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1. Introduction. Let

(1.1) {Ai}ni=1

be a finite sequence of sets. If a1 ∈ A1, . . . , an ∈ An, and a1, . . . , an are
pairwise different, then we call {ai}ni=1 a system of distinct representatives
(abbreviated to SDR) of (1.1). Apparently (1.1) has an SDR provided that

(1.2) |Ai| ≥ i for all i = 1, . . . , n.

If A1, . . . , An are contained in a finite set {x1, . . . , xk} with cardinality k,
then (1.1) has as many SDR’s as {A∗i }ni=1 does where A∗i = {1 ≤ j ≤ k :
xj ∈ Ai} ⊆ {1, . . . , k}.

Let A1, . . . , An be finite subsets of an additive abelian group G. Their
sumset is given by

(1.3) A1 + . . .+An = {a1 + . . .+ an : a1 ∈ A1, . . . , an ∈ An}.
If we require the summands to be distinct, then we are led to the restricted
sumset

S({Ai}ni=1) = S(A1, . . . , An)(1.4)

=
{ n∑

i=1

ai : {ai}ni=1 forms an SDR of {Ai}ni=1

}
.

Of course there are many other kinds of restricted sumsets. An interesting
problem is to provide a nontrivial lower bound for the cardinality of a re-
stricted sumset of A1, . . . , An. In the light of the fundamental theorem on
finitely generated abelian groups, it suffices to work within the ring Z of
integers instead of a torsionfree abelian group G.
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For a finite subset A of Z, in 1995 M. B. Nathanson [N1] obtained the
inequality

(1.5) |n∧A| ≥ n|A| − n2 + 1

and determined when equality holds. (By n∧A we mean S({Ai}ni=1) with
A1 = . . . = An = A.) Soon after this, Y. Bilu [B] gave the same result inde-
pendently. Let p be a prime. In 1994 J. A. Dias da Silva and Y. O. Hami-
doune [DH] proved the following generalization of a conjecture of P. Erdős
and H. Heilbronn (cf. [EH] and [G]):

(1.6) |n∧A| ≥ min{p, n|A| − n2 + 1} for any A ⊆ Z/pZ.
By the so-called polynomial method, in 1996 N. Alon, M. B. Nathanson

and I. Z. Ruzsa [ANR] got the following result: Let F be any field of char-
acteristic p and A1, . . . , An its subsets with 0 < |A1| < . . . < |An| < ∞,
then

(1.7) |S({Ai}ni=1)| ≥ min
{
p,

n∑

i=1

|Ai| −
n(n+ 1)

2
+ 1
}
.

Their method does not allow one to determine when the bound can be
attained. Provided that A1, . . . , An are finite subsets of Z with 0 < |A1| <
. . . < |An|, we have

(1.8) |S({Ai}ni=1)| ≥ 1 +
n∑

i=1

(|Ai| − i).

A purely combinatorial proof of this inequality was given by Hui-Qin Cao
and Zhi-Wei Sun [CS], where the authors obtained some necessary conditions
for the equality case.

Now we introduce our basic notations in this paper. For A ⊆ Z we put
−A = {−x : x ∈ A} and a + A = A + a = {a + x : x ∈ A} for a ∈ Z. An
arithmetic progression A is a set of the form {a, a + d, . . . , a + kd} where
a and d, k > 0 are integers; we use d(A) to denote the (common) difference
d of A. (A set having a single element is not considered as an arithmetic
progression.) For the sake of convenience, AP will denote the class of all
arithmetic progressions. For a, b ∈ Z we put

(a, b) = {x ∈ Z : a < x < b}, [a, b] = {x ∈ Z : a ≤ x ≤ b},
[a, b) = {x ∈ Z : a ≤ x < b}, (a, b] = {x ∈ Z : a < x ≤ b}.

In this paper we study lower bounds for cardinalities of various restricted
sumsets of subsets of Z. We use the powerful techniques developed in [CS].

In the next section we will prove the following general result on linearly
restricted sums of subsets of Z.
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Theorem 1.1. Let A1, . . . , An be finite subsets of Z, and V a set of
tuples (s, t, µ, ν, w) where 1 ≤ s, t ≤ n, s 6= t, µ, ν ∈ Z∗ = Z\{0} and w ∈ Z.
Set

(1.9) C = {a1 +. . .+an : ai ∈ Ai, and µai+νaj 6= w if (i, j, µ, ν, w) ∈ V }.
If each Vi = {(s, t, µ, ν, w) ∈ V : i ∈ {s, t}} has cardinality less than |Ai|,
then

(1.10) |C| ≥
n∑

i=1

|Ai| − 2|V | − n+ 1 = 1 +
n∑

i=1

(|Ai| − |Vi| − 1) > 0.

Remark 1.1. If we replace a1 + . . . + an by λ1a1 + . . . + λnan in the
definition (1.9) of C where λ1, . . . , λn ∈ Z∗, then Theorem 1.1 remains valid.
For, when (i, j, µ, ν, w) ∈ V , ai ∈ Ai and aj ∈ Aj , we have

µai + νaj = w ⇔ λiλj(µai + νaj) = λiλjw ⇔ µ′(λiai) + ν′(λjaj) = w′

where µ′ = λjµ, ν′ = λiν and w′ = λiλjw.

Now we give several consequences of Theorem 1.1.

Corollary 1.1. Let A1, . . . , An be subsets of Z which are nonempty
and finite. Then

(1.11) |A1 + . . .+ An| ≥ |A1|+ . . .+ |An| − n+ 1.

Proof. Just apply Theorem 1.1 with V = ∅.
Remark 1.2. Corollary 1.1 is a known result. Equality in (1.11) holds

if and only if all those Ai with |Ai| ≥ 2 are arithmetic progressions with the
same difference. See Theorems 1.4 and 1.5 of [N2].

Corollary 1.2. Let A1, . . . , An be finite subsets of Z such that |Ai| ≥
|Ji| for all i = 1, . . . , n where Ji = {1 ≤ j ≤ n : Ai ∩ Aj 6= ∅}. Then

(1.12) |S({Ai}ni=1)| ≥ 1 +
n∑

i=1

(|Ai| − |Ji|).

Proof. Put V = {(i, j, 1,−1, 0) : 1 ≤ i < j ≤ n & Ai ∩Aj 6= ∅}. Then

|Vi| = |{1 ≤ j ≤ n : j 6= i & Ai ∩Aj 6= ∅}| = |Ji \ {i}| < |Ai| for i ∈ [1, n].

Applying Theorem 1.1 we immediately get the desired inequality.

Corollary 1.3. Let Λ,A1, . . . , An be finite subsets of Z such that

|Ai| >
∑

j 6=i
|(Ai + Aj) ∩ Λ| for all i = 1, . . . , n.

Let λ1, . . . , λn ∈ Z∗ and

L = {λ1a1 + . . .+ λnan : a1 ∈ A1, . . . , an ∈ An, ai + aj 6∈ Λ if i 6= j}.
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Then
n∑

i=1

|Ai| − |L| ≤ 2
∑

1≤i<j≤n
|(Ai + Aj) ∩ Λ|+ n− 1 ≤ (n|Λ|+ 1)(n− 1).

Proof. Set

V = {(i, j, 1, 1, λ) : 1 ≤ i < j ≤ n & λ ∈ (Ai + Aj) ∩ Λ}.
Then

|V | =
∑

1≤i<j≤n
|(Ai + Aj) ∩ Λ| ≤

(
n

2

)
|Λ|,

and |Vi| =
∑
j 6=i |(Ai + Aj) ∩ Λ| for i = 1, . . . , n. Thus the required result

follows from Theorem 1.1 and Remark 1.1.

Corollary 1.4. Let A1, . . . , An be finite subsets of Z, and

S = {a1 + . . .+ an : a1 ∈ A1, . . . , an ∈ An, ai 6= µijaj + νij if i 6= j},
where µij ∈ Z∗ and νij ∈ Z. If |Ai| ≥ 2n− 1 for all i = 1, . . . , n, then

|S| ≥
n∑

i=1

|Ai| − 2n2 + n+ 1.

Proof. Let V = {(i, j, 1,−µij, νij) : 1 ≤ i, j ≤ n & i 6= j}. If 1 ≤ i ≤ n
then |Vi| = n−1+(n−1) = 2n−2. Clearly 2|V |+n−1 = 2(n2−n)+n−1 =
2n2 − n− 1. So it suffices to apply Theorem 1.1.

Remark 1.3. For 1 ≤ i < j ≤ n let µij = 1, µji = −1 and νij = νji = 0.
Then the set S given in Corollary 1.4 becomes {∑n

i=1 ai : ai ∈ Ai and all
the a2

i are distinct}.
Corollary 1.5. For each i = 1, . . . , n let Ai ⊆ Z and 3 ≤ |Ai| < ∞.

Then the set

{a1 + . . .+ an : ai ∈ Ai, ai 6= ai+1 if i < n, and an 6= a1}
has cardinality at least

∑n
i=1 |Ai| − 3n+ 1.

Proof. Let V = {(i, i + 1, 1,−1, 0) : i ∈ [1, n)} ∪ {(n, 1, 1,−1, 0)}. Then
|V | = n, and |Vi| = 2 < |Ai| for all i ∈ [1, n]. So the desired result follows
immediately from Theorem 1.1.

Let F be a field of characteristic p where p is a prime, and A1, . . . , An its
finite subsets satisfying (1.2). Then Theorem 3.2 of [ANR] essentially asserts
that

|S({Ai}ni=1)| ≥ min
{
p, 1 +

n∑

i=1

min
i≤j≤n

(|Aj | − j)
}
.

In the last section we will show the following general result by our com-
binatorial method.
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Theorem 1.2. Let A1, . . . , An be finite subsets of Z with (1.2) and |A1|
≤ . . . ≤ |An|. Then

(1.13) |S({Ai}ni=1)| ≥ 1 +
n∑

i=1

min
i≤j≤n

(|Aj | − j).

In the equality case,
⋃m
i=1 Ai = Am if m lies in

(1.14) M = {1 ≤ i ≤ n : |Ai| − i < |Aj | − j for all j ∈ (i, n]},
and providing |Ai| > i for all i ∈ [1, n] the set

⋃n
i=1 Ai = An lies in AP with

the only exceptions as follows:

(i) n = 1 or |An| = n+ 1;
(ii) n = 2, |A1| ∈ {3, 4} and A2 has the form

(1.15) {x1, x2, x3, x4} with x1 < x2 < x3 < x4 and x4 − x3 = x2 − x1;

(iii) n > 1, |An−1| = n, An−1 and An\An−1 belong to AP, and d(An−1) =
d(An \An−1).

Remark 1.4. Let A1, . . . , An be finite subsets of Z with ki = |Ai| ≥ i for
all i ∈ [1, n]. Providing ks > ks+1 for some s ∈ [1, n), we still have inequality
(1.13). To see this, we exchange As and As+1, i.e. we arrange A1, . . . , An in
the order

A∗1 = A1, . . . , A∗s−1 = As−1, A∗s = As+1,

A∗s+1 = As, A∗s+2 = As+2, . . . , A∗n = An.

Clearly
|A∗s+1| − (s+ 1) = ks − s− 1 > ks+1 − (s+ 1)

and

min{|A∗s| − s, |A∗s+1| − (s+ 1)} = min{ks+1 − s, ks − s− 1}
= ks+1 − s > ks+1 − (s+ 1)

≥ min{ks − s, ks+1 − (s+ 1)},
thus

min
i≤j≤n

(|A∗j | − j) ≥ min
i≤j≤n

(kj − j) for all i = 1, . . . , n.

The following example shows that in Theorem 1.2 the lower bound (in
terms of cardinalities |A1|, . . . , |An|) is best possible.

Example 1.1. Let k1, . . . , kn be integers for which k1 ≤ . . . ≤ kn and
ki ≥ i for all i = 1, . . . , n. Let di = mini≤j≤n(kj − j) for each i = 1, . . . , n.
Apparently d1 ≤ . . . ≤ dn. Put A1 = [0, k1−1], . . . , An = [0, kn−1]. Observe
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that S({Ai}ni=1) contains the following sets:

0 + 1 + 2 + . . .+ (n− 3) + (n− 2) + [n− 1, n− 1 + dn],

0 + 1 + 2 + . . .+ (n− 3) + [n− 2, n− 2 + dn−1] + (n− 1 + dn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 + [1, 1 + d2] + (2 + d3) + . . .+ (n− 2 + dn−1) + (n− 1 + dn),

[0, d1] + (1 + d2) + (2 + d3) + . . .+ (n− 2 + dn−1) + (n− 1 + dn).

Therefore
S({Ai}ni=1) ⊇ [0 + 1 + . . .+ (n− 1), d1 + (1 + d2) + . . .+ (n− 1 + dn)]

=
n(n− 1)

2
+
[
0,

n∑

i=1

di

]
.

Suppose that maxS({Ai}ni=1) =
∑n
i=1 xi where x1 < . . . < xn and these n

integers can be rearranged to form an SDR of {Ai}ni=1. Choose a permutation
σ on {1, . . . , n} such that xσ(i) ∈ Ai. When 1 ≤ i ≤ n, there exists a j ∈ [i, n]
such that σ−1(j) 6∈ (i, n] and hence xj ∈ Aσ−1(j) ⊆ Ai. So xi ∈ Ai for every
i = 1, . . . , n. If xn < kn − 1, then by substituting kn − 1 for xn we would
obtain an SDR of {Ai}ni=1 with the corresponding sum larger than

∑n
i=1 xi.

Thus xn = kn−1 = n−1+dn. Let 1 ≤ i < n and assume that xj = j−1+dj
for all j ∈ (i, n]. When i < j ≤ n, we have xj = j − 1 + dj ≥ i + di. If
xi < i− 1 + di then by substituting i− 1 + di ∈ Ai for xi we would obtain
a sum larger than x1 + . . .+ xn, thus xi = i− 1 + di. By the above,

maxS({Ai}ni=1) =
n∑

i=1

xi =
n∑

i=1

(i− 1 + di) =
n(n− 1)

2
+

n∑

i=1

di.

Obviously

minS({Ai}ni=1) = 0 + 1 + . . .+ (n− 1) =
n(n− 1)

2
.

So we also have

S({Ai}ni=1) ⊆ n(n− 1)
2

+
[
0,

n∑

i=1

di

]
.

Therefore

S({Ai}ni=1) =
[
n(n− 1)

2
,
n(n− 1)

2
+

n∑

i=1

di

]

and hence |S({Ai}ni=1)| = 1 +
∑n
i=1 di.

Remark 1.5. Example 1.1 was realized by Alon, Nathanson and Ruzsa
[ANR], but they did not go into details. Let k1, . . . , kn and A1, . . . , An be
as in Example 1.1. For i = 1, . . . , n put A∗i = {a + jd : j ∈ [0, ki)} where
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a ∈ Z and d ∈ Z∗. By Example 1.1,

|S({A∗i }ni=1)| = |S({Ai}ni=1)| = 1 +
n∑

i=1

min
i≤j≤n

(|A∗j | − j).

As for the exceptions (i) and (ii), here we give

Example 1.2. Let A be a finite subset of Z with |A| ≥ n ≥ 1, and
A1, . . . , An subsets of Z with

⋃n
i=1 Ai = An = A. Suppose that |Ai| − i ≥

|An| − n for all i = 1, . . . , n (i.e. the set M defined by (1.14) only contains
n). If {ai}ni=1 is an SDR of {Ai}ni=1, then {a1, . . . , an} is a subset of A with
cardinality n. If S ⊆ A and |S| = n, then for each i ∈ [1, n] we have

|S ∩ Ai| ≥ |S| − |A \ Ai| = n− (|An| − |Ai|) ≥ i,
therefore {S ∩ Ai}ni=1 has an SDR {ai}ni=1 and hence S = {a1, . . . , an}.
Thus S({Ai}ni=1) = n∧A, (1.13) is equivalent to (1.5), and the equality
case of (1.13) is the same as that of (1.5). A result of Nathanson says that
|n∧A| = n|A| − n2 + 1 if and only if n ∈ {1, |A| − 1, |A|}, or A ∈ AP,
or n = 2 and A can be written in the form (1.15). (See Section 3 of [N1]
and Section 1.3 of [N2].) Thus, if n = 1 or |A| = n + 1, whether A ∈ AP
or not, the two sides of (1.13) are always equal; this corresponds to the
exception (i). In the case n = 2, if A2 = A is of the form (1.15), then
|A1| ∈ {|A2| − 1, |A2|} = {3, 4} and

|S({Ai}2i=1)| = |2∧A| = 2|A| − 22 + 1 = 5

= 1 + min{|A1| − 1, |A2| − 2}+ |A2| − 2

though we may not have A2 = A ∈ AP.

For the equality case of (1.13), Example 1.2 shows that the necessary
conditions given by Theorem 1.2 are also sufficient in the case M = {n}.

From Theorem 1.2 we have

Corollary 1.6. Let A1, . . . , An be finite subsets of Z with |A1| ≤ . . . ≤
|An| and min1≤i≤n(|Ai| − i) = 0. Put m = max{1 ≤ i ≤ n : |Ai| = i}.
Suppose that the two sides of (1.13) are equal. Then An \ Am ∈ AP unless
we have one of the following :

(i′) m ∈ {n− 1, n} or |An| = n+ 1;
(ii′) m = n − 2, |An−1| ∈ {n + 1, n + 2} and An \ An−2 is of the form

(1.15);
(iii′) m < n − 1, |An−1| = n, An−1 \ Am and An \ An−1 lie in AP, and

d(An−1 \ Am) = d(An \ An−1).

Proof. Write M = {m1, . . . ,ml} where m0 = 0 < m1 < . . . < ml = n.
Clearly m1 = m. For any j ∈ [1, l] set A∗i = Amj for all i ∈ (mj−1,mj ]. By
Theorem 1.2, Ai ⊆ Amj for all i = 1, . . . ,mj . In the light of Example 1.2,
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any mj −mj−1 distinct elements of Amj can be arranged to form an SDR
of {Ai}mj−1<i≤mj . So

S({Ai}ni=1) = S({A∗i }ni=1)

=
{ ∑

x∈Am
x+

∑

m<i≤n
ai : ai ∈ A∗i \ Am, all the ai are distinct

}

=
∑

x∈Am
x+ S({A∗i \Am}i∈(m,n])

where we regard S(∅) as {0}. Observe that
n∑

i=1

min
i≤j≤n

(|Aj | − j) =
l∑

j=1

∑

mj−1<i≤mj
(|Amj | −mj)

=
∑

m<i≤n
min
i≤j≤n

(|A∗j | − j)

=
∑

m<i≤n
min
i≤j≤n

(|A∗j \Am| − (j −m)).

Thus
|S({A∗i \Am}i∈(m,n])| = |S({Ai}ni=1)|

= 1 +
∑

m<i≤n
min
i≤j≤n

(|A∗j \Am| − (j −m)).

If i ∈ (m,n], then |Ai|− i > |Am|−m = 0 and hence |A∗i \Am| = |A∗i |−m >
i−m.

Below we assume that m 6= n. Let us apply Theorem 1.2 to the sets
A∗m+1 \ Am, . . . , A∗n \ Am. If A∗n \ Am = An \ Am 6∈ AP, then we are led to
the exceptions corresponding to (i)–(iii) in Theorem 1.2. Obviously

|(m,n]| = 1 ⇔ m = n−1 and |A∗n \Am| = (n−m)+1 ⇔ |An| = n+1.

In the case n−m = 2, A∗n \ Am = An \ An−2 and

|A∗n−1\Am| ∈ |A∗n\Am|+{0,−1} ⇔ |A∗n−1| ∈ |An|+{0,−1} ⇔ n−1 6∈M,

if |A∗n \Am| = |An \An−2| = 4 then |An| = |An−2|+ 4 = n+ 2 and

|A∗n−1 \Am| ∈ {3, 4} ⇔ |An−1| ∈ |An|+ {0,−1} = {n+ 1, n+ 2}.
When n−m > 1, we have

|A∗n−1 \Am| = n−m & (A∗n \Am) \ (A∗n−1 \Am) ∈ AP

⇔ |A∗n−1| = n, A∗n−1 6= A∗n = An & A∗n \A∗n−1 ∈ AP

⇔ n− 1 ∈M, |An−1| = n & An \An−1 ∈ AP

⇔ |An−1| = n & An \An−1 ∈ AP.
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In view of this, we have (i′) or (ii′) or (iii′) if An \ Am 6∈ AP.

Remark 1.6. Clearly (i), (ii) and (iii) correspond to (i′), (ii′) and (iii′)
with m = 0 and A0 = ∅. The proof of Corollary 1.6 shows that in the
equality case of (1.13) those Am with m ∈M are vital.

Let A1, . . . , An be finite subsets of Z satisfying (1.2). Theorem 1.2, to-
gether with Example 1.1, Remark 1.5 and Corollary 1.6, shows that we have
completely determined the set

⋃n
i=1 Ai = An in the equality case of (1.13).

Corollary 1.7. Let A1, . . . , An be finite subsets of Z with (1.2) and
|A1| ≤ . . . ≤ |An|. Then

(1.16) |S({Ai}ni=1)| ≥ 1 +
n∑

i=1

(|Ai|+ hi − n)

where

(1.17) hi = |{|Aj | : 1 ≤ j ≤ n & |Aj | > |Ai|}|.
Furthermore, when the lower bound in (1.16) is reached , Ai ⊆ Am for all
i = 1, . . . ,m if |Am| < |Am+1| − 1 or m = n; also |Al| < . . . < |An|
where l is the least index with |Al| < |Al+1| − 1 or l = n; and providing
min{n, |A1| − 1, . . . , |An| − n} ≥ 2 we have An ∈ AP unless An is of the
form (1.15).

Proof. Let ki = |Ai| for i ∈ [1, n]. When i ∈ [1, n), if ki = ki+1 then
hi = hi+1, if ki ≤ ki+1 − 1 then hi = hi+1 + 1; thus ki + hi ≤ ki+1 + hi+1,
and ki+hi < ki+1+hi+1 if and only if ki < ki+1−1. For i ∈ [1, n], if j ∈ [i, n]
then ki+hi−n ≤ kj+hj−n ≤ kj−j, so ki+hi−n ≤ di = mini≤j≤n(kj−j).
Thus (1.16) holds by Theorem 1.2.

Clearly k1 + h1 = . . . = kl + hl by the above, and d1 = . . . = dl since
k1 − 1 ≥ . . . ≥ kl − l. When ki + hi − n = di for all i = 1, . . . , n, for each
m ∈ [1, n) we have

m ∈M ⇔ dm < dm+1 ⇔ km + hm < km+1 + hm+1 ⇔ km < km+1 − 1,

so l ∈M and kl + hl− n = dl = kl− l, therefore hl = n− l and |Al| < . . . <
|An|. Conversely, if |Al| < . . . < |An|, then kl − l ≤ . . . ≤ kn − n and hence
di = ki− i = ki + hi− n for all i ∈ [l, n]. So ki + hi− n = di for all i ∈ [1, n]
if and only if kl < . . . < kn.

Suppose that the two sides of (1.16) are equal. Then the two sides of
(1.13) are equal, and kl < . . . < kn by the above. In view of Theorem 1.2,⋃m
i=1Ai = Am provided that km < km+1 − 1 or m = n. If n ≥ 2 and

d1 = min1≤i≤n(ki − i) ≥ 2, then either An ∈ AP, or n = 2 and A2 can be
written in the form (1.15).

Remark 1.7. In the case A1 = . . . = An = A, we have h1 = . . . =
hn = 0 and Corollary 1.7 reduces to Theorem 2 of Nathanson [N1]. When
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|A1| < . . . < |An|, Corollary 1.7 is a slight improvement on the main theorem
of Cao and Sun [CS].

Corollary 1.8. Let A1, . . . , An be finite subsets of Z with (1.2). Then

(1.18) |S({Ai}ni=1)| ≥
n∑

i=1

|Ai| − n2 + 1.

Providing 2 ≤ n ≤ |An|−2 and |An| 6= 4, the two sides are equal if and only
if A1 = . . . = An ∈ AP.

Proof. If we rearrange the order of A1, . . . , An, both sides of (1.16) keep
unchanged. Suppose that |Aσ(1)| ≤ . . . ≤ |Aσ(n)| where σ is a permutation
on {1, . . . , n}. If |Aσ(i)| < i, then

[i, n] ⊆ {1 ≤ j ≤ n : |Aj | ≥ i} ⊆ {σ(j) : j ∈ (i, n]},
which is impossible. So |Aσ(i)| ≥ i for all i ∈ [1, n]. By Corollary 1.7, (1.16)
holds and hence (1.18) follows. If both sides of (1.18) are equal, then hi = 0
for all i = 1, . . . , n and hence |A1| = . . . = |An|, as

⋃n
i=1 Ai = An by

Corollary 1.7 we must have A1 = . . . = An. Now it suffices to apply the
Nathanson result.

For the equality case of (1.13), let us look at one more example.

Example 1.3. Let k and n be integers with k > n > 1. Let A1, . . . , An−1

be subsets ofAn = [0, k−1] withA1 = [0, k−n]\{k−n−1} and |Ai+1|−|Ai| ∈
{0, 1} for all i ∈ (1, n). We assert that

S = S({Ai}ni=1) =
[
n(n− 1)

2
, kn− n(n+ 1)

2

] ∖ {
kn− n(n+ 1)

2
− 1
}

and hence

|S| = kn− n2 = 1 + (|A1| − 1) + (n− 1)(k − n) = 1 +
n∑

i=1

min
i≤j≤n

(|Aj | − j).

Since M = {1, n}, by the arguments in the proof of Corollary 1.6, we may
assume A2 = . . . = An without any loss of generality.

In the case k = n + 1, clearly A1 = {1} and Ai = [0, n] for i ∈ (1, n];
setting A = [0, n] \ {1} we then have

S = 1 + (n− 1)∧A = 1 +
{∑

x∈A
x− a : a ∈ A

}
=

n∑

i=1

i− A

=
n(n+ 1)

2
− ([0, n] \ {1}) =

[
n(n− 1)

2
,
n(n+ 1)

2

] ∖ {n(n+ 1)
2

− 1
}

=
[
n(n− 1)

2
, kn− n(n+ 1)

2

] ∖ {
kn− n(n+ 1)

2
− 1
}
.
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Below we verify the assertion on the condition k > n+1. By Example 1.1,

S ⊆ S([0, k − n], A2, . . . , An) =
n(n− 1)

2
+
[
0,

n∑

i=1

(k − n)
]

=
[
n(n− 1)

2
, kn− n(n+ 1)

2

]

and S contains

S([0, k − n− 2], A2, . . . , An) =
n(n− 1)

2
+ [0, k − n− 2 + (n− 1)(k − n)]

=
[
n(n− 1)

2
, kn− n(n+ 1)

2
− 2
]
.

Observe that

maxS = k − n+ (k − n− 1) + . . .+ (k − 1) = kn− n(n+ 1)
2

.

Now it suffices to show that kn− n(n+ 1)/2− 1 6∈ S. On the contrary, we
can write

kn− n(n+ 1)
2

− 1 = k − n+ (k − i1) + . . .+ (k − in−1)

where 1 ≤ i1 < . . . < in−1 ≤ k and n 6∈ {i1, . . . , in−1}. Apparently

i1 + . . .+ in−1 =
n(n+ 1)

2
+ 1− n, i.e.

n−1∑

j=1

(ij − j) = 1.

So it − t = 1 for some t ∈ [1, n), and ij = j for all j ∈ [1, n) \ {t}. As
in−1 6= n, we have t < n − 1 and hence it = t + 1 = it+1. This contradicts
it < it+1.

Let A1, . . . , An−1 be subsets of An = [0, kn − 1] with the two sides of
(1.13) equal. Set A′i = {kn − 1− x : x ∈ Ai} for i = 1, . . . , n. Then

|S({A′i}ni=1)| = |S({Ai}ni=1)| = 1 + min
i≤j≤n

(|A′j | − j).

If minA1 + maxA1 ≥ kn, then minA′1 + maxA′1 = 2(kn − 1) − minA1 −
maxA1 < kn. So, to discuss the equality case of (1.13) with An ∈ AP, we
may simply take An = [0, kn − 1] and assume that minA1 + maxA1 < kn.

Now we pose a conjecture which essentially determines the equality case
of (1.13).

Conjecture 1.1. Let A1, . . . , An be finite subsets of Z with |A1| ≤
. . . ≤ |An|, ki = |Ai| > i for i ∈ [1, n], and

⋃m
i=1 Ai = Am for all m ∈ M .

Suppose that An = [0, kn − 1] and minA1 + maxA1 < kn. If the two sides
of (1.13) are equal , then Am = [0, km − 1] for all m ∈M, unless

(1.19) M = {1, n}, kn − k1 = n and A1 = [0, k1] \ {k1 − 1}.
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Though we are unable to solve this conjecture, we have found evidence
to support it through computer calculations.

2. Proof of Theorem 1.1. We use induction on n. In the case n = 1,
the inequality is obvious since C = A1 and V1 = V = ∅. So we proceed to
the induction step.

Let n > 1 and assume the assertion holds for smaller values of n. Set
a = minAn and

V ′ = {(s, t, µ, ν, w) ∈ V : 1 ≤ s, t ≤ n− 1}.
For each i = 1, . . . , n−1 let A′i consist of those ai ∈ Ai for which µai+νa 6= w
if (i, n, µ, ν, w) ∈ V , and µa+ νai 6= w if (n, i, µ, ν, w) ∈ V . Apparently

|A′i| ≥ |Ai| − |{(s, t, µ, ν, w) ∈ V : {s, t} = {i, n}}|,
and thus

V ′i = {(s, t, µ, ν, w) ∈ V ′ : i ∈ {s, t}}
= Vi \ {(s, t, µ, ν, w) ∈ V : {s, t} = {i, n}}

has cardinality not greater than |Vi|+ |A′i| − |Ai| < |A′i|. Let

C ′ = {a1 + . . .+ an−1 : ai ∈ A′i, and µai + νaj 6= w if (i, j, µ, ν, w) ∈ V ′}.
By the induction hypothesis,

|C ′| ≥ 1 +
n−1∑

i=1

(|A′i| − |V ′i | − 1) ≥ 1 +
n−1∑

i=1

(|Ai| − |Vi| − 1) > 0.

Write maxC ′ =
∑n−1
i=1 a

′
i where a′1 ∈ A′1, . . . , a′n−1 ∈ A′n−1, and µa′i + νa′j

6= w if (i, j, µ, ν, w) ∈ V ′. Let A′n consist of those an ∈ An for which µa′i +
νan 6= w if (i, n, µ, ν, w) ∈ V , and µan + νa′i 6= w if (n, i, µ, ν, w) ∈ V . Note
that a ∈ A′n and |A′n| ≥ |An| − |Vn| > 0. Clearly

(C ′ + a) ∪ (a′1 + . . .+ a′n−1 + A′n) ⊆ C
and

max(C ′ + a) = a′1 + . . .+ a′n−1 + a = min(a′1 + . . .+ a′n−1 + A′n).

Therefore

|C| ≥ |C ′ + a|+ |a′1 + . . .+ a′n−1 + A′n| − 1 = |C ′|+ |A′n| − 1

≥ 1 +
n−1∑

i=1

(|Ai| − |Vi| − 1) + |An| − |Vn| − 1 = 1 +
n∑

i=1

(|Ai| − |Vi| − 1).

Since
∑n
i=1 |Vi| = 2|V |, we are done.
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3. Several lemmas. We first check the exception (iii) given in Theo-
rem 1.2.

Lemma 3.1. Let A1, . . . , An (n > 1) be finite subsets of Z such that
|Ai| > i for all i ∈ [1, n], |An−1| = n < |An|−1 and

⋃n−1
i=1 Ai = An−1 ⊆ An.

Then the two sides of (1.13) are equal if and only if An−1, An \An−1 ∈ AP
and d(An−1) = d(An \An−1).

Proof. Let S = S({Ai}ni=1) and ki = |Ai| for all i = 1, . . . , n. Write
An−1 = {x1, . . . , xn} and An \An−1 = {y1, . . . , ykn−kn−1} where x1 < . . . <
xn and y1 < . . . < ykn−kn−1 . Since ki − i ≥ 1 = kn−1 − (n − 1) for all i ∈
[1, n− 1], S({Ai}n−1

i=1 ) = (n− 1)∧An−1 as pointed out in Example 1.2. Thus

S =
n⋃

i=1

{x1 + . . .+ xn − xi + y : y ∈ {xi, y1, . . . , ykn−kn−1}}

= x1 + . . .+ xn + ({0} ∪ {yj − xi : i ∈ [1, n], j ∈ [1, kn − kn−1]})
and hence |S| = 1+ |(An \An−1)−An−1| where we let A−B = A+(−B) =
{a− b : a ∈ A, b ∈ B} for A,B ⊆ Z. By a known result (cf. Lemma 1.3 and
Theorem 1.5 of [N2]), for any finite subsets A and B of Z with |A| ≥ 2 and
|B| ≥ 2, |A+B| = |A|+|B|−1 if and only if A,B ∈ AP and d(A) = d(B). So

|S| = 1 +
n∑

i=1

min
i≤j≤n

(kj − j) = 1 + (n− 1)(kn−1 − (n− 1)) + kn − n = kn

⇔ |(An \An−1)− An−1| = kn − 1 = |An \An−1|+ |−An−1| − 1

⇔ xi+1 − xi = yj+1 − yj for all i ∈ [1, n) and j ∈ [1, kn − kn−1).

The following lemma is an improvement on Lemma 2 of [CS].

Lemma 3.2. Let A1 and A2 be finite subsets of Z with |A1| ≥ 3, A1⊂A2,
minA1 = minA2, maxA1 6= maxA2 and |S(A1, A2)| = |A1|+|A2|−2. Then
A2 ∈ AP unless |A1| = 3 and A2 can be written in the form (1.15).

Proof. Let A1 = {a1, . . . , ak} and A2 = {b1, . . . , bl} where a1 < . . . < ak
and b1 < . . . < bl. By the proof of Lemma 2 of [CS], ai ∈ {bi, bi+1} for all
i ∈ [1, k],

S(A1, A2) = {a1 + b2, . . . , a1 + bl−1, a1 + bl, . . . , ak + bl},
and A2 ∈ AP if a3 < bl−1.

Suppose that a3 = bl−1. Then k = 3 since a3 ≤ ak < bl. As a1 + bl−1 <
a2 + bl−1 < a2 + bl, we must have a2 + bl−1 = a1 + bl, i.e. bl− bl−1 = a2−a1.
If a3 = b3, then l = 4, a2 = b2 and hence b4 − b3 = b2 − b1, so A2 is of the
form (1.15). Below we let a3 = b4. Then l = 5 and b5 − b4 = a2 − a1. As
a1 + b4 < a3 + b2 = b4 + b2 ≤ a2 + b4 = a1 + b5, we must have a2 = b2 < b3.
Observe that
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a1 + b3 < a2 + b3 < a2 + b4 = a1 + b5 < a3 + b3 < a3 + b5.

So a2 + b3 = a1 + b4 and a3 + b3 = a2 + b5, therefore A2 ∈ AP.

We now present a lemma reflecting some symmetry.

Lemma 3.3. Let A1, . . . , An be finite subsets of Z with A1 = . . . = Am ⊆
Am+1 = . . . = An and 0 < |Am| −m ≤ |An| − n where m ∈ [1, n]. Define
the dual sequence {Bj}|An|−nj=1 of {Ai}ni=1 as follows:

Bi = An \Am for each i ∈ [1, |An| − n− (|Am| −m)]

and
Bj = An for all j ∈ (|An| − n− (|Am| −m), |An| − n].

Then |S({Ai}ni=1)| = |S({Bi}|An|−ni=1 )| and

n∑

i=1

min
i≤j≤n

(|Aj | − j) =
|An|−n∑

i=1

min
i≤j≤n

(|Bj | − j).

Proof. Let km = |Am| and kn = |An|. Suppose that Am = {x1, . . . , xkm}
and An \ Am = {y1, . . . , ykn−km}. Then S({Ai}ni=1) consists of integers of
the form

∑
i∈I xi+

∑
j∈J yj where I ⊆ [1, km], J ⊆ [1, kn−km], |I|+|J | = n

and |I| ≥ m, in other words the elements of S({Ai}ni=1) are integers of the
form

km∑

i=1

xi −
∑

i∈I
xi +

kn−km∑

j=1

yj −
∑

j∈J
yj

where I ⊆ [1, km], J ⊆ [1, kn−km], |I|+ |J | = km+ (kn−km)−n = kn−n
and |J | ≥ kn − km − (n−m) = kn − n− (km −m). Thus

S({Ai}ni=1) =
∑

x∈An
x− S({Bi}kn−ni=1 )

and so
|S({Ai}ni=1)| = |S({Bi}kn−ni=1 )|.

Clearly
n∑

i=1

min
i≤j≤n

(|Aj | − j) = m(km −m) + (n−m)(kn − n).

Also,
kn−n∑

i=1

min
i≤j≤n

(|Bj | − j)− (km −m)(|An| − (kn − n))

= (kn − n− (km −m))(|An \Am| − (kn − n− (km −m)))

= (n−m)(kn − n) + (m− n)(km −m).

This concludes the proof.
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Let A1 ⊆ A2 ⊆ Z, |A1| = 3 and |A2| = 4. Then the dual sequence of
{Ai}2i=1 is the sequence A2, A2. Thus the example (given by Nathanson)
with |2∧A2| = 2|A2| − 22 + 1 and A2 6∈ AP, induces the exception (ii) in
Theorem 1.2.

4. Reduction of Theorem 1.2. Let A1, . . . , An be finite subsets of
Z with (1.2) and |A1| ≤ . . . ≤ |An|. Put di = mini≤j≤n(|Aj | − j) and
k′i = di+ i for i = 1, . . . , n. Clearly k′n = |An| and k′i < k′i+1 for all i ∈ [1, n).
As k′i ≤ |Ai|, we can choose a subset A′i of Ai with |A′i| = k′i. Obviously
A′n = An and

∑n
i=1 |A′i| ≤

∑n
i=1 |Ai|. By the Theorem of Cao and Sun [CS],

we have

|S({Ai}ni=1)| ≥ |S({A′i}ni=1)| ≥ 1 +
n∑

i=1

(k′i − i) = 1 +
n∑

i=1

di.

So (1.13) holds. If equality is valid in (1.13), then

|S({A′i}ni=1)| = 1 +
n∑

i=1

(k′i − i),

hence by the Theorem of [CS] we have
⋃m
i=1 A

′
i = A′m ⊆ Am for any m in

the set

M = {1 ≤ i < n : k′i < k′i+1 − 1} ∪ {n} = {1 ≤ i ≤ n : di < di+1} ∪ {n}
= {1 ≤ i ≤ n : |Ai| − i < |Aj | − j for all j ∈ (i, n]}.

For any i = 1, . . . , n, if ai ∈ Ai then we can select A′i ⊆ Ai so that ai ∈ A′i
and |A′i| = k′i. Thus, in the equality case of (1.13) we have

⋃m
i=1 Ai ⊆ Am

for all m ∈M .
Let 1 ≤ i ≤ n. Then

k′i > i ⇔ di > 0 ⇔ |Aj | > j for all j ∈ [i, n].

Thus
|Ai| > i for all i ∈ [1, n] ⇔ |A′i| > i for all i ∈ [1, n].

Recall that A′n = An. When n = 2 and A′2 = A2 is of the form (1.15),
clearly

|A1| ∈ {3, 4} ⇔ |A1| − 1 ≥ |A2| − 2 ⇔ d1 = 2 ⇔ k′1 = 3.

In the case n > 1 and |An| > n, we have

|An−1| = n ⇔ dn−1 = 1 ⇔ k′n−1 = n,

thus An−1 = A′n−1 providing |An−1| = n or k′n−1 = n.
In view of the above and Lemma 3.1, Theorem 1.2 can be reduced to the

following
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Theorem 4.1. Let A1, . . . , An be subsets of Z with |A1| < . . . < |An| <
∞ and |Ai| > i for all i = 1, . . . , n. If

(4.1) |S({Ai}ni=1)| = 1 +
n∑

i=1

(|Ai| − i),

then An ∈ AP unless we have (i) or (iii), or (ii) with |A1| = 3.

Remark 4.1. Let k be a positive integer. By the previous reasoning, if
Theorem 4.1 holds for those subsets A1, . . . , An of Z with |A1|+ . . .+ |An| ≤
k, then so does Theorem 1.2.

5. Proof of Theorem 4.1. We proceed by induction on k =
∑n
i=1 |Ai|.

Apparently k ≥ |A1| > 1.
If k = 2, then n = 1 and |A1| = 2. In the case n = 1, both (4.1) and (i)

hold.
Below we let k > 2 and n ≥ 2, and assume that the result holds if

|A1|+ . . .+ |An| < k. Now let |A1|+ . . .+ |An| = k. For all i ∈ [1, n] we set

(5.1) ki = |Ai| and di = min
i≤j≤n

(kj − j) = ki − i.

Obviously 1 ≤ d1 ≤ . . . ≤ dn. Put

(5.2) a = min
n⋃

i=1

Ai, I = {1 ≤ i ≤ n : a ∈ Ai}, r = min I, t = max I.

For i ∈ I let

(5.3) A′i =
{
Ai \ {a} if i 6= r,
{a} if i = r;

and for i ∈ I = [1, n] \ I set

(5.4) A′i =
{
Ai \ {ai} if r < i < t and i 6∈M,
Ai otherwise,

where ai is an arbitrary element of Ai. Write k′i = |A′i| for i ∈ [1, n] \ {r}.
Then 1 < k′1 < . . . < k′r−1 < kr ≤ k′r+1 < . . . < k′n and

∑
i6=r k

′
i <∑n

i=1 ki = k. For i ∈ [1, n] \ {r} we set

(5.5) d′i =
{
k′i − i if i < r,
k′i − (i− 1) if i > r.

Let S = S({Ai}ni=1), and assume that (4.1) holds. By the Theorem of
[CS] and its proof,

⋃m
i=1 Ai = Am for all m ∈M , and

|S({A′i}i6=r)| =
∑

i6=r
k′i −

n(n− 1)
2

+ 1 = 1 +
∑

i6=r
d′i.
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Also t = n and (r, t) ∩ I ∩ M = ∅ (see (12) and (14) of [CS]), therefore
k′i = ki − 1 for i ∈ (r, n] and d′i = di for all i ∈ [1, n] \ {r}.

Clearly b = max
⋃n
i=1 Ai 6= a (otherwise |An| = |{a}| < n), −b =

min
⋃n
i=1(−Ai) and

|S({−Ai}ni=1)| = |S| = 1 +
n∑

i=1

min
i≤j≤n

(|−Aj | − j).

Like the fact that a ∈ At = An we should also have −b ∈ −An. Thus
b ∈ An \ {a}.

Let s denote the least index such that b ∈ As. By p. 166 of [CS], there
exists an l ∈ [r, n] such that kl − l = kr − r (i.e. dr = . . . = dl), and
l = s = r < n is impossible.

From now on we assume that none of (i)–(iii) (in Theorem 1.2) holds.
Then kn > n+ 1. If kn−1 = n, then n− 1 ∈M and

⋃n−1
i=1 Ai = An−1 ⊆ An,

thus (iii) holds by Lemma 3.1. Now that (iii) fails, we must have kn−1 > n.
We claim that A∗n = An \ {a} ∈ AP. For this conclusion, it suffices to

work under the condition A∗n 6∈ AP.

Case 1. r < n−1. Apparently n > 2, k′n = kn−1 > n = (n−1)+1 and
k′n−1 = kn−1− 1 > n− 1 = (n− 2) + 1. As A′n = A∗n 6∈ AP, by the induction
hypothesis, n−1 = 2, r = 1, k′2 = 3 and A′3 = A3 \{a} is of the form (1.15).
Note that k2 = k′2 + 1 = 4 and k3 = k′3 + 1 = 5. If k1 > 2, then k1 = 3
and M = {3}, hence S = 3∧A3 and A3 ∈ AP by Example 1.2. Thus k1 = 2,
k2 = 4 and k3 = 5. Observe that |S| = 1 + (2− 1) + (4− 2) + (5− 3) = 6.
If 1 ≤ i < j ≤ 4, then xi or xj lies in A2 (since A2 ⊆ A3 and k3 − k2 = 1),
therefore a+ xi + xj ∈ S. Thus S contains the following 5 integers:

a+x1 +x2, a+x1 +x3, a+x1 +x4 = a+x2 +x3, a+x2 +x4, a+x3 +x4.

Suppose that A1 = {a, xi} where 1 ≤ i ≤ 4. If i ∈ {3, 4}, then both
x4 + x3 + x1 and x4 + x3 + x2 belong to S, this contradicts the fact that
|S| = 6 < 5 + 2. So i ∈ {1, 2}, and S consists of the above 5 integers and the
number xi+x3+x4. Apparently S also contains x1+x2+x3 and x1+x2+x4.
Since a + x2 + x3 < x1 + x2 + x3 < x1 + x2 + x4 < xi + x3 + x4, we must
have x1 + x2 + x3 = a + x2 + x4 and x1 + x2 + x4 = a + x3 + x4. Thus
x4 − x3 = x1 − a = x3 − x2 and hence An = A3 ∈ AP.

Case 2. An−1 ⊂ A∗n. As n − 1 ∈ M , a 6∈ An−1 =
⋃n−1
i=1 Ai and so

r = n. Clearly k1 < . . . < kn−1 < k∗n = |A∗n| = kn− 1. Let S∗ denote the set
S(A1, . . . , An−1, A

∗
n). Then a+minS({Ai}n−1

i=1 ) = minS < minS∗. So |S∗| ≤
|S|−1 =

∑n
i=1(ki−i) and hence |S∗| = |S|−1 = 1+

∑n−1
i=1 (ki−i)+(k∗n−n).

Recall that k∗n = kn − 1 > kn−1 ≥ n + 1. By the induction hypothesis,
n = 2, k1 = 3, A∗2 has the form (1.15) and hence k2 = 5. For any two distinct
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elements x and y of A∗2 we have x+ y ∈ S∗ since one of them belongs to A1.
All the 1 + (3− 1) + (4− 2) = 5 elements of S∗ are as follows:

x1 + x2, x1 + x3, x1 + x4 = x2 + x3, x2 + x4, x3 + x4.

As |a+A1| = 3, max(a+A1) < x1 +x4 and |S| = 1+(3−1)+(5−2) = 6,
we must have

S = (a+ A1) ∪ {xi + x4 : i = 1, 2, 3}.
Evidently x4 ∈ A1 and x1 +x3 = a+x4 since x1 +x3 ∈ a+A1, also x3 ∈ A1

and x1 + x2 = a+ x3 since x1 + x2 ∈ a+A1. So x4 − x3 = x1 − a = x3 − x2

and hence An = A2 ∈ AP.

Case 3. r = n−1, or r = n and An−1 = A∗n. Let r = n if r = n−1, and
r = n−1 if r = n. Clearly A′r = A∗n and k′r = |A∗n| = kn−1 > n = (n−1)+1.

Let us handle the case n = 2. Note that k1 = kn−1 > n = 2. If A1 = A∗2,
then min(−A1) = min(−A2) and max(−A1) < max(−A2) = −a, hence
−A2 ∈ AP (i.e. A2 ∈ AP) by Lemma 3.2 since (ii) fails. When r = 1, we
have minA1 = minA2, if s = 2 (i.e. maxA1 6= maxA2) then A2 ∈ AP by
Lemma 3.2. In the case r = s = 1, we have l > 1 because l = r = s < n
is impossible, hence k1 = k2 − 1 since kr − r = kl − l, thus S = 2∧A2 and
A2 ∈ AP by Example 1.2. (Recall that (ii) fails.)

Let n − 1 = 2, k1 = k′1 = 3 and A′r have the form (1.15). Observe that
n = 3 < kn−1 = k2 ≤ k3 − 1 = |A∗3| = |A′r| = 4. So M = {3} and hence
A3 ∈ AP by Example 1.2.

Now we assume that n > 2, and n 6= 3 or k′1 6= 3 or A′r is not of the form
(1.15). As A′r = A∗n 6∈ AP, by the induction hypothesis, kn−2 = k′n−2 = n−1,
also An−2 = A′n−2 and A∗n \An−2 = A′r \A′n−2 form arithmetic progressions
with the same difference d. Since kn−2 = n − 1 < n < kn−1, we have
n − 2 ∈ M and hence

⋃n−2
i=1 Ai = An−2 ⊆ A∗n. Let A∗n−1 = An−1 \ {a},

k∗n−1 = |A∗n−1| and S∗ = S(A1, . . . , An−2, A
∗
n−1, A

∗
n). Then

1 < k1 < . . . < kn−2 = n− 1 < k∗n−1 ≤ k∗n < kn,

d∗n = k∗n − n = kn − 1− n = dn − 1 > 0,

d∗n−1 = min{k∗n−1 − (n− 1), k∗n − n} = kn−1 − n = dn−1 − 1 > 0,

d∗i = min{ki − i, . . . , kn−2 − (n− 2), d∗n−1} = 1 = di for i ∈ [1, n− 2].

Write An−2 = {x1, . . . , xn−1} and A∗n \An−2 = {y1, . . . , ykn−1−(n−1)} where
x1 < . . . < xn−1 and y1 < . . . < ykn−n. In view of Example 1.2, S({Ai}n−2

i=1 )
= (n − 2)∧An−2 = {x − xi : 1 ≤ i ≤ n − 1} where x =

∑n−1
i=1 xi. As

A∗n−1 ⊆ A∗n all elements of S∗ have the form x−xi+yj+z where 1 ≤ i ≤ n−1,
1 ≤ j ≤ kn − n and z ∈ {xi, y1, . . . , ykn−n} \ {yj}, they are all greater than
x − xn−1 + y1 + a. If x − xn−1 + y2 + a = x − xi + yj + z where i, j, z are
as above, then j = 1 and z = xi since a+ y2 < min{xi + y2, y1 + y2}, hence
−xn−1+y2+a = −xi+y1+xi = y1 and xn−1−a = y2−y1 = d = xn−1−xn−2;
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this is impossible. So x− xn−1 + y1 + a, x− xn−1 + y2 + a 6∈ S∗. However,
both x − xn−1 + y1 + a and x − xn−1 + y2 + a lie in S, for, a ∈ An−1 if
r = n− 1, and y1, y2 ∈ An−1 if An−1 = A∗n. Therefore

|S∗| ≤ |S| − 2 = 1 +
n∑

i=1

di − 2 = 1 +
n∑

i=1

d∗i .

If An−1 = A∗n, then k∗n−1 = kn−1 > n. Since A∗n 6∈ AP, by Remark 4.1 and
the induction hypothesis we have either

(i∗) kn − 1 = k∗n = n+ 1 and hence kn−1 = n+ 1, or
(iii∗) |A∗n−1| = n (whence r = n−1), and A∗n−1 and An\An−1 = A∗n\A∗n−1

form arithmetic progressions with the same difference.

Assume (i∗). Let B1 = . . . = Bn−2 = An−2 and Bn−1 = Bn = An.
As M = {n − 2, n}, by the idea in Example 1.2 or the proof of Corollary
1.6, S = S({Bi}ni=1) and |S({Bi}ni=1)| = 1 +

∑n
i=1 mini≤j≤n(|Bj | − j). The

dual sequence of {Bi}ni=1 is the sequence An \An−2, An with |An \An−2| =
n+2−(n−1) = 3, |An| = n+2 > 4 and |An \An−2|+ |An| < (n+1)+kn ≤
k = k1 + . . . + kn. In view of Lemma 3.3 and the induction hypothesis, we
have An ∈ AP.

Now we consider the case (iii∗). Clearly kn−1 = n+1 and kn−kn−1 ≥ 2,
so n− 1 ∈ M and An−2 ⊂ An−1 ⊂ An. Write An−1 = {a, x1, . . . , xn−1, yj}
where 1 ≤ j ≤ kn − n. Then An \ An−1 = {y1, . . . , ykn−n} \ {yj}. Since
d(A∗n−1) = d(An \ An−1) ≥ d, we must have yj ∈ {x1 − d, xn−1 + d}. Now
that d(An \ An−1) = d(A∗n−1) = d, j must be 1 or kn − n. If y1 ∈ An−1

(i.e. j = 1), then y1 + d = y2 6= x1 and hence y1 = xn−1 + d, thus A∗n =
{x1, . . . , xn−1, y1, . . . , ykn−n} ∈ AP. If ykn−n ∈ An−1 (i.e. j = kn − n),
then ykn−n − d = ykn−n−1 6= xn−1 and hence ykn−n = x1 − d, thus A∗n =
{y1, . . . , ykn−n, x1, . . . , xn−1} ∈ AP.

By the above, we do have An \ {a} ∈ AP in either case. As −b =
min

⋃n
i=1(−Ai), by analogy −An \{−b} ∈ AP. Because kn > n+1 ≥ 3, and

An \ {minAn} and An \ {maxAn} are both in AP, the set An must form
an arithmetic progression.

The induction step is now complete and the proof of Theorem 4.1 is
finished.
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