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ABSTRACT 52 

Immunological diseases are typically heterogeneous in clinical presentation, severity and 53 

response to therapy. Markers of immune diseases often reflect this variability, especially 54 

compared to their regulated behavior in health. This leads to a common, unarticulated problem 55 

that frustrates marker discovery and interpretation: Unequal variance of immune disease marker 56 

expression between patient classes necessarily limits a marker’s informative range. To solve 57 

this problem, we introduce dataset restriction, a procedure that splits datasets into classifiable 58 

and unclassifiable samples. Applied to synthetic flow cytometry data, restriction identified 59 

markers that were otherwise disregarded. In advanced melanoma, restriction found new 60 

markers of immune-related adverse event risk after immunotherapy and enabled multivariate 61 

models that accurately predicted immunotherapy-related hepatitis. Hence, dataset restriction 62 

augments discovery of immune disease markers, increases predictive certainty for classifiable 63 

samples and improves multivariate models incorporating markers with a limited informative 64 

range. This principle can be directly extended to any classification task.  65 
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INTRODUCTION 66 

The immune system detects pathological challenges with exquisite sensitivity and specificity, 67 

which enables it to mount appropriate protective responses1. Widely distributed immune cell 68 

subsets are responsible for sensing pathogens, tissue injury and cellular stress through diverse 69 

receptor systems2-4. These disease-related signals are then amplified through humoral and 70 

cellular cascades that stimulate the migration, expansion and activation of particular effector 71 

cell populations5. By capturing information about the precise nature of the immune response, 72 

we can draw inferences about the triggering event, allowing us to develop diagnostic or 73 

prognostic models to guide personalized treatment decisions6. 74 

Flow cytometry is a sophisticated, fast and relatively inexpensive method for analyzing the 75 

properties of single cells from a uniform cell suspension7. In clinical practice, flow cytometry 76 

is commonly used to profile leucocyte subset distribution in patient blood samples, especially 77 

in the context of hematological malignancies and infectious diseases8. Modern cytometers 78 

simultaneously collect data about expression of multiple proteins in single cells, while also 79 

allowing us to interrogate many millions of cells from a single sample9. This enables accurate 80 

identification of narrowly defined cell subsets, including rare populations, as well as broadly 81 

surveying many leucocyte subsets10. This rich information is captured as a data matrix for each 82 

sample with an unordered number of rows corresponding to cells and a defined number of cell-83 

associated features as columns11.  84 

Applications of flow cytometry in clinical diagnostics are growing rapidly12. Of special interest, 85 

recent reports claim that immunophenotyping of peripheral blood leucocytes can be used to 86 

predict immune-related adverse events (irAE) following immune checkpoint inhibitor (ICI)-87 

therapy13-16. Combined treatment with anti-PD-1 (Nivolumab) and anti-CTLA-4 antibody 88 
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(Ipilimumab) is now first-line therapy for many patients with unresectable metastatic 89 

melanoma17. Its effectiveness is remarkable in terms of clinical response rates, progression-free 90 

survival and overall survival; however, immune-mediated complications, such as colitis or 91 

hepatitis, present a significant clinical concern18. Life-threatening reactions are uncommon19, 92 

but they often require interruption or discontinuation of immunotherapy, and introduction of 93 

glucocorticoids or non-steroidal immunosuppressants20. Clinically applicable, robust markers 94 

to guide irAE prevention or treatment strategies in patients would be extremely useful21. 95 

Extracting reliable predictive information from flow cytometry measurements is difficult 96 

because disease-related changes are often small compared to typical biological and technical 97 

variations22. This is especially true when investigating systemic changes in peripheral blood 98 

samples for signals that reflect localized disease23. Consequently, we often rely upon 99 

computational methods to perceive small and multivariate, but consistent changes between 100 

patient samples24. Most current approaches entail identification of cell populations with 101 

clustering methods like FlowSOM25, extracting sample-wise cell frequencies from each cluster 102 

and then comparing between samples to identify significantly differentially represented cell 103 

subsets26. Alternatively, some methods identify disease related changes at a single-cell level27.  104 

Compared to the tightly regulated homeostasis of health, immunological diseases are inherently 105 

more variable28. Generally speaking, it follows that immune disease-related markers are more 106 

variably expressed in disease than health29,30. As we show, this fundamental biological insight 107 

is important because overlapping marker expression with unequal variance between patient 108 

classes necessarily implies a range of marker values with no discriminatory potential. This 109 

problem is exaggerated when marker distributions with unequal variance substantially overlap 110 

between two patient classes, such as health and disease. Critically, we often find that disease-111 

related differences in immunological markers are small in relative and absolute terms31. This 112 



Dataset restriction augments immune disease marker discovery. Glehr, G.  

 _______________________________________________________________________________________________________________________________________________________ 

 

   

   Page 6 of 56  

   

inconvenient and unintuitive property, which is typical of markers measured by flow cytometry, 113 

masks informative markers in discovery studies and limits their clinical utility32.  114 

In this report, we examine the problem of finding and interpreting disease markers with a 115 

restricted range of informative values from an immunologist’s perspective. To do this, we must 116 

first disambiguate some key terms with different meanings for immunologists and computer 117 

scientists. Properties of single cells measured by flow cytometry, such as cell lineage-associated 118 

surface antigen expression, will be called “features.” We reserve “marker” to mean a sample-119 

related quantity, such as cell subset frequency, that signifies information relevant to sample 120 

classification, hence diagnoses. The distribution of marker values within a set of patient samples 121 

is described by its probability density function, or simply “density.” Throughout this article, we 122 

present plots of densities that compare marker expression in patient subgroups; crucially, these 123 

should not be mistaken for histograms showing feature expression within samples.  124 

We provide a computational method to optimally restrict markers to their informative range, 125 

which makes them easier to discover and interpret. The power of dataset restriction is 126 

demonstrated through its application to flow cytometry markers; in particular, T cell subset 127 

frequencies. For each marker, we calculate a restricted standardized AUC (rzAUC) for every 128 

marker value by splitting the sample set into markerHIGH and markerLOW parts. We define the 129 

optimal restriction according to the maximum absolute rzAUC of either the markerHIGH or 130 

markerLOW part. We then assign a permutation p-value to the optimal rzAUC. Finally, we 131 

leverage the adapted range of all restricted markers in a multivariate (random forest) model by 132 

forcing decision tree cuts within each informative range. 133 

In essence, restriction identifies the informative range of a marker, which allows us to segregate 134 

datasets into classifiable and unclassifiable samples. Importantly, using information about the 135 

informative range of markers leads to superior multivariate models. We qualify our method 136 
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using realistically simulated flow cytometry data, then apply it to real T cell subset analyses to 137 

discover new markers of irAE risk in patients receiving immunotherapy for advanced 138 

melanoma. Using a restricted dataset, we were able to train and prospectively validate a 139 

multivariate model to predict immunotherapy-related hepatitis, which failed when using 140 

unrestricted data. Our computational methods can be directly applied to other types of data, not 141 

limited to transcriptomic, (epi-)genomic, proteomic, metabolomics or clinical information. 142 
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RESULTS 143 

Two-class distributions resulting in skewed ROC curves 144 

We begin by showing how the distribution of a discriminatory marker that differs in its 145 

expression between diseased (patients) and unaffected (controls) individuals results in skewed 146 

receiver operating characteristic (ROC) curves. ROC curves relate the true positive rate (TPR) 147 

and false positive rate (FPR) for a disease marker at every datapoint in a two-class classification 148 

problem. Area under the ROC curve (AUC) is often used as a measure of the discriminatory 149 

capacity of a disease marker33. Throughout this report, we illustrate distributions of marker 150 

expression within classes by plotting probability densities. Densitities are normalized to 1 151 

within each class, so the appearance of these plots is independent of class size (see 152 

Supplementary Note 1). In the following sections, we consider hypothetical markers whose 153 

expression is normally distributed 𝒩(μ, σ2) with mean μ and variance σ2.  154 

 155 

Perfectly discriminatory markers result in concave ROC curves with an AUC = 1 (Fig 1a). For 156 

imperfect markers, where there is overlap between the distributions of a disease marker 157 

expression in patient and control populations, provided that variance is equal in both classes, 158 

the ROC curve is symmetric about the anti-diagonal with 1 > AUC > 0.5. In the hypothetical 159 

example, marker expression is normally distributed with equal variances in the patient 𝒩(6, 1) 160 

and control 𝒩(5, 1) populations, but mean expression is higher in patients (Fig 1b). Entirely 161 

uninformative markers result in straight diagonal ROC curves with an AUC = 0.5 (Fig 1c).  162 

 163 

Interpreting the area under a ROC curve is more complicated when comparing overlapping 164 

marker distributions with unequal variances, which result in ROC curves skewed around the 165 

anti-diagonal. Our first hypothetical example of a skewed ROC curve shows that normally 166 
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distributed, overlapping marker distributions with a higher mean and variance in the patient 167 

population compared to controls leads to a right-skewed ROC curve that crosses the diagonal 168 

in a region corresponding to low marker expression values (Fig 1d). Indeed, it is generally true 169 

that normally distributed populations with different variances result in non-concave ROC 170 

curves that cross the diagonal34. To illustrate this point, we simulated 200 samples by drawing 171 

random values from Normal distributions to show how varying the mean and variance of marker 172 

expression in patient and control distributions affects the shape and AUC of ROC curves 173 

(Supplementary Video 1 and 2). In the context of clinical diagnostics, markers of immune 174 

diseases usually reflect a change between tightly-regulated homeostasis in health and a 175 

disturbed, higher-variability condition in disease. Coupled with the fact that disease-associated 176 

changes in cell subset frequencies in blood are typically small, it is perhaps unsurprising disease 177 

markers measured by flow cytometry frequently result in skewed ROC curves13. In support of 178 

this assertion, we present a real-world example of a right-skewed ROC curve with a low AUC 179 

(Fig 1e). Specifically, this example shows that erythrocyte counts were elevated in baseline 180 

blood samples from patients metastatic melanoma who responded to combined Ipilimumab plus 181 

Nivolumab (Ipi-Nivo) therapy compared to non-responders. 182 

 183 

Left-skewed ROC curves arise when the negative population has a lower mean, but higher 184 

variance than the positive population (Fig 1f). We find a real-world example in the previously 185 

unreported association between CD8+ γδ T cells and hepatitis risk after combined Ipi-Nivo 186 

therapy (Fig 1g and Supplementary Fig 2). In this case, the higher variance of the control 187 

population might be due to technical imprecision in quantifying a rare cell population, since the 188 

absolute number of CD8+ γδ T cells in blood was only 25.6 ± 19.3 c/nl. 189 

 190 
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We next considered the case of a phenotypically heterogeneous positive population, which 191 

could reflect multiple aetiologies leading to a common clinical presentation, different stages of 192 

a disease that culminate in a common presentation or different treatment responses. In such 193 

scenarios, we expect a bimodal distribution of a disease marker in the positive population that 194 

leads to a skewed ROC curve (Fig 1h). We previously reported the identification of a subset of 195 

patients with advanced melanoma who developed hepatitis after Ipi-Nivo therapy, which was 196 

reliably predicted by CMV-associated expansion of CD4+ TEM cells prior to immunotherapy35. 197 

In our melanoma dataset, we show that using CD4+ TEM frequencies to predict hepatitis after 198 

immune checkpoint inhibitor (ICI) therapy leads to a right-skewed ROC curve (Fig 1i). We 199 

know from previous work that baseline CD4+ TEM expansion is only a useful marker of hepatitis 200 

risk in CMV-infected patients, who constituted just 47.3% of our study cohort; therefore, this 201 

is a biologically validated example of alternative immunopathologies contributing to a common 202 

pathological presentation that impacts marker performance. 203 

 204 

These three hypothetical distributions, and their real-world counterparts, demonstrate an 205 

important concept in immune marker discovery – namely, that a disease marker may be highly 206 

informative over a restricted range of measured values, but will consistently misclassify 207 

samples with marker values outside that range. By extension, using AUC across the entire ROC 208 

curve to assess predictive performance leads us to disregard potentially informative markers. 209 

Clearly, we need a method of finding such markers and defining their valid ranges. 210 

 211 

Dataset restriction is a new method to find disease markers 212 

Disease markers that give rise to skewed ROC curves perform well in a subset of samples, 213 

which may belong to either the positive or negative class, but are only informative over a certain 214 
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range. This leads us to the idea that particular samples may be classifiable or unclassifiable 215 

according to any given disease marker. Here, we present and implement a method of marker 216 

discovery that relies upon restricting training datasets to classifiable samples36. In the given 217 

example, we compared the distributions of 2500 positive and 2500 negative simulated samples, 218 

in which 20% of positive and 2% of negative samples were drawn from a normal distribution 219 𝒩(9, 1) and all other samples were drawn from 𝒩(6, 1) (Fig 2a). This resulted in a right-220 

skewed ROC curve for the complete dataset (Fig 2b). We first generated two ROC curves for 221 

every possible “restriction” of the dataset – explicitly, one for samples above the restriction 222 

(markerHIGH samples, orange; Fig 2c, d-f) and one for samples beneath (markerLOW samples, 223 

blue; Fig 2c, g-i). MarkerHIGH samples generally correspond to the bottom-left part of the 224 

complete ROC curve (Fig 2d). Considering the densities of only markerHIGH samples (Fig 2e), 225 

the restricted ROC curve had a superior “restricted” AUC (rAUC) of 0.692 (Fig 2f). MarkerLOW 226 

samples generally correspond to the top-right part of the complete ROC curve, but here their 227 

densities overlapped substantially; therefore, the restricted ROC curve was close to diagonal 228 

(Fig 2g-i). Notably, restricted densities are not the same as those in Fig 2a but are instead re-229 

calculated on either markerHIGH or markerLOW samples. 230 

 231 

Standardizing each rAUC according to sample size gave the restricted standardized AUC 232 

(rzAUC). The maximum absolute value of rzAUC defined the optimal restriction value (Fig 233 

2c). In our example, rzAUC was maximal at FPR = 0.258, which corresponded to an optimal 234 

marker restriction value of 6.8. Consequently, markerHIGH samples should be kept and 235 

markerLOW samples should be discarded – that is to say, markerHIGH samples are classifiable, 236 

whereas markerLOW samples are unclassifiable. Supplementary Video 3 helps to visualize the 237 𝑟𝐴𝑈𝐶 for varying restrictions of the dataset.  238 
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In other situations, the positive class may have higher or lower marker values, potentially 239 

leading to an AUC < 0.5 and accordingly a negative rzAUC. In Supplementary Fig 3, we show 240 

that regardless which class is labelled positive or negative, our method identifies the same 241 

restriction value. In such cases, markerHIGH and markerLOW rzAUCs are mirrored, meaning the 242 

restriction at the optimal absolute rzAUC remains identical. Critically, regardless of marker 243 

distribution, because areas under ROC curves are independent of class size, it follows that 244 

restriction values are also independent of class size37. 245 

 246 

Restriction identifies classifiable samples in simulated datasets 247 

To test our computational approach, we next applied it to our four preceding examples by 248 

simulating 100 samples from each class. In the first example, the negative class 𝒩(5, 1) and 249 

positive class 𝒩(6, 1) gave rise to a symmetrical ROC curve with a maximum rzAUC 250 

corresponding to FPR=1; consequently, the optimally informative dataset contained all samples 251 

(Fig 3a). In the second example, the negative class 𝒩(5, 1) and positive class 𝒩(6, 2) produced 252 

a right-skewed ROC curve because the variances were unequal (Fig 3b). We see that low marker 253 

values led to a consistent misclassification, indicated by the ROC curve crossing the diagonal. 254 

The maximum rzAUC of 5.8 for markerHIGH samples indicated that samples with a marker value 255 

< 4 must be discarded. In the third example, the negative class 𝒩(5, 2) and positive class 256 𝒩(6, 1) produced a left-skewed ROC curve (Fig 3c). Here, high marker values led to consistent 257 

misclassification; therefore, the ROC curve deviated below the diagonal. The maximum rzAUC 258 

of 5.8 for markerLOW samples indicated that samples with a marker value > 7 must be discarded. 259 

In the fourth example, we compared 100 samples from the negative class 𝒩(5, 1) and a bimodal 260 

positive class consisting of 90 samples from the same distribution 𝒩(5, 1), plus 10 samples 261 

from a distribution 𝒩(9, 1) with a higher mean (Fig 3d). The resulting right-skewed ROC curve 262 
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reflected the fact that our simulated marker was only informative for higher sample values. 263 

Accordingly, the optimal rzAUC of 2.4 for markerHIGH samples restricted our dataset to samples 264 

with a marker value ≥ 6.2. Evidently, our method is able to optimally restrict cleanly simulated 265 

patient populations, such that we retain only classifiable samples.  266 

 267 

Synthesizing realistic flow cytometry datasets 268 

Realistic synthetic data can be extremely valuable in machine-learning; for instance, for 269 

validating new analytical methods, calculating experimental sample sizes or data augmentation. 270 

Because no generative model already existed, we developed a new algorithm to create synthetic 271 

flow cytometry datasets, which differed from the preceding simulated examples in several key 272 

respects – specifically, they comprise multiple covarying markers, incorporate a realistic level 273 

of noise, and were adjusted in biologically meaningful ways. Our web-based interactive gating 274 

tree allows readers to synthesize their own flow cytometry data (Supplementary Website 1). 275 

 276 

In order to validate our restriction method, we needed a way of imitating disease-related 277 

differences between groups of samples. In the method described above, any effect that changes 278 

the proportion of cells in any gate(s) equates to changing the Dirichlet distribution parameters. 279 

In the given example, the originally estimated mean proportions are projected onto the gating 280 

tree and corresponding Dirichlet distribution for three example leafs A, B and L. Here, the mean 281 

proportion of CD8+ TEMRA cells is 7.17 % (Fig 4a). Now, instead of determining the number of 282 

cells in each leaf gate according to the originally estimated distribution, we generate synthetic 283 

cells from a modified Dirichlet distribution in which the mean proportion of CD8+ TEMRA cells 284 

was arbitrarily changed to 33.23 % (Fig 4b). Using our method, changing the proportion of cells 285 

in any gate leads to changes in the proportion of cells in all other gates, which we represent by 286 
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the different intensities of red shading in the gating trees and the different Dirichlet distribution 287 

for the three example leafs A, B and L. Three examples of gating generated with a mean 288 

proportion CD8+ TEMRA cells = 33.23 % are provided (Supplementary Fig 4).  289 

 290 

Applying restriction to realistic synthesized flow cytometry datasets 291 

We next applied our restriction method to synthetic flow cytometry datasets that incorporated 292 

estimated technical and biological noise typical of real-world measurements. Specifically, we 293 

generated synthetic samples that gave rise to marker distributions similar to the preceding 294 

simulated examples. Artificial disease-associations were introduced by changing the frequency 295 

of CD4+ TEM cells, which had a baseline mean proportion of 7.7 % among healthy donors. We 296 

subsequently extracted CD4+ TEM cell frequencies relative to CD3+ T cells from all samples by 297 

applying our standard gating strategy, then applied our restriction method. Similar to Figure 3, 298 

we simulated marker values from normal distributions. We then generated synthetic flow 299 

cytometry datasets by setting the CD4+ TEM cell Dirichlet parameter to each simulated marker 300 

value.  301 

 302 

In the first example, the negative class 𝒩(7.7, 1) and positive class 𝒩(10.7, 1) gave rise to a 303 

symmetrical ROC curve (Fig 5a). As expected, the results were much noisier than those shown 304 

in Figure 3; nevertheless, the maximum rzAUC = 7.2 corresponded to FPR = 1, so the optimally 305 

informative dataset contained all samples. In the second example, the negative class 306 𝒩(7.7, 1) and positive class 𝒩(8.7, 3) gave rise to a right-skewed ROC curve (Fig 5b). The 307 

maximum rzAUC = 4.3 led us to retain markerHIGH samples with ≥ 5.94% CD4+ TEM cells. In 308 

the third example, the negative class 𝒩(7.7, 3) and positive class 𝒩(8.7, 1) gave rise to a left-309 

skewed ROC curve (Fig 5c). The maximum rzAUC = 4.6 led to a restriction of the dataset to 310 
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markerLOW samples with < 8.37% CD4+ TEM. In the fourth example, we compared the negative 311 

class 𝒩(7.7, 1) and a bimodal positive class comprising 80 samples showing no effect 312 𝒩(7.7, 1) plus 20 samples from a distribution 𝒩(16.7, 1) with a higher mean (Fig 5d). The 313 

resulting right-skewed ROC curve with a maximum rzAUC = 3.7 led us to keep markerHIGH 314 

samples with ≥ 8.24% CD4+ TEM. Hence, our method is able to appropriately restrict 315 

realistically synthesized flow cytometry datasets for symmetric or skewed ROC curves, such 316 

that we retain only classifiable samples. 317 

 318 

Restriction method improves findability in realistic synthesized datasets 319 

As explained above, introducing an artificial disease association into realistically synthesized 320 

flow cytometry datasets by adjusting the frequency of one cell population (in this case, CD4+ 321 

TEM cells) leads to changes in all other nodes in our gating tree. We next asked whether our 322 

restriction method could also improve the discoverability of these covariant markers in the 323 

synthesized datasets presented above. Of note, rzAUC allows us to compare the discriminatory 324 

performance of different markers within one dataset; however, rzAUC values are not 325 

comparable between datasets, including independent training, validation and test datasets 326 

(Supplementary Fig 5). The AUC is equivalent to the Mann-Whitney U-statistic33 and we can 327 

extend this equivalence to the rzAUC; however, this is not helpful in assigning significance 328 

values because optimizing for highest rzAUC introduces a bias. Instead, we must calculate 329 

permutation p-values38. For each of our four realistic synthesized examples, we calculated 330 

permutation p-values using the unrestricted sample set and the optimally restricted sample set 331 

for every gated cell population. Figure 6 shows these p-values as scatter plots in which the 332 

green-shading demarcates unrestricted p-values > 0.05 and optimally restricted p-values < 0.05 333 

– that is, markers identified as significant using our restriction method, but missed without it. 334 
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In our example of a symmetric ROC curve, we found that CD4+ TEM cells and 3 subordinate 335 

populations were significant discriminators in both the unrestricted and restricted datasets (Fig 336 

6a). Two further populations were significant only in the restricted dataset. In the second 337 

example, which resulted in a right-skewed ROC curve, we found that two populations (i.e. 338 

CD4+ TEM cells and CD27+ CD28+ CD57- CD4+ TEM cells) had an optimal restriction 339 

permutation p-value = 0, whereas the corresponding unrestricted permutation p-value was > 340 

0.05 (Fig 6b). 8 other subsets were significant discriminators after restriction, but were not 341 

significant in the unrestricted sample-set. In the third example, which resulted in a left-skewed 342 

ROC curve, we found that CD4+ TEM cells had an optimal restriction permutation p-value = 0, 343 

but were not significant in the unrestricted dataset (Fig 6c). 11 other subsets were significant 344 

discriminators after restriction, but not in the unrestricted sample-set. In the fourth example, 345 

CD4+ TEM cells had an optimal restriction permutation p-value = 0.007, but were not significant 346 

in the unrestricted dataset (Fig 6d). Hence, dataset restriction enables discovery of disease 347 

markers which would otherwise be disregarded in synthesized flow cytometry datasets. 348 

 349 

Dataset restriction discovers valid irAE markers 350 

Having qualified our restriction method using synthesized datasets, we next applied it to real 351 

clinical data. In previous work, we investigated pre-treatment peripheral blood samples from 352 

110 patients with advanced melanoma who received Ipi-Nivo therapy13. Using conventional 353 

methods, we found no significant marker after correcting for multiple comparison. Here, we 354 

asked whether our restriction method could reveal any novel markers of hepatitis or colitis risk 355 

in the same dataset. No markers of colitis survived correction for multiple comparison (Fig 6e 356 

and Supplementary Fig 6). However, in predicting hepatitis, our restriction method returned 7 357 

significant markers with an unrestricted permutation p-value > 0.05 (Fig 6f). After correction 358 
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for multiple testing, 4 of these 7 hepatitis markers remained significant with an FDR < 0.05. By 359 

contrast, no marker identified from the unrestricted dataset returned a significant permutation 360 

p-value after correction for multiple testing. Thus, our restriction method returned significant 361 

disease-associated markers, which were not found using the unrestricted dataset. 362 

 363 

Using our novel restriction method, we identified CD27+ CD28+ CD4+ TEM cell frequency 364 

relative to CD4+ in blood as a marker of hepatitis risk after dataset restriction. To illustrate the 365 

potential utility of restricted markers, we compared the performance of CD27+ CD28+ CD4+ 366 

TEM frequency as a marker of hepatitis risk in our unrestricted and restricted datasets (Fig 7). 367 

The discriminatory cut-off for patient classification, defined by the Youden index, was the same 368 

for both the restricted and unrestricted datasets, such that samples with more than 9.56% of 369 

CD27+ CD28+ CD4+ TEM relative to CD4+ are predicted hepatitis positive. Accordingly, using 370 

the unrestricted dataset, CD27+ CD28+ CD4+ TEM (%) correctly predicted incidence of hepatitis 371 

in 74 of 110 patients. The unrestricted cell frequency had a sensitivity (TPR) of 45.8% and a 372 

specificity (true negative rate, TNR) of 83.9%. The positive predictive value (PPV) was 68.8% 373 

and the negative predictive value (NPV) was 66.7%. Our restriction method usually implies 374 

that some cases should be considered unclassifiable based upon its marker values. In this 375 

example, 58 of 110 patients were deemed unclassifiable. Incidence of hepatitis was correctly 376 

predicted in 40 of 52 classifiable samples. The restricted cell frequency had a sensitivity of 377 

91.7% and a specificity of 64.3%. The positive predictive value was 68.8% and the negative 378 

predictive value was 90% .  379 
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Multivariate analysis of restricted data predicts hepatitis  380 

Although our restriction method leads to discarding many samples as unclassifiable by any 381 

particular marker, we found that different markers define noncongruent sets of classifiable 382 

samples (Fig 8a). This led us to investigate whether using restricted datasets could improve the 383 

predictive performance of multivariate models. First, we built a random forest model39 using 384 

all 84 markers from the unrestricted training dataset of 110 patients (Fig 8b). When this model 385 

was applied to a fully independent, prospective validation set of 30 patients, the resulting 386 

predictions were inaccurate (CCR=56.7% vs. 54.8% under the no-information model). 387 

 388 

By contrast, we observed a significant improvement in predictive performance using the 389 

restricted dataset to train our random forest. To leverage information from our restriction 390 

method, we assigned a value of -1 to restricted samples across all 84 markers. When this model 391 

was applied to the validation set, the resulting predictions were significant (Fisher’s Exact p-392 

value = 0.026) and had a correct classification rate of 73.3%. 12 of 16 predictions of hepatitis 393 

were correct (PPV=75%) and 10 of 14 negative predictions were correct (NPV=71.4%). Hence, 394 

in principle, dataset restriction can improve the training and performance of multivariate 395 

predictive models.  396 
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DISCUSSION 397 

Immunological diseases are often heterogeneous in clinical presentation and severity, reflecting 398 

the variability of their underlying immunopathologies15. It follows, we argue, that immune 399 

disease-associated markers typically exhibit greater variance among diseased patients than 400 

unaffected individuals. This general proposition was broadly corroborated by our real-world 401 

examples of patient groups who were prone to immunotherapy-related complications. Unequal 402 

variance in marker distribution between patient classes affects our ability to identify markers 403 

with discriminatory capacity over a restricted range of marker values. To solve this biological 404 

problem, we introduced dataset restriction as a marker discovery tool. In artificial and real-405 

world examples, dataset restriction enabled us to find discriminatory markers that were 406 

disregarded by conventional measures of marker performance. Moreover, we showed that 407 

dataset restriction improves performance of multivariate predictive models. Our work 408 

formalizes a new way of evaluating diagnostic results – namely, that certain markers can only 409 

be usefully interpreted over a restricted range of values, and that samples with values outside 410 

this range should be considered as unclassifiable. 411 

 412 

Flow cytometry is a powerful method for interrogating the phenotype of many single cells 413 

within a heterogeneous mixture. This technique allowed us to estimate the relative numbers of 414 

accurately defined leucocyte subsets in peripheral blood samples, including T cell subsets, 415 

which are direct targets of Ipilimumab (anti-CTLA-4) and Nivolumab (anti-PD-1) therapy40. 416 

Although flow cytometry generates rich and immunologically interpretable data, it has two key 417 

limitations – namely, that blood leucocyte frequencies vary within a narrow dynamic range, 418 

and that higher order cell feature combinations may define rare cell subsets41,42. Small disease-419 

related changes in markers are problematic because substantially overlapping marker 420 
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distributions with unequal variance lead to exaggerated skewness of ROC curves. Rare cell 421 

subsets are problematic because our estimates of their frequency are less reliable43. Crucially, 422 

dataset restriction helps to overcome the special difficulties of correctly interpreting flow 423 

cytometry data by limiting marker values to a range in which the signal-to-noise ratio is 424 

increased relative to the full range. Consequently, we reduce the likelihood of false positive or 425 

false negative classification at the cost of discarding some samples as unclassifiable. 426 

 427 

We created an R-package, called restrictedROC36, that calculates restricted standardized AUC 428 

scores. The rzAUC is returned together with a value that delimits the marker’s informative 429 

range. This builds upon earlier ideas about partial AUCs, which were introduced to account for 430 

imposed restrictions that capped true and false positive rates44-46. Imposed restrictions usually 431 

come from domain knowledge; for instance, tests with a high false positive rate are 432 

inappropriate for expensive diagnostic screening applications, whereas tests with a high false 433 

negative rate are inappropriate when a life-saving treatment is available47. McClish introduced 434 

a “standardization” for partial AUCs for a given range of false positive rates, such that a 435 

randomly selected positive sample has a higher value than a randomly selected negative sample 436 

conditional upon the negative sample arising from the false positive range48. In our method, we 437 

introduced a scaling factor for the two-way partial AUC47 resulting in the restricted AUC 438 

(rAUC). With this scaling factor, the rAUC becomes the probability that a randomly selected 439 

positive sample has a higher value than a randomly selected negative sample conditional upon 440 

both samples arising from a range spanned by a minimum true positive rate and a maximal false 441 

positive rate. The restricted standardized AUC (rzAUC) then takes into account both the rAUC 442 

and the number of samples in the markerHIGH or markerLOW range leveraging the equivalence 443 

between AUC and Mann-Whitney U test33. 444 
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We further developed our method to determine the optimal range of marker values that correctly 445 

classifies samples. Specifically, we optimize a restriction that either includes samples with 446 

higher marker values (markerHIGH) or lower marker values (markerLOW) and has the highest 447 

possible absolute rzAUC. The rzAUC can be directly compared within one dataset, but depends 448 

on the total number of samples. By calculating permutation p-values38 for the rzAUC, we 449 

remove this dependence and attribute significance values.  450 

 451 

There are alternative ways of describing the geometric symmetry of ROC curves apart from 452 

graphical skewness. Left-skewed ROC curves are also described as True Negative Proportion 453 

(TNP)-asymmetric and right-skewed ROC curves as True Positive Proportion (TPP)-454 

asymmetric. These asymmetries can be defined by Kullback-Leibler divergences49 (KL-455 

divergences). Therefore, KL-divergence could be used to assess whether restriction should be 456 

applied to a given marker; however, in the case of symmetric ROC curves, our restriction keeps 457 

all samples, so such preselection of markers is unnecessary. Importantly, excluding samples to 458 

minimize KL-divergence is not the equivalent of dataset restriction. 459 

 460 

In principle, dataset restriction can be applied to optimize any marker range. However, 461 

following from our immunological rationale, restricting the upper or lower range is especially 462 

applicable in clinical diagnostics. For completeness of our discussion, we can imagine a marker 463 

with both uninformative markerHIGH and markerLOW values (ie. where only mid-range values 464 

are informative) that might only be discovered by applying our restriction method twice in 465 

succession. In theory, restriction could be iteratively applied to a dataset until no more samples 466 

are identified as unclassifiable, but the practical value of multiply restricting datasets is unclear. 467 

 468 
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In order to validate our restriction method, we developed a novel method for synthesizing 469 

realistic flow cytometry data with class-related effects. Because no generative method 470 

previously existed, our approach represents a significant contribution to cytometry analysis, 471 

particularly for benchmarking of diagnostic flow cytometry algorithms, sample size 472 

calculations or data augmentation. Our method uses an expert-given hierarchical gating 473 

strategy, where the proportions of cells per gate are described with a Dirichlet distribution. 474 

Within each terminal (leaf) gate, the cells are described using a normal distribution. Thus, we 475 

effectively created a Gaussian mixture distribution with the number of components defined by 476 

the number of terminal gates. In cytometry, (Gaussian) mixture models are an established 477 

method for unsupervised cell population identification50,51. In principle, these earlier 478 

approaches could be used to generate new cells from estimated distributions, although their 479 

focus was labeling existing cells rather than creating artificial ones. Our use of a hierarchical 480 

gating strategy and a Gaussian mixture model allows for the creation of complex data 481 

distributions. In future, for certain applications, further adaptions of our approach, such as 482 

multivariate skew t-distributions, could be used to improve the accuracy of simulated data52.  483 

 484 

Restricting markers to an informative range of values is important because it improves 485 

classification performance. We emphasize that classification cut-offs and restriction values are 486 

different concepts. Classification cutoffs, such as the Youden index53, divide a sample set into 487 

predicted positive and predicted negative classes. By contrast, restriction divides a sample set 488 

into classifiable and unclassifiable samples. In the context of individualized patient care, it 489 

might seem unproductive to label samples as unclassifiable. On the contrary, we argue that the 490 

clinical utility of a predictive marker improves if its certainty is high, even if it is only works in 491 

a small subset of patients. Consider a disease-related marker giving a right-skewed ROC curve: 492 
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Conventional approaches return a reliable positive classification and an unreliable negative 493 

classification; in contrast, our restriction method returns a reliable positive classification, a 494 

reliable negative classification and a set of unclassifiable samples, which do not necessarily 495 

have the most negative values. Of note, the discriminatory cut-off determined by the Youden 496 

index is often the same after restriction but may change in some cases. When interpreting a 497 

single marker, our restriction method improves either the positive or the negative predictive 498 

value, so improves certainty of our predictions.  499 

 500 

Our method may concern some clinicians, who will legitimately ask about unclassifiable 501 

patients54. Here, we provide an answer by building an informative and prospectively validated 502 

random forest model after replacing all restricted values with a constant outside the informative 503 

range. Consequently, we force each tree of the random forest to select a cut-off within the 504 

informative range or a cut-off between the classifiable and unclassifiable regions. More 505 

sophisticated methods may be developed in future, but our experimentally validated random 506 

forest is a proof-of-principle that differently restricted markers can be usefully combined in 507 

multivariate models. 508 

 509 

To demonstrate the potential clinical utility of dataset restriction, we applied our method to the 510 

clinically significant problem of immune-related adverse events following combined 511 

immunotherapy. In univariate analyses, dataset restriction identified new markers associated 512 

with ICI-related hepatitis, including CD27+ CD28+ CD4+ TEM cells, that were not returned by 513 

conventional methods. Of clinical importance, dataset restriction increased NPV without 514 

compromising PPV. Combining many restricted markers into a random forest model generated 515 

an informative model, whereas training on unrestricted data from the same set of 110 samples 516 
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returned no valid models. To validate our predictive model, we assessed its performance in an 517 

independent, prospectively collected set of 30 samples, where it returned significant 518 

predictions, which were superior to the performance of any single marker alone. Beyond the 519 

scope of this article, such multivariate models could be extended to include markers from 520 

multiple flow cytometry panels or other patient-related information, such as age, sex or clinical 521 

chemistry results. 522 

 523 

Clinical manifestations of immune disease are often heterogeneous. This is certainly true of 524 

irAE after immunotherapy, which vary greatly in severity, time-of-onset, clinical features and 525 

response to treatment28. Further, there is increasing evidence that multiple immune aetiologies 526 

lead to common clinical presentations, such as colitis55, myositis56 or hepatitis57. This 527 

heterogeneity connotes individual genetic predisposition58,59, environmental factors60,61 and 528 

past immunological challenges35. In particular, we now recognize the contribution of previous 529 

viral infections in preconditioning towards adverse reactions. An unanticipated consequence of 530 

dataset restriction is that disease markers with a bimodal distribution in the positive class, such 531 

as might arise from multiple aetiologies, are findable. Excitingly, combining features from a 532 

restricted dataset into multivariate models should, in principle, enable predictions about 533 

diseases with multiple aetiotypes – a situation where conventional methods are unsuitable. 534 

Extending this idea of dataset restriction as a way of classifying samples with intraclass 535 

heterogeneity to unsupervised methods, such as PCA or clustering, could aid discovery of 536 

previously unknown patient subsets. 537 

 538 

In summary, clinical markers that can only be interpreted over a restricted range are inherently 539 

likely in immune diseases. Where classical methods fail, dataset restriction solves the problem 540 
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of discovering and interpreting such markers. Our approach is not limited to prospective data, 541 

but can also be used retrospectively to find new markers or improve existing ones. Dataset 542 

restriction was developed here to analyze flow cytometry data; however, it is directly applicable 543 

to any sample classification problem. In immunological research, this could include 544 

transcriptomic, proteomic, (epi-)genomic, metabolomic or imaging data. We hope others will 545 

apply our method to existing datasets, perhaps leading to valuable new markers or novel 546 

biological insights.   547 
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MATERIALS AND METHODS 548 

Collection of clinical information  549 

Data from three sources were used in this study: (1) a training set (n=48) from a cohort of 550 

healthy humans used to develop our flow cytometry data simulations; (2) a previously reported 551 

training set (n=110) from patients with advanced melanoma used for marker discovery13; and 552 

(3) a new prospective validation set (n=30) from patients with advanced melanoma. Whole 553 

blood was collected from healthy thrombocyte donors with approval from the Ethics Committee 554 

of the University of Regensburg (approval 22-2780-01). All donors gave full, written consent 555 

to sample and data collection. Clinical samples for the marker training and validation sets were 556 

collected within a single-center, non-interventional study62,which was conducted in accordance 557 

with the Declaration of Helsinki and all applicable German and European laws and ethical 558 

standards. This observational study was authorized by the Ethics Committee of the University 559 

of Regensburg (approval 16-101-0125) and registered with clinicaltrials.gov (NCT04158544). 560 

Blood samples were obtained from patients with Stage III/IV melanoma under the care of the 561 

Department of Dermatology at University Hospital Regensburg (UKR). Eligible patients were 562 

consecutively recruited without stratification or matching. All participants gave full, informed 563 

written consent. For the training set, the first reported case was recruited in OCT-2016 and the 564 

last reported case was recruited in JUN-2021. For the prospective validation set, the first 565 

reported case was recruited in JUN-2021 and the last reported case was recruited in JAN-2023 566 

(Supplementary Table 1). All study participants received standard-of-care treatment according 567 

to local guidelines. Specifically, patients with unresectable metastatic disease who received 568 

first- or second-line checkpoint inhibitor therapy were initially treated with Nivolumab (αPD-569 

1; 1 mg/kg; Bristol-Myers Squibb) plus Ipilimumab (αCTLA-4; 3 mg/kg; Bristol-Myers 570 
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Squibb) for up to four cycles at 3 week intervals. Thereafter, patients received 480 mg 571 

Nivolumab monotherapy at 4 week intervals. 572 

 573 

Diagnosis and grading of clinical outcomes.  574 

All irAE were evaluated by an expert Dermatological Oncologist. ICI-related hepatitis was 575 

diagnosed when: (i) GOT, GPT, γ-GT or total bilirubin substantially deviated from pretreatment 576 

values; (ii) this change was not attributable to other causes, such as co-medication or viral 577 

disease; and (iii) liver injury was sufficiently severe that ICI therapy was suspended or stopped, 578 

or immunosuppression was started. Colitis was diagnosed when increased stool frequency or 579 

loose consistency, accompanied by abdominal discomfort led to suspension or cessation of ICI 580 

therapy and introduction of immunosuppressive treatment. Clinical responses were assessed 581 

using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1)63. Patients with 582 

progressive disease were categorized as non-responders, whereas those with complete or partial 583 

responses, and those with stable disease, were categorized as responders. 584 

 585 

Flow cytometry.  586 

Step-by-step protocols for preparing and analyzing clinical samples by flow cytometry can be 587 

accessed through Nature Protocol Exchange64. Briefly, blood was collected into EDTA-588 

vacutainers by peripheral venepuncture then delivered to the responsible lab at ambient 589 

temperature. Samples were stored at 4°C for up to 4 h before processing. Whole blood samples 590 

were stained using the DURAClone IM T Cell Subsets Tube (Beckman Coulter, B53328). Data 591 

were collected using a NaviosTM cytometer running Cytometry List Mode Data Acquisition and 592 

Analysis Software version 1.3 (Beckman Coulter). An experienced operator performed blinded 593 
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analyses following a conventional workflow that entailed sample-wise recompensation, arcsinh 594 

transformation and rescaling before applying a uniform gating strategy (Supplementary Fig 4). 595 

 596 

Restriction method 597 

We propose a method for finding markers with high performance in subsets of samples that 598 

involves: 1) “restricting” samples into markerHIGH and markerLOW sets for every unique marker 599 

value; 2) calculating the corresponding restricted receiver operating characteristic(ROC) curve; 600 

3) calculating the area under the restricted ROC curve;  4) adjusting the restricted AUC (rAUC) 601 

for sample size; 5) selecting the optimal restriction level, 6) calculating permutation p-values; 602 

and 7) reporting performance and significance. This algorithm is implemented as an R package 603 

called restrictedROC36. 604 

 605 

To define our nomenclature, we first introduce ROC curve analysis. Let a cut-off 𝑐 ∈  ℝ, a 606 

continuous marker 𝑌 ∈ ℝ and a grouping of samples into diseased (positive, 𝐷 = 1) and non-607 

diseased (negative, 𝐷 = 0). A sample can be classified as diseased if 𝑌 ≥ 𝑐 and into non-608 

diseased if 𝑌 < 𝑐. The true positive rate (𝑇𝑃𝑅) and false positive rate (𝐹𝑃𝑅) at cut-off 𝑐 are 609 

defined as 𝑇𝑃𝑅(𝑐) = 𝑃[𝑌 ≥ 𝑐|𝐷 = 1] = 𝑃[𝑌𝐷 ≥ 𝑐] and 𝑇𝑃𝑅(𝑐) = 𝑃[𝑌 ≥ 𝑐|𝐷 = 0] =610 𝑃[𝑌�̅� ≥ 𝑐]. The ROC curve relates the 𝑇𝑃𝑅 and 𝐹𝑃𝑅 for all possible cut-offs 𝑐, including 611 {∞,−∞} (nb. compare with Supplementary Fig 7). We can write the value of the ROC curve 612 

at any false positive rate 𝑡 ∈ (0,1) as ROC(𝑡) = 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑡)). For empirical survival 613 

functions 𝑆𝐷 and 𝑆�̅� we write ROC(𝑡) = 𝑆𝐷 (𝑆�̅�−1(𝑡)) by substituting 𝑇𝑃𝑅 and 𝐹𝑃𝑅. The area 614 

under the ROC curve (AUC) is then defined as  615 

 AUC = ∫ ROC(𝑡)d𝑡10  . (1) 

 616 
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Consequently, a perfectly discriminating marker with higher values corresponding to the 617 

positive class translates to a perfect ROC curve with AUC = 1. An uninformative marker has 618 

an AUC of 0.5, corresponding to ROC(𝑡) = 𝑡 ∀𝑡 ∈ (0, 1). A perfectly discriminating marker 619 

but with higher values corresponding to the negative class has an AUC of 0. From a 620 

probabilistic point of view, the AUC equals the probability that the marker value of a random 621 

positive sample will be higher than that of a random negative sample: AUC = 𝑃[𝑌𝐷 > 𝑌�̅�] 622 

33,65,66. The derivation is given in Supplementary Note 2. 623 

 624 

Next, we introduce the concept of restricted ROC curves. Our “restriction” is a marker value 625 

that splits the samples into markerHIGH and markerLOW sets. For both sets, we separately 626 

calculate “restricted” ROC curves and their corresponding restricted AUC (rAUC). See 627 

supplement for the full derivation. In Supplementary Note 3, we prove that calculating rAUC 628 

is identical to scaling a partial AUC (pAUC). Therefore, before we describe our computational 629 

method, we consider the (two-way) pAUC47,67. The partial AUC (pAUC) is defined as the AUC 630 

up to a certain false positive rate. Its probabilistic correspondence has been shown45,66: 631 

 pAUC(𝑡0) = ∫ ROC(𝑡)d𝑡𝑡00 = 𝑃[𝑌𝐷 > 𝑌�̅� | 𝑌�̅� > 𝑆�̅�−1(𝑡0)] ⋅ 𝑡0 (2) 

The pAUC was recently extended to two-way partial AUCs47. Here, the area is calculated 632 

between 𝑆𝐷(𝑡) ≥ 1 − 𝛼 and 𝑆�̅�(𝑡) ≤ 𝛽. This area, shown in Supplementary Fig 8 as shaded 633 

area A, can be written as  634 

 AUCαβ = ∫ ROC(𝑡) d𝑡𝛽
𝑆�̅�(𝑆𝐷−1(1−𝛼))  −  (1 − 𝛼) (𝛽 − 𝑆�̅� (𝑆𝐷−1(1 − 𝛼))) 

(3) 

 

 = 𝑃[𝑌𝐷 > 𝑌�̅� , 𝑌𝐷 ≤ 𝑆𝐷−1(1 − 𝛼), 𝑌�̅� ≥ 𝑆�̅�−1(𝛽)]        (4) 

Our restriction method uses two special cases of 𝐴𝑈𝐶𝛼𝛽, shown in Supplementary Fig 9: 635 
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1) The left part of the area under the curve up to a false positive rate 𝛽, which is identical 636 

to the pAUC described earlier 637 

             AUCℎ𝑖𝑔ℎ(𝛽) = AUCα≡1 β = (5) 

                      = ∫ ROC(𝑡) d𝑡𝛽0   (6) 

                     =  𝑃[𝑌𝐷 > 𝑌�̅� , 𝑌�̅� > 𝑆�̅�−1(𝛽)] (7) 

 638 

2) The right part of the area under the curve with at least a true positive rate of 1 − 𝛼 639 

             AUC𝑙𝑜𝑤(𝛽) = AUCα β≡1 = (8) 

                     =  ∫ ROC(𝑡) d𝑡1𝑆�̅�(𝑆𝐷−1(1−𝛼)) (1 − 𝛼) (1 − 𝑆�̅� (𝑆𝐷−1(1 − 𝛼))) (9) 

                    =  𝑃[𝑌𝐷 > 𝑌�̅� , 𝑌𝐷 ≤ 𝑆𝐷−1(1 − 𝛼)]  (10) 

Partial AUCs consider only a specific part of the original ROC curve, therefore the 640 

interpretation of perfect (AUC = 1) or non-informative (AUC = 0.5) becomes invalid. For 641 pAUC, the following standardization was proposed to restore this interpretation48 642 

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 pAUC = 12 (1 + pAUC − minmax−min ) (11) 

where, min is the pAUC given an non-informative marker (min = β22 ), and max is the pAUC 643 

given a perfect marker (max = 𝛽) up to an false positive rate of 𝛽.  644 

In contrast, our restriction method applies the following two scaling factors to any two-way 645 

partial AUCαβ  646 

 
rAUCαβ ≔ AUCαβ ⋅ 1𝛽 − 𝑆�̅�(𝑆𝐷−1(1 − 𝛼)) ⋅ 1𝑆𝐷 (𝑆�̅�−1(𝛽)) − (1 − 𝛼)  (12) 

Effectively, these two scaling factors rescale the area spanned through 𝛼 and 𝛽 to 1. 647 

Importantly, this is equivalent to calculating rAUC considering only samples with 𝑆�̅�−1(𝛽) < t 648 

< 𝑆𝐷−1(1 − 𝛼). This has a probabilistic interpretation of  649 
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 rAUCαβ = 𝑃[𝑌𝐷 > 𝑌�̅� | 𝑆�̅�−1(𝛽) ≤ 𝑌 ≤  𝑆𝐷−1(1 − 𝛼)] (13) 

Here, the rAUCαβ is defined in terms of maximum false positive rate 1 − 𝛼 and minimum true 650 

positive rate 𝛽. Alternatively, we introduce a “restriction” 𝑟 ∈ ℝ which splits the data into 651 

markerHIGH and markerLOW sets where 𝛼 ≔ 1 − 𝑆𝐷(𝑟) and 𝛽 ≔ 𝑆�̅�(𝑟). With this, our two 652 

special cases become 653 

      rAUCℎ𝑖𝑔ℎ(𝑟) = rAUC𝛼≡1𝛽=𝑆�̅�(𝑟)    = AUCℎ𝑖𝑔ℎ(𝑆�̅�(𝑟)) ⋅ 1𝑆�̅�(𝑟) ⋅ 1𝑆𝐷(𝑟)  (14) 

 rAUC𝑙𝑜𝑤(𝑟) = rAUC𝛼=1−𝑆𝐷(𝑟)𝛽≡1 = AUC𝑙𝑜𝑤(1 − 𝑆𝐷(𝑟)) ⋅ 11−𝑆�̅�(𝑟) ⋅ 11−𝑆𝐷(𝑟)  (15) 

This is equivalent to keeping markerHIGH samples with values > 𝑟 ( rAUCℎ𝑖𝑔ℎ) or to keeping 654 

markerLOW samples with values ≤ 𝑟 (rAUC𝑙𝑜𝑤), then calculating AUC on the restricted dataset. 655 

Supplementary Video 3 uses a hypothetical dataset to visualize the rAUC and show the visual 656 

equivalence of our scaling factor and when restricting the dataset.  657 

More extreme restrictions result in fewer samples, so our estimates of rAUC(𝑟) become 658 

increasingly unreliable; therefore, we adjust rAUC(𝑟) for sample size after restriction. Here, we 659 

leverage the equality of the AUC to the Mann-Whitney U test33 in order to calculate the 660 

restricted standardized AUC (rzAUC𝑋) for 𝑋 either markerHIGH and markerLOW sets by 661 

calculating the test statistic 662 

 
rzAUC𝑋(𝑟) = rAUC𝑋(𝑟) − 0.5√𝑣𝑎𝑟𝐻0(rAUC𝑋(𝑟)) 

(16) 

where 𝑣𝑎𝑟𝐻0(rAUC𝑋(𝑟)) is the variance under the null hypothesis 𝐻0 that positive and negative 663 

samples are independent and identically distributed. This demands no assumption of normality. 664 

Then this 𝑣𝑎𝑟𝐻0 is68,69 665 

 𝑣𝑎𝑟𝐻0(rAUC𝑋(𝑟)) = 𝑚 + 𝑛 + 112𝑚𝑛  (17) 
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where 𝑚 is the number of positive samples and 𝑛 is the number of negative samples with marker 666 

values higher (rzAUCℎ𝑖𝑔ℎ) or lower or equal (rzAUC𝑙𝑜𝑤) than the restriction 𝑟. With this 667 

adjustment, a higher number of samples reduces variance, hence rzAUC𝑥 becomes more 668 

reliable. For a visual example, see Supplementary Fig 10 where the rAUC and rzAUC are shown 669 

for all possible restrictions in terms of the false positive rate. The rzAUC𝑋 can be negative if 670 

the corresponding rAUC𝑋 is below 0.5, decreases with fewer samples and increases in absolute 671 

value the further rAUC𝑋 is from 0.5. 672 

 673 

After calculating the 𝑟𝑧𝐴𝑈𝐶, we next identify the optimal restriction, which is defined as the 674 

highest absolute value of rzAUCℎ𝑖𝑔ℎ or rzAUC𝑙𝑜𝑤. Including more samples would result in a 675 

smaller rAUC𝑋 and therefore smaller rzAUC𝑋. Excluding more samples would result in an equal 676 

or higher rzAUC𝑋 but also a higher variance and therefore also a smaller rzAUC𝑋. With this 677 

restriction we include some and potentially, but not necessarily, exclude other samples in the 678 

calculation of the rAUC. We describe the excluded samples as “unclassifiable” and remove 679 

them from further calculation of usual performance measures like accuracy, specificity or 680 

sensitivity.  681 

 682 

Finally, we calculate permutation p-values for the unrestricted AUC and rzAUC. After 683 

obtaining the unrestricted AUC for an unrestricted dataset or the rzAUC𝑋 for an optimized 684 

subset of samples, we need to assign a p-value using permutation tests. This a non-parametric 685 

way to determine statistical significance based upon a null hypothesis that class labels assigned 686 

to samples are interchangeable38. Following this approach, we first calculate unrestricted AUC, 687 rzAUCℎ𝑖𝑔ℎ and rzAUC𝑙𝑜𝑤 using the correct labels. Then we permutate the labels 10,000 times 688 

before recalculating unrestricted AUC, rzAUCℎ𝑖𝑔ℎ and rzAUC𝑙𝑜𝑤. The unrestricted permutation 689 
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p-value is then the number of times the permutated unrestricted AUC is above the original 690 

unrestricted AUC. Likwise, the restricted permutation p-value is then the number of times either 691 rzAUCℎ𝑖𝑔ℎ or rzAUC𝑙𝑜𝑤 are absolutely higher than the optimal rzAUC𝑋.  692 

 693 

Multivariate restriction analysis 694 

Our restriction method identifies only a part of the samples as classifiable and cannot make 695 

predictions for the unclassifiables. This potentially excludes many samples, so constrains 696 

predictive power. To circumvent this problem, we replace the marker values of unclassifiable 697 

samples with a clearly distinct value (-1) and then apply a random forest. With this substitution, 698 

we can predict all given samples, regardless if they are unclassifiable by some markers. In our 699 

melanoma dataset, per sample we first downsampled 10,000 CD3+ T cells. We then restricted 700 

our set of features to 84 gates where at least 10% of 110 training samples contained more than 701 

10 counts. Then we calculated relative proportion to either CD4+ CD8- or CD4- CD8+ T cells. 702 

We also used CD4+CD8+ (double positive), CD4- CD8- (double negative), CD4+ CD8- and CD4- 703 

CD8+ T cell counts, which are relative to the fixed parent gate of 10,000 CD3+ T cells. 704 

 705 

For our unrestricted, classical multivariate approach, we used the proportions and counts of all 706 

110 previously published training samples. We then trained a random forest39  model using the 707 

H2O R library70 with 1000 trees and the number of bins of 100, a random manual seed for 708 

reproducibility of the results the remaining default parameters. Explicitly, a maximum depth of 709 

20, a minimum number of samples in a node of 1, logloss stopping metric, the number of 710 

randomly sampled candidate markers as floor of the square root of 84 (9), a sample rate of 711 

0.632, minimum split improvement of 10-5 and an automatic histogram type. Finally, we applied 712 

the random forest on a prospective cohort of n=30 patients.  713 
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 714 

For our restricted multivariate approach, we performed a marker-wise restriction to samples, 715 

then replaced all unclassifiable marker values with -1. (We chose this value because all 716 

classifiable values are strictly positive as they represent either proportions of CD4+ or CD8+ T 717 

cells, or absolute T cell counts.) This substitution forces each tree in the random forest to select 718 

discriminatory cutoffs within the range of informative marker values. We then trained a random 719 

forest model with the same settings as for the unrestricted multivariate approach. We finally 720 

applied the restriction values obtained from the training set to the prospective validation set, 721 

replaced the unclassifiable marker values with -1 and applied the random forest on the 722 

prospective cohort.  723 

 724 

Synthesizing realistic flow cytometry data 725 

Our method to synthesize realistic flow cytometry data is accessible as python71 package 726 

NBNode via github https://github.com/ggrlab/NBNode72. The process of hierarchically gating 727 

cells and simulating data with any given effect in any cell population involves five steps. In the 728 

following, bold letters or arrows above the letter (a⃗ ) denote vectors, regular letters single 729 

values. 730 

 731 

In the first step, we applied a uniform manual gating to 48 human peripheral blood samples 732 

stained with the DURAClone IM T Cell Subsets Tube (Beckman Coulter GmbH). Data were 733 

preprocessed by manually recompensating the samples, removing the TIME feature, and asinh 734 

transforming all cell features 𝑥  735 

 𝑎𝑠𝑖𝑛ℎ𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟(𝑥) = 𝑎𝑠𝑖𝑛ℎ ( 𝑥𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟)  (18) 

https://github.com/ggrlab/NBNode
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with the following cofactors: FS INT: 1, FS TOF: 1, SS INT: 1, CD45RA FITC: 1000, CCR7 736 

PE: 2000, CD28 ECD: 2000, PD1 PC5.5: 800, CD27 PC7: 3000, CD4 APC: 4000, CD8 AF700: 737 

10000, CD3 AA750: 500, CD57 PB: 2000, CD45 KrO: 20. Because the channel-wise median 738 

fluorescence intensity (MFI) varied between samples, this alone was not sufficient to apply the 739 

exact same gating to all samples. Therefore, we performed a sample-wise rescaling 740 

(Supplementary Fig 11 and Supplementary Video 4). For every cell feature 𝑥, we identified the 741 

positive and negative population of all cells and found the corresponding 𝑀𝐹𝐼𝑥+ and 𝑀𝐹𝐼𝑥−. 742 

Using these, the rescaling min-max standardizes all cells per sample,  743 

 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑥) ≔  𝑥 − 𝑀𝐹𝐼𝑥−𝑀𝐹𝐼𝑥+ − 𝑀𝐹𝐼𝑥− (19) 

leading to a rescaled 𝑀𝐹𝐼𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑥)+  of 1 and a rescaled𝑀𝐹𝐼𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑥)−  of 0. 744 

We then applied a standard gating strategy, which is shown schematically (Supplementary Fig 745 

12a) and explicitly for a real-world sample (Supplementary Fig 4). This hierarchical gating of 746 

biaxial scatter plots is effectively a decision tree with 98 “leaf” gates (Supplementary Fig 12a). 747 

Each leaf gate corresponds to a terminal gating node and all supraordinate nodes are 748 

“intermediate” gates. Importantly, every cell must fall into one, and only one, of the subordinate 749 

98 leaf gates. 750 

 751 

In the second step, we model the proportion of cells in each leaf gate after uniformly gating all 752 

cells from all samples. Specifically, we describe the proportion of cells in each gate according 753 

to a Dirichlet distribution 𝐷𝑖𝑟(𝛂) (Supplementary Fig 12b,c). The Dirichlet distribution is a 754 

suitable choice after its mass is only on non-negative compositions that sum up to one. 755 

Following Minka et al.73, let 𝒑 ∈ (0, 1)𝐾 be one random vector of proportions such that 756 ∑ 𝑝𝑘𝐾𝑘 = 1 for 𝑘 ∈ {1,… , 𝐾} for K cell populations. In our case, all cells of a sample fall into 757 

one and only one of the 98 terminal gates. Therefore, the sum of the cell percentages in each 758 
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terminal gate adds up to 100%. The probability density under the Dirichlet model with a 759 

parameter vector 𝜶 ∈ ℝ>0𝐾  is defined as  760 

 p(𝒑)~ 𝐷𝑖𝑟(𝛼1, … , 𝛼𝐾) = Γ(∑ 𝛼𝑘𝑘 )∏ Γ(𝛼𝑘)𝑘 ∏𝑝𝑘𝑎𝑘−1𝑘  (20) 

 with 𝑝𝑘 > 0 and ∑𝑝𝑘𝐾
𝑘 = 1  

More intuitively, the 𝜶 parameters can be split into mean proportions per cell population and a 761 

precision:  762 

 𝒎 = 𝐸[𝒑] =  𝜶∑ 𝛼𝑘𝐾𝑘    (mean vector) (21) 

 s = ∑𝛼𝑘𝐾
𝑘    (precision) (22) 

Hence, a useful explanation of the parameters is that the higher the precision, the more localized 763 

the probability becomes around the means. 𝛼𝑥 > 𝛼𝑦 indicates that, on average, the proportion 764 

of cell population 𝑥 is higher than the proportion of cell population 𝑦. If 0 < 𝛼𝑘 < 1, the 765 

distribution is effectively pushed away from the corresponding cell population. See 766 

Supplementary Fig 13 and Supplementary Table 2 for examples of the Dirichlet distribution 767 

with K=3 and different parametrizations of 𝜶. Plots were built using the R-package74. We set a 768 

maximum likelihood estimation of the distribution parameters 𝜶 75 based on 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 48 769 

measured cell population proportions 𝒑(𝑖) for 𝑖 ∈ {1,… ,𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠}. In some cell populations 770 

and samples there were no cells so the proportion became zero. Because the estimation cannot 771 

handle proportions equal to zero, we added a pseudo-proportion to all proportions and 772 

normalized to 1 before applying maximum likelihood estimation. With this, the zero-adjusted 773 

proportion 𝒑𝑘(𝑖)′′ of sample 𝑖 and cell population 𝑘 becomes 774 
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 𝒑𝑘(𝑖)′′ = 𝒑𝑘(𝑖)′∑ 𝒑𝑘(𝑖)′𝐾𝑘  (23) 

 with 𝒑𝑘(𝑖)′ = 𝒑𝑘(𝑖) + 0.001 ⋅ min(𝑎𝑙𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠) (24) 

We end up with a Dirichlet distribution with estimates for the parameter �̂� 775 

 𝐷𝑖𝑟(�̂�1, �̂�2, … �̂�𝐾) (25) 

 776 

In the third step, we build a gating hierarchy using the estimated 𝜶 parameters corresponding 777 

to the leaf nodes. We used the estimated Dirichlet parameters and manual gating structure to 778 

create a probabilistic representation of the gating hierarchy. In this structure, all cells fall into 779 

one and only one gate. To calculate intermediate nodes, we sum the estimated 𝛼 parameters 780 

according to the manual gating tree, starting from the bottom and working to the top. Given a 781 

Dirichlet distributed variable with 𝐾 cell populations 782 

 p(𝒑) = (𝑝1, … , 𝑝𝐾) ~ 𝐷𝑖𝑟(𝛼1, 𝛼2, … , 𝛼𝐾) (26) 

the sum of any two cell populations is again Dirichlet distributed 783 

 (𝑝1, … , 𝑝𝑖 + 𝑝𝑗 , … , 𝑝𝐾) ~ 𝐷𝑖𝑟(𝛼1, … , 𝛼𝑖 + 𝛼𝑗 , … , 𝛼𝐾) (27) 

Therefore, every intermediate or leaf node is described by a Dirichlet distribution. Intuitively, 784 

all cells of any gate must fall in one of the subsequent gates and can, therefore, reflect a Dirichlet 785 

distribution. To visualize proportions corresponding to these parameters, the decision tree was 786 

shaded in red, such that deeper red indicates a higher proportion of cells in that gate 787 

(Supplementary Fig 12a). 788 

 789 

In the fourth step, we fit a cell feature distribution using cells from all samples per leaf gate 790 

(Supplementary Fig 12d,e). The Dirichlet distributions only describe the number of cells in 791 

every gate – that is, a vector of 𝐾 cell population proportions 𝒑 ∈ (0, 1)𝐾. However, a flow 792 

cytometry measurement results in a ℝ𝑛×𝑚 matrix with 𝑛 cells and 𝑚 cell features where every 793 



Dataset restriction augments immune disease marker discovery. Glehr, G.  

 _______________________________________________________________________________________________________________________________________________________ 

 

   

   Page 38 of 56  

   

cell comes from a specific cell population. Each such cell population is defined by the 𝑚 794 

continuous cell feature values. Accordingly, we model the cells for each leaf node 𝑙 by a 795 

multivariate normal distribution 𝒩(μ⃗ 𝑙, Σ𝑙) with mean μ⃗ 𝑙 ∈ ℝ𝑚 and covariance matrix Σ𝑙 ∈796 ℝ𝑚×𝑚 . In the illustrated example, we show the parameters of one gate’s normal distribution 797 

with the centers of the ellipsoids μ⃗ 𝑙 and the shaded areas μ⃗ 𝑙 ± 𝜎 (Supplementary Fig 12e). We 798 

estimated the normal distributions using all cells from n=48 samples. For populations with < 2 799 

cells, a covariance matrix was not calculable, so such populations were removed.  800 

 801 

In the fifth step, we use the estimated cell population and cell feature distributions to generate 802 

realistic flow cytometry datasets. We use the estimated parameters of the Dirichlet distribution 803 

and the normal distributions of each leaf node to generate cells. As shown in Supplementary 804 

Fig 14, this simulation involves: (a) drawing a vector 𝒑 ∈ ℝ𝐾 from the estimated Dirichlet 805 

distribution 𝐷𝑖𝑟(�̂�1, �̂�2, … �̂�𝐾), which represents the proportion of cells in each leaf node; (b) 806 

calculating the number of synthetic cells per leaf node using the expected number of cells for 807 

the sample (e.g. 10,000 cells); and (c) Finally, drawing the required number of synthetic cells 808 

from the normal distribution of each corresponding leaf node for each sample. By repeating this 809 

process for each sample, we generate a synthetic dataset that reflects the underlying population 810 

of cells. We visualize our complete decision tree as an interactive online tool 811 

(https://vissim.gunthergl.com/) (Supplementary Website 1). 812 

 813 

Realistic imitation of disease associated effects 814 

We can now introduce any given effect in any given cell population and obtain cells from a 815 

realistic synthetic sample. For that, we change the underlying Dirichlet distribution and then 816 

sample from the existing normal distributions as before. To change the proportion of cell 817 

https://vissim.gunthergl.com/
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population 𝑥, we have to change its parameter 𝛼𝑥. However, simply changing 𝛼𝑥, e.g. by a 818 

factor 𝑓 ∈ ℝ>0 (𝛼𝑥′ ≔ 𝑓 ⋅ 𝛼𝑥) also changes the precision and therefore the effective change of 819 

the population proportion is different than multiplying with 𝑓 820 

 𝐸[𝑝𝑥′ ] = 𝛼𝑥′𝑠′ = 𝑓 ⋅ 𝛼𝑥𝑠 − 𝛼𝑥 + 𝑓 ⋅ 𝛼𝑥 = 𝑓 ⋅ 𝛼𝑥𝑠 + (1 − 𝑓) ⋅ 𝛼𝑥 ≠ 𝑓 𝛼𝑥𝑠  (28) 

Therefore, we calculate the new 𝛼𝑥 by the share of the expected target proportion in the total 821 

old precision and the remaining precision is shared across all other nodes 822 

 𝛼𝑥′ ≔ 𝑡𝑎𝑟𝑔𝑒𝑡% ⋅ 𝑠 (29) 

 𝛼𝑛𝑜𝑡 𝑥′ ≔ (1 − 𝑡𝑎𝑟𝑔𝑒𝑡%) ⋅ 𝑠 = ∑ 𝛼𝑘𝑘∈𝐾\{𝑥}  (30) 

where 𝑛𝑜𝑡 𝑥 corresponds to all nodes which are not the changed node 𝑥 nor subordinate nodes. 823 

After a single synthetic cell comes from a specific leaf node distribution, we still have to express 824 

the changed intermediate node 𝑥 by its leaf nodes. After parameter 𝛼𝑘 of any node is the sum 825 

of all leaf node parameters 𝛼𝑙 below node 𝑘, we calculate the new leaf node parameter 𝛼𝑙′ as 826 

the old 𝛼𝑙 multiplied with the ratio of the new and old changed node above 827 

 𝛼𝑙′ = 𝛼𝑙 𝛼𝑥′𝛼𝑥   𝑜𝑟  𝛼𝑙′ = 𝛼𝑙 𝛼𝑛𝑜𝑡 𝑥′𝛼𝑛𝑜𝑡 𝑥 (31) 

 828 

This finally leads us to a change in the expected proportion of the target population 𝑥. 829 

 830 

 831 

  832 
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FIGURE LEGENDS 1018 

FIGURE 1. Two-class distributions resulting in asymmetric ROC curves. We present 1019 

hypothetical and real-world examples of marker distributions in two classes, which are intended 1020 

to represent sets of patients with different clinical outcomes. The distribution of values from 1021 

positive (i.e. diseased) class are coloured green and values from negative (i.e. control) class are 1022 

coloured red; the overlapping density areas are coloured in purple. For each example, we 1023 

present the corresponding ROC curve. (a) A hypothetical example of perfectly discriminatory 1024 

marker with negative 𝒩(5, 1) and positive 𝒩(15, 1) populations that give rise to a symmetrical 1025 

ROC curve. The area under the ROC curve (AUC) is 1.0. (b) A hypothetical example of 1026 

substantially overlapping marker distributions in the negative 𝒩(5, 1) and positive 1027 𝒩(6, 1) populations that gives rise to a symmetrical ROC curve with AUC=0.76. (c) A 1028 

hypothetical example of a non-informative marker distribution with negative 𝒩(5, 1) and 1029 

positive 𝒩(5, 1) populations that gives rise to a diagonal ROC curve with AUC = 0.5. (d) A 1030 

hypothetical example of substantially overlapping marker distributions in the negative 𝒩(5, 1) 1031 

and positive 𝒩(6, 2) populations with unequal variance that gives rise to right-skewed ROC 1032 

curve with AUC = 0.67. (e) A real-world example of substantially overlapping distributions of 1033 

absolute erythrocyte counts with unequal variance in patients with metastatic melanoma who 1034 

responded (n = 61) or did not respond (n = 44) to combined Ipilimumab and Nivolumab (Ipi-1035 

Nivo) therapy. We observe a right-skewed ROC curve with AUC = 0.62. (f) A hypothetical 1036 

example of substantially overlapping marker distributions in the negative 𝒩(5, 2) and positive 1037 𝒩(6, 1) populations with unequal variance that gives rise to a left-skewed ROC curve with 1038 

AUC = 0.67. (g) A real-world example of substantially overlapping distributions of CD8+ γδ T 1039 

cells with unequal variance in patients with metastatic melanoma who did (n = 22) or did not 1040 

(n = 42) develop treatment-related hepatitis after Ipi-Nivo therapy. We observe a left-skewed 1041 
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ROC curve with AUC = 0.69. (h) A hypothetical example of substantially overlapping marker 1042 

distributions in the normally distributed negative 𝒩(5, 1) and bimodally distributed positive 1043 

populations. In this example, the positive population comprises 10 % cases with elevated 1044 

marker expression 𝒩(9, 1) and 90 % cases with unaltered marker expression 𝒩(5, 1). 1045 

Phenotypic heterogeneity in the diseased cases gives rise to a right-skewed ROC curve with 1046 

AUC = 0.55. (i) A real-world example of a phenotypically heterogeneous set of patients with 1047 

metastatic melanoma who did (n = 48) or did not (n=62) develop treatment-related hepatitis 1048 

after Ipi-Nivo therapy. As previously described, a subset of these patients exhibited a baseline 1049 

expansion of CD4+ TEM cells, which was likely driven by subclinical cytomegalovirus (CMV) 1050 

reactivation. Consequently, CD4+ TEM cell frequency before therapy is a weakly discriminatory 1051 

marker of hepatitis-risk that gives rise to a right-skewed ROC curve with AUC = 0.64. 1052 
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FIGURE 2. Method to optimally restrict datasets to classifiable samples. We present a 1053 

simulated example of marker distributions in two classes, which are intended to represent sets 1054 

of patients with different clinical outcomes. (a) The distribution of values from positive (i.e. 1055 

diseased, n=2500) class are coloured green and values from negative (i.e. control, n=2500) class 1056 

are coloured red; the overlapping density areas are coloured in purple. In this example, 20 % of 1057 

positive samples and 2 % of negative samples were drawn from a population with elevated 1058 

marker expression 𝒩(9, 1). All other samples were drawn from a population with unaltered 1059 

marker expression 𝒩(6, 1). The optimal restriction of this dataset lies at a marker value of 6.8, 1060 

which is marked with a red line. Restriction of the dataset defines two subsets of samples – 1061 

explicitly, markerHIGH (orange) and markerLOW (blue) samples. (b) A complete ROC curve 1062 

marked at the optimal restriction point (red lines) that corresponds to FPR = 0.258. Restricting 1063 

the parts of the ROC curve corresponding to markerHIGH or markerLOW samples gives us 1064 

restricted ROC curves for which restricted AUCs (rAUCs) can be calculated. This is equivalent 1065 

to rescaling the respective part of the ROC curve. (c) Adjusting the rAUC for the number of 1066 

samples delimited by the restriction gives the restricted standardized AUC (rzAUC). Hence, we 1067 

can plot rzAUC for markerHIGH and markerLOW samples at all possible restriction values. The 1068 

optimal restriction value is defined as the maximum absolute rzAUC for either the markerHIGH 1069 

or markerLOW samples. (d) A complete ROC curve to illustrate the delimitation of markerHIGH 1070 

values (orange rectangle) according to the optimal restriction. (e) Densities of the negative and 1071 

positive classes after restriction to markerHIGH values. (f) ROC curve constructed from 1072 

markerHIGH samples. Intuitively, we see that recalculating the ROC curve using only markerHIGH 1073 

samples is equivalent to rescaling the partial ROC curve. (g) A complete ROC curve to illustrate 1074 

the delimitation of markerLOW values (blue rectangle) according to the optimal restriction. (h) 1075 



Dataset restriction augments immune disease marker discovery. Glehr, G.  

 _______________________________________________________________________________________________________________________________________________________ 

 

   

   Page 49 of 56  

   

Densities of the negative and positive classes after restriction to markerLOW values. (i) ROC 1076 

curve constructed from markerLOW samples.  1077 
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FIGURE 3. Optimal restriction of two-class distributions results in asymmetric ROC curves. 1078 

We present four simulated examples of marker distributions in two classes, which are intended 1079 

to represent sets of patients with different clinical outcomes. The distribution of values from 1080 

the positive (i.e. diseased) class are coloured green and values from the negative (i.e. control) 1081 

class are coloured red; the overlapping density areas are coloured in purple. For each example, 1082 

we present the following: a plot of positive and negative class densities; the complete ROC 1083 

curve; a plot of marker values against FPR; a plot of rzAUC calculated for markerHIGH (orange) 1084 

and markerLOW (blue) samples at all FPR values. In each plot, red lines indicate the optimal 1085 

restriction as a marker value or FPR value. (a) A simulated example of a symmetric ROC curve 1086 

from 100 negative 𝒩(5, 1) and 100 positive 𝒩(6, 1) samples. (b) A simulated example of a 1087 

right-skewed ROC curve from 100 negative 𝒩(5, 1) and 100 positive 𝒩(6, 2) samples. (c) A 1088 

simulated example of a left-skewed ROC curve from 100 negative 𝒩(5, 2) and 100 positive 1089 𝒩(6, 1) samples. (d) Results for a right-skewed ROC curve from 100 negative 1090 𝒩(5, 1) samples and 100 positive samples from a bimodally distributed positive population. In 1091 

this example, the positive population comprises 10 % cases with elevated marker expression 1092 𝒩(9, 1) and 90 % cases with unaltered marker expression 𝒩(5, 1).  1093 
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Figure 4. Realistically synthesizing flow cytometry data from two class distributions. Various 1094 

applications of our synthetic flow cytometry data depend upon generating samples with 1095 

differences in cell subset distributions. Here, we provide an example of increasing the 1096 

proportion of CD8+ TEMRA cells in synthetic samples from a baseline value of 7.17 % in the 1097 

negative class to an altered value of 33.23 % in the positive class. The intensity of red shading 1098 

in the gating trees illustrates this change in CD8+ TEMRA cells and contingent changes in other 1099 

populations. (a) Gating tree with 7.17% CD8+ TEMRA cells, its corresponding Dirichlet 1100 

distribution parameter (α = 12.34) and the density for three example gates: A, B and L. The 1101 

cell count table for three samples drawn from this distribution is shown. (b) Gating tree with 1102 

33.23% CD8+ TEMRA cells, its corresponding Dirichlet distribution parameter (α = 57.18) and 1103 

the density for three example gates: A, B and L. The cell count table for three samples drawn 1104 

from this distribution is shown. Of special note, percentages of cells in all other gates also 1105 

changed according to the Dirichlet distribution, leading to changes in simulated cell counts 1106 

across all leaf gates. 1107 

  1108 
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FIGURE 5. Restriction of synthetheized flow cytometry datasets. We present examples of 1109 

marker distributions in two classes, which are intended to represent sets of patients with 1110 

different clinical outcomes. The distribution of values from positive (i.e. diseased) class are 1111 

coloured green and values from negative (i.e. control) class are coloured red; overlapping 1112 

density areas are coloured in purple. For each example, we present the following: a plot of 1113 

positive and negative class densities; the complete ROC curve; a plot of marker values against 1114 

FPR; a plot of rzAUC calculated for markerHIGH (orange) and markerLOW (blue) samples at all 1115 

FPR values. In each plot, red lines indicate the optimal restriction as a marker value or FPR 1116 

value. (a) A synthetic example of a symmetrical ROC curve from 100 negative 𝒩(7.7, 1) and 1117 

100 positive 𝒩(10.7, 1) samples. (b) A synthetic example of a right-skewed ROC curve from 1118 

from 100 negative 𝒩(7.7, 1) and 100 positive 𝒩(8.7, 3) samples. (c) A synthetic example of 1119 

a left-skewed ROC curve from 100 negative 𝒩(7.7, 3) and 100 positive 𝒩(8.7, 1) samples. 1120 

(d) Results for a synthetic right-skewed ROC curve from 100 negative 𝒩(7.7, 1) samples and 1121 

100 positive samples from a bimodally distributed positive population. In this example, the 1122 

positive population comprises 20 % cases with elevated marker expression 𝒩(16.7, 1) and 80 1123 

% cases with unaltered marker expression 𝒩(7.7, 1).  1124 
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FIGURE 6. Restriction aids marker discovery in synthetic and real-world flow cytometry 1125 

datasets. Using synthetic and real-world datasets, we demonstrate that dataset restriction 1126 

augments discovery of novel immune markers with discriminatory capacity over a limited range 1127 

of values. In each plot, the x-axis shows permutation p-values for the AUC of complete ROC 1128 

curves for every gated cell population; the y-axis shows permutation p-values for the AUC of 1129 

optimally restricted ROC curves. Points within the green-shaded rectangles represent cell 1130 

subsets for which p-values derived from unrestricted data are not significant (p ≥ 0.05), but p-1131 

values derived from optimally restricted data are significant (p < 0.05). Named subsets falling 1132 

in the green-shaded area are disease-related markers discovered exclusively through dataset 1133 

restriction. (a) Permutation p-values from synthetic samples in which a disease-related effect 1134 

was introduced into CD4+ TEM resulting in a symmetric ROC curve. 100 samples in the negative 1135 𝒩(7.7, 1) class and 100 samples in the positive 𝒩(10.7, 1) class were generated. (b) 1136 

Permutation p-values from synthetic samples in which a disease-related effect was introduced 1137 

into CD4+ TEM resulting in a right-skewed ROC curve. 100 samples in the negative 1138 𝒩(7.7, 1) class and 100 samples in the positive 𝒩(8.7, 3) class were generated. (c) 1139 

Permutation p-values from synthetic samples in which a disease-related effect was introduced 1140 

into CD4+ TEM resulting in a left-skewed ROC curve. 100 samples in the negative 1141 𝒩(7.7, 3) class and 100 samples in the positive 𝒩(8.7, 1) class were generated. (d) 1142 

Permutation p-values from synthetic samples in which a disease-related effect was introduced 1143 

into CD4+ TEM  resulting in a right-skewed ROC curve. 100 samples in the negative 1144 𝒩(7.7, 1) class and 100 samples from a bimodally distributed positive class were generated. In 1145 

this example, the positive population comprises 20 % cases with elevated marker expression 1146 𝒩(16.7, 1) and 80% cases with unaltered marker expression 𝒩(7.7, 1). (e) Permutation p-1147 

values from a training set of real-world clinical flow cytometry samples (n=110). 84 markers 1148 
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were selected where ≥ 10 % of samples had more than 10 counts. Dataset restriction reveals 4 1149 

previously undescribed markers of treatment-related colitis risk in metastatic melanoma 1150 

patients receiving Ipi-Nivo therapy. (f) Permutation p-values from a training set of real-world 1151 

clinical flow cytometry samples (n=110). 84 markers were selected where ≥ 10 % of samples 1152 

had more than 10 counts. Dataset restriction reveals 7 previously undescribed markers of 1153 

treatment-related hepatitis risk in metastatic melanoma patients receiving Ipi-Nivo therapy.  1154 

  1155 
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FIGURE 7. Clinical interpretation of restricted markers in predicting disease. Our method of 1156 

dataset restriction leads to counterintuitive clinical interpretations of marker values. This is 1157 

illustrated by our discovery of CD27+ CD28+ CD4+ TEM cells as a univariate marker of hepatitis 1158 

risk after immunotherapy. Here, we illustrate the conventional evaluation of marker 1159 

performance across all samples with evaluation of marker performance in a restricted dataset. 1160 

(a) Densities of CD27+ CD28+ CD4+ TEM cells in all samples from patients with metastatic 1161 

melanoma who developed hepatitis (n = 48) or did not (n = 62) after starting Ipi-Nivo therapy. 1162 

(b) Following the classical approach of determing a classification cut-off for CD27+ CD28+ 1163 

CD4+ TEM frequency relative to CD4+ T cells using the Youden Index, we predict hepatitis if > 1164 

9.62% and then assess the correct classification rate (CCR), negative predictive value (NPV), 1165 

positive predictive value (PPV), sensitivity (or true positive rate, TPR) and  specificity (or true 1166 

negative rate, TNR) for all samples. (c) Our restriction method is predicated on there being a 1167 

range of values over which a marker provides no discriminatory information. Optimally 1168 

restricting CD27+ CD28+ CD4+ TEM cell values leads us to discard 58 of 110 samples as 1169 

“unclassifiable.” For the remaining 42 samples where CD27+ CD28+ CD4+ TEM frequency 1170 

relative to CD4+ T cells > 7.62% , we determine a classification cut-off using the Youden Index, 1171 

again predicting hepatitis if > 9.62%. Accordingly, we obtain a confusion table with CCR = 1172 

76.9%, specificity = 64.3% sensitivity = 91.7%, PPV = 68.8% and NPV = 90% across the 1173 

classifiable samples.   1174 

  1175 
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Figure 8. Significant markers according to classical and our analysis predicting hepatitis. (a) 1176 

Heatmap showing significant markers of hepatitis risk after Ipi-Nivo therapy based upon 1177 

permutation p-values for unrestricted and restricted AUC. Only permutation p-values for 1178 

markers discovered using our restriction method remained significant after correction for 1179 

multiple testing, indicated by marker names in red text. Each further column reflects one 1180 

sample, each row a feature. The samples are grouped into patients who did (green) or did not 1181 

(red) develop treatment-related hepatitis, shown in the very first row. The main matrix consists 1182 

of three values: Those excluded according by restriction (white); those included and predicted 1183 

positive (dark green); and those included and predicted negative (dark red). Columns were 1184 

clustered, rows in increasing order according to the number of excluded samples. (b) Random 1185 

forest predictions and performances on the prospective validation cohort (n=30) trained on 1186 

unrestricted marker values from the 110 training samples. (c) Random forest model predictions 1187 

and performances on the prospective validation cohort (n=30) trained on restricted marker 1188 

values from the 110 training samples. In this case, restricted marker values were replaced with 1189 

-1 before training the random forest. 1190 
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patients with metastatic melanoma who developed hepatitis (n = 48) or did not (n = 62) after starting Ipi-
Nivo therapy. (b) Following the classical approach of determing a classi�cation cut-off for CD27+ CD28+

CD4+ TEM frequency relative to CD4+ T cells using the Youden Index, we predict hepatitis if > 9.62% and
then assess the correct classi�cation rate (CCR), negative predictive value (NPV), positive predictive value
(PPV), sensitivity (or true positive rate, TPR) and  speci�city (or true negative rate, TNR) for all samples.
(c) Our restriction method is predicated on there being a range of values over which a marker provides no
discriminatory information. Optimally restricting CD27+ CD28+ CD4+ TEM cell values leads us to discard

58 of 110 samples as “unclassi�able.” For the remaining 42 samples where CD27+ CD28+ CD4+ TEM

frequency relative to CD4+ T cells > 7.62% , we determine a classi�cation cut-off using the Youden Index,
again predicting hepatitis if > 9.62%. Accordingly, we obtain a confusion table with CCR = 76.9%,
speci�city = 64.3% sensitivity = 91.7%, PPV = 68.8% and NPV = 90% across the classi�able samples.  



Figure 8

Signi�cant markers according to classical and our analysis predicting hepatitis. (a) Heatmap showing
signi�cant markers of hepatitis risk after Ipi-Nivo therapy based upon permutation p-values for
unrestricted and restricted AUC. Only permutation p-values for markers discovered using our restriction
method remained signi�cant after correction for multiple testing, indicated by marker names in red text.
Each further column re�ects one sample, each row a feature. The samples are grouped into patients who
did (green) or did not (red) develop treatment-related hepatitis, shown in the very �rst row. The main
matrix consists of three values: Those excluded according by restriction (white); those included and
predicted positive (dark green); and those included and predicted negative (dark red). Columns were
clustered, rows in increasing order according to the number of excluded samples. (b) Random forest
predictions and performances on the prospective validation cohort (n=30) trained on unrestricted marker
values from the 110 training samples. (c) Random forest model predictions and performances on the
prospective validation cohort (n=30) trained on restricted marker values from the 110 training samples. In
this case, restricted marker values were replaced with -1 before training the random forest.
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