
Restricted Tangent Bundle of Space Curves

G. Hein, H. Kurke

April 4, 2003

Contents

1 Introduction 1

2 The generalized Harder-Narasimhan polygon and the Shatz
stratification 2

3 The semistability of the restricted tangent bundle 4

4 A result of R. Hernández 8

1 Introduction

The purpose of this paper is to investigate the restriction of the tangent bundle
of IPn to a curve X ⊂ IPn. The corresponding question for rational curves was
investigated by L. Ramella [7] and F. Ghione, A. Iarrobino and G. Sacchiero [2]
in the case of rational curves. Let us also mention that D. Laksov [6] proved
that the restricted tangent bundle of a projectivly normal curve does not split
unless the curve is rational. We will show the following theorem (See 3.1):

Theorem In the variety of smooth connected space curves of genus g ≥ 1 and
degree d ≥ g+ 3 there exists a nonempty dense open subset where the restricted
tangent bundle is semistable and moreover simple if g ≥ 2

If the degree is high with respect to the genus (d > 3g), we get a postulation for-
mula for the strata with a given Harder-Narasimhan polygon, following results
of R. Hernández [5].
In case of plane curves the situation is simpler due to

Theorem If X is a smooth plane curve of degree d, the restricted tangent bundle
is stable for d ≥ 3, of splitting type (3, 3) for a conic, and of splitting type (2, 1)
for a line.

Proof: (following D. Huybrechts) We denote by E the tangent bundle of IP 2

twisted by OIP 2(−1). We first suppose that d > 2. We use the facts:

1. E is stable, c1(E) = 1 and c2(E) = 1.

2. If E|X is unstable, then we have a destabilizing quotient E|X → L. We
define F = ker(E → E|X → L) and obtain a bundle F of rank 2 with
∆(F ) = c1(F )2 − 4c2(F ) ≥ d2 − 3 > 0.
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3. By Bogomolov’s inequality the bundle F is not semistable and if M ⊂ F
is a subbundle of maximal degree and rank 1, then deg(M) ≥ 1, which
contradicts the semistability of E.

Property 1 follows from the Euler sequence.
For property 2 we use

c1(F ) = c1(E)− [X]
c2(F ) = c2(E) + deg(L)− c1(E) · [X] hence:
∆(F ) = ∆(E) + [X] · [X] + 2c1(E) · [X]− 4 deg(L)

= −3 + d2 + 2(d− 2 deg(L))
≥ d2 − 3

Property 3 follows because F/M ∼= I ⊗M ′, where I is the sheaf of ideals of a
0-dimensional subscheme. We set l = length(OIP 2/I) and obtain:

c1(F ) = c1(M) + c1(M ′)
c2(F ) = c1(M)c1(M ′)− l consequently:
∆(F ) = [c1(M)− c1(M ′)]2 + 4l

= [2c1(M)− c1(F )]2 + 4l ,

hence [2 deg(M)− 1 + d]2 ≥ ∆(F ) ≥ d2 − 3.
M is destabilizing, so we must have deg(M) ≥ 1.
The same proof shows that in case of d = 2 there can not exist a surjection
E|X → L to a linebundle of degree less than one.
For d = 1 the statement is obvious. 2

The main idea we exploit in this papers is to consider degenerations of smooth
curves into special reducible curves with ordinary double points and to extend
the notion of the Harder-Narasimhan polygon to such curves. This idea was
used by L. Ramella [7] in the case of rational curves.

2 The generalized Harder-Narasimhan polygon
and the Shatz stratification

Let E be a vector bundle of rank r on a reduced curve X, with irreducible
components Xi (i = 1, . . . , k). We say a subsheaf F ⊂ E is of constant rank n
if rk(F |Xi

) = n for all i = 1, . . . , k. In this case we write rk(F ) = n. We define
the function

fE : {0, . . . , r} → ZZ
n 7→ sup{deg(F ) | F ⊂ E and rk(F ) = n}

Then we define the generalized Harder-Narasimhan polygon (HNP(E)) of E as
the convex hull of this function.

Remark The degree of F is defined by deg(F ) = χ(F )+nχ(OX). It is obvious
that f(n) <∞ and HNP(E) coincides with the Harder-Narasimhan polygon in
the case of a smooth curve X.

Theorem 2.1 Let X ⊂ IPn × S be a flat family of reduced curves over S, and
E an X vector bundle of rank r. Then the map

HNP : S −→ Polygons
s 7→ HNP(Es)
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defines a finite and locally closed stratification on S, the so-called Shatz stratifi-
cation.

The theorem follows from 2.2 and 2.3, since by 2.2 there are only finitely many
polygons in the image of HNP above a given P and by 2.3 the set {s |HNP(Es) ≥
P} is therefore a closed set.

Lemma 2.2 There exists an integer M , such that fEs
(n) < M for all sεS and

any nε{1, . . . , r}

Proof: We assume S to be connected, then χ(OXs
) is constant. The function

h0 : S → ZZ assigning every sεS the dimension of H0(Es) is upper semicontin-
uous. S is assumed to be a noetherian scheme, so there exists an upper bound
M1 of h0. Now, for any sεS and F ⊂ Es of rank n we have:

deg(F ) = χ(F ) + nχ(OXs)
≤ h0(F ) + nχ(OXs

)
≤ h0(Es) + nχ(OXs

)
≤M1 + r|χ(OXs

)|.

We set M = M1 + r|χ(OXs
)|+ 1 . 2

Lemma 2.3 Under the assumptions made above for any ν 0 ≤ ν ≤ r the
function f : S → ZZ s 7→ fEs

(ν) is upper semicontinuous.

Proof: We suppose S to be irreducible. We have to show that the subset
Sk = {sεS | fEs(ν) ≥ k} is closed.
Let Q be the Quotscheme over S parametrizing quotients of E with Hilbert-
polynomial χ(n) = χ(E)− k + ν(χ(OX)) The image of the natural morphism
ψ : Q → S is closed. This would be enough in case of a family X of integral
schemes.
Assume now that sεS is in im(ψ) but not in Sk. The problem occurring is that
we might have different ranks over the irreducible components and we have to
show that the quotient is not flatly smoothable to one of constant rank over all
components. We will do this by the choice of a divisor which meets the quotient
sheaf at every irreducible component in at least one point where this quotient
is locally free.
Let Xs = X1∪X2∪ . . .∪Xm be an irreducible decomposition of Xs and E = Es

the vector bundle on Xs.
We remark that any sheaf F on Xs which is a quotient of E has less than
N := χ(F ) + h1(E) + 1 torsion points (i.e. #supp(tors(F )) < N). Otherwise
F ′ = F/tors(F ) would be a quotient of E with χ(F ′) < −h1(E), which is
impossible.
Now we choose a hypersurface H ⊂ IPn which intersects Xs transversally and
meets all irreducible components Xi i = 1 . . .m at least N -times. We may
assume (after a restriction to a smaller open subset, if necessary) that this
property holds for all points of S. We now get a semicontinuous function R :
Q → ZZ, assigning the minimum of the embedding dimensions of Ft at points
of Xt ∩H to every quotient Ft of Et. Thus the subset {s′εQ | all R(s′) ≥ r− ν}
of Q is closed, hence its image in S is closed.
However, s can not be in the image because a quotient F of Es with the Hilbert
polynomial χ must have a rank less than r−ν at one component Xs. Therefore
its embedding dimension in at least one point of Xs∩H is less than r−ν. 2

Proceeding by the same method we obtain:
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Theorem 2.4 Under the same assumptions as in 2.1 we have: The set of points
sεS where Es is stable (respectivly semistable) is open.

3 The semistability of the restricted tangent bun-
dle

We define Hilb(d, g) to be the Hilbert scheme of closed subschemes X ⊂ IP 3

with Hilbert polynomial χ(OX(n)) = dn+1− g. By Hilb0(d, g) we define those
quotients which are smooth irreducible curves. In [1] it is proved that Hilb0(d, g)
is irreducible if d > g+ 2. Over the Hilbert scheme we have the universal curve
C(d, g), a closed subscheme of Hilb(d, g) × IP 3. We consider the projection
π2 : C(d, g) → IP 3 and the tangent sheaf Θ(−1) of the projective space twisted
with OIP 3(−1). This defines a bundle E = π∗2Θ(−1). For any point sεHilb(d, g)
the sheaf Es is the restriction of Θ(−1) to the curve parametrized by s.

Theorem 3.1 If g ≥ 1 and d > g+2, then for a general sεHilb0(d, g) the vector
bundle Es is semistable.

The proof of the theorem divides into three steps:

Step 1: We show that the statement is true for g = 1 and d ≥ 4. (See 4.5)

Step 2: Under the assumption that in Hilb0(d, g) there exists a point s
parametrizing a smooth curve Y with:
- Es is semistable
- H1(OY (1)) = 0
- Es is not isomorphic to a direct sum of two vector bundles,
we show that there exists a point t in Hilb(d + 1, g + 1) parametrizing a curve
X satisfying:
- Et is semistable
- H1(OX(1)) = 0
- dim(End(Et)) = 1 .

Step 3: The curve X obtained in the previous step corresponds to a smooth
point in Hilb(d+ 1, g+ 1) and is in the closure of Hilb0(d+ 1, g+ 1), because of
H1(OX(1)) = 0 (see [4] 1.2). However semistability is an open condition (2.4)
and, hence holds for an open subset of Hilb0(d+1, g+1) too. The same applies
to dim(End(Et)) = 1 and H1(OX(1)) = 0 which implies that on a nonempty
open subset of Hilb0(d+1, g+1) the necessary conditions of step 2 are fulfilled.

The rest of this section is devoted to the proof of the second step.

Let X be a connected curve with two ordinary double points and two irreducible
components Y and Z of genus gY and 0 (i.e. Z ∼= IP 1), which intersect in two
points P and Q. Then we have an exact sequence:

0 → OX → OY ⊕OZ → k(P )⊕ k(Q) → 0

Hence χ(OX) = χ(OY )− 1 or gX = gY + 1.

Lemma 3.2 Let E be a vector bundle of rank n on X such that EY = E ⊗OY

is semistable of degree d and EZ = E⊗OZ is globally generated and of degree 1.
Let F be a subsheaf of constant rank r with maximal degree among subsheaves
of constant rank r. If F is destabilizing then F is a subbundle of E and FZ is
of degree 1.
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Proof: If FY and FZ are the subbundles of EY and EZ generated by the
images of F in EY resp. EZ , then
F ⊂ F̃ = E ∩ (FY × FZ) ⊂ EY ×EZ and F̃ /F has finite support. Since F has
maximal degree it follows that F = F̃ and we obtain an exact sequence

0 → F → FY × FZ → F ⊗OD → 0

(with D = P +Q, as a subscheme of X) If F is destabilizing then
r(deg(EY ) + 1) < n(deg(FY ) + deg(FZ)− [l(F ⊗OD)− r · l(OD)])
r(deg(EY ) + 1) < r · deg(EY ) + n · deg(FZ)− n[l(F ⊗OD)− r · l(OD)]
hence r + n[l(F ⊗OD)− r · l(OD)] < n · deg(FZ)
Since deg(FZ) ≤ 1 this implies deg(FZ) = 1 and l(F ⊗OD) = r · l(OD), i.e. F
is a subbundle. 2

Let V be a vector space of dimension 4. From now on we consider a fixed smooth
curve Y of genus gY ≥ 1 and a quotient V ⊗OY → EY for which we suppose:
(i) EY is a semistable vector bundle of rank 3 and degree d.
(ii) EY is not decomposable.
(iii) The morphism Y → IP (V ∨) defined by the surjection V ⊗OY → EY is an
embedding. Therefore we will identify Y with its image in IP (V ∨).

Given two different points P and Q of Y we denote by Z(P,Q) the line in
IP (V ∨) through P and Q and by X(P,Q) the union of Y and Z(P,Q). Again
we define EX(P,Q) to be the restriction of the tangent bundle of IP (V ∨) twisted
by OIP (V ∨)(−1) to X(P,Q). Restricting the Euler sequence to X gives:

a surjection V ⊗OX(P,Q) → EX(P,Q)

with EY = EX(P,Q) ⊗OY

and EZ(P,Q) = EX(P,Q) ⊗OZ(P,Q)
∼= OZ(1)⊕O⊕2

Z .

We will show that for two general points P and Q of Y the bundle EX(P,Q) is
semistable. Of course we have to choose P and Q such that Z(P,Q) meets Y in
exactly these two points and, moreover, quasi transversally, i.e. not tangentially.
But this is always possible because Y is not a strange curve. We will call the
corresponding line Z(P,Q) the bisecant to Y , determined by P and Q.

We have EZ(P,Q)
∼= OZ(1) ⊕ O⊕2

Z and therefore a canonic subbundle of rank
and degree 1 in EZ(P,Q), namely the tangent bundle of Z(P,Q) twisted with
O(−1). This defines a one-dimensional subspace of E ⊗ k(P ), which we denote
by T (P,Q). We will frequently use the following obvious lemma:

Lemma 3.3 Let P0, P1, P2, . . . , Pm be different points of Y . Then we have one
dimensional subspaces T (P0, Pi) of E ⊗ k(P0) and

dim[
m∑

i=1

T (P0, Pi)] = dimW ,

where W ⊂ IP (V ∨) is the linear subspace spanned by the points Pi.

Lemma 3.4 Let Y and EY be as before and suppose that, for two given points
P and Q, the bundle EX(P,Q) is not semistable. Then there exists a subbundle
FY ⊂ EY such that:

(i) µ(FY ) + 1
rk(FY ) > µ(EY ) + 1

rk(EY )

(ii) T (P,Q) ⊂ FY ⊗ k(P )
(iii) T (Q,P ) ⊂ FY ⊗ k(Q) .
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Proof: Let F ⊂ EX(P,Q) be a subsheaf with constant rank and
µ(F ) > µ(EX(P,Q)). Because of 3.2, F is a subbundle.
We set FY = F ⊗OY and FZ = F ⊗OZ(P,Q) We have:
µ(F ) = µ(FY ) + µ(FZ) ≥ µ(EY ) + µ(EZ) = µ(E) hence deg(FZ) = 1 and
therefore: µ(FY )+ 1

rk(F ) ≥ µ(EY )+ 1
n , T (P,Q) ⊂ F ⊗k(P ) = FY ⊗k(P ) and

T (Q,P ) ⊂ F ⊗ k(Q) = FY ⊗ k(Q) . 2

Analogously we obtain:

Lemma 3.5 Let Y and EY be as above and suppose that, for two given points
P and Q, the bundle EX(P,Q) contains a destabilizing subbundle of constant rank
2. Then there exists a subbundle FY ⊂ EY of rank 2 and a plane H ⊂ IP (V ∨)
such that:

(i) µ(FY ) + 1
2 > µ(EY ) + 1

rk(EY )

(ii) PεH and QεH
(iii) ΘH(−1)⊗ k(P ) = FY ⊗ k(P )
(iv) ΘH(−1)⊗ k(Q) = FY ⊗ k(Q) . 2

We denote by ΘY (−1) the tangent bundle of Y twisted with OIP (V ∨)(−1).
ΘY (−1) is a sublinebundle of EY of degree 2− 2gY − d.

Lemma 3.6 For any 1-dimensional subspace W ⊂ V , corresponding to a point
PεIP (V ∨), we denote by LP ⊂ EY the subbundle of EY generated by the image
of W ⊗OY → V ⊗OY → EY The sublinebundle LP ⊂ EY satisfies:

(i) LP ⊗ k(Q) = T (Q,P ) for all points QεY with Q 6= P ,
(ii) LP ⊗ k(P ) = ΘY (−1)⊗ k(P ) if PεY ,
(iii) deg(LP ) = 0 if P 6 εY ,

= 1 if PεY .

Proof: obvious

We will now prove that for rk(EY ) = 3 and two general points P and Q of Y the
bundle EX(P,Q) has no destabilizing subbundle of rank one or two. Assuming
the contrary we will derive the existence of certain subsheaves of EY by using
3.3 and 3.4 which leads to contradictions. The proof splits into three cases,
depending on deg(EY ) modulo 3.

Lemma 3.7 Let EY be a semistable bundle on Y of rank 3 and degree d = 3k.
If EY is indecomposable, then EX(P,Q) has no destabilizing subsheaf of constant
rank 1 for two general points P and Q of Y .

Proof: We take four points P,Q1, Q2, Q3 of Y which span IP (V ∨) and define
bisecants Z(P,Qi) to Y . If EX(P,Qi) were not semistable for i = 1, 2, 3, we
would have 3 linebundles Li ⊂ EY with deg(Li) = k and Li ⊗ k(P ) = T (P,Qi)
by 3.4. We define E′ = L1 + L2 + L3. By 3.3 E′ is a subsheaf of EY of rank
3 and degree at least 3k. However this would imply that EY = L1 ⊕ L2 ⊕ L3

2

Lemma 3.8 Let EY be a semistable and indecomposable vector bundle on Y of
rank 3 and degree d = 3k(k > 1). Then EX(P,Q) has no destabilizing subsheaf
of constant rank 2 for two general points P and Q of the curve Y .
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Proof: As before we assume that for all pairs P,Q of points of Y there exits
a subsheaf FY ⊂ EY of rank 2 and degree 2k, see 3.5. We distinguish three
cases.

Case 1: EY has no sublinebundle of degree k.
We choose points P,Q1, Q2 of Y defining bisecants Z(P,Qi) and rank 2 sub-
bundles F1, F2 of rank 2 and degree 2k according to 3.5, such that T (P,Q1) ⊂
F1 ⊗ k(P )
T (P,Q2) 6⊂ F1 ⊗ k(P ) and T (P,Q2) ⊂ F2 ⊗ k(P )
We define F = F1 + F2 and G to be the kernel of the surjection F1 ⊕ F2 → F .
Then G must have rank 1 and we have an injection from G to F2, hence an
injection from G to EY , therefore deg(G) < k. But this gives deg(F ) > 3k,
which is impossible.

Case 2: EY has two (or more) sublinebundles L1 and L2 of degree k
We take a point P of Y such that L1 ⊗ k(P ) 6= L2 ⊗ k(P ) in EY ⊗ k(P ). We
define W = L1 ⊗ k(P ) + L2 ⊗ k(P ). Now we choose a point Q in Y such that
T (P,Q) 6⊂ W and both points define a bisecant. Again we suppose, there were
an F ⊂ EY of rank 2 and degF = 2k and T (P,Q) ⊂ F ⊗ k(P ). This implies
that at most one of the linebundles Li can be contained in F . We suppose
L1 6⊂ F and find EY = F ⊕ L1 as before.

Case 3: EY has exactly one sublinebundle L of degree k.
If there were a bundle F ⊂ EY of rank 2 and degree 2k not containing L, then
we would have EY = L⊕ F . So we can assume that all subbundles of EY with
degree 2k and rank 2 contain L.
For any PεY we denote the line through P with direction L ⊗ k(P ) in P by
Z(L,P ). We choose two points P,QεY such that Z(L,P ) and Z(L,Q) differ
from the line through P and Q. However, because of 3.5 these three lines are
in a plane H ⊂ IP (V ∨). We denote the intersection point Z(L,P )∩Z(L,Q) by
Q0.
We now see that for a general point P ′ of Y not contained in H the line Z(L,P ′)
must intersect with Z(L,P ) and Z(L,Q). This is possible only if Q0εZ(L,P ′)
for all P ′εY . But this immediately yields: L = LQ0 2

Now we come to the case of deg(EY ) = 3k + 1. For numerical reasons EX(P,Q)

can not have a destabilizing subsheaf of constant rank 2 (see 3.4). So only the
subsheaves of constant rank 1 have to be considered:

Lemma 3.9 Let EY be a stable bundle on Y of rank 3 and degree d = 3k + 1.
If, moreover, d ≥ 5, then EX(P,Q) has no destabilizing subsheaf of constant rank
1, for two general points P and Q of Y .

Proof: We take a general hyperplane H of IP (V ∨), such that
Y ∩ H = {P,Q1, . . . , Qd−1} consists of d different points in general position.
Moreover, we take a point Q of Y which is not contained in H. Now we suppose
that for all i = 1, . . . , d− 1 there is a sublinebundle Li of EY with deg(Li) = k
and T (P,Qi) = Li⊗k(P ) in E⊗k(P ), see 3.4. We see that L1 +L2

∼= L1⊕L2,
therefore F = L1 + L2 + L3 is of rank 2 or 3.

Case 1: rk(F ) = 2
Here we have a non-zero morphism L3 → L1 + L2

∼= L1 ⊕ L2. However, from
the choice of the points Qi it follows that neither L3 ⊂ L1 nor L3 ⊂ L2 holds,
hence L1

∼= L2.
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Let now L be a sublinebundle of EY such that deg(L) = k and
T (P,Q) = L⊗ k(P ). We see that G = L+ L1 + L2

∼= L1 ⊕ L1 ⊕ L.
We obtain a short exact sequence 0 → G→ EY → T → 0, where T is a torsion
sheaf of length one. So we have dim(Ext1(T,EY )) = 3 and dim(Hom(G,EY ) ≥
5, which implies dim(End(EY )) ≥ 2. This is impossible because a stable sheaf
is simple.

Case 2: rk(F ) = 3
This is only possible when F ∼= L1 ⊕ L2 ⊕ L3. Now we consider the linebundle
L4 ⊂ EY of degree k with T (P,Q4) = L4 ⊗ k(P ). (Here we really need the
assumption d ≥ 5.) It follows from the construction that L4 is even a sublineb-
undle of F and as before we get L1

∼= L2. The rest we conclude like in the first
case. 2

We need the statement of the previous lemma also for the case of g = 1 and
d = 4.

Lemma 3.10 Let Y be an elliptic curve embedded in IP (V ∨) as a curve of
degree 4, and EY be stable. Then, for two general point P and Q of Y , the
bundle EX(P,Q) has no destabilizing subsheaf of constant rank one.

Proof: Let Q(EY , 2, 3) be the Quot scheme of Quotients EY → F with
deg(F ) = 3 and rk(F ) = 2. Considering the kernel of these surjections we
obtain a morphism φ : Q(EY , 2, 3) → Pic1(Y ). For a linebundle L of degree one
we have:

Hom(EY , L) ∼= Ext1(L,EY )∨ (Serre duality)
Hom(EY , L) = 0 EY is stable, hence:

dim(Hom(L,EY )) = 1 .

The same argument shows that Q(EY , 2, 3) is smooth of dimension 1 and so
φ : Q(EY , 2, 3) → Pic1(Y ) is an isomorphism. On the other hand, we have a
family of sublinebundles of EY parametrized by Y (3.6). So it follows that all
linebundles L ⊂ EY of degree 1 are the linebundles LP for a PεY . 2

Now we come to the easy case where deg(EY ) = 3k+2. Here we see immediately
that for all points P and Q the bundle EX(P,Q) is semistable. But we have to
show a little bit more:

Lemma 3.11 Let EY be stable. Then, for any two points P and Q of Y , we
have dim(End(EX(P,Q)) = 1

Proof: On the one hand this follows from the fact that the only endomor-
phisms of the stable bundle EY are the multiplications and on the other hand
that an endomorphism of OIP 1(1)⊕OIP 1 ⊕OIP 1 , which is the multiplication at
two different points P and Q of IP 1, is itself a multiplication. 2

4 A result of R. Hernández

Here we give a short review on a result of R. Hernández [5], which was the
starting point for this work. For a fixed smooth curve X of genus g Hernández
considered the Quotscheme Q(m,n, d) of quotients from O⊕m

X of rank n (n < m)
and degree d. We denote by Q0(m,n, d) ⊂ Q(m,n, d) those quotients E which
are vector bundles and satisfy H1(X,E) = 0. Its is obvious that Q0 is an open
subset whose existence is given by the following lemma.
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Lemma 4.1 Q0(m,n, d) is nonempty if and only if d > ng.

Proof: By the Riemann Roch theorem it follows that d > ng is necessary.
(The only exception occurs when g = 0). It remains to show the that the
condition is sufficient.
We proceed by induction on n. For n = 1 we have to show that a general line
bundle L on X with deg(L) > g is globally generated. For a general inebundle
L of degree d > g it is well known that H1(L) = 0
Let Z = {αεPicd−1 |h0(α) ≥ d − g + 1}. We show that codim(Z,Picd−1) ≥ 2
To do so, we regard the surjection pr : Sd−1X → Picd−1. Now the fibre of
this morphism is at least of dimension d − g over Z. At the other hand we
have codim(pr−1(Z), Sd−1X) ≥ 1. Combining these two facts we get the stated
codimension.
Now for any line bundle LεPicd we define the following map:

φL : X → Picd−1

p 7→ L(−p)

We can choose L such that im(φL)∩Z = ∅, which means that L is base-point-free
and, therefore, generated by its global sections.
Now we assume that the assertion is true for n− 1, so that we have a quotient
EεQ0(m− 1, n− 1, d− g). Dualizing we get a short exact sequence:

0 → E∨ → O⊕m−1
X → L→ 0 .

On the other hand, we take an effective divisor D of degree g, such that
h0(OX(D)) = 1 and a section sεH0(L(D)) not vanishing at the points of D.
This yields the following diagram with exact rows:

0 → O⊕m−1
X → O⊕m

X → OX → 0
↓ ↓ ↓

0 → L → L(D) → OD → 0

Denoting the kernel of the vertical morphism in the middle by G we obtain the
kernel-cokernel sequence:

0 → E∨ → G→ OX(−D) → 0

and we obviously conclude G∨εQ0(m,n, d)) 2

Let V be a vector space of dimension n and Q(V, r, d) be the Quot scheme of quo-
tients of V ⊗OX of degree d and rank r. As before we denote by Q0(V, r, d) the
open subset where the quotients have no first cohomology and are locally free.
Now we fix a convex polygon P = {(0, 0); (r1, d1); (d2, r2) . . . (rl, dl)} with rl = r
and dl = d and consider the subset Q0(V, P ) in Q0(V, r, d) which parametrizes
quotients E with HNP(E) = P . By 2.1 Q0(V, P ) is by locally closed. We set
r0 = d0 = 0 and r−1 = rl − n. Under the assumption that Q0(V, P ) 6= ∅ we
have ( See [5]):

Theorem 4.2 Q0(V, P ) is smooth irreducible and

dim(Q0(V, P )) =
l−1∑
i=0

[(ri+1 − ri−1)(dl − di) + (ri − ri−1)(rl − ri)(1− g)]
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Let X be a smooth curve of genus g and V a vector space of dimension m. As
before we denote by Q0(V, n, d) the quotients V ⊗ OX → E that are bundles
and satisfy h1(E) = 0. (So we obviously require m > n and d > ng by 4.1.) We
define now two convex polygons by:
Pmin = {(0, 0); (n, d)} and Pmax = {(0, 0); (1, d− 1− g(n− 1)); (n, d)}.

Theorem 4.3 A convex polygon P from (0, 0) to (n, d) arises in the image of
HNP : Q0(V, n, d) → Polygons E 7→ HNP(E)
if and only if Pmin ≤ P ≤ Pmax.

Proof: Let V ⊗ OX → E be a point in the Quot scheme, then Pmin ≤ P
holds by definition of HNP(E). Let F ⊂ E be a subsheaf of E. We can assume
E′ = E/F to be a vector bundle. (Otherwise E would have a subsheaf of same
rank as F but with a higher degree.) E′ is generated by its global sections and
satisfies h1(E′) = 0, hence by 4.1:
deg(E′) ≥ rk(E′)g + 1 which implies
deg(F ) ≤ d− 1− gn+ rk(F )g and therefore
P ≤ Pmax .
Conversely given any convex polygon P = {(0, 0); (r1, d1); . . . ; (n, d)} of length
l with Pmin ≤ P ≤ Pmax. Then, again by 4.1, there exist semistable bundles
Ei i = 1, . . . , l with rk(Ei) = ri − ri−1 and deg(Ei) = di − di−1 which are
globally generated and satisfy h1(Ei) = 0.
Their direct sum is therefore a quotient with the given Harder-Narasimhan
polygon. 2

Example: Let X be an elliptic curve and let V be a 4-dimensional vector
space. We consider the open subset Q0 of Quot(V ⊗OX , 3, 9)
dim(Q0) = 36 , and the possible Harder-Narasimhan polygons
(beside Pmin ) are:

P1 = {(0, 0); (1, 4); (3, 9)} codim(HNP−1(P1), Q0) = 3
P2 = {(0, 0); (1, 5); (3, 9)} codim(HNP−1(P2), Q0) = 6
P3 = {(0, 0); (1, 6); (3, 9)} = Pmax codim(HNP−1(P3), Q0) = 9
P4 = {(0, 0); (2, 7); (3, 9)} codim(HNP−1(P4), Q0) = 3
P5 = {(0, 0); (1, 4); (2, 7); (3, 9)} codim(HNP−1(P5), Q0) = 4 .

Let now X ⊂ IPm × S be a flat family of smooth curves over S. Then we have
the Quot scheme Q = Quot(V ⊗OX , n, d) together with a morphism
π : Q → S. Again we define Q0 to be the open subset of Q that parametrizes
bundles with vanishing first cohomology. Let P be a convex polygon given
by {(0, 0), (r1, d1), . . . , (rl, dl)} with rl = n and dl = d, then we can define
the subset Q0(V, P ) of Q0 as before. By 4.2 and 4.3 we know the fibres of
π|Q0(V,P ) : Q0(V, P ) → S. Neither their existence nor their dimension depend
on sεS, which gives:

Theorem 4.4 Q0(V, P ) 6= ∅ if and only if Pmin ≤ P ≤ Pmax.

dim(Q0(V, P )) =
l−1∑
i=0

[(ri+1 − ri−1)(dl − di) + (ri − ri−1)(rl − ri)(1− g)] + dimS

If S is irreducible (resp. smooth), then Q0(V, P ) is so.

Corollary 4.5 If d > 3g, then the general curve in Hilb0(d, g) has a semistable
restricted tangent bundle.
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