Restricted sums of subsets of \mathbb{Z}

by
Zhi-Wei Sun (Nanjing)

1. Introduction. Let

$$
\begin{equation*}
\left\{A_{i}\right\}_{i=1}^{n} \tag{1.1}
\end{equation*}
$$

be a finite sequence of sets. If $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$, and a_{1}, \ldots, a_{n} are pairwise different, then we call $\left\{a_{i}\right\}_{i=1}^{n}$ a system of distinct representatives (abbreviated to SDR) of (1.1). Apparently (1.1) has an SDR provided that

$$
\begin{equation*}
\left|A_{i}\right| \geq i \quad \text { for all } i=1, \ldots, n \tag{1.2}
\end{equation*}
$$

If A_{1}, \ldots, A_{n} are contained in a finite set $\left\{x_{1}, \ldots, x_{k}\right\}$ with cardinality k, then (1.1) has as many SDR's as $\left\{A_{i}^{*}\right\}_{i=1}^{n}$ does where $A_{i}^{*}=\{1 \leq j \leq k$: $\left.x_{j} \in A_{i}\right\} \subseteq\{1, \ldots, k\}$.

Let A_{1}, \ldots, A_{n} be finite subsets of an additive abelian group G. Their sumset is given by

$$
\begin{equation*}
A_{1}+\ldots+A_{n}=\left\{a_{1}+\ldots+a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}\right\} \tag{1.3}
\end{equation*}
$$

If we require the summands to be distinct, then we are led to the restricted sumset

$$
\begin{align*}
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right) & =S\left(A_{1}, \ldots, A_{n}\right) \tag{1.4}\\
& =\left\{\sum_{i=1}^{n} a_{i}:\left\{a_{i}\right\}_{i=1}^{n} \text { forms an SDR of }\left\{A_{i}\right\}_{i=1}^{n}\right\}
\end{align*}
$$

Of course there are many other kinds of restricted sumsets. An interesting problem is to provide a nontrivial lower bound for the cardinality of a restricted sumset of A_{1}, \ldots, A_{n}. In the light of the fundamental theorem on finitely generated abelian groups, it suffices to work within the ring \mathbb{Z} of integers instead of a torsionfree abelian group G.

[^0]For a finite subset A of \mathbb{Z}, in 1995 M. B. Nathanson [N1] obtained the inequality

$$
\begin{equation*}
\left|n^{\wedge} A\right| \geq n|A|-n^{2}+1 \tag{1.5}
\end{equation*}
$$

and determined when equality holds. (By $n^{\wedge} A$ we mean $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$ with $A_{1}=\ldots=A_{n}=A$.) Soon after this, Y . Bilu $[\mathrm{B}]$ gave the same result independently. Let p be a prime. In 1994 J. A. Dias da Silva and Y. O. Hamidoune $[\mathrm{DH}]$ proved the following generalization of a conjecture of P. Erdős and H. Heilbronn (cf. [EH] and [G]):

$$
\begin{equation*}
\left|n^{\wedge} A\right| \geq \min \left\{p, n|A|-n^{2}+1\right\} \quad \text { for any } A \subseteq \mathbb{Z} / p \mathbb{Z} \tag{1.6}
\end{equation*}
$$

By the so-called polynomial method, in 1996 N. Alon, M. B. Nathanson and I. Z. Ruzsa [ANR] got the following result: Let F be any field of characteristic p and A_{1}, \ldots, A_{n} its subsets with $0<\left|A_{1}\right|<\ldots<\left|A_{n}\right|<\infty$, then

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq \min \left\{p, \sum_{i=1}^{n}\left|A_{i}\right|-\frac{n(n+1)}{2}+1\right\} . \tag{1.7}
\end{equation*}
$$

Their method does not allow one to determine when the bound can be attained. Provided that A_{1}, \ldots, A_{n} are finite subsets of \mathbb{Z} with $0<\left|A_{1}\right|<$ $\ldots<\left|A_{n}\right|$, we have

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq 1+\sum_{i=1}^{n}\left(\left|A_{i}\right|-i\right) . \tag{1.8}
\end{equation*}
$$

A purely combinatorial proof of this inequality was given by Hui-Qin Cao and Zhi-Wei Sun [CS], where the authors obtained some necessary conditions for the equality case.

Now we introduce our basic notations in this paper. For $A \subseteq \mathbb{Z}$ we put $-A=\{-x: x \in A\}$ and $a+A=A+a=\{a+x: x \in A\}$ for $a \in \mathbb{Z}$. An arithmetic progression A is a set of the form $\{a, a+d, \ldots, a+k d\}$ where a and $d, k>0$ are integers; we use $d(A)$ to denote the (common) difference d of A. (A set having a single element is not considered as an arithmetic progression.) For the sake of convenience, AP will denote the class of all arithmetic progressions. For $a, b \in \mathbb{Z}$ we put

$$
\begin{array}{ll}
(a, b)=\{x \in \mathbb{Z}: a<x<b\}, & {[a, b]=\{x \in \mathbb{Z}: a \leq x \leq b\},} \\
{[a, b)=\{x \in \mathbb{Z}: a \leq x<b\},} & (a, b]=\{x \in \mathbb{Z}: a<x \leq b\} .
\end{array}
$$

In this paper we study lower bounds for cardinalities of various restricted sumsets of subsets of \mathbb{Z}. We use the powerful techniques developed in [CS].

In the next section we will prove the following general result on linearly restricted sums of subsets of \mathbb{Z}.

Theorem 1.1. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z}, and V a set of tuples (s, t, μ, ν, w) where $1 \leq s, t \leq n, s \neq t, \mu, \nu \in \mathbb{Z}^{*}=\mathbb{Z} \backslash\{0\}$ and $w \in \mathbb{Z}$. Set

$$
\begin{equation*}
C=\left\{a_{1}+\ldots+a_{n}: a_{i} \in A_{i}, \text { and } \mu a_{i}+\nu a_{j} \neq w \text { if }(i, j, \mu, \nu, w) \in V\right\} \tag{1.9}
\end{equation*}
$$

If each $V_{i}=\{(s, t, \mu, \nu, w) \in V: i \in\{s, t\}\}$ has cardinality less than $\left|A_{i}\right|$, then

$$
\begin{equation*}
|C| \geq \sum_{i=1}^{n}\left|A_{i}\right|-2|V|-n+1=1+\sum_{i=1}^{n}\left(\left|A_{i}\right|-\left|V_{i}\right|-1\right)>0 \tag{1.10}
\end{equation*}
$$

REMARK 1.1. If we replace $a_{1}+\ldots+a_{n}$ by $\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}$ in the definition (1.9) of C where $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Z}^{*}$, then Theorem 1.1 remains valid. For, when $(i, j, \mu, \nu, w) \in V, a_{i} \in A_{i}$ and $a_{j} \in A_{j}$, we have
$\mu a_{i}+\nu a_{j}=w \Leftrightarrow \lambda_{i} \lambda_{j}\left(\mu a_{i}+\nu a_{j}\right)=\lambda_{i} \lambda_{j} w \Leftrightarrow \mu^{\prime}\left(\lambda_{i} a_{i}\right)+\nu^{\prime}\left(\lambda_{j} a_{j}\right)=w^{\prime}$ where $\mu^{\prime}=\lambda_{j} \mu, \nu^{\prime}=\lambda_{i} \nu$ and $w^{\prime}=\lambda_{i} \lambda_{j} w$.

Now we give several consequences of Theorem 1.1.
Corollary 1.1. Let A_{1}, \ldots, A_{n} be subsets of \mathbb{Z} which are nonempty and finite. Then

$$
\begin{equation*}
\left|A_{1}+\ldots+A_{n}\right| \geq\left|A_{1}\right|+\ldots+\left|A_{n}\right|-n+1 \tag{1.11}
\end{equation*}
$$

Proof. Just apply Theorem 1.1 with $V=\emptyset$.
REmark 1.2. Corollary 1.1 is a known result. Equality in (1.11) holds if and only if all those A_{i} with $\left|A_{i}\right| \geq 2$ are arithmetic progressions with the same difference. See Theorems 1.4 and 1.5 of [N2].

Corollary 1.2. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} such that $\left|A_{i}\right| \geq$ $\left|J_{i}\right|$ for all $i=1, \ldots, n$ where $J_{i}=\left\{1 \leq j \leq n: A_{i} \cap A_{j} \neq \emptyset\right\}$. Then

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq 1+\sum_{i=1}^{n}\left(\left|A_{i}\right|-\left|J_{i}\right|\right) \tag{1.12}
\end{equation*}
$$

Proof. Put $V=\left\{(i, j, 1,-1,0): 1 \leq i<j \leq n \& A_{i} \cap A_{j} \neq \emptyset\right\}$. Then $\left|V_{i}\right|=\left|\left\{1 \leq j \leq n: j \neq i \& A_{i} \cap A_{j} \neq \emptyset\right\}\right|=\left|J_{i} \backslash\{i\}\right|<\left|A_{i}\right| \quad$ for $i \in[1, n]$. Applying Theorem 1.1 we immediately get the desired inequality.

Corollary 1.3. Let $\Lambda, A_{1}, \ldots, A_{n}$ be finite subsets of \mathbb{Z} such that

$$
\left|A_{i}\right|>\sum_{j \neq i}\left|\left(A_{i}+A_{j}\right) \cap \Lambda\right| \quad \text { for all } i=1, \ldots, n
$$

Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Z}^{*}$ and

$$
L=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}, a_{i}+a_{j} \notin \Lambda \text { if } i \neq j\right\} .
$$

Then

$$
\sum_{i=1}^{n}\left|A_{i}\right|-|L| \leq 2 \sum_{1 \leq i<j \leq n}\left|\left(A_{i}+A_{j}\right) \cap \Lambda\right|+n-1 \leq(n|\Lambda|+1)(n-1)
$$

Proof. Set

$$
V=\left\{(i, j, 1,1, \lambda): 1 \leq i<j \leq n \& \lambda \in\left(A_{i}+A_{j}\right) \cap \Lambda\right\} .
$$

Then

$$
|V|=\sum_{1 \leq i<j \leq n}\left|\left(A_{i}+A_{j}\right) \cap \Lambda\right| \leq\binom{ n}{2}|\Lambda|
$$

and $\left|V_{i}\right|=\sum_{j \neq i}\left|\left(A_{i}+A_{j}\right) \cap \Lambda\right|$ for $i=1, \ldots, n$. Thus the required result follows from Theorem 1.1 and Remark 1.1.

Corollary 1.4. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z}, and

$$
S=\left\{a_{1}+\ldots+a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}, a_{i} \neq \mu_{i j} a_{j}+\nu_{i j} \text { if } i \neq j\right\}
$$

where $\mu_{i j} \in \mathbb{Z}^{*}$ and $\nu_{i j} \in \mathbb{Z}$. If $\left|A_{i}\right| \geq 2 n-1$ for all $i=1, \ldots, n$, then

$$
|S| \geq \sum_{i=1}^{n}\left|A_{i}\right|-2 n^{2}+n+1
$$

Proof. Let $V=\left\{\left(i, j, 1,-\mu_{i j}, \nu_{i j}\right): 1 \leq i, j \leq n \& i \neq j\right\}$. If $1 \leq i \leq n$ then $\left|V_{i}\right|=n-1+(n-1)=2 n-2$. Clearly $2|V|+n-1=2\left(n^{2}-n\right)+n-1=$ $2 n^{2}-n-1$. So it suffices to apply Theorem 1.1.

Remark 1.3. For $1 \leq i<j \leq n$ let $\mu_{i j}=1, \mu_{j i}=-1$ and $\nu_{i j}=\nu_{j i}=0$. Then the set S given in Corollary 1.4 becomes $\left\{\sum_{i=1}^{n} a_{i}: a_{i} \in A_{i}\right.$ and all the a_{i}^{2} are distinct $\}$.

Corollary 1.5. For each $i=1, \ldots, n$ let $A_{i} \subseteq \mathbb{Z}$ and $3 \leq\left|A_{i}\right|<\infty$. Then the set

$$
\left\{a_{1}+\ldots+a_{n}: a_{i} \in A_{i}, a_{i} \neq a_{i+1} \text { if } i<n, \text { and } a_{n} \neq a_{1}\right\}
$$

has cardinality at least $\sum_{i=1}^{n}\left|A_{i}\right|-3 n+1$.
Proof. Let $V=\{(i, i+1,1,-1,0): i \in[1, n)\} \cup\{(n, 1,1,-1,0)\}$. Then $|V|=n$, and $\left|V_{i}\right|=2<\left|A_{i}\right|$ for all $i \in[1, n]$. So the desired result follows immediately from Theorem 1.1.

Let F be a field of characteristic p where p is a prime, and A_{1}, \ldots, A_{n} its finite subsets satisfying (1.2). Then Theorem 3.2 of [ANR] essentially asserts that

$$
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq \min \left\{p, 1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right)\right\}
$$

In the last section we will show the following general result by our combinatorial method.

Theorem 1.2. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with (1.2) and $\left|A_{1}\right|$ $\leq \ldots \leq\left|A_{n}\right|$. Then

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq 1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right) \tag{1.13}
\end{equation*}
$$

In the equality case, $\bigcup_{i=1}^{m} A_{i}=A_{m}$ if m lies in

$$
\begin{equation*}
M=\left\{1 \leq i \leq n:\left|A_{i}\right|-i<\left|A_{j}\right|-j \text { for all } j \in(i, n]\right\} \tag{1.14}
\end{equation*}
$$

and providing $\left|A_{i}\right|>i$ for all $i \in[1, n]$ the set $\bigcup_{i=1}^{n} A_{i}=A_{n}$ lies in AP with the only exceptions as follows:
(i) $n=1$ or $\left|A_{n}\right|=n+1$;
(ii) $n=2,\left|A_{1}\right| \in\{3,4\}$ and A_{2} has the form
(1.15) $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \quad$ with $x_{1}<x_{2}<x_{3}<x_{4}$ and $x_{4}-x_{3}=x_{2}-x_{1}$;
(iii) $n>1,\left|A_{n-1}\right|=n, A_{n-1}$ and $A_{n} \backslash A_{n-1}$ belong to AP, and d $\left(A_{n-1}\right)=$ $d\left(A_{n} \backslash A_{n-1}\right)$.

REmARK 1.4. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with $k_{i}=\left|A_{i}\right| \geq i$ for all $i \in[1, n]$. Providing $k_{s}>k_{s+1}$ for some $s \in[1, n)$, we still have inequality (1.13). To see this, we exchange A_{s} and A_{s+1}, i.e. we arrange A_{1}, \ldots, A_{n} in the order

$$
\begin{aligned}
& A_{1}^{*}=A_{1}, \quad \ldots, \quad A_{s-1}^{*}=A_{s-1}, \quad A_{s}^{*}=A_{s+1} \\
& A_{s+1}^{*}=A_{s}, \quad A_{s+2}^{*}=A_{s+2}, \quad \ldots, \quad A_{n}^{*}=A_{n}
\end{aligned}
$$

Clearly

$$
\left|A_{s+1}^{*}\right|-(s+1)=k_{s}-s-1>k_{s+1}-(s+1)
$$

and

$$
\begin{aligned}
\min \left\{\left|A_{s}^{*}\right|-s,\left|A_{s+1}^{*}\right|-(s+1)\right\} & =\min \left\{k_{s+1}-s, k_{s}-s-1\right\} \\
& =k_{s+1}-s>k_{s+1}-(s+1) \\
& \geq \min \left\{k_{s}-s, k_{s+1}-(s+1)\right\}
\end{aligned}
$$

thus

$$
\min _{i \leq j \leq n}\left(\left|A_{j}^{*}\right|-j\right) \geq \min _{i \leq j \leq n}\left(k_{j}-j\right) \quad \text { for all } i=1, \ldots, n
$$

The following example shows that in Theorem 1.2 the lower bound (in terms of cardinalities $\left.\left|A_{1}\right|, \ldots,\left|A_{n}\right|\right)$ is best possible.

Example 1.1. Let k_{1}, \ldots, k_{n} be integers for which $k_{1} \leq \ldots \leq k_{n}$ and $k_{i} \geq i$ for all $i=1, \ldots, n$. Let $d_{i}=\min _{i \leq j \leq n}\left(k_{j}-j\right)$ for each $i=1, \ldots, n$. Apparently $d_{1} \leq \ldots \leq d_{n}$. Put $A_{1}=\left[0, k_{1}-1\right], \ldots, A_{n}=\left[0, k_{n}-1\right]$. Observe
that $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$ contains the following sets:

$$
\begin{aligned}
& 0+1+2+\ldots+(n-3)+(n-2)+\left[n-1, n-1+d_{n}\right], \\
& 0+1+2+\ldots+(n-3)+\left[n-2, n-2+d_{n-1}\right]+\left(n-1+d_{n}\right), \\
& 0+\left[1,1+d_{2}\right]+\left(2+d_{3}\right)+\ldots+\left(n-2+d_{n-1}\right)+\left(n-1+d_{n}\right), \\
& {\left[0, d_{1}\right]+\left(1+d_{2}\right)+\left(2+d_{3}\right)+\ldots+\left(n-2+d_{n-1}\right)+\left(n-1+d_{n}\right) .}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right) & \supseteq\left[0+1+\ldots+(n-1), d_{1}+\left(1+d_{2}\right)+\ldots+\left(n-1+d_{n}\right)\right] \\
& =\frac{n(n-1)}{2}+\left[0, \sum_{i=1}^{n} d_{i}\right]
\end{aligned}
$$

Suppose that max $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=\sum_{i=1}^{n} x_{i}$ where $x_{1}<\ldots<x_{n}$ and these n integers can be rearranged to form an SDR of $\left\{A_{i}\right\}_{i=1}^{n}$. Choose a permutation σ on $\{1, \ldots, n\}$ such that $x_{\sigma(i)} \in A_{i}$. When $1 \leq i \leq n$, there exists a $j \in[i, n]$ such that $\sigma^{-1}(j) \notin(i, n]$ and hence $x_{j} \in A_{\sigma^{-1}(j)} \subseteq A_{i}$. So $x_{i} \in A_{i}$ for every $i=1, \ldots, n$. If $x_{n}<k_{n}-1$, then by substituting $k_{n}-1$ for x_{n} we would obtain an SDR of $\left\{A_{i}\right\}_{i=1}^{n}$ with the corresponding sum larger than $\sum_{i=1}^{n} x_{i}$. Thus $x_{n}=k_{n}-1=n-1+d_{n}$. Let $1 \leq i<n$ and assume that $x_{j}=j-1+d_{j}$ for all $j \in(i, n]$. When $i<j \leq n$, we have $x_{j}=j-1+d_{j} \geq i+d_{i}$. If $x_{i}<i-1+d_{i}$ then by substituting $i-1+d_{i} \in A_{i}$ for x_{i} we would obtain a sum larger than $x_{1}+\ldots+x_{n}$, thus $x_{i}=i-1+d_{i}$. By the above,

$$
\max S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left(i-1+d_{i}\right)=\frac{n(n-1)}{2}+\sum_{i=1}^{n} d_{i}
$$

Obviously

$$
\min S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=0+1+\ldots+(n-1)=\frac{n(n-1)}{2}
$$

So we also have

$$
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right) \subseteq \frac{n(n-1)}{2}+\left[0, \sum_{i=1}^{n} d_{i}\right]
$$

Therefore

$$
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=\left[\frac{n(n-1)}{2}, \frac{n(n-1)}{2}+\sum_{i=1}^{n} d_{i}\right]
$$

and hence $\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=1+\sum_{i=1}^{n} d_{i}$.
Remark 1.5. Example 1.1 was realized by Alon, Nathanson and Ruzsa [ANR], but they did not go into details. Let k_{1}, \ldots, k_{n} and A_{1}, \ldots, A_{n} be as in Example 1.1. For $i=1, \ldots, n$ put $A_{i}^{*}=\left\{a+j d: j \in\left[0, k_{i}\right)\right\}$ where
$a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{*}$. By Example 1.1,

$$
\left|S\left(\left\{A_{i}^{*}\right\}_{i=1}^{n}\right)\right|=\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}^{*}\right|-j\right)
$$

As for the exceptions (i) and (ii), here we give
Example 1.2. Let A be a finite subset of \mathbb{Z} with $|A| \geq n \geq 1$, and A_{1}, \ldots, A_{n} subsets of \mathbb{Z} with $\bigcup_{i=1}^{n} A_{i}=A_{n}=A$. Suppose that $\left|A_{i}\right|-i \geq$ $\left|A_{n}\right|-n$ for all $i=1, \ldots, n$ (i.e. the set M defined by (1.14) only contains $n)$. If $\left\{a_{i}\right\}_{i=1}^{n}$ is an SDR of $\left\{A_{i}\right\}_{i=1}^{n}$, then $\left\{a_{1}, \ldots, a_{n}\right\}$ is a subset of A with cardinality n. If $S \subseteq A$ and $|S|=n$, then for each $i \in[1, n]$ we have

$$
\left|S \cap A_{i}\right| \geq|S|-\left|A \backslash A_{i}\right|=n-\left(\left|A_{n}\right|-\left|A_{i}\right|\right) \geq i
$$

therefore $\left\{S \cap A_{i}\right\}_{i=1}^{n}$ has an $\operatorname{SDR}\left\{a_{i}\right\}_{i=1}^{n}$ and hence $S=\left\{a_{1}, \ldots, a_{n}\right\}$. Thus $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=n^{\wedge} A$, (1.13) is equivalent to (1.5), and the equality case of (1.13) is the same as that of (1.5). A result of Nathanson says that $\left|n^{\wedge} A\right|=n|A|-n^{2}+1$ if and only if $n \in\{1,|A|-1,|A|\}$, or $A \in \mathrm{AP}$, or $n=2$ and A can be written in the form (1.15). (See Section 3 of [N1] and Section 1.3 of [N2].) Thus, if $n=1$ or $|A|=n+1$, whether $A \in \mathrm{AP}$ or not, the two sides of (1.13) are always equal; this corresponds to the exception (i). In the case $n=2$, if $A_{2}=A$ is of the form (1.15), then $\left|A_{1}\right| \in\left\{\left|A_{2}\right|-1,\left|A_{2}\right|\right\}=\{3,4\}$ and

$$
\begin{aligned}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{2}\right)\right| & =\left|2^{\wedge} A\right|=2|A|-2^{2}+1=5 \\
& =1+\min \left\{\left|A_{1}\right|-1,\left|A_{2}\right|-2\right\}+\left|A_{2}\right|-2
\end{aligned}
$$

though we may not have $A_{2}=A \in \mathrm{AP}$.
For the equality case of (1.13), Example 1.2 shows that the necessary conditions given by Theorem 1.2 are also sufficient in the case $M=\{n\}$.

From Theorem 1.2 we have
Corollary 1.6. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with $\left|A_{1}\right| \leq \ldots \leq$ $\left|A_{n}\right|$ and $\min _{1 \leq i \leq n}\left(\left|A_{i}\right|-i\right)=0$. Put $m=\max \left\{1 \leq i \leq n:\left|A_{i}\right|=i\right\}$. Suppose that the two sides of (1.13) are equal. Then $A_{n} \backslash A_{m} \in$ AP unless we have one of the following:
(i') $m \in\{n-1, n\}$ or $\left|A_{n}\right|=n+1$;
(ii') $m=n-2,\left|A_{n-1}\right| \in\{n+1, n+2\}$ and $A_{n} \backslash A_{n-2}$ is of the form (1.15);
(iii') $m<n-1,\left|A_{n-1}\right|=n, A_{n-1} \backslash A_{m}$ and $A_{n} \backslash A_{n-1}$ lie in AP, and $d\left(A_{n-1} \backslash A_{m}\right)=d\left(A_{n} \backslash A_{n-1}\right)$.

Proof. Write $M=\left\{m_{1}, \ldots, m_{l}\right\}$ where $m_{0}=0<m_{1}<\ldots<m_{l}=n$. Clearly $m_{1}=m$. For any $j \in[1, l]$ set $A_{i}^{*}=A_{m_{j}}$ for all $i \in\left(m_{j-1}, m_{j}\right]$. By Theorem 1.2, $A_{i} \subseteq A_{m_{j}}$ for all $i=1, \ldots, m_{j}$. In the light of Example 1.2,
any $m_{j}-m_{j-1}$ distinct elements of $A_{m_{j}}$ can be arranged to form an SDR of $\left\{A_{i}\right\}_{m_{j-1}<i \leq m_{j}}$. So

$$
\begin{aligned}
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right) & =S\left(\left\{A_{i}^{*}\right\}_{i=1}^{n}\right) \\
& =\left\{\sum_{x \in A_{m}} x+\sum_{m<i \leq n} a_{i}: a_{i} \in A_{i}^{*} \backslash A_{m}, \text { all the } a_{i} \text { are distinct }\right\} \\
& =\sum_{x \in A_{m}} x+S\left(\left\{A_{i}^{*} \backslash A_{m}\right\}_{i \in(m, n]}\right)
\end{aligned}
$$

where we regard $S(\emptyset)$ as $\{0\}$. Observe that

$$
\begin{aligned}
\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right) & =\sum_{j=1}^{l} \sum_{m_{j-1}<i \leq m_{j}}\left(\left|A_{m_{j}}\right|-m_{j}\right) \\
& =\sum_{m<i \leq n} \min _{i \leq j \leq n}\left(\left|A_{j}^{*}\right|-j\right) \\
& =\sum_{m<i \leq n} \min _{i \leq j \leq n}\left(\left|A_{j}^{*} \backslash A_{m}\right|-(j-m)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|S\left(\left\{A_{i}^{*} \backslash A_{m}\right\}_{i \in(m, n]}\right)\right| & =\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \\
& =1+\sum_{m<i \leq n} \min _{i \leq j \leq n}\left(\left|A_{j}^{*} \backslash A_{m}\right|-(j-m)\right)
\end{aligned}
$$

If $i \in(m, n]$, then $\left|A_{i}\right|-i>\left|A_{m}\right|-m=0$ and hence $\left|A_{i}^{*} \backslash A_{m}\right|=\left|A_{i}^{*}\right|-m>$ $i-m$.

Below we assume that $m \neq n$. Let us apply Theorem 1.2 to the sets $A_{m+1}^{*} \backslash A_{m}, \ldots, A_{n}^{*} \backslash A_{m}$. If $A_{n}^{*} \backslash A_{m}=A_{n} \backslash A_{m} \notin \mathrm{AP}$, then we are led to the exceptions corresponding to (i)-(iii) in Theorem 1.2. Obviously
$|(m, n]|=1 \Leftrightarrow m=n-1 \quad$ and $\quad\left|A_{n}^{*} \backslash A_{m}\right|=(n-m)+1 \Leftrightarrow\left|A_{n}\right|=n+1$.
In the case $n-m=2, A_{n}^{*} \backslash A_{m}=A_{n} \backslash A_{n-2}$ and

$$
\begin{aligned}
& \left|A_{n-1}^{*} \backslash A_{m}\right| \in\left|A_{n}^{*} \backslash A_{m}\right|+\{0,-1\} \Leftrightarrow\left|A_{n-1}^{*}\right| \in\left|A_{n}\right|+\{0,-1\} \Leftrightarrow n-1 \notin M, \\
& \text { if }\left|A_{n}^{*} \backslash A_{m}\right|=\left|A_{n} \backslash A_{n-2}\right|=4 \text { then }\left|A_{n}\right|=\left|A_{n-2}\right|+4=n+2 \text { and } \\
& \qquad\left|A_{n-1}^{*} \backslash A_{m}\right| \in\{3,4\} \Leftrightarrow\left|A_{n-1}\right| \in\left|A_{n}\right|+\{0,-1\}=\{n+1, n+2\} .
\end{aligned}
$$

When $n-m>1$, we have

$$
\begin{aligned}
\left|A_{n-1}^{*} \backslash A_{m}\right|= & n-m \&\left(A_{n}^{*} \backslash A_{m}\right) \backslash\left(A_{n-1}^{*} \backslash A_{m}\right) \in \mathrm{AP} \\
& \Leftrightarrow\left|A_{n-1}^{*}\right|=n, A_{n-1}^{*} \neq A_{n}^{*}=A_{n} \& A_{n}^{*} \backslash A_{n-1}^{*} \in \mathrm{AP} \\
& \Leftrightarrow n-1 \in M,\left|A_{n-1}\right|=n \& A_{n} \backslash A_{n-1} \in \mathrm{AP} \\
& \Leftrightarrow\left|A_{n-1}\right|=n \& A_{n} \backslash A_{n-1} \in \mathrm{AP}
\end{aligned}
$$

In view of this, we have (i^{\prime}) or (ii^{\prime}) or (iii') if $A_{n} \backslash A_{m} \notin \mathrm{AP}$.
REmARK 1.6. Clearly (i), (ii) and (iii) correspond to (i'), (ii') and (iii') with $m=0$ and $A_{0}=\emptyset$. The proof of Corollary 1.6 shows that in the equality case of (1.13) those A_{m} with $m \in M$ are vital.

Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} satisfying (1.2). Theorem 1.2 , together with Example 1.1, Remark 1.5 and Corollary 1.6, shows that we have completely determined the set $\bigcup_{i=1}^{n} A_{i}=A_{n}$ in the equality case of (1.13).

Corollary 1.7. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with (1.2) and $\left|A_{1}\right| \leq \ldots \leq\left|A_{n}\right|$. Then

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq 1+\sum_{i=1}^{n}\left(\left|A_{i}\right|+h_{i}-n\right) \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{i}=\left|\left\{\left|A_{j}\right|: 1 \leq j \leq n \&\left|A_{j}\right|>\left|A_{i}\right|\right\}\right| \tag{1.17}
\end{equation*}
$$

Furthermore, when the lower bound in (1.16) is reached, $A_{i} \subseteq A_{m}$ for all $i=1, \ldots, m$ if $\left|A_{m}\right|<\left|A_{m+1}\right|-1$ or $m=n$; also $\left|A_{l}\right|<\ldots<\left|A_{n}\right|$ where l is the least index with $\left|A_{l}\right|<\left|A_{l+1}\right|-1$ or $l=n$; and providing $\min \left\{n,\left|A_{1}\right|-1, \ldots,\left|A_{n}\right|-n\right\} \geq 2$ we have $A_{n} \in \mathrm{AP}$ unless A_{n} is of the form (1.15).

Proof. Let $k_{i}=\left|A_{i}\right|$ for $i \in[1, n]$. When $i \in[1, n)$, if $k_{i}=k_{i+1}$ then $h_{i}=h_{i+1}$, if $k_{i} \leq k_{i+1}-1$ then $h_{i}=h_{i+1}+1$; thus $k_{i}+h_{i} \leq k_{i+1}+h_{i+1}$, and $k_{i}+h_{i}<k_{i+1}+h_{i+1}$ if and only if $k_{i}<k_{i+1}-1$. For $i \in[1, n]$, if $j \in[i, n]$ then $k_{i}+h_{i}-n \leq k_{j}+h_{j}-n \leq k_{j}-j$, so $k_{i}+h_{i}-n \leq d_{i}=\min _{i \leq j \leq n}\left(k_{j}-j\right)$. Thus (1.16) holds by Theorem 1.2.

Clearly $k_{1}+h_{1}=\ldots=k_{l}+h_{l}$ by the above, and $d_{1}=\ldots=d_{l}$ since $k_{1}-1 \geq \ldots \geq k_{l}-l$. When $k_{i}+h_{i}-n=d_{i}$ for all $i=1, \ldots, n$, for each $m \in[1, n)$ we have
$m \in M \Leftrightarrow d_{m}<d_{m+1} \Leftrightarrow k_{m}+h_{m}<k_{m+1}+h_{m+1} \Leftrightarrow k_{m}<k_{m+1}-1$, so $l \in M$ and $k_{l}+h_{l}-n=d_{l}=k_{l}-l$, therefore $h_{l}=n-l$ and $\left|A_{l}\right|<\ldots<$ $\left|A_{n}\right|$. Conversely, if $\left|A_{l}\right|<\ldots<\left|A_{n}\right|$, then $k_{l}-l \leq \ldots \leq k_{n}-n$ and hence $d_{i}=k_{i}-i=k_{i}+h_{i}-n$ for all $i \in[l, n]$. So $k_{i}+h_{i}-n=d_{i}$ for all $i \in[1, n]$ if and only if $k_{l}<\ldots<k_{n}$.

Suppose that the two sides of (1.16) are equal. Then the two sides of (1.13) are equal, and $k_{l}<\ldots<k_{n}$ by the above. In view of Theorem 1.2, $\bigcup_{i=1}^{m} A_{i}=A_{m}$ provided that $k_{m}<k_{m+1}-1$ or $m=n$. If $n \geq 2$ and $d_{1}=\min _{1 \leq i \leq n}\left(k_{i}-i\right) \geq 2$, then either $A_{n} \in \mathrm{AP}$, or $n=2$ and A_{2} can be written in the form (1.15).

REMARK 1.7. In the case $A_{1}=\ldots=A_{n}=A$, we have $h_{1}=\ldots=$ $h_{n}=0$ and Corollary 1.7 reduces to Theorem 2 of Nathanson [N1]. When
$\left|A_{1}\right|<\ldots<\left|A_{n}\right|$, Corollary 1.7 is a slight improvement on the main theorem of Cao and Sun [CS].

Corollary 1.8. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with (1.2). Then

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq \sum_{i=1}^{n}\left|A_{i}\right|-n^{2}+1 \tag{1.18}
\end{equation*}
$$

Providing $2 \leq n \leq\left|A_{n}\right|-2$ and $\left|A_{n}\right| \neq 4$, the two sides are equal if and only if $A_{1}=\ldots=A_{n} \in \mathrm{AP}$.

Proof. If we rearrange the order of A_{1}, \ldots, A_{n}, both sides of (1.16) keep unchanged. Suppose that $\left|A_{\sigma(1)}\right| \leq \ldots \leq\left|A_{\sigma(n)}\right|$ where σ is a permutation on $\{1, \ldots, n\}$. If $\left|A_{\sigma(i)}\right|<i$, then

$$
[i, n] \subseteq\left\{1 \leq j \leq n:\left|A_{j}\right| \geq i\right\} \subseteq\{\sigma(j): j \in(i, n]\}
$$

which is impossible. So $\left|A_{\sigma(i)}\right| \geq i$ for all $i \in[1, n]$. By Corollary 1.7, (1.16) holds and hence (1.18) follows. If both sides of (1.18) are equal, then $h_{i}=0$ for all $i=1, \ldots, n$ and hence $\left|A_{1}\right|=\ldots=\left|A_{n}\right|$, as $\bigcup_{i=1}^{n} A_{i}=A_{n}$ by Corollary 1.7 we must have $A_{1}=\ldots=A_{n}$. Now it suffices to apply the Nathanson result.

For the equality case of (1.13), let us look at one more example.
Example 1.3. Let k and n be integers with $k>n>1$. Let A_{1}, \ldots, A_{n-1} be subsets of $A_{n}=[0, k-1]$ with $A_{1}=[0, k-n] \backslash\{k-n-1\}$ and $\left|A_{i+1}\right|-\left|A_{i}\right| \in$ $\{0,1\}$ for all $i \in(1, n)$. We assert that

$$
S=S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=\left[\frac{n(n-1)}{2}, k n-\frac{n(n+1)}{2}\right] \backslash\left\{k n-\frac{n(n+1)}{2}-1\right\}
$$

and hence

$$
|S|=k n-n^{2}=1+\left(\left|A_{1}\right|-1\right)+(n-1)(k-n)=1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right) .
$$

Since $M=\{1, n\}$, by the arguments in the proof of Corollary 1.6, we may assume $A_{2}=\ldots=A_{n}$ without any loss of generality.

In the case $k=n+1$, clearly $A_{1}=\{1\}$ and $A_{i}=[0, n]$ for $i \in(1, n]$; setting $A=[0, n] \backslash\{1\}$ we then have

$$
\begin{aligned}
S & =1+(n-1)^{\wedge} A=1+\left\{\sum_{x \in A} x-a: a \in A\right\}=\sum_{i=1}^{n} i-A \\
& =\frac{n(n+1)}{2}-([0, n] \backslash\{1\})=\left[\frac{n(n-1)}{2}, \frac{n(n+1)}{2}\right] \backslash\left\{\frac{n(n+1)}{2}-1\right\} \\
& =\left[\frac{n(n-1)}{2}, k n-\frac{n(n+1)}{2}\right] \backslash\left\{k n-\frac{n(n+1)}{2}-1\right\}
\end{aligned}
$$

Below we verify the assertion on the condition $k>n+1$. By Example 1.1,

$$
\begin{aligned}
S \subseteq S\left([0, k-n], A_{2}, \ldots, A_{n}\right) & =\frac{n(n-1)}{2}+\left[0, \sum_{i=1}^{n}(k-n)\right] \\
& =\left[\frac{n(n-1)}{2}, k n-\frac{n(n+1)}{2}\right]
\end{aligned}
$$

and S contains

$$
\begin{aligned}
S\left([0, k-n-2], A_{2}, \ldots, A_{n}\right) & =\frac{n(n-1)}{2}+[0, k-n-2+(n-1)(k-n)] \\
& =\left[\frac{n(n-1)}{2}, k n-\frac{n(n+1)}{2}-2\right]
\end{aligned}
$$

Observe that

$$
\max S=k-n+(k-n-1)+\ldots+(k-1)=k n-\frac{n(n+1)}{2}
$$

Now it suffices to show that $k n-n(n+1) / 2-1 \notin S$. On the contrary, we can write

$$
k n-\frac{n(n+1)}{2}-1=k-n+\left(k-i_{1}\right)+\ldots+\left(k-i_{n-1}\right)
$$

where $1 \leq i_{1}<\ldots<i_{n-1} \leq k$ and $n \notin\left\{i_{1}, \ldots, i_{n-1}\right\}$. Apparently

$$
i_{1}+\ldots+i_{n-1}=\frac{n(n+1)}{2}+1-n, \quad \text { i.e. } \quad \sum_{j=1}^{n-1}\left(i_{j}-j\right)=1
$$

So $i_{t}-t=1$ for some $t \in[1, n)$, and $i_{j}=j$ for all $j \in[1, n) \backslash\{t\}$. As $i_{n-1} \neq n$, we have $t<n-1$ and hence $i_{t}=t+1=i_{t+1}$. This contradicts $i_{t}<i_{t+1}$.

Let A_{1}, \ldots, A_{n-1} be subsets of $A_{n}=\left[0, k_{n}-1\right]$ with the two sides of (1.13) equal. Set $A_{i}^{\prime}=\left\{k_{n}-1-x: x \in A_{i}\right\}$ for $i=1, \ldots, n$. Then

$$
\left|S\left(\left\{A_{i}^{\prime}\right\}_{i=1}^{n}\right)\right|=\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=1+\min _{i \leq j \leq n}\left(\left|A_{j}^{\prime}\right|-j\right) .
$$

If $\min A_{1}+\max A_{1} \geq k_{n}$, then $\min A_{1}^{\prime}+\max A_{1}^{\prime}=2\left(k_{n}-1\right)-\min A_{1}-$ $\max A_{1}<k_{n}$. So, to discuss the equality case of (1.13) with $A_{n} \in \mathrm{AP}$, we may simply take $A_{n}=\left[0, k_{n}-1\right]$ and assume that $\min A_{1}+\max A_{1}<k_{n}$.

Now we pose a conjecture which essentially determines the equality case of (1.13).

Conjecture 1.1. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with $\left|A_{1}\right| \leq$ $\ldots \leq\left|A_{n}\right|, k_{i}=\left|A_{i}\right|>i$ for $i \in[1, n]$, and $\bigcup_{i=1}^{m} A_{i}=A_{m}$ for all $m \in M$. Suppose that $A_{n}=\left[0, k_{n}-1\right]$ and $\min A_{1}+\max A_{1}<k_{n}$. If the two sides of (1.13) are equal, then $A_{m}=\left[0, k_{m}-1\right]$ for all $m \in M$, unless

$$
\begin{equation*}
M=\{1, n\}, \quad k_{n}-k_{1}=n \quad \text { and } \quad A_{1}=\left[0, k_{1}\right] \backslash\left\{k_{1}-1\right\} \tag{1.19}
\end{equation*}
$$

Though we are unable to solve this conjecture, we have found evidence to support it through computer calculations.
2. Proof of Theorem 1.1. We use induction on n. In the case $n=1$, the inequality is obvious since $C=A_{1}$ and $V_{1}=V=\emptyset$. So we proceed to the induction step.

Let $n>1$ and assume the assertion holds for smaller values of n. Set $a=\min A_{n}$ and

$$
V^{\prime}=\{(s, t, \mu, \nu, w) \in V: 1 \leq s, t \leq n-1\}
$$

For each $i=1, \ldots, n-1$ let A_{i}^{\prime} consist of those $a_{i} \in A_{i}$ for which $\mu a_{i}+\nu a \neq w$ if $(i, n, \mu, \nu, w) \in V$, and $\mu a+\nu a_{i} \neq w$ if $(n, i, \mu, \nu, w) \in V$. Apparently

$$
\left|A_{i}^{\prime}\right| \geq\left|A_{i}\right|-|\{(s, t, \mu, \nu, w) \in V:\{s, t\}=\{i, n\}\}|
$$

and thus

$$
\begin{aligned}
V_{i}^{\prime} & =\left\{(s, t, \mu, \nu, w) \in V^{\prime}: i \in\{s, t\}\right\} \\
& =V_{i} \backslash\{(s, t, \mu, \nu, w) \in V:\{s, t\}=\{i, n\}\}
\end{aligned}
$$

has cardinality not greater than $\left|V_{i}\right|+\left|A_{i}^{\prime}\right|-\left|A_{i}\right|<\left|A_{i}^{\prime}\right|$. Let

$$
C^{\prime}=\left\{a_{1}+\ldots+a_{n-1}: a_{i} \in A_{i}^{\prime}, \text { and } \mu a_{i}+\nu a_{j} \neq w \text { if }(i, j, \mu, \nu, w) \in V^{\prime}\right\}
$$

By the induction hypothesis,

$$
\left|C^{\prime}\right| \geq 1+\sum_{i=1}^{n-1}\left(\left|A_{i}^{\prime}\right|-\left|V_{i}^{\prime}\right|-1\right) \geq 1+\sum_{i=1}^{n-1}\left(\left|A_{i}\right|-\left|V_{i}\right|-1\right)>0
$$

Write $\max C^{\prime}=\sum_{i=1}^{n-1} a_{i}^{\prime}$ where $a_{1}^{\prime} \in A_{1}^{\prime}, \ldots, a_{n-1}^{\prime} \in A_{n-1}^{\prime}$, and $\mu a_{i}^{\prime}+\nu a_{j}^{\prime}$ $\neq w$ if $(i, j, \mu, \nu, w) \in V^{\prime}$. Let A_{n}^{\prime} consist of those $a_{n} \in A_{n}$ for which $\mu a_{i}^{\prime}+$ $\nu a_{n} \neq w$ if $(i, n, \mu, \nu, w) \in V$, and $\mu a_{n}+\nu a_{i}^{\prime} \neq w$ if $(n, i, \mu, \nu, w) \in V$. Note that $a \in A_{n}^{\prime}$ and $\left|A_{n}^{\prime}\right| \geq\left|A_{n}\right|-\left|V_{n}\right|>0$. Clearly

$$
\left(C^{\prime}+a\right) \cup\left(a_{1}^{\prime}+\ldots+a_{n-1}^{\prime}+A_{n}^{\prime}\right) \subseteq C
$$

and

$$
\max \left(C^{\prime}+a\right)=a_{1}^{\prime}+\ldots+a_{n-1}^{\prime}+a=\min \left(a_{1}^{\prime}+\ldots+a_{n-1}^{\prime}+A_{n}^{\prime}\right)
$$

Therefore

$$
\begin{aligned}
|C| & \geq\left|C^{\prime}+a\right|+\left|a_{1}^{\prime}+\ldots+a_{n-1}^{\prime}+A_{n}^{\prime}\right|-1=\left|C^{\prime}\right|+\left|A_{n}^{\prime}\right|-1 \\
& \geq 1+\sum_{i=1}^{n-1}\left(\left|A_{i}\right|-\left|V_{i}\right|-1\right)+\left|A_{n}\right|-\left|V_{n}\right|-1=1+\sum_{i=1}^{n}\left(\left|A_{i}\right|-\left|V_{i}\right|-1\right)
\end{aligned}
$$

Since $\sum_{i=1}^{n}\left|V_{i}\right|=2|V|$, we are done.
3. Several lemmas. We first check the exception (iii) given in Theorem 1.2.

Lemma 3.1. Let $A_{1}, \ldots, A_{n}(n>1)$ be finite subsets of \mathbb{Z} such that $\left|A_{i}\right|>i$ for all $i \in[1, n],\left|A_{n-1}\right|=n<\left|A_{n}\right|-1$ and $\bigcup_{i=1}^{n-1} A_{i}=A_{n-1} \subseteq A_{n}$. Then the two sides of (1.13) are equal if and only if $A_{n-1}, A_{n} \backslash A_{n-1} \in \mathrm{AP}$ and $d\left(A_{n-1}\right)=d\left(A_{n} \backslash A_{n-1}\right)$.

Proof. Let $S=S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$ and $k_{i}=\left|A_{i}\right|$ for all $i=1, \ldots, n$. Write $A_{n-1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $A_{n} \backslash A_{n-1}=\left\{y_{1}, \ldots, y_{k_{n}-k_{n-1}}\right\}$ where $x_{1}<\ldots<$ x_{n} and $y_{1}<\ldots<y_{k_{n}-k_{n-1}}$. Since $k_{i}-i \geq 1=k_{n-1}-(n-1)$ for all $i \in$ [1, $n-1], S\left(\left\{A_{i}\right\}_{i=1}^{n-1}\right)=(n-1)^{\wedge} A_{n-1}$ as pointed out in Example 1.2. Thus

$$
\begin{aligned}
S & =\bigcup_{i=1}^{n}\left\{x_{1}+\ldots+x_{n}-x_{i}+y: y \in\left\{x_{i}, y_{1}, \ldots, y_{k_{n}-k_{n-1}}\right\}\right\} \\
& =x_{1}+\ldots+x_{n}+\left(\{0\} \cup\left\{y_{j}-x_{i}: i \in[1, n], j \in\left[1, k_{n}-k_{n-1}\right]\right\}\right)
\end{aligned}
$$

and hence $|S|=1+\left|\left(A_{n} \backslash A_{n-1}\right)-A_{n-1}\right|$ where we let $A-B=A+(-B)=$ $\{a-b: a \in A, b \in B\}$ for $A, B \subseteq \mathbb{Z}$. By a known result (cf. Lemma 1.3 and Theorem 1.5 of [N2]), for any finite subsets A and B of \mathbb{Z} with $|A| \geq 2$ and $|B| \geq 2,|A+B|=|A|+|B|-1$ if and only if $A, B \in \mathrm{AP}$ and $d(A)=d(B)$. So

$$
\begin{aligned}
|S|= & 1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(k_{j}-j\right)=1+(n-1)\left(k_{n-1}-(n-1)\right)+k_{n}-n=k_{n} \\
& \Leftrightarrow\left|\left(A_{n} \backslash A_{n-1}\right)-A_{n-1}\right|=k_{n}-1=\left|A_{n} \backslash A_{n-1}\right|+\left|-A_{n-1}\right|-1 \\
& \Leftrightarrow x_{i+1}-x_{i}=y_{j+1}-y_{j} \quad \text { for all } i \in[1, n) \text { and } j \in\left[1, k_{n}-k_{n-1}\right)
\end{aligned}
$$

The following lemma is an improvement on Lemma 2 of [CS].
Lemma 3.2. Let A_{1} and A_{2} be finite subsets of \mathbb{Z} with $\left|A_{1}\right| \geq 3, A_{1} \subset A_{2}$, $\min A_{1}=\min A_{2}, \max A_{1} \neq \max A_{2}$ and $\left|S\left(A_{1}, A_{2}\right)\right|=\left|A_{1}\right|+\left|A_{2}\right|-2$. Then $A_{2} \in \mathrm{AP}$ unless $\left|A_{1}\right|=3$ and A_{2} can be written in the form (1.15).

Proof. Let $A_{1}=\left\{a_{1}, \ldots, a_{k}\right\}$ and $A_{2}=\left\{b_{1}, \ldots, b_{l}\right\}$ where $a_{1}<\ldots<a_{k}$ and $b_{1}<\ldots<b_{l}$. By the proof of Lemma 2 of [CS], $a_{i} \in\left\{b_{i}, b_{i+1}\right\}$ for all $i \in[1, k]$,

$$
S\left(A_{1}, A_{2}\right)=\left\{a_{1}+b_{2}, \ldots, a_{1}+b_{l-1}, a_{1}+b_{l}, \ldots, a_{k}+b_{l}\right\}
$$

and $A_{2} \in$ AP if $a_{3}<b_{l-1}$.
Suppose that $a_{3}=b_{l-1}$. Then $k=3$ since $a_{3} \leq a_{k}<b_{l}$. As $a_{1}+b_{l-1}<$ $a_{2}+b_{l-1}<a_{2}+b_{l}$, we must have $a_{2}+b_{l-1}=a_{1}+b_{l}$, i.e. $b_{l}-b_{l-1}=a_{2}-a_{1}$. If $a_{3}=b_{3}$, then $l=4, a_{2}=b_{2}$ and hence $b_{4}-b_{3}=b_{2}-b_{1}$, so A_{2} is of the form (1.15). Below we let $a_{3}=b_{4}$. Then $l=5$ and $b_{5}-b_{4}=a_{2}-a_{1}$. As $a_{1}+b_{4}<a_{3}+b_{2}=b_{4}+b_{2} \leq a_{2}+b_{4}=a_{1}+b_{5}$, we must have $a_{2}=b_{2}<b_{3}$. Observe that

$$
a_{1}+b_{3}<a_{2}+b_{3}<a_{2}+b_{4}=a_{1}+b_{5}<a_{3}+b_{3}<a_{3}+b_{5}
$$

So $a_{2}+b_{3}=a_{1}+b_{4}$ and $a_{3}+b_{3}=a_{2}+b_{5}$, therefore $A_{2} \in \mathrm{AP}$.
We now present a lemma reflecting some symmetry.
Lemma 3.3. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with $A_{1}=\ldots=A_{m} \subseteq$ $A_{m+1}=\ldots=A_{n}$ and $0<\left|A_{m}\right|-m \leq\left|A_{n}\right|-n$ where $m \in[1, n]$. Define the dual sequence $\left\{B_{j}\right\}_{j=1}^{\left|A_{n}\right|-n}$ of $\left\{A_{i}\right\}_{i=1}^{n}$ as follows:

$$
B_{i}=A_{n} \backslash A_{m} \quad \text { for each } i \in\left[1,\left|A_{n}\right|-n-\left(\left|A_{m}\right|-m\right)\right]
$$

and

$$
B_{j}=A_{n} \quad \text { for all } j \in\left(\left|A_{n}\right|-n-\left(\left|A_{m}\right|-m\right),\left|A_{n}\right|-n\right]
$$

Then $\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=\left|S\left(\left\{B_{i}\right\}_{i=1}^{\left|A_{n}\right|-n}\right)\right|$ and

$$
\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right)=\sum_{i=1}^{\left|A_{n}\right|-n} \min _{i \leq j \leq n}\left(\left|B_{j}\right|-j\right)
$$

Proof. Let $k_{m}=\left|A_{m}\right|$ and $k_{n}=\left|A_{n}\right|$. Suppose that $A_{m}=\left\{x_{1}, \ldots, x_{k_{m}}\right\}$ and $A_{n} \backslash A_{m}=\left\{y_{1}, \ldots, y_{k_{n}-k_{m}}\right\}$. Then $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$ consists of integers of the form $\sum_{i \in I} x_{i}+\sum_{j \in J} y_{j}$ where $I \subseteq\left[1, k_{m}\right], J \subseteq\left[1, k_{n}-k_{m}\right],|I|+|J|=n$ and $|I| \geq m$, in other words the elements of $S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$ are integers of the form

$$
\sum_{i=1}^{k_{m}} x_{i}-\sum_{i \in \bar{I}} x_{i}+\sum_{j=1}^{k_{n}-k_{m}} y_{j}-\sum_{j \in \bar{J}} y_{j}
$$

where $\bar{I} \subseteq\left[1, k_{m}\right], \bar{J} \subseteq\left[1, k_{n}-k_{m}\right],|\bar{I}|+|\bar{J}|=k_{m}+\left(k_{n}-k_{m}\right)-n=k_{n}-n$ and $|\bar{J}| \geq k_{n}-k_{m}-(n-m)=k_{n}-n-\left(k_{m}-m\right)$. Thus

$$
S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)=\sum_{x \in A_{n}} x-S\left(\left\{B_{i}\right\}_{i=1}^{k_{n}-n}\right)
$$

and so

$$
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=\left|S\left(\left\{B_{i}\right\}_{i=1}^{k_{n}-n}\right)\right|
$$

Clearly

$$
\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right)=m\left(k_{m}-m\right)+(n-m)\left(k_{n}-n\right) .
$$

Also,

$$
\begin{aligned}
\sum_{i=1}^{k_{n}-n} \min _{i \leq j \leq n} & \left(\left|B_{j}\right|-j\right)-\left(k_{m}-m\right)\left(\left|A_{n}\right|-\left(k_{n}-n\right)\right) \\
& =\left(k_{n}-n-\left(k_{m}-m\right)\right)\left(\left|A_{n} \backslash A_{m}\right|-\left(k_{n}-n-\left(k_{m}-m\right)\right)\right) \\
& =(n-m)\left(k_{n}-n\right)+(m-n)\left(k_{m}-m\right)
\end{aligned}
$$

This concludes the proof.

Let $A_{1} \subseteq A_{2} \subseteq \mathbb{Z},\left|A_{1}\right|=3$ and $\left|A_{2}\right|=4$. Then the dual sequence of $\left\{A_{i}\right\}_{i=1}^{2}$ is the sequence A_{2}, A_{2}. Thus the example (given by Nathanson) with $\left|2^{\wedge} A_{2}\right|=2\left|A_{2}\right|-2^{2}+1$ and $A_{2} \notin \mathrm{AP}$, induces the exception (ii) in Theorem 1.2.
4. Reduction of Theorem 1.2. Let A_{1}, \ldots, A_{n} be finite subsets of \mathbb{Z} with (1.2) and $\left|A_{1}\right| \leq \ldots \leq\left|A_{n}\right|$. Put $d_{i}=\min _{i \leq j \leq n}\left(\left|A_{j}\right|-j\right)$ and $k_{i}^{\prime}=d_{i}+i$ for $i=1, \ldots, n$. Clearly $k_{n}^{\prime}=\left|A_{n}\right|$ and $k_{i}^{\prime}<k_{i+1}^{\prime}$ for all $i \in[1, n)$. As $k_{i}^{\prime} \leq\left|A_{i}\right|$, we can choose a subset A_{i}^{\prime} of A_{i} with $\left|A_{i}^{\prime}\right|=k_{i}^{\prime}$. Obviously $A_{n}^{\prime}=A_{n}$ and $\sum_{i=1}^{n}\left|A_{i}^{\prime}\right| \leq \sum_{i=1}^{n}\left|A_{i}\right|$. By the Theorem of Cao and Sun [CS], we have

$$
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right| \geq\left|S\left(\left\{A_{i}^{\prime}\right\}_{i=1}^{n}\right)\right| \geq 1+\sum_{i=1}^{n}\left(k_{i}^{\prime}-i\right)=1+\sum_{i=1}^{n} d_{i}
$$

So (1.13) holds. If equality is valid in (1.13), then

$$
\left|S\left(\left\{A_{i}^{\prime}\right\}_{i=1}^{n}\right)\right|=1+\sum_{i=1}^{n}\left(k_{i}^{\prime}-i\right)
$$

hence by the Theorem of [CS] we have $\bigcup_{i=1}^{m} A_{i}^{\prime}=A_{m}^{\prime} \subseteq A_{m}$ for any m in the set

$$
\begin{aligned}
M & =\left\{1 \leq i<n: k_{i}^{\prime}<k_{i+1}^{\prime}-1\right\} \cup\{n\}=\left\{1 \leq i \leq n: d_{i}<d_{i+1}\right\} \cup\{n\} \\
& =\left\{1 \leq i \leq n:\left|A_{i}\right|-i<\left|A_{j}\right|-j \text { for all } j \in(i, n]\right\} .
\end{aligned}
$$

For any $i=1, \ldots, n$, if $a_{i} \in A_{i}$ then we can select $A_{i}^{\prime} \subseteq A_{i}$ so that $a_{i} \in A_{i}^{\prime}$ and $\left|A_{i}^{\prime}\right|=k_{i}^{\prime}$. Thus, in the equality case of (1.13) we have $\bigcup_{i=1}^{m} A_{i} \subseteq A_{m}$ for all $m \in M$.

Let $1 \leq i \leq n$. Then

$$
k_{i}^{\prime}>i \Leftrightarrow d_{i}>0 \Leftrightarrow\left|A_{j}\right|>j \text { for all } j \in[i, n] .
$$

Thus

$$
\left|A_{i}\right|>i \text { for all } i \in[1, n] \Leftrightarrow\left|A_{i}^{\prime}\right|>i \text { for all } i \in[1, n] \text {. }
$$

Recall that $A_{n}^{\prime}=A_{n}$. When $n=2$ and $A_{2}^{\prime}=A_{2}$ is of the form (1.15), clearly

$$
\left|A_{1}\right| \in\{3,4\} \Leftrightarrow\left|A_{1}\right|-1 \geq\left|A_{2}\right|-2 \Leftrightarrow d_{1}=2 \Leftrightarrow k_{1}^{\prime}=3
$$

In the case $n>1$ and $\left|A_{n}\right|>n$, we have

$$
\left|A_{n-1}\right|=n \Leftrightarrow d_{n-1}=1 \Leftrightarrow k_{n-1}^{\prime}=n
$$

thus $A_{n-1}=A_{n-1}^{\prime}$ providing $\left|A_{n-1}\right|=n$ or $k_{n-1}^{\prime}=n$.
In view of the above and Lemma 3.1, Theorem 1.2 can be reduced to the following

Theorem 4.1. Let A_{1}, \ldots, A_{n} be subsets of \mathbb{Z} with $\left|A_{1}\right|<\ldots<\left|A_{n}\right|<$ ∞ and $\left|A_{i}\right|>i$ for all $i=1, \ldots, n$. If

$$
\begin{equation*}
\left|S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)\right|=1+\sum_{i=1}^{n}\left(\left|A_{i}\right|-i\right), \tag{4.1}
\end{equation*}
$$

then $A_{n} \in \mathrm{AP}$ unless we have (i) or (iii), or (ii) with $\left|A_{1}\right|=3$.
Remark 4.1. Let k be a positive integer. By the previous reasoning, if Theorem 4.1 holds for those subsets A_{1}, \ldots, A_{n} of \mathbb{Z} with $\left|A_{1}\right|+\ldots+\left|A_{n}\right| \leq$ k, then so does Theorem 1.2.
5. Proof of Theorem 4.1. We proceed by induction on $k=\sum_{i=1}^{n}\left|A_{i}\right|$. Apparently $k \geq\left|A_{1}\right|>1$.

If $k=2$, then $n=1$ and $\left|A_{1}\right|=2$. In the case $n=1$, both (4.1) and (i) hold.

Below we let $k>2$ and $n \geq 2$, and assume that the result holds if $\left|A_{1}\right|+\ldots+\left|A_{n}\right|<k$. Now let $\left|A_{1}\right|+\ldots+\left|A_{n}\right|=k$. For all $i \in[1, n]$ we set

$$
\begin{equation*}
k_{i}=\left|A_{i}\right| \quad \text { and } \quad d_{i}=\min _{i \leq j \leq n}\left(k_{j}-j\right)=k_{i}-i . \tag{5.1}
\end{equation*}
$$

Obviously $1 \leq d_{1} \leq \ldots \leq d_{n}$. Put

$$
\begin{equation*}
a=\min \bigcup_{i=1}^{n} A_{i}, \quad I=\left\{1 \leq i \leq n: a \in A_{i}\right\}, \quad r=\min I, \quad t=\max I . \tag{5.2}
\end{equation*}
$$

For $i \in I$ let

$$
A_{i}^{\prime}= \begin{cases}A_{i} \backslash\{a\} & \text { if } i \neq r, \tag{5.3}\\ \{a\} & \text { if } i=r ;\end{cases}
$$

and for $i \in \bar{I}=[1, n] \backslash I$ set

$$
A_{i}^{\prime}= \begin{cases}A_{i} \backslash\left\{a_{i}\right\} & \text { if } r<i<t \text { and } i \notin M, \tag{5.4}\\ A_{i} & \text { otherwise },\end{cases}
$$

where a_{i} is an arbitrary element of A_{i}. Write $k_{i}^{\prime}=\left|A_{i}^{\prime}\right|$ for $i \in[1, n] \backslash\{r\}$. Then $1<k_{1}^{\prime}<\ldots<k_{r-1}^{\prime}<k_{r} \leq k_{r+1}^{\prime}<\ldots<k_{n}^{\prime}$ and $\sum_{i \neq r} k_{i}^{\prime}<$ $\sum_{i=1}^{n} k_{i}=k$. For $i \in[1, n] \backslash\{r\}$ we set

$$
d_{i}^{\prime}= \begin{cases}k_{i}^{\prime}-i & \text { if } i<r, \tag{5.5}\\ k_{i}^{\prime}-(i-1) & \text { if } i>r .\end{cases}
$$

Let $S=S\left(\left\{A_{i}\right\}_{i=1}^{n}\right)$, and assume that (4.1) holds. By the Theorem of [CS] and its proof, $\bigcup_{i=1}^{m} A_{i}=A_{m}$ for all $m \in M$, and

$$
\left|S\left(\left\{A_{i}^{\prime}\right\}_{i \neq r}\right)\right|=\sum_{i \neq r} k_{i}^{\prime}-\frac{n(n-1)}{2}+1=1+\sum_{i \neq r} d_{i}^{\prime} .
$$

Also $t=n$ and $(r, t) \cap \bar{I} \cap M=\emptyset$ (see (12) and (14) of [CS]), therefore $k_{i}^{\prime}=k_{i}-1$ for $i \in(r, n]$ and $d_{i}^{\prime}=d_{i}$ for all $i \in[1, n] \backslash\{r\}$.

Clearly $b=\max \bigcup_{i=1}^{n} A_{i} \neq a$ (otherwise $\left.\left|A_{n}\right|=|\{a\}|<n\right),-b=$ $\min \bigcup_{i=1}^{n}\left(-A_{i}\right)$ and

$$
\left|S\left(\left\{-A_{i}\right\}_{i=1}^{n}\right)\right|=|S|=1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|-A_{j}\right|-j\right)
$$

Like the fact that $a \in A_{t}=A_{n}$ we should also have $-b \in-A_{n}$. Thus $b \in A_{n} \backslash\{a\}$.

Let s denote the least index such that $b \in A_{s}$. By p. 166 of [CS], there exists an $l \in[r, n]$ such that $k_{l}-l=k_{r}-r$ (i.e. $d_{r}=\ldots=d_{l}$), and $l=s=r<n$ is impossible.

From now on we assume that none of (i)-(iii) (in Theorem 1.2) holds. Then $k_{n}>n+1$. If $k_{n-1}=n$, then $n-1 \in M$ and $\bigcup_{i=1}^{n-1} A_{i}=A_{n-1} \subseteq A_{n}$, thus (iii) holds by Lemma 3.1. Now that (iii) fails, we must have $k_{n-1}>n$.

We claim that $A_{n}^{*}=A_{n} \backslash\{a\} \in \mathrm{AP}$. For this conclusion, it suffices to work under the condition $A_{n}^{*} \notin \mathrm{AP}$.

CASE 1. $r<n-1$. Apparently $n>2, k_{n}^{\prime}=k_{n}-1>n=(n-1)+1$ and $k_{n-1}^{\prime}=k_{n-1}-1>n-1=(n-2)+1$. As $A_{n}^{\prime}=A_{n}^{*} \notin \mathrm{AP}$, by the induction hypothesis, $n-1=2, r=1, k_{2}^{\prime}=3$ and $A_{3}^{\prime}=A_{3} \backslash\{a\}$ is of the form (1.15). Note that $k_{2}=k_{2}^{\prime}+1=4$ and $k_{3}=k_{3}^{\prime}+1=5$. If $k_{1}>2$, then $k_{1}=3$ and $M=\{3\}$, hence $S=3^{\wedge} A_{3}$ and $A_{3} \in$ AP by Example 1.2. Thus $k_{1}=2$, $k_{2}=4$ and $k_{3}=5$. Observe that $|S|=1+(2-1)+(4-2)+(5-3)=6$. If $1 \leq i<j \leq 4$, then x_{i} or x_{j} lies in A_{2} (since $A_{2} \subseteq A_{3}$ and $k_{3}-k_{2}=1$), therefore $a+x_{i}+x_{j} \in S$. Thus S contains the following 5 integers:
$a+x_{1}+x_{2}, a+x_{1}+x_{3}, a+x_{1}+x_{4}=a+x_{2}+x_{3}, a+x_{2}+x_{4}, a+x_{3}+x_{4}$.
Suppose that $A_{1}=\left\{a, x_{i}\right\}$ where $1 \leq i \leq 4$. If $i \in\{3,4\}$, then both $x_{4}+x_{3}+x_{1}$ and $x_{4}+x_{3}+x_{2}$ belong to S, this contradicts the fact that $|S|=6<5+2$. So $i \in\{1,2\}$, and S consists of the above 5 integers and the number $x_{i}+x_{3}+x_{4}$. Apparently S also contains $x_{1}+x_{2}+x_{3}$ and $x_{1}+x_{2}+x_{4}$. Since $a+x_{2}+x_{3}<x_{1}+x_{2}+x_{3}<x_{1}+x_{2}+x_{4}<x_{i}+x_{3}+x_{4}$, we must have $x_{1}+x_{2}+x_{3}=a+x_{2}+x_{4}$ and $x_{1}+x_{2}+x_{4}=a+x_{3}+x_{4}$. Thus $x_{4}-x_{3}=x_{1}-a=x_{3}-x_{2}$ and hence $A_{n}=A_{3} \in \mathrm{AP}$.

CASE 2. $A_{n-1} \subset A_{n}^{*}$. As $n-1 \in M, a \notin A_{n-1}=\bigcup_{i=1}^{n-1} A_{i}$ and so $r=n$. Clearly $k_{1}<\ldots<k_{n-1}<k_{n}^{*}=\left|A_{n}^{*}\right|=k_{n}-1$. Let S^{*} denote the set $S\left(A_{1}, \ldots, A_{n-1}, A_{n}^{*}\right)$. Then $a+\min S\left(\left\{A_{i}\right\}_{i=1}^{n-1}\right)=\min S<\min S^{*}$. So $\left|S^{*}\right| \leq$ $|S|-1=\sum_{i=1}^{n}\left(k_{i}-i\right)$ and hence $\left|S^{*}\right|=|S|-1=1+\sum_{i=1}^{n-1}\left(k_{i}-i\right)+\left(k_{n}^{*}-n\right)$.

Recall that $k_{n}^{*}=k_{n}-1>k_{n-1} \geq n+1$. By the induction hypothesis, $n=2, k_{1}=3, A_{2}^{*}$ has the form (1.15) and hence $k_{2}=5$. For any two distinct
elements x and y of A_{2}^{*} we have $x+y \in S^{*}$ since one of them belongs to A_{1}. All the $1+(3-1)+(4-2)=5$ elements of S^{*} are as follows:

$$
x_{1}+x_{2}, x_{1}+x_{3}, x_{1}+x_{4}=x_{2}+x_{3}, x_{2}+x_{4}, x_{3}+x_{4}
$$

As $\left|a+A_{1}\right|=3, \max \left(a+A_{1}\right)<x_{1}+x_{4}$ and $|S|=1+(3-1)+(5-2)=6$, we must have

$$
S=\left(a+A_{1}\right) \cup\left\{x_{i}+x_{4}: i=1,2,3\right\}
$$

Evidently $x_{4} \in A_{1}$ and $x_{1}+x_{3}=a+x_{4}$ since $x_{1}+x_{3} \in a+A_{1}$, also $x_{3} \in A_{1}$ and $x_{1}+x_{2}=a+x_{3}$ since $x_{1}+x_{2} \in a+A_{1}$. So $x_{4}-x_{3}=x_{1}-a=x_{3}-x_{2}$ and hence $A_{n}=A_{2} \in \mathrm{AP}$.

CASE 3. $r=n-1$, or $r=n$ and $A_{n-1}=A_{n}^{*}$. Let $\bar{r}=n$ if $r=n-1$, and $\bar{r}=n-1$ if $r=n$. Clearly $A_{\bar{r}}^{\prime}=A_{n}^{*}$ and $k_{\bar{r}}^{\prime}=\left|A_{n}^{*}\right|=k_{n}-1>n=(n-1)+1$.

Let us handle the case $n=2$. Note that $k_{1}=k_{n-1}>n=2$. If $A_{1}=A_{2}^{*}$, then $\min \left(-A_{1}\right)=\min \left(-A_{2}\right)$ and $\max \left(-A_{1}\right)<\max \left(-A_{2}\right)=-a$, hence $-A_{2} \in \mathrm{AP}$ (i.e. $A_{2} \in \mathrm{AP}$) by Lemma 3.2 since (ii) fails. When $r=1$, we have $\min A_{1}=\min A_{2}$, if $s=2$ (i.e. $\max A_{1} \neq \max A_{2}$) then $A_{2} \in \mathrm{AP}$ by Lemma 3.2. In the case $r=s=1$, we have $l>1$ because $l=r=s<n$ is impossible, hence $k_{1}=k_{2}-1$ since $k_{r}-r=k_{l}-l$, thus $S=2^{\wedge} A_{2}$ and $A_{2} \in$ AP by Example 1.2. (Recall that (ii) fails.)

Let $n-1=2, k_{1}=k_{1}^{\prime}=3$ and $A_{\bar{r}}^{\prime}$ have the form (1.15). Observe that $n=3<k_{n-1}=k_{2} \leq k_{3}-1=\left|A_{3}^{*}\right|=\left|A_{\bar{r}}^{\prime}\right|=4$. So $M=\{3\}$ and hence $A_{3} \in$ AP by Example 1.2.

Now we assume that $n>2$, and $n \neq 3$ or $k_{1}^{\prime} \neq 3$ or $A_{\bar{r}}^{\prime}$ is not of the form (1.15). As $A_{\bar{r}}^{\prime}=A_{n}^{*} \notin \mathrm{AP}$, by the induction hypothesis, $k_{n-2}=k_{n-2}^{\prime}=n-1$, also $A_{n-2}=A_{n-2}^{\prime}$ and $A_{n}^{*} \backslash A_{n-2}=A_{\bar{r}}^{\prime} \backslash A_{n-2}^{\prime}$ form arithmetic progressions with the same difference d. Since $k_{n-2}=n-1<n<k_{n-1}$, we have $n-2 \in M$ and hence $\bigcup_{i=1}^{n-2} A_{i}=A_{n-2} \subseteq A_{n}^{*}$. Let $A_{n-1}^{*}=A_{n-1} \backslash\{a\}$, $k_{n-1}^{*}=\left|A_{n-1}^{*}\right|$ and $S^{*}=S\left(A_{1}, \ldots, A_{n-2}, A_{n-1}^{*}, A_{n}^{*}\right)$. Then

$$
\begin{aligned}
& 1<k_{1}<\ldots<k_{n-2}=n-1<k_{n-1}^{*} \leq k_{n}^{*}<k_{n} \\
& d_{n}^{*}=k_{n}^{*}-n=k_{n}-1-n=d_{n}-1>0 \\
& d_{n-1}^{*}=\min \left\{k_{n-1}^{*}-(n-1), k_{n}^{*}-n\right\}=k_{n-1}-n=d_{n-1}-1>0 \\
& d_{i}^{*}=\min \left\{k_{i}-i, \ldots, k_{n-2}-(n-2), d_{n-1}^{*}\right\}=1=d_{i} \text { for } i \in[1, n-2] .
\end{aligned}
$$

Write $A_{n-2}=\left\{x_{1}, \ldots, x_{n-1}\right\}$ and $A_{n}^{*} \backslash A_{n-2}=\left\{y_{1}, \ldots, y_{k_{n}-1-(n-1)}\right\}$ where $x_{1}<\ldots<x_{n-1}$ and $y_{1}<\ldots<y_{k_{n}-n}$. In view of Example 1.2, $S\left(\left\{A_{i}\right\}_{i=1}^{n-2}\right)$ $=(n-2)^{\wedge} A_{n-2}=\left\{x-x_{i}: 1 \leq i \leq n-1\right\}$ where $x=\sum_{i=1}^{n-1} x_{i}$. As $A_{n-1}^{*} \subseteq A_{n}^{*}$ all elements of S^{*} have the form $x-x_{i}+y_{j}+z$ where $1 \leq i \leq n-1$, $1 \leq j \leq k_{n}-n$ and $z \in\left\{x_{i}, y_{1}, \ldots, y_{k_{n}-n}\right\} \backslash\left\{y_{j}\right\}$, they are all greater than $x-x_{n-1}+y_{1}+a$. If $x-x_{n-1}+y_{2}+a=x-x_{i}+y_{j}+z$ where i, j, z are as above, then $j=1$ and $z=x_{i}$ since $a+y_{2}<\min \left\{x_{i}+y_{2}, y_{1}+y_{2}\right\}$, hence $-x_{n-1}+y_{2}+a=-x_{i}+y_{1}+x_{i}=y_{1}$ and $x_{n-1}-a=y_{2}-y_{1}=d=x_{n-1}-x_{n-2} ;$
this is impossible. So $x-x_{n-1}+y_{1}+a, x-x_{n-1}+y_{2}+a \notin S^{*}$. However, both $x-x_{n-1}+y_{1}+a$ and $x-x_{n-1}+y_{2}+a$ lie in S, for, $a \in A_{n-1}$ if $r=n-1$, and $y_{1}, y_{2} \in A_{n-1}$ if $A_{n-1}=A_{n}^{*}$. Therefore

$$
\left|S^{*}\right| \leq|S|-2=1+\sum_{i=1}^{n} d_{i}-2=1+\sum_{i=1}^{n} d_{i}^{*}
$$

If $A_{n-1}=A_{n}^{*}$, then $k_{n-1}^{*}=k_{n-1}>n$. Since $A_{n}^{*} \notin \mathrm{AP}$, by Remark 4.1 and the induction hypothesis we have either
(i*) $k_{n}-1=k_{n}^{*}=n+1$ and hence $k_{n-1}=n+1$, or
(iii*) $\left|A_{n-1}^{*}\right|=n$ (whence $r=n-1$), and A_{n-1}^{*} and $A_{n} \backslash A_{n-1}=A_{n}^{*} \backslash A_{n-1}^{*}$ form arithmetic progressions with the same difference.

Assume (i*). Let $B_{1}=\ldots=B_{n-2}=A_{n-2}$ and $B_{n-1}=B_{n}=A_{n}$. As $M=\{n-2, n\}$, by the idea in Example 1.2 or the proof of Corollary 1.6, $S=S\left(\left\{B_{i}\right\}_{i=1}^{n}\right)$ and $\left|S\left(\left\{B_{i}\right\}_{i=1}^{n}\right)\right|=1+\sum_{i=1}^{n} \min _{i \leq j \leq n}\left(\left|B_{j}\right|-j\right)$. The dual sequence of $\left\{B_{i}\right\}_{i=1}^{n}$ is the sequence $A_{n} \backslash A_{n-2}, A_{n}$ with $\left|A_{n} \backslash A_{n-2}\right|=$ $n+2-(n-1)=3,\left|A_{n}\right|=n+2>4$ and $\left|A_{n} \backslash A_{n-2}\right|+\left|A_{n}\right|<(n+1)+k_{n} \leq$ $k=k_{1}+\ldots+k_{n}$. In view of Lemma 3.3 and the induction hypothesis, we have $A_{n} \in \mathrm{AP}$.

Now we consider the case (iii*). Clearly $k_{n-1}=n+1$ and $k_{n}-k_{n-1} \geq 2$, so $n-1 \in M$ and $A_{n-2} \subset A_{n-1} \subset A_{n}$. Write $A_{n-1}=\left\{a, x_{1}, \ldots, x_{n-1}, y_{j}\right\}$ where $1 \leq j \leq k_{n}-n$. Then $A_{n} \backslash A_{n-1}=\left\{y_{1}, \ldots, y_{k_{n}-n}\right\} \backslash\left\{y_{j}\right\}$. Since $d\left(A_{n-1}^{*}\right)=d\left(A_{n} \backslash A_{n-1}\right) \geq d$, we must have $y_{j} \in\left\{x_{1}-d, x_{n-1}+d\right\}$. Now that $d\left(A_{n} \backslash A_{n-1}\right)=d\left(A_{n-1}^{*}\right)=d, j$ must be 1 or $k_{n}-n$. If $y_{1} \in A_{n-1}$ (i.e. $j=1$), then $y_{1}+d=y_{2} \neq x_{1}$ and hence $y_{1}=x_{n-1}+d$, thus $A_{n}^{*}=$ $\left\{x_{1}, \ldots, x_{n-1}, y_{1}, \ldots, y_{k_{n}-n}\right\} \in \mathrm{AP}$. If $y_{k_{n}-n} \in A_{n-1}$ (i.e. $j=k_{n}-n$), then $y_{k_{n}-n}-d=y_{k_{n}-n-1} \neq x_{n-1}$ and hence $y_{k_{n}-n}=x_{1}-d$, thus $A_{n}^{*}=$ $\left\{y_{1}, \ldots, y_{k_{n}-n}, x_{1}, \ldots, x_{n-1}\right\} \in \mathrm{AP}$.

By the above, we do have $A_{n} \backslash\{a\} \in$ AP in either case. As $-b=$ $\min \bigcup_{i=1}^{n}\left(-A_{i}\right)$, by analogy $-A_{n} \backslash\{-b\} \in \mathrm{AP}$. Because $k_{n}>n+1 \geq 3$, and $A_{n} \backslash\left\{\min A_{n}\right\}$ and $A_{n} \backslash\left\{\max A_{n}\right\}$ are both in AP, the set A_{n} must form an arithmetic progression.

The induction step is now complete and the proof of Theorem 4.1 is finished.

References

[ANR] N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996), 404-417.
[B] Y. Bilu, Addition of sets of integers of positive density, ibid. 64 (1997), 233-275.
[CS] H. Q. Cao and Z. W. Sun, On sums of distinct representatives, Acta Arith. 87 (1998), 159-169.
[DH] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic space for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140-146.
[EH] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964), 149-159.
[G] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994, 129-131.
[N1] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409-1418.
[N2] -, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math. 165, Springer, New York, 1996.

Department of Mathematics
Nanjing University
Nanjing 210093
The People's Republic of China
E-mail: zwsun@nju.edu.cn

Received on 5.4.2000
and in revised form on 17.10.2000

[^0]: 2000 Mathematics Subject Classification: Primary 11B75; Secondary 05A05, 11P70.
 The research is supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, and the National Natural Science Foundation of P.R. China.

