To ease notation, we useM as shorthand forM(δ) through much of the argument.
Suppose that we choose an indexV ∈ {1,2, . . . ,M} uniformly at random (u.a.r.), and we are given
observationsy∈ R

n from the observation model (2) withΘ∗ = ΘV . Then triangle inequality yields
the lower bound

sup
Θ∗∈B̃(ρq)

P

[
|||Θ̂−Θ∗|||F ≥ δ

2

]
≥ P[V̂ 6=V].

If we condition onXn, a variant of Fano’s inequality yields

P[V̂ 6=V | Xn]≥ 1− (
(M

2

)
)−1 ∑ℓ 6=k D(Θk ‖ Θℓ)+ log2

logM
, (26)

whereD(Θk ‖ Θℓ) denotes the Kullback-Leibler divergence between the distributions of(y|Xn,Θk)
and(y|Xn,Θℓ). In particular, for additive Gaussian noise with varianceν2, we have

D(Θk ‖ Θℓ) =
1

2ν2‖Xn(Θk)−Xn(Θℓ)‖2
2,

and moreover,

EXn

[
D(Θk ‖ Θℓ)

]
=

1
2ν2 |||Θ

k−Θℓ|||2F .

Combined with the bound (26), we obtain the bound

P[V̂ 6=V] = EXn

{
P[V̂ 6=V | Xn]

}

≥ 1−
(
(M

2

)
)−1 ∑ℓ 6=k

n
2ν2 |||Θk−Θℓ|||2F + log2

logM
, (27)

The remainder of the proof hinges on the following technical lemma, which we prove in Ap-
pendix A.

Lemma 2 Let d≥ 10be a positive integer, and letδ > 0. Then for each r= 1,2, . . . ,d, there exists
a set of d-dimensional matrices{Θ1, . . . ,ΘM} with cardinality M= ⌊1

4 exp
(

rd
128

)
⌋ such that each
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matrix has rank r, and moreover

|||Θℓ|||F = δ for all ℓ= 1,2, . . . ,M,

|||Θℓ−Θk|||F ≥ δ for all ℓ 6= k,

αsp(Θℓ)≤
√

32logd for all ℓ= 1,2, . . . ,M, and

|||Θℓ|||2 ≤
4δ√

r
for all ℓ= 1,2, . . . ,M.

We now show how to use this packing set in our Fano bound. To avoid technical complications,
we assume throughout thatrd > 1024log2. Note that packing set from Lemma 2 satisfies|||Θk−
Θℓ|||F ≤ 2δ for all k 6= ℓ, and hence from Fano bound (27), we obtain

P[V̂ 6=V]≥ 1−
2nδ2

ν2 + log2
rd

128− log4

≥ 1−
2nδ2

ν2 + log2
rd

256

≥ 1−
512nδ2

ν2 +256log2

rd
.

If we now chooseδ2 = ν2

2048
rd
n , then

P[V̂ 6=V]≥ 1−
rd
4 +256log2

rd
≥ 1

2
,

where the final inequality again uses the boundrd ≥ 1024log2.
In the special caseq= 0, the proof is complete, since the elementsΘℓ all have rankr = R0, and

satisfy the boundαsp(Θℓ)≤√
32logd. Forq∈ (0,1], consider the matrix class̃B(ρq), and let us set

r = min{d,⌈ρq
(

d
n

)− q
2⌉} in Lemma 2. With this choice, since each matrixΘℓ has rankr, we have

p

∑
j=1

σi(Θℓ)q ≤ r

(
δ√
r

)q

= r

(
1

2048

√
d
n

)q

≤ ρq,

so that we are guaranteed thatΘℓ ∈ B̃(ρq). Finally, we note that

rd
n

≥ min
{

ρq

(
d
n

)1− q
2

,
d2

n

}
,

so that we conclude that the minimax error is lower bounded by

1
4096

min

{
ρq

(
ν2d
n

)1− q
2

,
ν2d2

n

}

for dr sufficiently large. (At the expense of a worse pre-factor, the same bound holds for alld≥ 10.)
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5. Proof of Theorem 1

We now turn to the proof that the sampling operator in weighted matrix completion satisfies re-
stricted strong convexity over the setC, as stated in Theorem 1. In order to lighten notation, we
prove the theorem in the casedr = dc. In terms of rates, this is a worst-case assumption, effectively
amounting to replacing bothdr anddc by the worst-case max{dr ,dc}. However, since our rates are
driven byd = 1

2(dr +dc) and we have the inequalities

1
2

max{dr ,dc} ≤ 1
2
(dr +dc) ≤ max{dr ,dc},

this change has only an effect on the constant factors. The proof canbe extended to the general
settingdr 6= dc by appropriate modifications if these constant factors are of interest.

5.1 Reduction to Simpler Events

In order to prove Theorem 1, it is equivalent to show that, with high probability, we have

‖Xn
′(Γ)‖2√

n
≥ 1

8
|||Γ|||F − 48L d ‖Γ‖∞√

n
for all Γ ∈ C

′(n;c0). (28)

The remainder of the proof is devoted to studying the “bad” event

E(Xn
′) :=

{
∃ Γ ∈ C

′(n;c0) |
∣∣∣‖Xn

′(Γ)‖2√
n

−|||Γ|||F
∣∣∣> 7

8
|||Γ|||F +

48L d ‖Γ‖∞√
n

}
.

Suppose thatE(Xn
′) doesnot hold: then we have

∣∣∣‖Xn
′(Γ)‖2√

n
−|||Γ|||F

∣∣∣≤ 7
8
|||Γ|||F +

48L d ‖Γ‖∞√
n

for all Γ ∈ C
′(n;c0),

which implies that the bound (28) holds. Consequently, in terms of the “bad” event, the claim of
Theorem 1 is implied by the tail boundP[E(Xn

′)]≤ 16exp(−c′d logd).
We now show that in order to establish a tail bound onE(Xn

′), it suffices to bound the proba-
bility of some simpler eventsE(Xn

′;D), defined below. Since the definition of the setC
′(n;c0) and

eventE(Xn
′) is invariant to rescaling ofΓ, we may assume without loss of generality that‖Γ‖∞ = 1

d .
The remaining degrees of freedom in the setC

′(n;c0) can be parameterized in terms of the quan-
tities D = |||Γ|||F andρ = |||Γ|||1. For anyΓ ∈ C

′(n;c0) with ‖Γ‖∞ = 1
d and |||Γ|||F ≤ D, we have

|||Γ|||1 ≤ ρ(D), where

ρ(D) :=
D2

c0L
√

d logd
n

.

For each radiusD > 0, consider the set

B(D) :=
{

Γ ∈ C
′(n;c0) | ‖Γ‖∞ =

1
d
, |||Γ|||F ≤ D, |||Γ|||1 ≤ ρ(D)

}
, (29)

and the associated event

E(Xn
′;D) :=

{
∃ Γ ∈B(D) |

∣∣‖Xn
′(Γ)‖2√

n
−|||Γ|||F

∣∣≥ 3
4

D+
48L√

n

}
.

The following lemma shows that it suffices to upper bound the probability of theeventE(Xn
′;D)

for each fixedD > 0.

1684



RESTRICTEDSTRONG CONVEXITY AND WEIGHTED MATRIX COMPLETION

Lemma 3 Suppose that are universal constants(c1,c2) such that

P[E(Xn
′;D)]≤ c1exp(−c2nD2) (30)

for each fixed D> 0. Then there is a universal constant c′
2 such that

P[E(Xn
′)]≤ c1

exp(−c′2d logd)
1−exp(−c′2d logd)

.

The proof of this claim, provided in Appendix B, follows by a peeling argument.

5.2 Bounding the Probability of E(Xn
′;D)

Based on Lemma 3, it suffices to prove the tail bound (30) on the eventE(Xn
′;D) for each fixed

D > 0. Let us define

Zn(D) := sup
Γ∈B(D)

∣∣∣∣∣
‖Xn

′(Γ)‖2√
n

−|||Γ|||F

∣∣∣∣∣,

where

B(D) :=
{

Γ ∈ C
′(n;c0) | ‖Γ‖∞ ≤ 1

d
, |||Γ|||F ≤ D, |||Γ|||1 ≤ ρ(D)

}
. (31)

(The only difference fromB(D) is that we have relaxed to the inequality‖Γ‖∞ ≤ 1
d .) In the remain-

der of this section, we prove that there are universal constants(c1,c2) such that

P
[
Zn(D)≥ 3

4
D+

48L√
n

]
≤ c1exp(−c2

nD2

L2 ) for each fixedD > 0. (32)

This tail bound means that the condition of Lemma 3 is satisfied, and so completes the proof of
Theorem 1.

In order to prove (32), we begin with a discretization argument. LetΓ1, . . . ,ΓN(δ) be aδ-covering
of B(D) in the Frobenius norm. By definition, given an arbitraryΓ ∈B(D), there exists some index
k∈ {1, . . . ,N(δ)} and a matrix∆ ∈ R

d×d with |||∆|||F ≤ δ such thatΓ = Γk+∆. Therefore, we have

‖Xn
′(Γ)‖2√

n
−|||Γ|||F =

‖Xn
′(Γk+∆)‖2√

n
−|||Γk+∆|||F

≤ ‖Xn
′(Γk)‖2√

n
+

‖Xn
′(∆)‖2√

n
−|||Γk|||F + |||∆|||F

≤
∣∣∣‖Xn

′(Γk)‖2√
n

−|||Γk|||F
∣∣∣+ ‖Xn

′(∆)‖2√
n

+δ,

where we have used the triangle inequality. Following the same steps establishes that this inequality
holds for the absolute value of the difference.

Moreover, since∆ = Γk−Γ with bothΓk andΓ belonging toB(D), we have|||∆|||1 ≤ 2ρ(D) and
‖∆‖∞ ≤ 2

d , where we have used the definition (29). Putting together the pieces, we conclude that

Zn(D) ≤ δ + max
k=1,...,N(δ)

∣∣∣‖Xn
′(Γk)‖2√

n
− |||Γk|||F

∣∣∣ + sup
∆∈D(δ,R)

∣∣‖Xn
′(∆)‖2√

n

∣∣, (33)
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where

D(δ,R) :=
{

∆ ∈ R
d×d | |||∆|||F ≤ δ, |||∆|||1 ≤ 2ρ(D), ‖∆‖∞ ≤ 2

d

}
.

Note that the bound (33) holds for any choice ofδ > 0. We establish the tail bound (32) with
the choiceδ = D/8, and using the following two lemmas. The first lemma provides control of the
maximum over the covering set:

Lemma 4 As long d≥ 10, we have

max
k=1,...,N(D/8)

∣∣∣‖Xn
′(Γk)‖2√

n
−|||Γk|||F

∣∣∣≤ D
8
+

48L√
n

with probability greater than1−cexp
(
− nD2

2048L2

)
.

See Appendix C for the proof of this claim.
Our second lemma, proved in Appendix D, provides control over the finalterm in the upper

bound (33).

Lemma 5

sup
∆∈D(D

8 ,R)

∣∣‖Xn
′(∆)‖2√

n

∣∣≤ D
2

with probability at least1−2exp
(
− nD2

8192L2

)
.

Combining these two lemmas with the upper bound (33) withδ = D/8, we obtain

Zn(D)≤ D
8
+

D
8
+

48L√
n
+

D
2

≤ 3D
4

+
48L√

n

with probability at least 1−4exp
(
− nD2

8192

)
, thereby establishing the tail bound (32) and completing

the proof of Theorem 1.

6. Discussion

In this paper, we have established error bounds for the problem of weighted matrix completion based
on partial and noisy observations. We proved both a general result, one which applies to any matrix,
and showed how it yields corollaries for both the cases of exactly low-rankand approximately low-
rank matrices. A key technical result is establishing that the matrix sampling operator satisfies a
suitable form of restricted strong convexity (Negahban et al., 2009) over a set of matrices with con-
trolled rank and spikiness. Since more restrictive properties such as RIPdo not hold for matrix com-
pletion, this RSC ingredient is essential to our analysis. Our proof of the RSC condition relied on
a number of techniques from empirical process and random matrix theory,including concentration
of measure, contraction inequalities and the Ahlswede-Winter bound. Usinginformation-theoretic
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methods, we also proved that up to logarithmic factors, our error bounds cannot be improved upon
by any algorithm, showing that our method is essentially minimax-optimal.

There are various open questions that remain to be studied. Although our analysis applies
to both uniform and non-uniform sampling models, it is limited to the case where each row (or
column) is sampled with a certain probability. It would be interesting to consider extensions to
settings in which the sampling probability differed from entry to entry, as investigated empirically
by Salakhutdinov and Srebro (2010). Although we have focused on least-squares losses in this
paper, the notion of restricted strong convexity applies to more general loss functions. Indeed, it
should be possible to combine the results of this paper with Proposition 2 in Negahban et al. (2009)
so as to obtain bounds for matrix completion with general losses. Lastly, although this paper has
focused on statistical consequences, the RSC property also has implications for the fast convergence
of gradient-type algorithms for solving matrix completion problems (Agarwal etal., 2011).
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Appendix A. Proof of Lemma 2

We proceed via the probabilistic method, in particular by showing that a random procedure succeeds
in generating such a set with probability at least 1/2. LetM′ = exp

(
rd

128

)
, and for eachℓ= 1, . . . ,M′,

we draw a random matrix̃Θℓ ∈ R
d×d according to the following procedure:

(a) For rowsi = 1, . . . , r and for each columnj = 1, . . . ,d, choose each̃Θℓ
i j ∈ {−1,+1} uniformly

at random, independently across(i, j).

(b) For rowsi = r +1, . . . ,d, setΘ̃ℓ
i j = 0.

We then letQ∈ R
d×d be a random unitary matrix, and defineΘℓ = δ√

rd
QΘ̃ℓ for all ℓ= 1, . . . ,M′.

The remainder of the proof analyzes the random set{Θ1, . . . ,ΘM′}, and shows that it contains a
subset of size at leastM = M′/4 that has properties (a) through (d) with probability at least 1/2.

By construction, each matrix̃Θℓ has rank at mostr, and Frobenius norm|||Θ̃ℓ|||F =
√

rd. Since
Q is unitary, the rescaled matricesΘℓ have Frobenius norm|||Θℓ|||F = δ. We now prove that

|||Θℓ−Θk|||F ≥ δ for all ℓ 6= k

with probability at least 7/8. Again, sinceQ is unitary, it suffices to show that|||Θ̃ℓ− Θ̃k|||F ≥
√

rd
for any pairℓ 6= k. We have

1
rd

|||Θ̃k− Θ̃ℓ|||2F =
1
rd

r

∑
i=1

d

∑
j=1

(
Θ̃ℓ

i j − Θ̃k
i j

)2
.

This is a sum ofrd i.i.d. variables, each bounded by 4. The mean of the sum is 2, so that the
Hoeffding bound implies that

P
[ 1
rd

|||Θ̃k− Θ̃ℓ|||2F ≤ 2− t
]
≤ 2exp

(
− rd t2/32

)
.

1687



NEGAHBAN AND WAINWRIGHT

Since there are less than(M′)2 pairs of matrices in total, settingt = 1 yields

P
[

min
ℓ,k=1,...,M′

|||Θ̃ℓ− Θ̃k|||2F
rd

≥ 1
]
≥ 1−2exp

(
− rd

32
+2logM′) ≥ 7

8
,

where we have used the facts logM′ = rd
128 andd ≥ 10. Recalling the definition ofΘℓ, we conclude

that

P
[

min
ℓ,k=1,...,M′

|||Θℓ−Θk|||2F ≥ δ2]≥ 7
8
.

We now establish bounds onαsp(Θℓ) and |||Θℓ|||2. We first prove that for any fixed indexℓ ∈
{1,2, . . . ,M′}, our construction satisfies

P

[
αsp(Θℓ)≤

√
32logd

]
≥ 3

4
. (34)

Indeed, for any pair of indices(i, j), we have|Θℓ
i j |= |〈qi , v j〉|, whereqi ∈R

d is drawn from the uni-

form distribution over thed-dimensional sphere, and‖v j‖2 =
√

r δ√
rd

= |||Θℓ|||F√
d

. By Levy’s theorem
for concentration on the sphere (Ledoux, 2001), we have

P
[
|〈qi , v j〉| ≥ t

]
≤ 2exp

(
− d2

8|||Θℓ|||2F
t2).

Settingt = s/d and taking the union bound over alld2 indices, we obtain

P
[
d‖Θℓ‖∞ ≥ s

]
≤ 2exp

(
− 1

8|||Θℓ|||2F
s2+2logd

)
.

This probability is less than 1/2 for s= |||Θℓ|||F
√

32logd andd ≥ 2, which establishes the interme-
diate claim (34).

Finally, we turn to property (d). For each fixedℓ, by definition ofΘℓ and the unitary nature ofQ,
we have|||Θℓ|||2 = δ√

rd
|||U |||2, whereU ∈ {−1,+1}r×d is a random matrix with i.i.d. Rademacher

(and hence sub-Gaussian) entries. Known results on sub-Gaussian matrices (Vershynin, 2012) yield

P

[ δ√
rd

|||U |||2 ≤
2δ√
rd

(√
r +

√
d
)]

≥ 1−2exp
(
− 1

4
(
√

r +
√

d)2) ≥ 3
4

for d ≥ 10. Sincer ≤ d, we conclude that

P

[
|||Θℓ|||2 ≤

4δ√
r

]
≥ 3

4
. (35)

By combining the bounds (34) and (35), we find that for each fixedℓ= 1, . . . ,M′, we have

P

[
|||Θℓ|||2 ≤

4δ√
r
,

αsp(Θℓ)

|||Θ|||F
≤
√

32logd

]
≥ 1

2
. (36)

Consider the eventE that there exists a subsetS⊂ {1, . . . ,M′} of cardinalityM = 1
4M′ such that

|||Θℓ|||2 ≤ 4
δ√
n
, and

αsp(Θℓ)

|||Θ|||F
≤
√

32logd for all ℓ ∈ S.
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By the bound (36), we have

P[E ]≥
M′

∑
k=M

(
M′

k

)
(1/2)k.

Since we have chosenM < M′/2, we are guaranteed thatP[E ]≥ 1/2, thereby completing the proof.

Appendix B. Proof of Lemma 3

We first observe that for anyΓ ∈ C
′(n;c0) with ‖Γ‖∞ = 1

d , we have

|||Γ|||2F ≥ c0 |||Γ|||1
√

d logd
n

≥ c0|||Γ|||F
√

d logd
n

,

whence|||Γ|||F ≥ c0

√
d logd

n . Accordingly, recalling the definition (29), it suffices to restrict our

attention to setsB(D) with D ≥ µ := c0

√
d logd

n . Forℓ= 1,2, . . . andα = 7
6, define the sets

Sℓ :=
{

Γ ∈ C
′(n;c0) | ‖Γ‖∞ =

1
d
, αℓ−1µ≤ |||Γ|||F ≤ αℓµ, and|||Γ|||1 ≤ ρ(αℓµ)

}
. (37)

From the definition (29), note that by construction, we haveSℓ ⊂ B(αℓµ).
Now if the eventE(Xn

′) holds for some matrixΓ, then this matrixΓ must belong to some set
Sℓ. WhenΓ ∈ Sℓ, then we are guaranteed the existence of a matrixΓ ∈B(αℓµ) such that

∣∣‖Xn
′(Γ)‖2√

n
−|||Γ|||F

∣∣> 7
8
|||Γ|||F +

48L√
n

≥ 7
8

αℓ−1µ+
48L√

n

=
3
4

αℓµ+
48L√

n
,

where the final equality follows sinceα = 7/6. Thus, we have shown that when the violating matrix
Γ ∈ Sℓ, then eventE(Xn

′;αℓµ) must hold. Since any violating matrix must fall into some setSℓ, the
union bound implies that

P[E(Xn
′)]≤

∞

∑
ℓ=1

P[E(Xn
′;αℓµ)]

≤ c1

∞

∑
ℓ=1

exp
(
−c2nα2ℓµ2)

≤ c1

∞

∑
ℓ=1

exp
(
−2c2 log(α)ℓnµ2)

≤ c1
exp(−c′2nµ2)

1−exp(−c′2nµ2)
.

Sincenµ2 = Ω(d logd), the claim follows.
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Appendix C. Proof of Lemma 4

For a fixed matrixΓ, define the functionFΓ(Xn
′) = 1√

n‖Xn
′(Γ)‖2. We prove the lemma in two parts:

first, we establish that for any fixedΓ, the functionFΓ satisfies the tail bound

P
[
|FΓ(Xn

′)−|||Γ|||F | ≥ δ+
48L√

n

]
≤ 4exp

(
− nδ2

4L2

)
. (38)

We then show that there exists aδ-covering ofB(D) such that

logN(δ)≤ 36
(
ρ(D)/δ

)2
d. (39)

Combining the tail bound (38) with the union bound, we obtain

P
[

max
k=1,...,N(δ)

|FΓ(Xn
′)−|||Γk|||F | ≥ δ+

16L√
n

]
≤ 4exp

(
− nδ2

4L2 + logN(δ)
)

≤ 4exp

{
− nδ2

4L2 +36
(
ρ(D)/δ

)2
d

}

where the final inequality uses the bound (39). Since Lemma 4 is based on thechoiceδ = D/8, it
suffices to show that

nD2

512L2 ≥ 36
(
ρ(D)/(D/8)

)2
d

= 36

(
8D
c0L

√
n

d logd

)2

d

=
2304D2

c2
0L2

n
logd

.

Noting that the terms involvingD2, L2, andn both cancel out, we see that for any fixedc0, this
inequality holds once logd is sufficiently large. By choosingc0 sufficiently large, we can ensure
that it holds for alld ≥ 2.

It remains to establish the two intermediate claims (38) and (39).

C.1 Upper Bounding the Covering Number (39)

We start by proving the upper bound (39) on the covering number. To begin, let Ñ(δ) denote the
δ-covering number (in Frobenius norm) of the nuclear norm ballB1(ρ(D)) =

{
∆ ∈R

d×d | |||∆|||1 ≤
ρ(D)

}
, and letN(δ) be the covering number of the setB(D). We first claim thatN(δ)≤ Ñ(δ). Let

{Γ1, . . . ,ΓÑ(δ)} be aδ-cover ofB1(ρ(D)), From Equation (31), note that the setB(D) is contained
within B1(ρ(D)); in particular, it is obtained by intersecting the latter set with the set

S :=
{

∆ ∈ R
d×d | ‖∆‖∞ ≤ 1

d
, |||∆|||F ≤ D

}
.
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Letting ΠS denote the projection operator under Frobenius norm onto this set, we claimthat
{ΠS (Γ j), j = 1, . . . , Ñ(δ)} is a δ-cover ofB(D). Indeed, sinceS is non-empty, closed and con-
vex, the projection operator is non-expansive (Bertsekas, 1995), and thus for anyΓ ∈ B(D) ⊂ S ,
we have

|||ΠS (Γ j)−Γ|||F = |||ΠS (Γ j)−ΠS (Γ)|||F ≤ |||Γ j −Γ|||F ,

which establishes the claim.
We now upper bound̃N(δ). Let G ∈ R

d×d be a random matrix with i.i.d.N(0,1) entries. By
Sudakov minoration (cf. Theorem 5.6 in Pisier, 1989), we have

√
logÑ(δ) ≤ 3

δ
E
[

sup
|||∆|||1≤ρ(D)

〈〈G, ∆〉〉
]

≤ 3ρ(D)

δ
E
[
|||G|||2

]
,

where the second inequality follows from the duality between the nuclear andoperator norms. From
known results on the operator norms of Gaussian random matrices (Davidson and Szarek, 2001),
we have the upper boundE[|||G|||2]≤ 2

√
d, so that

√
logÑ(δ) ≤ 6ρ(D)

δ
√

d,

thereby establishing the bound (39).

C.2 Establishing the Tail Bound (38)

Recalling the definition of the operatorXn
′, we have

FΓ(Xn
′) =

1√
n

{ n

∑
i=1

〈〈X̃(i), Γ〉〉2}1/2

=
1√
n

sup
‖u‖2=1

n

∑
i=1

ui〈〈X̃(i), Γ〉〉

=
1√
n

sup
‖u‖2=1

n

∑
i=1

uiYi

where we have defined the random variablesYi := 〈〈X̃(i), Γ〉〉. Note that eachYi is zero-mean, and
bounded by 2L since

|Yi |= |〈〈X̃(i), Γ〉〉|
≤
(
∑
a,b

|X̃(i)|ab
)
‖Γ‖∞ ≤ 2L.

where we have used the facts that‖Γ‖∞ ≤ 2/d, and∑a,b |X̃(i)|ab ≤ L d, by definition of the matrices
X̃(i).

Therefore, applying Corollary 4.8 from Ledoux (2001), we concludethat

P
[
|FΓ(Xn

′)−E[FΓ(Xn
′)]| ≥ δ+

32L√
n

]
≤ 4exp

(
− nδ2

4L2

)
.
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The same corollary implies that

∣∣
√
E[F2

Γ (Xn
′)]−E[FΓ(Xn

′)]
∣∣≤ 16L√

n
.

SinceE[F2
Γ (Xn

′)] = |||Γ|||2F , the tail bound (38) follows.

Appendix D. Proof of Lemma 5

From the proof of Lemma 4, recall the definitionFΓ(Xn
′) = 1√

n‖Xn
′(Γ)‖2 whereXn

′ is the random

sampling operator defined by then matrices(X̃(1), . . . , X̃(n)). Using this notation, our goal is to
bound the function

G(Xn
′) := sup

∆∈D(δ,R)
F∆(Xn

′),

where we recall thatD(δ,R) :=
{

∆ ∈ R
dr×dc | |||∆|||F ≤ δ, |||∆|||1 ≤ 2ρ(D), ‖∆‖∞ ≤ 2

d

}
. Ultimately,

we will setδ = D
8 , but we useδ until the end of the proof for compactness in notation.

Our approach is a standard one: first show concentration ofG around its expectationE[G(Xn
′)],

and then upper bound the expectation. We show concentration via a bounded difference inequality;
sinceG is a symmetric function of its arguments, it suffices to establish the bounded difference

property with respect to the first co-ordinate. In order to do so, consider a second operator̃Xn
′

defined by the matrices(Z(1), X̃(2), . . . , X̃(n)), differing fromXn
′ only in the first matrix. Given the

pair (Xn
′, X̃n

′), we have

G(Xn
′)−G(X̃n

′) = sup
∆∈D(δ,R)

F∆(Xn
′)− sup

Θ∈D(δ,R)
FΘ(X̃n

′)

≤ sup
∆∈D(δ,R)

[
F∆(Xn

′)−F∆(X̃n
′)
]

≤ sup
∆∈D(δ,R)

1√
n
‖Xn

′(∆)− X̃n
′(∆)‖2

= sup
∆∈D(δ,R)

1√
n

∣∣〈〈X̃(1)−Z(1), ∆〉〉
∣∣.

For any fixed∆ ∈D(δ,R), we have
∣∣〈〈X̃(1)−Z(1), ∆〉〉

∣∣≤ 2Ld‖∆‖∞ ≤ 4L,

where we have used the fact that the matrixX̃(1) −Z(1) is non-zero in at most two entries with
values upper bounded by 2Ld. Combining the pieces yieldsG(Xn

′)−G(X̃n
′)≤ 4L√

n. Since the same

argument can be applied with the roles ofXn
′ andX̃n

′ interchanged, we conclude that|G(Xn
′)−

G(X̃n
′)| ≤ 4L√

n. Therefore, by the bounded differences variant of the Azuma-Hoeffding inequality
(Ledoux, 2001), we have

P
[
|G(Xn

′)−E[G(Xn
′)]| ≥ t

]
≤ 2exp

(
− nt2

32L2

)
. (40)
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Next we bound the expectation. First applying Jensen’s inequality, we have

(E[G(Xn
′)])2 ≤ E[G2(Xn

′)]

= E
[

sup
∆∈D(δ,R)

1
n

n

∑
i=1

〈〈X̃(i), ∆〉〉2]

= E

[
sup

∆∈D(δ,R)

{
1
n

n

∑
i=1

[
〈〈X̃(i), ∆〉〉2−E[〈〈X̃(i), ∆〉〉2]

]
+ |||∆|||2F

}]

≤ E

[
sup

∆∈D(δ,R)

{
1
n

n

∑
i=1

[
〈〈X̃(i), ∆〉〉2−E[〈〈X̃(i), ∆〉〉2]

]}]
+δ2,

where we have used the fact thatE[〈〈X̃(i), ∆〉〉2 = |||∆|||2F ≤ δ2. Now a standard symmetrization
argument (Ledoux and Talagrand, 1991) yields

EXn
′ [G2(Xn

′)] ≤ 2EXn
′,ε
[

sup
∆∈D(δ,R)

1
n

n

∑
i=1

εi〈〈X̃(i), ∆〉〉2]+δ2,

where{εi}n
i=1 is an i.i.d. Rademacher sequence. Since|〈〈X̃(i), ∆〉〉| ≤ 2L for all i, the Ledoux-

Talagrand contraction inequality (p. 112, Ledoux and Talagrand, 1991) implies that

E[G2(Xn
′)] ≤ 16L E

[
sup

∆∈D(δ,R)

{1
n

n

∑
i=1

εi〈〈X̃(i), ∆〉〉
}]

+δ2.

By the duality between operator and nuclear norms, we have

∣∣1
n

n

∑
i=1

εi〈〈X̃(i), ∆〉〉
∣∣≤ |||1

n

n

∑
i=1

εiX̃
(i)|||2 |||∆|||1,

and hence, since|||∆|||1 ≤ ρ(D) for all ∆ ∈D(δ,R), we have

E[G2(Xn
′)]≤ 16Lρ(D) E

[
|||1

n

n

∑
i=1

εiX̃
(i)|||2

]
+δ2. (41)

It remains to bound the operator normE
[
|||1

n ∑n
i=1 εiX̃(i)|||2

]
. The following lemma, proved in

Appendix E, provides a suitable upper bound:

Lemma 6 We have the upper bound

E
[
|||1

n

n

∑
i=1

εiX̃
(i)|||2

]
≤ 10 max

{
√

d logd
n

,
Ld logd

n

}
.

Thus, as long asn= Ω(Ld logd), combined with the earlier bound (41), we conclude that

E[G(Xn
′)]≤

√
E[G2(Xn

′)]≤
[
160Lρ(D)

√
d logd

n
+δ2]1/2

,

where we have used the fact thatL ≥ 1. By definition ofρ(D), we have

160L2 ρ(D)

√
d logd

n
=

160
c0

D2 ≤
(5D

16

)2
,
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where the final inequality can be guaranteed by choosingc0 sufficiently large.
Consequently, recalling our choiceδ = D/8 and using the inequality

√
a2+b2 ≤ |a|+ |b|, we

obtain

E[G(Xn
′)]≤ 5

16
D+

D
8
=

7
16

D.

Finally, settingt = D
16 in the concentration bound (40) yields

G(Xn
′)≤ D

16
+

7
16

D =
D
2

with probability at least 1−2exp
(
−c′ nD2

L2

)
as claimed.

Appendix E. Proof of Lemma 6

We prove this lemma by applying a form of Ahlswede-Winter matrix bound (2002), as stated in
Appendix F, to the matrixY(i) := εiX̃(i). We first compute the quantities involved in Lemma 7. Note
thatY(i) is a zero-mean random matrix, and satisfies the bound

|||Y(i)|||2 = d
1√

Rj(i)
√

Ck(i)
|||εi ej(i)eT

k(i)|||2 ≤ Ld.

Let us now compute the quantitiesσi in Lemma 7. We have

E
[
(Y(i)T)Y(i)]= E

[
d2

Rj(i)Ck(i)
ek(i)e

T
k(i)

]
= dId×d

and similarly,E
[
Y(i) (Y(i))T

]
= dId×d, so that

σ2
i = max

{
|||E

[
Y(i) (Y(i))T]|||2, |||E

[
(Y(i))T Y(i)]|||2

}
= d.

Thus, applying Lemma 7 yields the tail bound

P
[
|||

n

∑
i=1

εiX̃
(i)|||2 ≥ t

]
≤ 2d max

{
exp(− t2

4nd
), exp(− t

2Ld
)
}
.

Settingt = nδ, we obtain

P
[
|||1

n

n

∑
i=1

εiX̃
(i)|||2 ≥ δ

]
≤ 2d max

{
exp(−nδ2

4d
),exp(− nδ

2Ld
)
}
.

Recall that for any non-negative random variableT, we haveE[T] =
∫ ∞

0 P[T ≥ s]ds. Applying
this fact toT := |||1

n ∑n
i=1 εiX̃(i)|||2 and integrating the tail bound, we obtain

E
[
|||1

n

n

∑
i=1

εiX̃
(i)|||2

]
≤ 10 max

{
√

d logd
n

,
Ld logd

n

}
.
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Appendix F. Ahlswede-Winter Matrix Bound

Here we state a Bernstein version of the Ahlswede-Winter (2002) tail bound for the operator norm
of a sum of random matrices. The version here is a slight weakening (butsufficient for our purposes)
of a result due to Recht (2011); we also refer the reader to the chapterof Vershynin (2012), and the
strengthened results provided by Tropp (2010).

Let Y(i) be independentdr ×dc zero-mean random matrices such that|||Y(i)|||2 ≤ M, and define
σ2

i := max
{
|||E[(Y(i))TY(i)]|||2, |||E[Y(i)(Y(i))T ]|||2} as well asσ2 := ∑n

i=1 σ2
i .

Lemma 7 We have

P
[
|||

n

∑
i=1

Y(i)|||2 ≥ t
]
≤ (dr ×dc) max

{
exp(−t2/(4σ2), exp(− t

2M
)
}
.

As noted by Vershynin (2009), the same bound also holds under the assumption that eachY(i) is
sub-exponential with parameterM = ‖Y(i)‖ψ1. Here we are using the Orlicz norm

‖Z‖ψ1 := inf{t > 0 | E[ψ(|Z|/t)]< ∞},

defined by the functionψ1(x) = exp(x)−1, as is appropriate for sub-exponential variables (e.g., see
Ledoux and Talagrand, 1991).
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