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Restricted Type II Maximum Likelihood Priors

on Regression Coefficients

Vı́ctor Peña∗ and James O. Berger†

Abstract. In Bayesian hypothesis testing and model selection, prior distributions
must be chosen carefully. For example, setting arbitrarily large prior scales for
location parameters, which is common practice in estimation problems, can lead
to undesirable behavior in testing (see Lindley’s paradox; Lindley (1957)). We
study the properties of some restricted type II maximum likelihood (type II ML)
priors on regression coefficients. In type II ML, hyperparameters are “estimated”
by maximizing the marginal likelihood of a model. In this article, we define priors
by estimating their variances or covariance matrices, adding restrictions which
ensure that the resulting priors are at least as vague as conventional proper priors
for model uncertainty. We find that these type II ML priors typically yield results
that are close to answers obtained with the Bayesian Information Criterion (BIC;
Schwarz (1978)).

1 Introduction

In this article, we investigate the properties of restricted type II maximum likelihood
(type II ML) priors on regression coefficients under model uncertainty. Along the way,
we establish connections with the Bayesian Information Criterion (BIC; Schwarz (1978))
and proper priors. Operationally, parametric type II ML proceeds as follows: (1) start
with a parametric model for the data y, specified with a sampling density f(y | θ) and
a prior πη(θ) that depends on a hyperparameter η ∈ C and (2) set η by maximizing the
marginal likelihood m(y) of the model, that is

η̂ = argmax
η∈C

∫
f(x | θ)πη(θ) dθ = argmax

η∈C
m(y).

Type II ML was named and extensively studied in Good (1965), and it can be seen as a
particular instance of empirical Bayes which, in general, “estimates” the hyperparameter
η from the data (although not necessarily by maximizing the marginal likelihood: a
popular alternative is the method of moments).

The motivation for this work was to seek a compromise between the use of conven-
tional priors for model uncertainty (e.g., Zellner’s g-priors or Zellner-Siow prior; Zellner
and Siow (1980); Zellner (1986)) and BIC. Conventional priors are typically centered at
the smallest (or null) model and can be quite far from the likelihood function arising
from a larger model. Prior distributions centered at null models can be oriented in di-
rections away from the likelihood function, which would seem to unduly favor the null
model.
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Raftery (1995) shows that BIC is a good approximation to the marginal likelihood
one obtains when a normal prior that is centered at the maximum likelihood estimate
(MLE) θ is used. This is actually a type II ML prior, arising from estimating the prior
mean by type II ML. However, it seems like an extreme use of type II ML because it
centers the prior completely around the model likelihood function.

The compromise studied herein is to keep the prior centered at the null model,
as with current conventional priors, but allow the prior variance or covariance ma-
trix to be estimated by type II ML. We hoped that this would strike a balance be-
tween conventional priors and BIC but, while we find that this “variance-oriented”
type II ML prior does yield compromise results, the conclusions are typically closer to
BIC.

A second surprise was that the “variance-oriented” type II ML prior (and resulting
Bayes factors) can be computed in closed form, even for the case of entire unknown prior
covariance matrices (this is a computational advantage over, e.g., the Zellner-Siow pri-
ors). The importance of making restrictions on the hyperparameters is also highlighted;
without them, one can even have inconsistent model selection (for example, if the scale
parameter g of a Zellner g-prior (Zellner, 1986) is estimated without restrictions, the
resulting procedure is not consistent if the null model is true (Liang et al., 2008)).

Our work is partially motivated by Bayarri et al. (2019), where prior-based versions
of BIC (named PBIC and PBIC*) are defined. In particular, PBIC* is a version of
BIC which builds upon a restricted type II ML version of the so-called “robust” prior
(Berger, 1985). The scales of the prior in PBIC* maximize an approximate marginal
likelihood subject to a unit-information restriction. The fact that PBIC* is well-behaved
in the examples covered in Bayarri et al. (2019) motivated us to study the properties of
restricted type II ML procedures under model uncertainty in greater detail.

The scenarios we consider in this article involve regression coefficients in normal
linear models (Section 2), high-dimensional analysis of variance (Section 3), and the
nonparametric regression example in Shibata (1983) (Section 4). In this latter section we
also highlight how type II ML can be fruitfully used when prior information is available.
The article ends with conclusions. All the proofs are relegated to the supplementary
material (Peña and Berger, 2019).

2 Type II ML priors in normal linear models

2.1 Derivation of the type II ML prior

Consider the normal linear model

Y = X0β0 +Xβ + ǫ, ǫ ∼ Nn(0n, σ
2In),

where Y ∈ R
n, X0 ∈ R

n×p0 contains common predictors, and X ∈ R
n×p contains

model-specific predictors. We assume that the predictors are linearly independent and
the common and model-specific parameters are orthogonal, so that X ′

0X = 0p0×p (if
X0 = 1n, this amounts to centering X). In this section, the prior on the common param-
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eters is the right-Haar prior π(β0, σ
2) ∝ 1/σ2, which is supported by group invariance

arguments in Berger et al. (1998) and Bayarri et al. (2012).

The prior distribution we consider for β, given σ2, is the Np(β | 0p, σ
2W ) normal

prior with mean 0p and positive definite covariance matrix W . For a fixed W and
n ≥ p+ p0, the marginal likelihood is

mW (Y ) =

∫

R

∫

Rp

∫

R+

Nn(Y | X0β0 +Xβ, σ2In)Np(β | 0p, σ
2W ) 1/σ2 dβ0 dβ dσ2

=
Γ
(
n−p0

2

)
π−(n−p0)/2

(|X ′X| |X ′
0X0| |(X ′X)−1 +W |)

1/2
[SSE+ β̂′[W + (X ′X)−1]−1β̂]−

(n−p0)
2 ,

where β̂ = (X ′X)−1X ′Y , PX = X(X ′X)−1X ′, PX0 = X0(X
′
0X0)

−1X ′
0, and SSE =

Y ′(In − PX0 − PX)Y . The type II ML approach to determination of W consists in
maximizing the marginal likelihood over W , using the result as the prior covariance
matrix. An earlier version of this (see George and Foster (2000); Hansen and Yu (2003);
Liang et al. (2008)) considered g-priors arising from W of the form W = g σ2(X ′X)−1,
and then maximizing the marginal likelihood over the choice of g.

While this maximization overW can be done in closed form, the result is not satisfac-
tory, in that the result is a singular matrix. We will circumvent this issue by constraining
W under the maximization, and will do so through the concept of a “unit-information
prior.” The expected Fisher information of the regression coefficient β is (X ′X)/σ2,
so one can argue that (X ′X)/(nσ2) contains as much information as a “typical” ob-
servation in the sample (Kass and Wasserman, 1995; Raftery, 1995; Hoff, 2009). The
Np(0, nσ

2(X ′X)−1) prior is often referred to as the unit-information (normal) prior,
and it is a reasonably vague (but necessarily proper) prior for dealing with model un-
certainty. Motivated by this discussion, we study the restricted type II ML prior

β | σ2 ∼ Np(0p, σ
2 Ŵ )

Ŵ = argmaxW�n(X′X)−1mW (Y ) ,

where A � B means that A − B is positive semidefinite. This will ensure that the
restricted type II ML covariance will be at least as disperse as the unit-information
prior covariance. The lower bound is also an instance of Zellner’s g-prior where g = n.

In the context of estimation, DasGupta and Studden (1989), Leamer (1978), and
Polasek (1985) study priors that resemble our type II ML prior, bounding the prior
covariance matrix both above and below.

Proposition 1 below shows that the covariance matrix that maximizes mW (Y ) sub-
ject toW � n(X ′X)−1 is a linear combination of the unrestricted maximum over all pos-

itive semidefinite matrices, which is proportional to β̂β̂′, and the lower bound n(X ′X)−1.

Proposition 1. For n > p+ p0, the solution to the optimization problem

maximize mW (y)

subject to W � n(X ′X)−1
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can be written as

Ŵ = a β̂β̂′ + n(X ′X)−1

a = max{0, (n− p0 − 1)/SSE− (n+ 1)/SSR}

SSR = β̂′X ′Xβ̂ .

In the following subsections, we study the properties of the type II ML prior on β
that takes Ŵ as its covariance matrix in model selection and uncertainty, estimation,
and prediction.

2.2 Model uncertainty and selection

Let Xi be a design matrix that includes a subset of pi out of the p predictors in X, with
i ∈ {1, 2, . . . , 2p} (pi can be 0, which corresponds to the null model), and let Mi be the
model Y = X0β0 +Xiβi + ǫi, where ǫi ∼ Nn(0, σ

2In) and X ′
0Xi = 0p0×pi

. Throughout,

we set prior covariance matrices locally – that is, each Mi is assigned its own Ŵi.
The local approach to empirical Bayes model selection is justified through information-
theoretical arguments in Hansen and Yu (2003). We perform model selection using
null-based Bayes factors, namely

BFi0 =

∫
Nn(Y | X0β0 +Xiβi, σ

2In)πML(β0, βi, σ
2) d(β0, βi, σ

2)∫
Nn(Y | X0β0, σ2In)π0(β0, σ2) d(β0, σ2)

=
mi(Y )

m0(Y )
.

We use the notation πML for the joint (type II ML) prior under Mi πML(β0, βi, σ
2) ∝

Npi
(βi | 0pi

, σ2Ŵi) 1/σ
2. The prior under the null model is π0(β0, σ

2) ∝ 1/σ2. Com-
bining the result in Proposition 1 with the Sherman-Morrison formula and the matrix
determinant lemma (which can be found, for example, as Equations 160 and 24 in Pe-
tersen et al. (2008), respectively), it is straightforward to see that the null-based Bayes
factor of Mi under the type II ML covariance matrix is

BFi0 =

{
(n+ 1)

n−p0−pi
2

[
n(1−R2

i ) + 1
]−(n−p0)/2

if R2
i ≤ n+1

2n−p0

ϕ(n)−1/2
(
R2

i

)−1/2
(1−R2

i )
−(n−p0−1)/2 if R2

i > n+1
2n−p0

,
(2.1)

where ϕ(n) = [(n+ 1)pi−1(n− p0)
n−p0 ]/[(n− p0 − 1)n−p0−1] and R2

i = 1− SSEi/‖Y −

X0β̂0‖
2. The first case corresponds to the null-based Bayes factor with the lower bound

Ŵi = σ2n(X ′
iXi)

−1. The type II ML procedure differs from the lower bound only if the
signal-to-noise ratio (that is, R2

i ) is high enough. This feature prevents the procedure
from unduly favoring larger models.

Before we study the properties of the prior in more detail, we present an example with
p = 2 predictors to introduce some geometric intuition. In addition, the example will
help us highlight that the lower bound prior πLB(βi | σ

2) = Npi
(βi | 0pi

, σ2n(X ′
iXi)

−1)
has a particular asymmetry with respect to the sign of the correlation between the
predictors. It also serves as motivation to compare πLB and the type II ML prior πML

to the Bayesian Information Criterion (BIC; Schwarz (1978)), which is defined as

−2 logNn(Y | X0β̂0 +Xiβ̂i, σ̂
2
i In) + pi log n,
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where β̂0 β̂i, and σ̂2
i are the maximum likelihood estimators of β0, βi and σ2, respectively.

Throughout, we treat exp(−BIC/2) as an approximate marginal likelihood with the

understanding that the “BIC” of the null model is −2 logNn(Y | X0β̂0, σ̂
2
0In). These

choices lead to the null-based Bayes factor

BFi0,BIC = n−pi/2(1−R2
i )

−n/2.

Raftery (1995) observed that exp(−BIC/2) is an excellent approximation to the marginal

likelihood arising from πBIC(βi | σ
2) = Npi

(βi | β̂i, σ
2n(X ′

iXi)
−1), which is Zellner’s g-

prior with g = n, but centered at β̂i instead of 0pi
. Indeed, under such type II ML prior,

the null-based Bayes factor is

BFi0,β̂ = (n+ 1)−pi/2(1−R2
i )

−(n−p0)/2,

which is almost identical to BFi0,BIC. Another prior we will be considering in numerical
comparisons is the Zellner-Siow prior, which is Cauchypi

(0pi
, σ2n(X ′

iXi)
−1), since this

is one of the most commonly recommended model uncertainty priors.

Example 1 (Correlated predictors). Consider a model with 2 standardized (centered
and scaled) predictors and an intercept, Y = 1nα + Xβ + ǫ where β = (β1, β2)

′ and
ǫ ∼ Nn(0n, In). Since the predictors are standardized, their (uncorrected) sample corre-
lation is the off-diagonal entry of (X ′X)/n, which we denote r. The prior covariance
between β1 and β2 implied by the prior β | σ2 = 1 ∼ N2(02, n(X

′X)−1) is −r/(1 − r2)
(Ghosh and Ghattas, 2015). Therefore, if X1 and X2 are positively correlated, the prior
covariance between β1 and β2 induced by the prior is negative (and conversely for neg-
ative correlations).

We set n = 10, β = (5, 5)′ and consider two cases: r = 0.9 and r = −0.9. In order to
isolate the effect of changing the sign of r as much as possible, we use the same random ǫ
in both cases and the same N1(0, 1) random numbers for generating the design matrices
before transforming them (deterministically, via principal component scores times the
Choleski matrix square-root of the target sample covariance) to correlated predictors with
the desired r.

Figure 1 shows contours of N2(02, n(X
′X)−1) (solid blue) and N2(0, Ŵ ) (solid green;

setting σ2 = 1), the type II ML prior. It also shows the contours of N2(β̂, n(X
′X)−1)

(dashed red), the “BIC prior”; note that the likelihood function (a function of β) is

proportional to Np(β̂, (X
′X)−1), so it has the same shape. When r = −0.9, the marginal

likelihood of the true model is high with all the priors. If r = 0.9, the highest density
regions of the likelihood of the true model are assigned relatively low probability density
under N2(02, n(X

′X)−1).

Table 1 confirms this geometric intuition – for sample sizes ranging from 5 to 15
and after 1000 simulations, the average posterior probability that the lower bound LB
(g-prior with g = n) assigns to the true model is lower than with BIC or the type II
ML prior (ML). The Zellner-Siow (ZS) prior is less sensitive to the sign of r than the
lower bound, despite the fact that they are both centered at 0p and have the same prior
scale.
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Our intuition can be supported mathematically. If σ2 is known,

log

(
BFi0,BIC

BFi0,LB

)
=

pi
2
log

(
n+ 1

n

)
+

1

2σ2

(
1−

n

n+ 1

)
SSRi ≥ 0, (2.2)

which depends on the data only through SSRi. If the full model is true, E[SSRi] = 2σ2+
n[β2

1+2β1β2r+β2
2 ]. Since in our example β1 and β2 are positive, E[log(BFi0,BIC/BFi0,LB)]

increases as r increases.

Figure 1: Highest probability density regions (20%, 50%, 95%) of the lower bound

(g-prior) Np(0p, n(X
′X)−1) (solid blue), “BIC prior” Np(β̂, n(X

′X)−1) (dashed red),

and the type II ML priorNp(0p, Ŵ ) (solid green). The MLE is indicated with a β̂ symbol.

r = −0.9 r = 0.9
n BIC ML LB ZS BIC ML LB ZS
5 0.954 0.797 0.665 0.503 0.978 0.911 0.361 0.310

10 0.997 0.983 0.976 0.952 0.999 0.995 0.605 0.964
15 1.000 0.999 0.999 0.997 1.000 1.000 0.874 0.998
20 1.000 1.000 1.000 1.000 1.000 1.000 0.979 1.000

Table 1: Average posterior probability assigned to the true model (full model), B = 1000
simulations.

The intuition we gathered from Example 1 that the type II ML procedure is between
BIC and the lower bound (LB; i.e. a g-prior with g = n) is shown formally below.

Proposition 2. If Mj ⊃ Mi (that is, if Mj contains all the predictors in Mi), then

BFji,BIC ≥ BFji,ML ≥ BFji,LB,

where BFji = BFj0/BFi0. Let Mf be the full model (which includes all p predictors)
and M0 be the null model. If the prior on the model space is the same in all cases, the
inequality above implies

PBIC(Mf | Y ) ≥ PML(Mf | Y ) ≥ PLB(Mf | Y )



V. Peña and J. O. Berger 1287

PBIC(M0 | Y ) ≤ PML(M0 | Y ) ≤ PLB(M0 | Y ).

If the true model is the full model, BIC assigns more probability to the truth than
the type II ML prior and the lower bound; on the other hand, if the true model is the null
model, the lower bound (g-prior) assigns more probability to the truth than the type II
ML prior and BIC. However, there is yet another interesting asymmetry. When the true
model is the null model, the differences between the lower bound and BIC tend to be
small, whereas if the true model is the full model the differences can be rather large. We
can provide some mathematical support to this claim. First, assume that σ2 is known,
so that the expression for log(BFi0,BIC/BFi0,LB) is given in 2.2. If μ∗ = X0β0∗ + X∗β∗

is the true value of the linear predictor, we can write E[SSRi] = piσ
2 + ‖PXi

μ∗‖2. For
fixed Xi, E[log(BFi0,BIC/BFi0,LB)] is minimized when β∗ = 0p∗

(i.e. when the null model
is true). Also note that E[SSRi] is increasing in pi, which implies that the expected (log)
differences between the lower bound and BIC grow as the number of predictors grows.
For unknown σ2, log(BFi0,BIC/BFi0,LB) is increasing in R2

i , which is consistent with our
argument.

At the beginning of this section, we mentioned that a type II ML prior that has
been previously studied is the g-prior Np(β | 0p, ĝ σ

2(X ′X)−1), where ĝ is set locally
by maximizing the marginal likelihood subject to g ≥ 0 (George and Foster, 2000;
Hansen and Yu, 2003; Liang et al., 2008). This prior has undesirable features that are
a byproduct of not maximizing the marginal likelihood subject to a lower bound on g
that is bounded away from 0. One of them is that the resulting null-based Bayes factors
are always greater or equal to 1 (which leads to inconsistency if the null model is true),
and another one is that the Bayes factor between any two models can be equal to 1
with positive probability in cases where n > p+ p0 (especially when n ≈ p+ p0), which
cannot occur (with positive probability) with proper priors or our restricted type II
prior.

We close this subsection by studying whether the type II ML prior satisfies the
desiderata in Bayarri et al. (2012) for objective priors in model selection.

1. Basic criterion: The basic criterion is satisfied if the prior is proper, which the
type II ML prior satisfies directly because of the restriction.

2. Model selection consistency: Let the true model be M∗ : Nn(Y | X0β0 +
X∗β∗, σ

2In). Then, model selection consistency is satisfied if P(M∗ | Y ) converges
to 1 in probability. The type II ML prior is model-selection consistent under the
following regularity condition, which is commonly made in the literature (Fer-
nandez et al., 2001; Liang et al., 2008; Guo and Speckman, 2009; Maruyama and
George, 2011; Bayarri et al., 2012; Som et al., 2016). For any model Mj that
doesn’t nest the true model, assume that

lim
n→∞

β′
∗X

′
∗(In − PXj

)X∗β∗

n
= bj ∈ (0,∞).

The assumption can be interpreted as that the models have design matrices that
can be differentiated in the limit (Bayarri et al., 2012).
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3. Information consistency: Suppose that, for a fixed n, ‖β̂i‖ → ∞, which implies
R2

i → 1. This is a situation where there is overwhelming evidence in favor of Mi

(Liang et al., 2008). Information consistency holds if BFi0 → ∞, which is satisfied
by the type II ML prior.

4. Intrinsic consistency: A prior satisfies intrinsic consistency if, as n grows, it
converges to a proper prior which does not depend on model-specific parameters
or n. In general, this criterion isn’t satisfied for the type II ML prior. To see this,
assume that (X ′

iXi)/n → Ξi for a positive definite matrix Ξi, which holds if there
is a fixed design or the covariates are drawn independently from a distribution
with finite second moments (Bayarri et al., 2012). Then, the prior covariance Ŵ∗

for the true model has the limiting behavior (in probability)

Ŵ∗ →P

{
Ξ−1
∗ if β′

∗Ξ∗β∗ ≤ σ2
∗(

1
σ2
∗

− 1
β′

∗
Ξ∗β∗

)
β∗β

′
∗ + Ξ−1

∗ if β′
∗Ξ∗β∗ > σ2

∗

,

which depends on β∗ and σ2
∗.

5. Null and dimensional predictive matching: In both cases, the notion of
minimal training sample size is central to the definition. For any model Mi, the
minimal training sample size is the smallest sample size n∗

i such that the marginal
likelihood of the model is finite. Null predictive matching is achieved if, for any
model Mi, we have BFi0 = 1 when the sample size is equal to the minimal training
sample size n∗

i . Dimensional predictive matching is achieved if, for any pair models
of the same dimension Mi and Mj , we have BFij = 1 whenever n∗

i = n∗
j . The

type II ML prior isn’t null or dimensional predictive matching. For p > 1, the
minimal training sample size for the type II ML prior is n = p+ p0 + 1. [If p = 1,
the marginal likelihood doesn’t depend on the choice of W .] When n = p+p0, the
marginal likelihood is finite for any given W , but one can choose W � n(X ′X)−1

so that the marginal goes to ∞ (this is shown in the supplementary material).
Null predictive matching isn’t satisfied: in fact, BFi0 goes to ∞ as R2

i → 1 when
n = p + p0 + 1. Similarly, it is easy to see that dimensional predictive matching
isn’t satisfied, either; different models will have different R2

i , yielding Bayes factors
that are different than 1.

6. Invariance: The type II ML prior is invariant with respect to linear transforma-
tions of the design matrix (e.g. changes of measurement units). More explicitly,
let A be an invertible p × p matrix and X̃ = XA. Let β and β̃ be the regression
coefficients of the linear model if the design matrices are X and X̃, respectively. If
the type II ML prior is put on β and β̃, then β and Aβ̃ are equal in distribution.

Table 2 compares the properties of the type II ML prior with those of BIC, the lower
bound LB (g-prior with g = n), the Zellner-Siow prior (ZS), and the type II ML g-prior
where g is set locally by maximizing the marginal likelihood subject to g ≥ 0, which we
denote ĝ. Our type II ML prior is model-selection consistent, whereas the ĝ-prior isn’t
under the null model; however, the ĝ-prior is predictive matching, while our type II ML
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ML BIC LB ZS ĝ
Proper yes – yes yes yes
Model selection consistency yes yes yes yes no
Information consistency yes yes no yes yes
Intrinsic consistency no – yes yes no
Predictive matching no no yes yes yes
Invariance yes – yes yes yes
Closed form Bayes factors yes yes yes no yes

Table 2: Comparison of model selection desiderata for different approaches.

prior isn’t. According to the definition above, it doesn’t make sense to assert that BIC
is invariant to linear transformation (since it isn’t a prior), but it depends on the data
only through R2, which is invariant with respect to invertible linear transformations.

It is not a surprise that data-dependent priors lack some of the desirable properties
of real priors. One sacrifices some Bayesian features when leaving the pure Bayesian
domain.

2.3 Estimation and prediction

The type II ML posterior mean

For simplicity, we omit model subscripts and assume that the model is Y ∼ Nn(X0β0+
Xβ, σ2In), X ′

0X = 0p0×p. If we put the right-Haar prior π(β0, σ
2) ∝ 1/σ2 on the

common parameters and the type II ML prior on β | σ2, the posterior mean of β is

β̃ = E(β | Y ) =

{
n

n+1 β̂ if R2 ≤ n+1
2n−p0(

1− 1−R2

(n−p0−1)R2

)
β̂ if R2 > n+1

2n−p0
.

The expression can be derived by applying the Sherman-Morrison formula twice to
E(β | Y ) = [Ŵ−1 + X ′X]−1X ′Y . The properties of an analogous estimator in the
normal means problem (for known σ2) are studied in DasGupta and Studden (1989),
where it is shown that it is minimax with respect to squared error loss. Proposition 3
shows that E(β | Y ) is also minimax with respect to a (scaled) predictive loss because
it belongs to the class of minimax estimators characterized in Strawderman (1973).

Proposition 3. Let p ≥ 3 and n > p + p0. The estimator β̃ = E(β | Y ) is minimax
with respect to the (scaled) squared predictive loss

L(β, δ) = (β − δ)′(X ′X)(β − δ)/σ2 .

The mean squared error of the posterior mean of the lower bound prior (Zellner’s
g-prior, where g = n) is increasing in ‖β‖. On the other hand, the mean squared error of

β̂ is constant in ‖β‖. The estimator β̃ is equal to the posterior mean of the lower bound

when R2 is small, and close to β̂ when R2 is large. Therefore, β̃ avoids “selecting” the
lower bound in cases where it has high mean squared error (that is, whenever ‖β‖ and
R2 are large).
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A simulation study with correlated predictors

To gain further insight into the differences between the type II ML prior, the lower bound
(LB) prior (g-prior with g = n), the Zellner Siow (ZS) prior and BIC, we simulate data
from Y = 1n α + Xβ + ǫ, ǫ ∼ Nn(0n, σ

2In), where n = 50, α = 2, σ2 = 1, and β is
8-dimensional with k nonzero elements, for k ∈ {0, 1, 2, . . . , 8}. We consider 2 different
types of correlation between the predictors: the orthogonal caseX ′X = Ip and an AR(1)
structure

1

n− 1
(X ′X) =

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρp

ρ 1 ρ . . . ρp−1

ρ2 ρ 1 . . . ρp−2

...
...

...
. . .

...
ρp ρp−1 ρp−2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

for ρ = 0.9. For all k, we generate βk ∼ Nk(0k, gIk). The location of the k zeros in the β
vector is drawn at random (according to the uniform distribution). We use g ∈ {5, 25}
as in Cui and George (2008) and Liang et al. (2008), representing weak and strong
signal-to-noise ratios, and evaluate performance with respect to the predictive squared
loss function L(β, δ) = ‖Xβ − Xδ‖2, where δ is an estimator of β. [This is also the
loss function that was used in the simulation studies in Cui and George (2008) and
Liang et al. (2008)]. The estimators that are considered for the various priors are the

posterior means (and β̂ in the case of BIC) of the highest probability model (HPM) and
the median probability model (MPM), and the estimate arising from Bayesian model
averaging (BMA). We ran 1000 simulations for all scenarios and the results are displayed
in Figures 1 and 2 in the supplementary material.

In the orthogonal case, BIC, the type II ML prior, LB (g-prior with g = n) and
ZS behave similarly when g = 5. When g = 25, we can observe more differences: LB
is progressively worse than the rest as the number of true predictors increases, ZS is
slightly better than BIC and the type II ML prior when not all predictors are active,
and the difference between ZS and BIC and the type II ML prior narrows as the number
of true predictors increases.

The results with the AR(1) correlation structure show bigger discrepancies. As the
number of true predictors increases, the loss of the LB is substantially higher than the
loss with any other prior, especially when g = 25. When g = 5, both LB and ZS are
outperformed by BIC and the type II ML prior. When g = 25, ZS has similar losses as
BIC and the type II ML prior when the number of true predictors is between 0 and 6,
but is outperformed when the true number of predictors is 7 or 8 (in which case, the
true model is the full model).

In the cases where the LB is clearly outperformed, its posterior distribution over the
model space is closer to the uniform distribution than the other posteriors, as evidenced
in the first panel in Figure 3 in the supplementary material, which shows the average
entropy of the posterior distributions over the model space. Additionally, ZS induces a
noticeably less entropic (more concentrated) posterior distribution over the model space,
especially when few predictors are active. ZS and the LB select HPMs and MPMs with
fewer predictors than BIC and the type II ML prior (see second and third panel in
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Figure 3 in the supplementary material, which show the percentage of times the MPM
equals the true model and the average size of the MPM, respectively). When the true
model is the full model, an interesting phenomenon occurs: ZS is the prior where the
MPM is equal to the true model less often, but the average predictive loss of the prior
stays competitive with BIC and ML. Upon further inspection in our simulations, this is
due to the fact that when some of the true coefficients are non-zero but rather small, ZS
does not include their predictors in its MPM, but that does not worsen the predictive
loss by much. The HPM and MPM with BIC and the type II ML prior tend to be the
same model, and they coincide with the models selected with the LB in the cases where
the signal is low, as expected. On the other hand, when the signal is high, the LB assigns
more probability to wrong models than the other approaches, and sometimes the HPM
and MPM end up being an egregiously bad model, resulting in a substantially higher
average loss. Note that ZS, which also has n(X ′X)−1 as its prior scale but has thicker
tails, does not seem to be nearly as affected by this issue as the LB, especially when the
signal is high enough (i.e. g = 25).

3 High-dimensional analysis of variance

In this section, we revisit the high-dimensional problem that was introduced in Stone
(1979) and later studied in Berger et al. (2003). In this example, the number of predictors
p grows to infinity.

Suppose we have observations

yij = μi + ǫij , ǫij
iid
∼ N1(0, 1),

where i ∈ {1, 2, . . . , p} (groups) and j ∈ {1, 2, . . . , r} (replicates). We assume that r is
fixed and p grows to infinity. We only consider the null model M1 : μ = 0p and the full
model M2 : μ 
= 0p. If the true model is M2, we assume that limp→∞‖μ‖2/p = τ2 > 0.

Let ℓ be the log-likelihood function of the full model and μ̂ the maximum likelihood
estimate of μ. If BIC is defined as −2ℓ(μ̂) + p logn, it is inconsistent under M2 (Stone,
1979). Berger et al. (2003) show that, if the prior on μ under M2 is μ | g ∼ Np(0, gIp)
with a mixing density over g (which doesn’t depend on n) with support (0,+∞), con-
sistency holds. Alternatively, if g has restricted support (0, T ) for T < ∞, there is a
region of inconsistency under M2.

In this problem, the prior scale has to be chosen carefully. A naive parallel of the
type II ML prior in Section 2 would have as lower bound for the prior covariance
n(X ′X)−1 = (n/r)Ip = pIp. However, it is straightforward to show that any normal
prior whose scale goes to infinity as p → ∞ is inconsistent under M2. Since the effective
sample size of μ in this problem is r instead of n (see Berger et al. (2014)), we take
g = r and study the properties of a prior whose covariance is r(X ′X)−1 = Ip. In the
same vein, BIC can be defined appropriately by taking log r as the penalty instead of
logn. The asymptotic behavior of both approaches can be summarized as follows:

• Normal prior with Ip as prior covariance: Under M1, consistency for all r ≥ 1.
Under M2, inconsistency if τ2 ≤ (1 + r) log(1 + r)/r2 − 1/r and consistency
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otherwise. For example, if τ2 = 0.25, consistency holds under M2 for r ≥ 5, and
consistency holds for all r if τ2 > 2 log 2− 1.

• BIC with log r as penalty: Under M1, inconsistency if r ∈ {1, 2} and consistency
otherwise. UnderM2, inconsistency if τ2 ≤ (log r−1)/r and consistency otherwise.
The condition is most stringent at r = e2, so consistency holds for all r if τ2 > 1/e2.

Under M2, the region of inconsistency of BIC is contained in the region of inconsistency
of the normal prior; however, BIC can be inconsistent under M1.

The type II ML prior

μ ∼ Np(0p, Ŵ )

Ŵ = argmaxW�Ipm(Y ) = Ip +max{0, 1− (r + 1)/(r‖μ̂‖2)}μ̂μ̂′

yields the Bayes factor

BF21 =

⎧
⎨
⎩
(r + 1)−p/2 exp

{
r2‖µ̂‖2

2(r+1)

}
if ‖μ̂‖2 ≤ 1 + 1/r

(
r‖µ̂‖2

r+1

)−1/2

(r + 1)−p/2 exp
{

(r‖µ̂‖2−1)
2

}
if ‖μ̂‖2 > 1 + 1/r

.

Under M1, the type II ML Bayes factor is inconsistent for r = 1 and consistent for all
r > 1. Under M2, it is inconsistent for τ

2 ≤ [log(r+1)− 1]/r and consistent otherwise.

The type II ML prior acts as a compromise between the normal prior and BIC but,
unfortunately, it still has regions of inconsistency which mixtures of normal priors avoid.
However, the type II ML Bayes factor is available in closed form, whereas the Bayes
factors that stem from using mixtures of normals generally are not.

PBIC and PBIC*, which are prior-based versions of BIC that are defined and studied
in Bayarri et al. (2019), are consistent under M1 for all r ≥ 1, but inconsistent under
M2 for τ2 < [log 2 + log(r + 1)− 1]/r. That is, under M2, the region of inconsistency
of PBIC and PBIC* contains the region of inconsistency of the restricted type II ML
prior. On the other hand, our type II ML prior is inconsistent under M1 for r = 1, while
PBIC and PBIC* are not. Therefore, in this example, the type II ML prior discussed
here is more favorable to M2 than PBIC and PBIC*.

4 Incorporating prior information

The constraints we have placed on the type II ML prior have been basic constraints, pre-
venting the prior from becoming too concentrated. It is also possible to use constraints
that incorporate available prior information, which can lead to improved inferences. We
illustrate this possibility by revisiting the example in Shibata (1983), which was also
studied in Barbieri and Berger (2004).

The goal in the Shibata example is to estimate the function f(x) = − log(1 −
x), −1 ≤ x ≤ 1 from independent observations yi = f(xi) + εi, where the εi are
independent εi ∼ N1(0, σ

2In) and σ2 is known. The function f can be expressed in
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an orthogonal series expansion as f(x) =
∑∞

i=1 βiφi(x), where φi(x) are the Chebyshev
polynomials of the first kind. We approximate f with a finite series expansion, modeling
yi =

∑j
i=1 βiφi(x) + εi. We consider different truncation points j, ranging from 1 to k,

so our model space consists of a sequence of nested models

Mj : Y | α, βj , σ
2 ∼ Nn(1nα+Xjβj , σ

2In)

for j ∈ {1, 2, 3, . . . , k}, where the design matrices Xj have dimension n × j and the
columns are given by the Chebyshev polynomials of the first kind evaluated at the
knots xi = cos(π(n − i + 1/2)/n), for i ∈ {1, 2, . . . , n}. The true coefficients in an
infinite orthogonal expansion are α = log 2 and βj = 2/j. The design matrices are
orthogonal with X ′

jXj = (n/2)Ij and 1′nXj = 0′j . [See Barbieri and Berger (2004) for a
more detailed explanation.]

We consider n = 30, k = 29, σ2 = 1, n = 100, k = 79, σ2 = 1, and n = 2000, k =
79, σ2 = 3 and put a uniform prior (i.e., 1/29 or 1/79) on the size of the nested models.
We utilize two local type II ML priors based on β ∼ N(0, σ2A):

• The unit-information constraint A � n(X ′X)−1.

• In polynomial regression, the true coefficients often decrease at polynomial rate.
With that in mind, we define a type II ML prior whose covariance matrix is
diagonal, with diagonal elements decreasing according to some power law. That
is, A = diag(d1, d2, . . . , dk) with di = ci−a for i ∈ {1, 2, . . . , k}. The parameters
c, a ≥ 0 are found by maximizing the marginal likelihood.

We will compare these three methods on Shibata’s example, utilizing squared predictive

loss L(f, f̂) =
∫ 1

−1
(f(x)− f̂(x))2 dx, as in Barbieri and Berger (2004). We also consider

the Akaike Information Criterion (AIC; −2ℓ(β̂j)+j) and BIC (−2ℓ(β̂j)+j logn), treat-
ing exp(−AIC/2) and exp(−BIC/2) as approximate marginal likelihoods. We compare
the predictive loss of Bayesian model averaging (BMA), the median probability model
(MPM; Barbieri and Berger (2004)), and the highest probability model (HPM). Note
that the AIC and BIC columns for the HPM correspond to use of the actual AIC and
BIC criteria, since maximizing the posterior probability is equivalent to minimizing the
criterion. The MPM and BMA columns utilize AIC and BIC by converting them to
approximate marginal likelihoods and utilizing the relevant Bayesian theory.

The results are summarized in Table 3. BIC and Ŵ behave similarly in all cases, as
we have seen in previous sections. The informative type II ML priors outperform the
others. AIC is somewhat better than BIC, and their Bayesian implementations (MPM
and BMA) outperform use of the raw criteria (HPM).

All across the board, BMA outperforms the rest (as expected), followed by the MPM
and the HPM; the MPM is the best single predictive model in nested model scenarios,
as shown in Barbieri and Berger (2004).
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HPM ci−a Ŵ AIC BIC
n = 30, k = 29, σ2 = 1 0.904 [10] 1.141 [4] 1.076 [7] 1.131 [4]
n = 100, k = 79, σ2 = 1 0.471 [23] 0.693 [7] 0.582 [13] 0.692 [7]
n = 2000, k = 79, σ2 = 3 0.136 [57] 0.295 [13] 0.188 [36] 0.295 [13]
MPM

n = 30, k = 29, σ2 = 1 0.839 [16] 1.093 [4] 1.027 [7] 1.089 [4]
n = 100, k = 79, σ2 = 1 0.441 [44] 0.680 [7] 0.566 [13] 0.679 [7]
n = 2000, k = 79, σ2 = 3 0.134 [59] 0.289 [13] 0.185 [37] 0.289 [13]
BMA

n = 30, k = 29, σ2 = 1 0.837 0.990 0.921 0.983
n = 100, k = 79, σ2 = 1 0.437 0.623 0.521 0.621
n = 2000, k = 79, σ2 = 3 0.133 0.275 0.170 0.275

Table 3: Predictive loss, based on N = 1000 simulations. Average model sizes in square
brackets.

5 Conclusions

Conceptually, the type II ML priors we studied offer an attractive compromise between
conventional priors, which might seem overly concentrated at the null model, and BIC.
The importance of constraining the maximization so that the prior does not overly
concentrate was highlighted, and the need to carefully choose the constraint in high-
dimensional situations was discussed.

The surprise of the analysis was that the type II ML prior gives remarkably sim-
ilar answers to BIC. Indeed, the paper could be viewed as primarily providing a new
justification of BIC in normal linear models, suggesting that BIC need not just be
viewed as an approximation but as something that corresponds quite closely to an in-
terpretable type II ML procedure (and not just with priors that sit on top of the model
likelihoods).

In Example 1 and the simulation study in Section 2.3, we observe that the g-
prior with g = n, which is the lower bound of our restricted type II ML prior, can
severely underperform when the predictors are correlated (especially when most pre-
dictors are active). In our numerical comparisons, the Zellner-Siow prior, BIC, and
the type II ML procedure yield similar results. Zellner-Siow seems to perform slightly
better in most cases, but its performance suffers when most predictors are active.
From a theoretical perspective, Zellner-Siow satisfies intrinsic consistency and predic-
tive matching, which are not satisfied by the type II ML prior. However, the type II
ML prior yields closed form Bayes factor, whereas the Zellner-Siow prior does not (see
Table 2).

Finally, we revisited the nonparametric regression example in Shibata (1983), show-
ing how prior information could be incorporated into the constraints defining type II
ML priors, leading to considerably improved performance (when the prior information
is correct). This is perhaps the most promising practical venue for type II ML priors:
embed available structural information about the prior into the class of priors, and then
use type II ML.
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Supplementary Material

Supplementary material for “Restricted type II maximum likelihood priors on regres-
sion coeficients” (DOI: 10.1214/19-BA1188SUPP; .pdf). The supplementary material
contains figures that display the results in the simulation study and proofs of the propo-
sitions stated in the main text.
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