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Restricting linear syzygies: algebra and geometry
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Abstract

Let X ⊂ P
r be a closed scheme in projective space whose homogeneous ideal is generated

by quadrics. We say that X (or its ideal IX) satisfies the condition N2,p if the syzygies
of IX are linear for p steps. We show that if X satisfies N2,p then a zero-dimensional or
one-dimensional intersection of X with a plane of dimension � p is 2-regular. This extends
a result of Green and Lazarsfeld. We give conditions when the syzygies of X restrict to the
syzygies of the intersection. Many of our results also work for ideals generated by forms
of higher degree. As applications, we bound the p for which some well-known projective
varieties satisfy N2,p. Another application, carried out by us in a different paper, is a step
in the classification of 2-regular reduced projective schemes. Extending a result of Fröberg,
we determine which monomial ideals satisfy N2,p. We also apply Green’s ‘linear syzygy
theorem’ to deduce a relation between the resolutions of IX and IX∪Γ for a scheme Γ, and
apply the result to bound the number of intersection points of certain pairs of varieties
such as rational normal scrolls.

Introduction

Let V be a vector space of dimension r +1 over an algebraically closed field k with basis x0, . . . , xr.
If X ⊂ P

r
k = P(V ) is a nondegenerate closed subscheme we write IX for the ideal sheaf and IX for

the homogeneous ideal of X in the homogeneous coordinate ring S = Sym(V ) = k[x0, x1, . . . , xr]
of P(V ). Suppose that IL is an ideal generated by linear forms, that is the ideal of a linear space L.
In general, there is no strong connection between the minimal free resolution of IX and the minimal
free resolution of IX + IL or of its saturation. The goal of this paper is to exhibit some cases where
an interesting connection of this kind exists.

We say that a projective subscheme X ⊂ P
r satisfies the condition Nd,p, for some d � 2,

if TorS
t (IX , k) is concentrated in degrees � d + t for all t � p − 1.

For example, X satisfies condition Nd,1 if IX is generated in degrees � d or, equivalently, if the
truncation (IX)�d =

⊕
e�d H0(IX(e)) of IX in degrees � d is generated in degree d. On the other

hand, if p � r + 1 then X satisfies Nd,p if and only if IX is d-regular in the sense of Castelnuovo–
Mumford. In general, it is easy to show that X satisfies Nd,p if and only if X satisfies Nd,1 and the
first p steps of the minimal free resolution

· · · → Ft
φt−→ Ft−1

φt−1−−−→ · · · φ1−→ F0 → (IX)�d → 0

of (IX)�d are linear, in the sense that φt is represented by a matrix of linear forms for all 1 � t � p−1.
Our notation comes from the notation Np of Green and Lazarsfeld [GL84, GL85] (see also

[EL93]); but we do not insist that X be projectively normal, which is their condition N0 and is
included in their condition Np.
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Restricting linear syzygies: algebra and geometry

Theorem 1.1 shows that if X ⊂ P
r satisfies Nd,p then the same is true of Λ ∩ X for any linear

subspace Λ such that dim Λ ∩X � 1 and dimΛ � p. Theorems 1.2 and 1.3 refine this statement to
show that, under slightly stronger hypotheses, some of the restriction maps between the minimal
free resolutions of IX and IΛ∩X are surjective. As an application we recover a version of a result of
Vermeire [Ver01] on the linear system of quadrics through a variety satisfying property N2. We give
examples showing that these results are sharp in various senses.

Theorem 1.1 is also the starting point for our classification of reduced 2-regular projective
schemes in [EGHP04].

A converse to Theorem 1.1 would say that a subscheme X ⊂ P
r satisfies N2,p if and only if

every linear section Λ∩X of dimension zero satisfies deg(Λ∩X) � 1 + dim Λ, whenever dim Λ � p.
In Corollary 2.4 we show that this converse holds when X is defined by a monomial ideal.
Nevertheless it is false in general, as for example in the case of a double structure on a line in P

3,
or the case of the plane with embedded point in Example 1.4.

However, there are other cases when such a converse is true: in [EGHP04] we prove it, with
p = ∞, for any reduced scheme. Since the hypothesis of Theorem 1.1 does not require the full
strength of 2-linearity, this gives an unexpected rigidity result (Corollary 1.8): if X ⊂ P

r is a
reduced subscheme satisfying property N2,p for p = codim(X, Pr), then X is 2-regular.

Further, Green and Lazarsfeld [GL88, Theorem 2] prove it, for any p, when X is a smooth
nonhyperelliptic linearly normal curve of degree d � 3 genus(X) − 2. (See also Eisenbud [Eis05] for
an exposition and Eisenbud et al. [EPSW02, Theorem 4.1] for a different perspective.)

In § 2 we characterize property N2,p for ideals generated by monomials. In the square-free
case, an ideal generated by quadratic square-free monomials comes from a simplicial complex that
is the clique complex of a graph G, and the property N2,p is determined by the length of the
shortest cycle in G having no chord (see Theorem 2.1; this result was suggested to us by Serkan
Hoşten, Ezra Miller, and Bernd Sturmfels). A special case is Fröberg’s result [Fro90] characterizing
2-regular square-free monomial ideals. We relate also the property N2,p for a monomial ideal to the
corresponding property for the largest square-free monomial ideal it contains (Proposition 2.3).

In § 3 we use Theorems 1.1 and 1.2 of § 1 to prove (conjecturally sharp) upper bounds for
the property Np for Veronese, Segre–Veronese, Plücker or Fano embeddings, as well as for certain
embeddings of abelian varieties.

In § 4 we make use of the Eisenbud–Koh–Stillman conjecture (proved by Green [Gre99]) to
analyze the intersection of a nondegenerate scheme X ⊂ P

r of codimension at least p which satisfies
N2,p with a variety whose pth 2-linear syzygies are understood. For example, we show that X can
meet a rational normal curve in at most 2r + 1 − p points. Using this technique we give a new
proof to Green’s syzygetic Castelnuovo lemma and a bound on the length of a zero-dimensional
intersection of scrolls or Veronese surfaces (for a modern treatment of the latter see Eisenbud et al.
[EHP03]).

1. Restricting syzygies to linear subspaces

In this section we show how the condition N2,p influences low-dimensional linear sections, and give
examples where our results are sharp.

Theorem 1.1. Let X ⊂ P
r be a closed subscheme satisfying the property Nd,p with p � 1, and

let Λ ⊂ P
r be a linear subspace of dimension � p. If dim X ∩ Λ � 1 then IX∩Λ,Λ is d-regular.

In particular, if d = 2 and X ∩ Λ is finite, then length X ∩ Λ � dim Λ + 1.

Theorem 1.1 can be proved by the method introduced by Gruson et al. [GLP83] (see also [Laz04,
Proposition B.1.2, Example 1.8.18]): restrict a resolution of IX to Λ to get a complex with at most
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one-dimensional homology, and chase diagrams to check that the form of the complex, coming from
the hypothesis Nd,p, yields H i(IΛ∩X(d− i)) = 0, the condition for d-regularity. This was proven in
a different way by Eisenbud et al. [EHU04]; a special case was given by Caviglia [Cav03]. It could
also be proved by the method we use for the next result, which gives an additional conclusion under
an additional hypothesis. Since these proofs are all available, we omit the proof here.

The following results give more precise conclusions under an additional hypotheses.

Theorem 1.2. Let X ⊂ P
r be a closed subscheme satisfying the property Nd,p with p � 1, and let

Λ ⊂ P
r be a linear subspace of dimension � p − 1. If dim X ∩ Λ = 0, then the natural restriction

H0(IX(d)) → H0(IX∩Λ,Λ(d)) is surjective.

Theorem 1.3. Let X ⊂ P
r be a closed subscheme satisfying the property N2,p with p � 1, and let

Λ ⊂ P
r be a linear subspace of dimension � p. If X is linearly normal, X∩Λ is zero-dimensional and

X ∩Λ spans Λ, then the natural restriction from the minimal free resolution of IX to the minimal
free resolution of IX∩Λ,Λ surjects on the first p − 1 steps.

We give some examples where Theorems 1.1, 1.2 and 1.3 are sharp.

Example 1.4. The ideal I ⊂ k[x0, . . . , x4] of 2 × 2 minors of the matrix(
x0 x1 0 x2

0 x0 x1 x3

)
is saturated and defines a scheme Y ⊂ P

4 consisting of a 2-plane with an embedded point of
multiplicity 3. The scheme Y is a linear section of a 2-regular variety X ⊂ P

8, the cone over the
Segre embedding of P

1×P
3 ⊂ P

7, which is 2-regular and thus satisfies N2,p for every p � 1. If Y were
at most one-dimensional then we would conclude from Theorem 1.1 that I was 2-regular. However,
I is not even linearly presented. This shows that the hypothesis dim(X ∩ Λ) � 1 in Theorem 1.1
cannot be weakened.

Although X is not 2-regular, we can apply Theorem 1.1 to the generic determinantal ideal
to conclude that every zero-dimensional plane section of X is 2-regular. Thus, the converse of
Theorem 1.1, described in the introduction, does not hold for X.

Example 1.5. The intersection of Y with the hyperplane H = {x4 = 0} is one-dimensional, and
thus 2-regular by Theorem 1.1. If Y were zero-dimensional we could conclude from Theorem 1.2
that the quadrics on H vanishing on Y ∩ H were all restrictions of quadrics on P

7 vanishing on X.
However, the saturation J of I + (x4)/(x4) has an extra quadratic generator. Thus, the hypothesis
dim(X ∩ Λ) � 0 in Theorem 1.2 cannot be dropped.

Example 1.6. The homogeneous ideal

I = (x2
0, x0x1, x0x2 − x1x4, x0x4, x1x2 − x1x4, x2

2, x2x4) ⊂ k[x0, . . . , x4]

is saturated and satisfies condition N2,2. It defines a scheme X ⊂ P
4 consisting of two lines meeting

in a point and having an embedded component there. The linear subspace Λ = {x3 = x4 = 0} meets
X in a simple point, so Λ ∩ X does not span Λ. The truncation J in degrees � 2 of the saturation
of I + (x3, x4)/(x3, x4) is thus 2-regular, but the natural restriction of linear syzygies between the
minimal free resolutions of I and J is not surjective on Tor1. Thus, the hypothesis that X ∩Λ spans
Λ in Theorem 1.3 cannot be weakened.

Example 1.7. The homogeneous ideal

I = (x2
0, x0x1 − x2x4, x0x2 − x2x4, x0x3, x0x4, x3x4, x2

4) ⊂ k[x0, . . . , x4]

is the saturated ideal of a 2-regular scheme X ⊂ P
4 consisting of a 2-plane Π with two embedded

points. Its restriction to the hyperplane {x4 = 0} (which contains the 2-plane) is a nonsaturated
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ideal defining Π. Its saturation and truncation in degrees � 2 is a 2-regular ideal J ⊂ k[x0, . . . , x3],
but the restriction map from the minimal free resolution of I to that of J is not onto. This shows
that Theorem 1.3 is sharp.

For the proofs we use the hypercohomology spectral sequences. To fix notations we recall that if

F• : · · · → F−m → F1−m → · · · → F−1 → F0

is a complex on Λ, then its hypercohomology H(F•) is computed by two spectral sequences
associated to a Cartan–Eilenberg resolution (double complex) of F•. The filtration by columns
of the double complex induces a first spectral sequence with E2 terms

′Ei,j
2 = H i(Hj(Λ,F•)) =⇒ Hi+j(F•),

while the filtration by rows induces a second spectral sequence with
′′Ei,j

2 = Hj(Λ,Hi(F•)) =⇒ Hi+j(F•),

where Hm(F•) denotes the mth cohomology sheaf of the complex F•.

Proof of Theorem 1.2. Let

· · · → E−n → E−n+1 → · · · → E−1 → E0 → IX → 0

be the sheafification of a minimal free resolution of the homogeneous ideal of X. We apply the
spectral sequences above to the complex F• := E• ⊗ OΛ(d) obtained by restricting the resolution
to Λ.

Using the fact that X ∩ Λ is zero-dimensional we first show that H0(F•) = H0(IX ⊗ OΛ(d)).
Since E• is a resolution, the sheaves Hi(F•) for i � −1 have support on the zero-dimensional scheme
X ∩ Λ. Hence, Hj(Λ,H−i(F•)) = 0 for all j � 1 and i � −1. Thus, the second hypercohomology
spectral sequence degenerates at ′′E2 and ′′Ei,−i

2 = 0 for all i � 0. This shows that H0(F•) = ′′E0,0
∞

= ′′E0,0
2 . However, ′′E0,0

2 = H0(IX ⊗OΛ(d)) as required since E• is a resolution of IX .
We next use the hypothesis that X satisfies Nd,p to show that the natural restriction map from

H0(IX(d)) surjects onto H0(F•), which by the result of the previous paragraph is H0(IX ⊗OΛ(d)).
Consider for this the other spectral sequence. By hypothesis F i is a direct sum of copies of OΛ(i)
for all 1 − p � i � 0. Since dimΛ � p − 1

′Ei,j
1 = Hj(Λ,F i) = 0 for j � 1 and − dim Λ � i � 0.

In particular H0(F•) = ′E0,0
∞ . As F i �= 0 only for i � 0, we see that ′E0,0

1 surjects via the natural
map onto ′E0,0

∞ . On the other hand, ′E0,0
1 = H0(Λ,F0) = H0(IX(d)) since E• is the sheafification of

the minimal free resolution of the homogeneous ideal of X. Combining these maps gives the desired
surjection.

To complete the proof of the theorem we still need to show that the natural restriction map

H0(IX ⊗OΛ(d)) → H0(IX∩Λ,Λ(d))

is surjective. Consider the short exact sequence

0 −→ IX ∩ IΛ/IX · IΛ → IX ⊗OΛ → IX∩Λ,Λ → 0. (∗)
The kernel K := (IX ∩ IΛ/IX · IΛ) has support on the zero-dimensional scheme X ∩ Λ so
H1(K(d)) = 0 and the surjectivity follows.

Proof of Theorem 1.1. The claim follows by applying the above spectral sequences to the complexes
E• ⊗OΛ(d − l) for l � 1, and then using the short exact sequence (∗) twisted by −l. We omit the
details.
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Proof of Theorem 1.3. This time we use the spectral sequences on the complex F• = E ⊗ Ωm+1
Λ

(m + 2), with 0 � m � p − 1. Recall from Green [Gre84], Green and Lazarsfeld [GL88], Lazarsfeld
[Laz89], or Eisenbud [Eis05] that if Y ⊂ P

m is a scheme with H1(IY (1)) = 0, then for all m � 0 we
have

TorS
m(IY , k)m+2 = H1(IY ⊗ Ωm+1

Pm (m + 2))

where S = SPm is the homogeneous coordinate ring of P
m. Since we have assumed that X is linearly

normal we can apply this to X ⊂ P
r. Since X ∩Λ is 2-regular by Theorem 1.1, and X ∩Λ spans Λ,

we can also apply this with Y = X ∩ Λ and P
m = Λ. This gives

TorSΛ
m (IX∩Λ,Λ, k)m+2 = H1(IX∩Λ,Λ ⊗ Ωm+1

Λ (m + 2)).

In the sequence (∗) the sheaf K has zero-dimensional support, and we deduce that H1(IX∩Λ,Λ ⊗
Ωm+1

Λ (m + 2)) = H1(IX ⊗ Ωm+1
Λ (m + 2)).

Now consider the spectral sequence ′′E. We have ′′Ei,j
2 = 0 when i < 0 and j > 0. On the other

hand, we have
′′E0,1

2 = TorSΛ
m (IX∩Λ,Λ, k)m+2

by the argument above. For any q � 2 we have
′′E0,q

2 = Hq(Λ,IX ⊗ Ωm+1
Λ (m + 2)).

These terms are equal to zero because the map

IX ⊗ Ωm+1
Λ (m + 2) → OPr ⊗ Ωm+1

Λ (m + 2)

has zero-dimensional kernel and cokernel, and Hq(OPr ⊗ Ωm+1
Λ (m + 2)) = 0. This shows that

H1(F•) = TorSΛ
m (IX∩Λ,Λ, k)m+2.

Next we turn to ′E. We have ′Ei,j
1 = Hj(Λ, E i⊗Ωm+1

Λ (m+2)). If 0 < j < dimΛ, then Bott’s formula
gives ′Ei,j

1 = 0 unless j = m + 1 and i = −m. As X satisfies property N2,p and m � p − 1, we get
E−m = TorS

m(IX , k)m+2 ⊗OPr(−m − 2) so
′E−m,m+1

1 = Hm+1(Λ, E−m ⊗ Ωm+1
Λ (m + 2)) = TorS

m(IX , k)m+2.

On the other hand, if i � − dim Λ + 1 then ′Ei,dimΛ
1 = HdimΛ(Λ, E i ⊗ Ωm+1

Λ (m + 2)) = 0. Thus,
′E−m,m+1

1 surjects onto

′E−m,m+1
∞ = H1(F•) = TorSΛ

m (IX∩Λ,Λ, k)m+2.

This is the natural map induced by the surjection IX → IX∩Λ,Λ.

In [EGHP04] we prove that 2-regularity for a reduced projective scheme X is equivalent to the
condition that every zero-dimensional linear section of X imposes independent conditions on linear
forms (equivalently every zero-dimensional linear section of X is 2-regular). Thus, Theorem 1.1
implies the following ‘rigidity’.

Corollary 1.8. If X ⊂ P
r is a reduced subscheme satisfying property N2,p for p = codim(X, Pr),

then X is 2-regular.

Theorem 1.2 gives a new proof of a result of Vermeire [Ver01] on rational mappings of projective
space.

Corollary 1.9. If X ⊂ P
r satisfies N2,2 and Sec(X) �= P

r, then the linear system |H0(IX(2))| on
P

r is one-to-one outside of Sec(X).
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Proof. Let x1, x2 ∈ P
r \ X be a pair of points imposing only one condition on the quadrics

of |H0(IX(2))| and let Λ = x1, x2 be the line they span. By Theorem 1.2 the restriction map
H0(IX(2)) → H0(IX∩Λ,Λ(2)) is surjective and thus Λ must be a secant line of X ⊂ P

r.

The following corollary may be regarded as a generalization of Corollary 1.9 for the case when
the property N2,p, holds for some p � 2.

Corollary 1.10. Let X ⊂ P
r be a closed subscheme satisfying the property N2,p for some p � 2,

and let x1, . . . , xp ∈ P
r \ X be points in linearly general position which fail to impose independent

conditions on the quadrics containing X. Let Λ ∼= P
p−1 be the linear span of {x1, . . . , xp} and

assume that Λ ∩ X is zero-dimensional and reduced. Then for some 2 � q � p there exist subsets
Z1 ⊂ {x1, . . . , xp} and Z2 ⊂ Λ ∩ X, both of cardinality q, such that Z1 ∪ Z2 spans a P

q−1 and fails
(exactly by one) to impose independent conditions on quadrics in P

q−1 (in other words, Z1 ∪ Z2 is
self-associated).

See Eisenbud and Popescu [EP00] for the connection with self-association (i.e. self duality under
the Gale transform) and the Gorenstein property.

Proof. By Theorem 1.2 the restriction map H0(IX(2)) → H0(IX∩Λ,Λ(2)) is surjective, so the
hypothesis means that the points x1, . . . , xp ∈ Λ fail to impose independent conditions on
the quadrics in |H0(IX∩Λ,Λ(2))|. On the other hand, by Theorem 1.1 we know that deg(X ∩Λ) � p.
The conclusion follows now from a result of Dolgachev and Ortland [DO88, Lemma 3, p. 45] and
Shokurov [Sho71] which implies that every subscheme of Γ := (Λ∩X)∪ {x1, . . . , xp} ⊂ Λ of degree
� 2p does impose independent conditions on quadrics in Λ if no subset of 2s + 2 < 2p + 2 points of
Γ is contained in a P

s.

2. Monomial ideals satisfying N2,p

In this section we analyze the conditions N2,p for monomial ideals. We shall see that in the saturated
case (and somewhat more generally) Theorem 1.1 provides a criterion to decide which of these
conditions are satisfied.

We begin with the case of square-free monomial ideals. Using the Stanley–Reisner correspon-
dence, a square-free monomial ideal I ⊂ S = k[x0, . . . , xr] corresponds to a simplicial complex ∆(I)
with vertices the variables of the ring S (see, for instance, Stanley [Sta96] for details). We will
denote by I∆ the Stanley–Reisner ideal corresponding to a simplicial complex ∆, and for simplicity
we will assume that no variable xi is among the minimal generators of I∆.

Recall that if G is a graph, then a clique of G is a subset T of vertices of G such that G contains
every edge joining two vertices of T . The clique complex or flag complex of G is the simplicial
complex ∆(G) whose faces are the cliques of G; the graph G can be recovered as the 1-skeleton
of ∆(G). For example, the order complex of a poset P (the complex whose faces are the chains of P )
is a clique complex (of the comparability graph of P ). In particular, the barycentric subdivision of
any simplicial complex is a clique complex.

It is easy to see that a simplicial complex ∆ is a clique complex if and only if every minimal
non-face of ∆ consists of two vertices. Thus, ∆ is a clique complex if and only if I∆ is generated by
quadratic monomials.

A cycle C in G of length q is a sequence of distinct vertices v1, . . . , vq such that each of the pairs
(v1, v2), (v2, v3), . . . , (vq, v1) is an edge of G. We say that the cycle C of length > 3 has a chord if
some further edge (vi, vj) belongs to G. We say that the cycle is minimal if q > 3 and C has no
chord. The first homology group of ∆(G) is generated by minimal cycles. The graph G is called
chordal if every cycle of length > 3 has a chord.
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The main theorem of Fröberg [Fro90] asserts that a square-free monomial ideal I∆ is 2-regular
if and only if ∆ is the clique complex of a chordal graph. The following refinement was suggested
to us by Serkan Hoşten, Ezra Miller, and Bernd Sturmfels.

Theorem 2.1. Let ∆ = ∆(G) be the clique complex of a graph G, and let I = I∆ be the corre-
sponding ideal generated by quadratic square-free monomials. The ideal I satisfies the condition
N2,p, p � 1, if and only if every cycle of G with length at most p + 2 has a chord.

Example 2.2. For example, let ∆ be the simplicial complex with d + 1 vertices and d + 1 edges
forming a simple cycle. By Theorem 2.1 the ideal I∆ satisfies N2,d−2, but not N2,d−1. In fact, the
minimal free resolution of S/I∆ has the form

0 → S(−d − 1) → S(−d + 1)βd−2 → · · · → S(−2)β1 → S

as one can see by direct computation or by using Reisner’s theorem, quoted in the proof of
Theorem 2.1 below. The algebraic set X ⊂ P

d corresponding to I∆ is the union of d lines forming
a cycle, a curve of degree d + 1 and arithmetic genus one: a degenerate elliptic normal curve in P

d.
If Λ is a hyperplane not containing any components of X, then Λ ∩ X is a set of d + 1 points in a
(d − 1)-dimensional plane, and is thus not 2-regular. Thus, Theorem 1.1 also implies that I∆ does
not satisfy condition N2,d−1.

Proof of Theorem 2.1. We use Reisner’s theorem (see, for example, Hochster [Hoc77], or Stanley
[Sta96]). If I∆ ⊂ S = k[x0, . . . , xr] is a square-free monomial ideal corresponding to the simpli-
cial complex ∆, then TorS

i (I∆, k) is a Z
r+1-graded vector space which is nonzero only in degrees

corresponding to square-free monomials m and

TorS
i (I∆, k)m = H̃deg(m)−i−2(|m|, k),

where H̃i(|m|, k) denotes the ith reduced homology of the full subcomplex |m| of ∆ whose vertices
correspond to the variables dividing m.

Let x0, . . . , xr be the vertices of G, and write S = k[x0, . . . , xr] for the ambient polynomial ring.
Let X be the algebraic set defined by I∆ in P

r.
First assume that G has a minimal cycle C of length p + 2 > 3. Let J be the ideal generated by

the variables not in the support of C, and let Λ be the projective linear subspace in P
r defined by J .

The plane section Λ∩X ⊂ Λ has homogeneous coordinate ring S/(I∆+J) = S′/IC where S′ = S/J .
As we have shown in the example above, the ideal IC is not 2-regular. By Theorem 1.1, the ideal
I∆ does not satisfy N2,p. (Of course the same result may be proven by applying Reisner’s theorem
directly to ∆, by taking |m| = C.)

Conversely, suppose that I does not satisfy the condition N2,p, and take p > 1 minimal with
this property. We must show that ∆ contains a minimal (p + 2)-cycle.

By Reisner’s theorem there exists a square-free monomial m of minimal degree deg(m) �
p + 2 such that H̃deg(m)−p−1(|m|, k) �= 0, while H̃deg(m′)−i−2(|m′|, k) = 0 for all 0 � i �
min(p − 1,deg(m′) − 3) and all m′|m with m′ �= m. If deg(m) = p + 2, then H̃1(|m|, k) �= 0 or
equivalently the edge-path group of the simplicial complex |m| is not trivial. Since m is of minimal
degree with the above property, the simplicial complex |m| must be connected, and again minimality
and the fact that ∆ is a clique complex imply that |m| consists of a cycle of length p + 2 in G, and
this cycle is minimal (see also Spanier [Spa66, Theorem 3, p. 140] for a description by generators
and relation of the edge-path group). This is exactly the claim of the theorem.

If, however, deg(m) > p + 2, let m′|m be a square-free monomial with deg(m′) = deg(m) − 1
and denote by x the extra variable in the support of m. There is a long exact sequence

. . . H̃i(|m′|, k) → H̃i(|m|, k) → H̃i−1(link(x, |m|), k) → H̃i−1(|m′|, k) . . .
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which is obtained from the long exact homology sequence of the pair (|m|, |m′|) and the isomorphisms

H̃i(|m|, |m′|, k) ∼= H̃i(star(x, |m|), link(x, |m|), k) ∼= H̃i−1(link(x, |m|), k)

for all i. The last isomorphism comes from the long exact sequence of the second pair which breaks
up into isomorphisms since star(x, |m|) is contractible.

Since H̃deg(m)−p−1(|m|, k) �= 0 while H̃deg(m)−p−1(|m′|, k) = 0, we deduce from the long exact
sequence that H̃deg(m)−p−2(link(x, |m|), k) �= 0, with deg(m)−p−2 � 1. On the other hand, the sim-
plicial complex link(x, |m|) is a full (strict) subcomplex of |m| and thus of ∆. Indeed if xi1 , . . . , xis ∈
link(x, |m|) are vertices such that {xi1 , . . . , xis} ∈ |m| ⊆ ∆, then obviously {xia , xib} ∈ ∆ for all
a �= b, and also {x, xia} ∈ ∆ by the definition of the link. Since ∆ is a clique complex it follows that
{x, xi1 , . . . , xis} must also be a face of ∆ with support in |m|. However, this means that we have
found a full subcomplex |m′′| = link(x, |m|) of ∆, with deg(m′′) < deg(m), such that H̃j(|m′′|, k) �= 0
for some j � 1, which contradicts the fact that I∆ satisfies property N2,p−1. This concludes the
proof of the theorem.

As Fröberg remarks, the case of a general ideal I ⊂ S = k[x0, . . . , xr] generated by quadratic
monomials may be reduced, by the process of polarization, to the square-free case. However, we can
give in the following a more explicit result. Let I be any ideal generated by quadratic monomials.
We write I in the form I = I∆ + Is where ∆ is a clique complex with vertices x0, . . . , xr, and
Is = ({x2

i | x2
i ∈ I}). We will refer to the vertices x of ∆ such that x2 ∈ I as the square vertices

for I.

Proposition 2.3. Let I = I∆ + Is be an ideal generated by quadratic monomials, decomposed as
above.

(a) The ideal I satisfies N2,2 if and only if I∆ satisfies N2,2, no two square vertices are adjacent,
and the link of each square vertex is a simplex.

(b) If I satisfies N2,2, then I satisfies N2,p for some p � 3 if and only if I∆ satisfies N2,p.

Proof. If Is = (0) the result is obvious. Otherwise, let x be a square vertex for I, and let I ′ = I∆+I ′s,
where I ′s ⊂ Is is the ideal generated by the squares of all square vertices for I other than x. The exact
sequence

0 → ((I ′ : x2)/I ′)(−2) → S/I ′(−2) x2−→ S/I ′ → S/I → 0
and the observation that (I ′ : x2) = (I ′ : x) yields a short exact sequence

0 → (S/(I ′ : x))(−2) x2−→ S/I ′ → S/I → 0.

From the long exact sequence in Tors, we see that I satisfies property N2,2 if and only if I ′ satisfies
N2,2 and (I ′ : x) is generated by linear forms. On the other hand, we have (I ′ : x) = Ilink(x,∆) + I ′s.
This is generated by linear forms if and only if link(x,∆) is a simplex not containing any of the
square vertices that appear in I ′s. This proves part (a).

When (I ′ : x) is generated by linear forms, each TorS
i (S/(I ′ : x), k) is concentrated in degree i.

In this circumstance the long exact sequence in Tors coming from the short exact sequence above
shows that I satisfies N2,p for some p � 3 if and only if I ′ satisfies N2,p, and we are done by
induction.

Corollary 2.4. If I = IX is the ideal of a closed subscheme X ⊂ P
r, and I is generated by

quadratic monomials, then I satisfies N2,p if and only if the scheme Λ ∩ X is 2-regular for all
planes Λ of dimension � p having zero-dimensional intersection with X.

We will need to know when an ideal generated by quadratic monomials is saturated.
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Lemma 2.5. Let I = I∆ + Is be an ideal generated by quadratic monomials, decomposed as above,
with I∆ a square-free quadratic monomial ideal and Is the ideal generated by the squares of the
square vertices for I. Then I is saturated if and only if every maximal face of ∆ contains at least
one nonsquare vertex for I.

Proof. If the ideal generated by all the vertices is associated to S/I, it must annihilate a square-
free monomial, and this can be taken to be the product of all vertices of some facet of ∆. Such a
product is annihilated by the maximal ideal if and only if every vertex in that facet is a square
vertex for I.

Proof of Corollary 2.4. If a linear subspace Λ of dimension � p meets X in a zero-dimensional
scheme X ∩ Λ that is not 2-regular, then Theorem 1.1 shows that I does not satisfy N2,p.

Conversely, suppose that I does not satisfy N2,p, with p � 2 minimal, and decompose I = I∆+Is

as above. If p > 2, then from Proposition 2.3(b) we see that I∆ does not satisfy N2,p, and thus the
1-skeleton of ∆ has a minimal cycle C of length p+2. If x is a vertex of such a cycle then link(x,∆) is
not a simplex, and it follows that x is not a square vertex for I. If Λ′ is the linear subspace spanned
by all the vertices in the cycle C, then X ∩ Λ′ ⊂ Λ′ is a degenerate ‘elliptic normal curve’ as in
Example 2.2. As remarked in that example, any sufficiently general plane Λ ⊂ Λ′ of codimension 1
in Λ′ is a p-plane that meets X in a zero-dimensional scheme that is not 2-regular.

Finally, suppose that I does not satisfy N2,2. We use the characterization in part (a) of
Proposition 2.3. If I∆ does not satisfy N2,2 then we proceed as before. Otherwise there is a square
vertex x for I such that either the link of x in ∆ is not a simplex, or the link of x in ∆ is a simplex
containing another square vertex for I.

Suppose we are in the first case and the link of x contains no other square vertex. We can choose
vertices y, z in link(x,∆) such that yz ∈ I∆ ⊆ I. Factoring out all the variables except x, y, z we
get from I the monomial ideal

I = (x2, yz) ⊂ k[x, y, z].
The scheme defined by I is obviously not 2-regular.

In the second case, let y be one of the square vertices for I such that y ∈ link(x,∆). Since I is
saturated we may choose a vertex z ∈ link(x,∆) that is not a square vertex for I. Factoring out all
the variables except x, y and z we get from I the saturated ideal I = (x2, y2) ⊂ k[x, y, z], which
defines a zero-dimensional scheme that is not 2-regular. This concludes the proof of the corollary.

The graph of facets of the Stanley–Reisner simplicial complex of a square-free, 2-regular mono-
mial ideal is a tree (see [EGHP04] or [HHZ04].) Using this fact and Proposition 2.3 we can describe
the primary decomposition of 2-regular monomial ideals completely. It follows, for example, that
such an ideal has a primary decomposition for which the primary components have the form

(ideal generated by variables) + (ideal generated by variables)2.

We hope to return to this subject elsewhere.

Corollary 2.6. The condition that a monomial ideal in S = k[x0, . . . , xr] satisfies property N2,p for
some p � 1, and in particular 2-regularity, is independent of the field k (not necessarily algebraically
closed).

The example (see Reisner [Rei76]) of the minimal triangulation of the projective plane shows
that the analogous statement for 3-regularity is false.

Remark 2.7. By a result of Bayer and Stillman [BS87] (or see Eisenbud [Eis95, Theorem 15.20])
a subscheme X ⊂ P

r over a field of characteristic zero is 2-regular if and only if it has a Borel-
fixed (generic) initial ideal generated by quadratic monomials. Any scheme defined by a monomial
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ideal is, moreover, the degeneration by a flat family of linear sections, of a reduced union Y of
planes defined by the monomials of a ‘polarization’ (see, for example, [Eis05]). Thus, each 2-regular
projective scheme X over a field of characteristic zero, reduced or not, is associated canonically with
an absolutely reduced scheme Y , a union of coordinate planes, that is also 2-regular.

3. Examples and conjectures about N2,p

From an alternative perspective the results in § 1 provide geometric explanations for the failure of
property Np and thus allow us to test optimality of results of Green, Ein, Lazarsfeld, and many
others, mentioned in the introduction.

Perhaps the simplest example (handled by different methods in [OP01]) is the necessity of the
conditions in the following.

Conjecture 3.1. Property Np holds for the d-uple embedding of P
n if and only if:

• n � 1; or

• n � 2, d = 2, p � 5; or

• n � 2, d � 3, p � 3d − 3.

Jozefiak et al. [JPW81] show that in characteristic zero the 2-uple embedding of P
n, n � 3,

satisfies property N5. In the case of the d-uple embedding of P
2 its minimal free resolution restricts

to the minimal free resolution of a hyperplane section (a plane curve), and so Green [Gre84] implies
that for d � 3, the d-uple embedding of P

2 satisfies property N3d−3. See also [Rub03] for a proof
of the fact that the 3-uple embedding of P

n satisfies property N4 for all n, and [HSS05] for related
results and extensions in a toric setting.

In all other cases the sufficiency of the conditions in Conjecture 3.1 is open as far as we know.
On the other hand, Theorem 1.1 yields the necessity of those conditions.

Proposition 3.2. Let n � 2 and d � 2 be integers.

(a) If n � 2 and d � 3, then the d-uple embedding of P
n fails property N3d−2.

(b) If n � 3, then the 2-uple embedding of P
n fails property N6.

Proof. For all m < n the d-uple embedding of P
m is a linear section of the d-uple embedding of P

n.
Thus, by Theorem 1.1, for the failure of property Np it is enough to produce a (p+2)-secant p-plane
to the d-uple embedding of P

m for some m < n.
To prove part (a) we may assume that n = 2. For d � 3, a complete intersection Z of type (3, d)

in P
2 is cut out by forms of degree d but fails to impose independent conditions on such forms.

This means that the linear span of the d-uple embedding of Z is a (3d− 2)-plane which is 3d-secant
to the d-uple embedding of P

2, which thus fails property N3d−2 by Theorem 1.1.
Similarly, a complete intersection of three quadrics in P

3 fails to impose independent conditions
on quadrics, so the linear span of its 2-uple is a 6-plane which is 8-secant to the 2-uple embedding
of P

3. By Theorem 1.1, it follows that the 2-uple Veronese embedding of P
3 fails property N6.

The failure of property N3d−2 for the d-uple embedding of P
2 can be accounted for also by

the existence of a relatively long strand of linear syzygies in the minimal free resolution of ωP2(d).
Namely, with notation as in [EPSW02], we have the following result.

Proposition 3.3. Let W = H0(ωP2(d)) and set w = dim(W ), let U = H0(ω−1
P2

), let V =
H0(OP2(d)) and S = Sym(V ). If d � 3, the natural multiplication pairing µ : W ⊗ U → V
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makes Q =
⊕

l(∧l+1(W ∗) ⊗ Syml(U∗)) into a graded E = ∧∗(V ∗)-module such that the maximal
irredundant quotient of the linear complex

L(Q∗) : 0 → ∧wW ⊗ Dw−1(U) ⊗ S(−w + 1) → · · · → ∧2W ⊗ U ⊗ S(−1) → W ⊗ S

is a linear complex of the same length which injects as a degreewise direct summand into the minimal
free resolution of the S-module

⊕
m�0 H0(ωP2(d(m+1))). In particular the d-uple embedding of P

2

fails property N3d−2.

Proof. The above multiplication pairing µ is obviously geometrically 1-generic so the first part of
the claim is a direct application of [EPSW02, Proposition 2.10] with L = OP2(d − 3), L′ = OP2(3),
and L′′ = OP2(d), and with W , U , and V as in the statement of the proposition.

For the second claim observe first that the homogeneous ideal Id of the d-uple embedding of P
2 is

generated by quadrics and is 3-regular. Thus, its minimal free resolution has two strands (linear and
quadratic). On the other hand, the dual of the maximal irredundant quotient of the linear complex
L(Q∗) has length

(
d−1
2

)
and is a degreewise direct summand of the second strand into the minimal

free resolution of Id. Since the whole resolution of Id has length
(

d+2
2

)− 3 it follows that the d-uple
embedding of P

2 fails property N3d−2.

The argument used in the proof of Proposition 3.2(a) provides upper bounds for property Np

for other Fano-type varieties and embeddings. For instance, for embeddings of ruled and Del Pezzo
surfaces we obtain the following bounds (where Proposition 3.2(a) is the case where S = P

2).

Proposition 3.4. Let S be a smooth surface and L be a very ample line bundle on S. If |−KS| �= ∅,
and O(KS) ⊗ L is globally generated, then the image of S via the linear system |L| fails property
N−KS·L−2.

Proof. Let D ∈ |−KS |, let C ∈ |L| be a general curve and denote by Z = D ∩ C their intersection.
The Koszul complex on the sections defining D and C expands to the following commutative diagram

0 0 0

0 �� OC(−D)

��

�� OC

��

�� OZ

��

�� 0

0 �� OS(−D)

��

�� OS

��

�� OD

��

�� 0

0 �� OS(−D − C)

��

�� OS(−C)

��

�� OD(−C)

��

�� 0

0

��

0

��

0

��

which we twist by L and take cohomology. From the long exact sequence of the middle row, since
H1(O(−D)⊗L) = H1(O(KS)⊗L) = 0 by Kodaira vanishing (in characteristic 0) or by Shepherd-
Barron [She91] and Terakawa [Ter99, Theorem 1.6] (in positive characteristic), we deduce that the
natural restriction map H0(L) → H0(L|D) is surjective. Taking cohomology of the last column

· · · → H0(L|D) → H0(L|Z) → H1(OD(−C) ⊗ L) → H1(L|D) → · · ·
we have h1(OD(−C) ⊗ L) = h0(OD) � 1, while h1(L|D) = h0(L−1

|D ) = 0 since O(KD) = OD and L
is ample. Putting everything together it follows that the subscheme Z fails to impose independent
conditions on the sections of L. Since O(KS) ⊗ L is globally generated we deduce that IZ ⊗ L
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is also globally generated. Since length(Z) = −KS · L the claim follows as before directly from
Theorem 1.1.

Remark 3.5. (1) By adjunction (see [Som79] or [SV87]) the line bundle O(KS)⊗L in Proposition 3.4
is globally generated if and only if (S,L) is not one of the following pairs: (P2,OP2(1)), (P2,OP2(2)),
or (P(E),OP(E)(1)) with E a rank 2 vector bundle on a curve.

(2) A similar argument as in Proposition 3.4 shows that if X is a smooth projective surface and
L is a very ample divisor on it, then the embedding of X via the linear system |KX + (p + 3)L|
fails to satisfy property N3pL2−2, for p � 3 (or fails to satisfy property N(2p+2)L2−2 for p � 2, if
(X,O(L)) �= (P2,OP2(1))).
Proposition 3.6. Let X denote the image of the Segre–Veronese embedding

P
n1 × P

n2 × · · · × P
nm � � (d1,d2,...,dm) �� P

∏m
i=1

(
ni+di

di

)
−1

.

(a) If m � 3 and di = 1 for at least three values of 1 � i � m, then X fails property N4.

(b) If m � 3 and di = 1 for exactly two values of 1 � i � m, then X fails property N2min{i|di>1} di+2.

(c) If m � 3 and di = 1 for at most one value of 1 � i � m, or if m � 2 and di > 1 for all
1 � i � m, then X fails property N2min{i�=j|di,dj>1}(di+dj)−2.

Proof. We argue as in the proof of Proposition 3.2 and exhibit for suitable p a p-dimensional linear
subspace which is (p + 2)-secant to the Segre–Veronese embedding of a product of r < m factors.
Failure of property Np follows then from Theorem 1.1.

To prove (a) we may assume that m = 3. The linear span of the Segre–Veronese embedding of
a complete intersection of type (1, 1, 1)3 is a 6-secant P

4, thus X fails property N4 in this case.
Case (b) is similar: we may assume that m = 3 and consider the linear span of the Segre–

Veronese embedding of a complete intersection of one hypersurface of multidegree (1, 1, 2), and two
hypersurfaces of multidegree (1, 1, d) with d = min{i|di>1} di.

Finally in case (c) we may assume that m = 2 and that both degrees are � 2, in which case the
claim follows from Proposition 3.4 for S = P

1 × P
1.

Proposition 3.6 seems to be sharp. We give the results we know below.

Remark 3.7 (Some results require characteristic 0). (1) If d1, d2 � 2, then the embedding of P
1 ×P

1

via the linear system |OP1×P1(d1, d2)| satisfies N2d1+2d2−3 (see [GP01]), but fails to
satisfy N2d1+2d2−2 by Proposition 3.6 or Proposition 3.4 above.

(2) Lascoux [Las78] and Pragacz and Weyman [PW85] describe the minimal free resolution of
the Segre embedding of P

n1 ×P
n2. In particular, they show that it satisfies property Np if and only

if p � 3.
(3) Using simplicial methods, Rubei [Rub02, Rub04] shows that the Segre embedding of P

n1 ×
P

n2 × · · · × P
nm (at least three factors) satisfies property Np if and only if p � 3. Corollary 8 in

[Rub02] proves part (b) in Proposition 3.6 via a different method. Related results for Segre–Veronese
embeddings were recently obtained by [HSS05] as special cases of their estimates on the length of
the strand of linear syzygies for toric embeddings.

(4) The resolution of the Segre embedding of P
1 × P

1 × P
1 as well as a number of other special

cases where the resolution is self-dual are investigated by Barcanescu and Manolache [BM81].

Proposition 3.8. The Plücker embedding of the Grassmannian Gr(k, n) ⊂ P
(n

k )−1, where 2 � k �
n − 2 and n � 5, fails property N3.
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Proof. It is enough to observe that for 2 � k � n − 2 and n � 5, the Plücker embedding of the
Grassmannian Gr(k, n) ⊂ P

(n
k )−1 has as linear section the Plücker embedding of Gr(2, 5) ⊂ P

9.
A general codimension three linear section of Gr(2, 5) ⊂ P

9 is a collection of five points spanning
only a P

3, so the conclusion follows now as above from Theorem 1.1.

Remark 3.9. (1) Jerzy Weyman informed us that property N2 always holds for the Plücker embed-
ding of any Grassmannian, so Proposition 3.8 is sharp.

(2) Manivel [Man96] proved that if X = G/P , where G = SL(V ), V is a complex vector space
and P a parabolic subgroup, and L is a very ample line bundle on X, then the embedding defined
by the complete linear system |Lp| satisfies property Np for all p � 1.

Recall that a complete linear system |L| on a projective variety X is said to be k-very ample if
for any zero-dimensional subscheme Z ⊂ X of length k + 1 the restriction map

H0(L) → H0(L|Z)

is surjective. In particular 0-very ample is ‘base point free’ and 1-very ample is ‘very ample’.
Pareschi and Popa [Par00, PP03] proved in characteristic 0 that if X is an abelian variety and

L1, . . . , Lp+3 are ample line bundles on X then the embedding of X ⊂ P
N by the linear system

|L1 ⊗ · · · ⊗ Lp+3| satisfies property Np. If Λ a linear subspace of dimension � p of P
N , then

Theorem 1.1 and the classification of small algebraic sets in [EGHP04] show that every positive-
dimensional reduced irreducible component of Λ ∩ X is a variety of minimal degree in its linear
span. In particular, the components of Λ ∩ X are rational. Since abelian varieties do not contain
rational positive dimensional subvarieties, Theorem 1.1 implies that L1 ⊗ · · · ⊗Lp+3 is (p + 1)-very
ample, which is a special case of [BS97a, Theorem 1].

Observe also that if X =
∏dim(X)

i=1 Ei is a product of elliptic curves, each with origin oEi ,
and L :=

∏
i p

∗
i (OEi(oEi)) is the canonical principal polarization on X, then Lp+3 fails to satisfy

property Np+1. This is a consequence of Theorem 1.1 and Abel’s theorem since one may choose
(p + 3) points on Ei such that any divisor in the linear system |(p + 3)oEi | containing (p + 2) of
those points contains also the remaining point.

Gross and Popescu [GP98] conjectured that the general (1, d)-polarized abelian surface,
for d � 10, satisfies property N[d/2]−4. As above, by Theorem 1.1, this would imply that a
(1, d)-polarization on a general abelian surface is k-very ample if d � 2k + 3 and d � 10
(compare again with [BS97a, Theorem 1] and [BS97b]).

4. Secants and syzygy varieties

In this section we analyze the restriction of linear syzygies to nonlinear varieties with known syzygies
such as rational normal curves, rational scrolls and Veronese surfaces.

Theorem 4.1. Let X,Γ ⊂ P
r be subschemes such that X is nondegenerate and Γ is reduced with

every irreducible component spanning all of P
r. If the natural restriction map

TorS
p (IX∪Γ, k)p+2 → TorS

p (IX , k)p+2

is not surjective, then

h0(IX∩Γ(2)) > p + h0(IΓ(2)).
In particular, h0(IX∩Γ,Γ(2)) > p.

Proof. The second statement follows from the first by using the short exact sequence

0 → IΓ(2) → IX∩Γ(2) → IX∩Γ,Γ(2) → 0.
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To prove the first statement we use the Eisenbud–Koh–Stillman conjecture (EKS) (proved by
Green [Gre99]; see also [EK91]) which says that if M =

⊕
i�0 Mi is a finitely generated graded

module over the polynomial ring S = Sym(V ) such that:

(a) ker(∧pV ⊗ M0 → ∧p−1V ⊗ M1) �= 0 for some p > 0; and, moreover,

(b) dim M0 � p;

then there exist a p-dimensional family of rank one relations (i.e. decomposable tensors) in the
kernel of the multiplication map V ⊗ M0 → M1.

We will not need the full strength of EKS, but just the existence of such rank one relations
under the above hypothesis, and we will apply EKS to

M =
⊕
i�0

H0(IX∩Γ(i + 2))
H0(IΓ(i + 2))

regarded as a finitely generated module over S = Sym(V ), the polynomial ring of the ambient P
r.

There are no rank one relations in the kernel of the multiplication morphism V ⊗ M0 → M1.
Such a rank one relation would amount to the existence of a quadric defined by Q ∈ H0(IX∩Γ(2))
not vanishing on Γ and a hyperplane defined by H ∈ H0(OPr(1)) such that QH ∈ H0(IΓ(3)), which
is impossible since each irreducible component of Γ is assumed to be nondegenerate.

We will relate condition (a) in EKS for the module M to the analogous one for the module

P =
⊕
i�0

H0(IX(i + 2))
H0(IX∪Γ(i + 2))

.

Expressing as usual the Tor’s via Koszul cohomology our hypothesis that

TorS
p (IX∪Γ, k)p+2 → TorS

p (IX , k)p+2

is not surjective translates into the existence of an element

α ∈ ker(∧pV ⊗ H0(IX(2)) → ∧p−1V ⊗ H0(IX(3)))

which is not in the image of the natural inclusion morphism

∧pV ⊗ H0(IX∪Γ(2)) → ∧pV ⊗ H0(IX(2)).

Taking global sections in the first row of the exact diagram of ideal sheaves

0 �� IX∪Γ(2) ��
��

��

IX(2) ��
��

��

IX∩Γ,Γ(2)

∼=
��

0 �� IΓ(2) �� IX∩Γ(2) �� IX∩Γ,Γ(2) �� 0

we see that α induces a nontrivial element ᾱ in

ᾱ ∈ ker(∧pV ⊗ P0 → ∧p−1V ⊗ P1).

On the other hand, twisting and taking global sections in the above diagram yields the inclusion
P ⊆ M . In particular, we may view ᾱ as an element of ker(∧pV ⊗M0 → ∧p−1V ⊗M1), which is thus
nonzero. By EKS, since there are no rank one relations in the kernel of V ⊗ M0 → M1, we deduce
that dim M0 > p which finishes the proof of the theorem.

The following result, with Y = X ∪ Γ, gives us a way to apply Theorem 4.1.
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Proposition 4.2. Suppose that X ⊆ Y ⊂ P
r are nondegenerate closed subschemes. If X satisfies

property N2,p+1 for some 0 � p < codim X and the natural map

TorS
p (IY , k)p+2 → TorS

p (IX , k)p+2

is surjective, then X = Y .

Proof. We do induction on p. If p = 1, then all of the quadrics in the ideal of X are also in the ideal
of Y ; since X is defined by quadrics we get X = Y .

Now suppose p > 1. Let

F• : Fp → Fp−1 → · · · → F0 → IX → 0

be the first p steps of a minimal resolution, so that Fp = S(−p − 2)βp for some βp, and let

G• : Gp → Gp−1 → · · · → G0 → IY → 0

be the first p steps of the 2-linear part of the resolution of IY . The inclusion of ideals induces a map
G• → F• of complexes, and Gi is a direct summand of Fi for all i ∈ {0, . . . , p}.

Now suppose that
TorS

p (IY , k)p+2 → TorS
p (IX , k)p+2

is surjective or, equivalently, Fp = Gp. The differential Fp → Fp−1 maps Fp into the direct
summand Gp−1. Since p < codim X, the dual of this map is part of the minimal free resolution
of coker(F ∗

p−1 → F ∗
p ). If Fp−1 �= Gp−1, then the dual map F ∗

p−1 → F ∗
p would send a nontrivial free

summand to 0, a contradiction. Thus, Fp−1 = Gp−1 and we are done by induction.

Combining Theorem 4.1 with Proposition 4.2 we get the first statement of the following result.

Corollary 4.3. Suppose that X,Γ ⊂ P
r are nondegenerate closed subschemes and that Γ is

reduced and irreducible. If Γ �⊂ X, and X satisfies property N2,p+1 for some 0 � p < codim X, then

h0(IX∩Γ,Γ(2)) � h0(IX∩Γ(2)) − h0(IΓ(2)) > p.

In particular, if Γ is a rational normal curve in P
r, then

length(X ∩ Γ) < 2r + 1 − p.

Proof. The last statement follows because, under the given hypothesis, IX∩Γ,Γ(2) is a line bundle
on Γ of degree 2r − length(X ∩ Γ).

Remark 4.4. In the special case where both X and Γ are rational normal curves in P
r, Corollary 4.3

yields that X and Γ can meet at most in 2r+1−(r−1) = r+2 points. Equality can occur: the union
of the two rational normal curves is a degeneration of a canonical curve in P

r (a so-called ‘binary’
curve). See also Eisenbud and Harris [EH92a, EH92b], or Diaz [Dia86] and Giuffrida [Giu88] for
related results.

We can use a different method of checking the hypothesis of Theorem 4.1 to derive a new proof
of Green’s ‘syzygetic Castelnuovo lemma’ [Gre84] (see also Ehbauer [Ehb94], Yanagawa [Yan94],
and Eisenbud and Popescu [EP99]).

Corollary 4.5. Let X ⊂ P
r be a finite subscheme which contains a subscheme of length r + 3 in

linearly general position. If Torr−2(IX , k)r �= 0, then X lies on a (unique) smooth rational normal
curve.
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Proof. Corollary 4.3 (or Remark 4.4) shows that two distinct rational normal curves in P
r can meet

in at most r + 2 points, so there is at most one rational normal curve containing X.
Let X ′ ⊂ X be a subscheme of length r +3 in linearly general position. By Eisenbud and Harris

[EH92a, EH92b] or Eisenbud and Popescu [EP00], there is a rational normal curve Γ containing X ′.
Suppose that X is not contained in Γ. The quadrics containing X∪Γ must be a proper subset of the
quadrics containing Γ. By Ehbauer [Ehb94] or Eisenbud-Popescu [EP99], the syzygy ideal of any
(r−2)-syzygy of IΓ is precisely IΓ, so Torr−2(IX∪Γ, k)r = 0. Since Torr−2(IΓ, k)r �= 0 the hypotheses
of Theorem 4.1 are thus satisfied, so h0(OΓ(2H − (X ∩ Γ))) > r − 2, and thus the length of X ∩ Γ
is at most r + 2, a contradiction.

Remark 4.6. The hypothesis that Γ is nondegenerate in P
r cannot be dropped in Corollary 4.3.

Similarly the number r in the second statement of Corollary 4.3 cannot be replaced by the dimension
of the span of Γ. For example, let X be the cone in P

4 over a twisted cubic curve, say

X =
{

x

∣∣∣∣ rank
(

x1 x2 x3

x2 x3 x4

)
� 1

}
⊂ P

4 = P
4(x0, x1, x2, x3, x4)

and let Λ = {x2 = x3 = 0} ⊂ P
4. Then X ∩ Λ = {x2 = x3 = x1x4 = 0} which is a degenerate conic

(union of two lines). If Γ is a smooth conic in Λ, then h0(IX∩Γ,Γ(2)) = 1 and length(X ∩ Γ) = 4,
whereas from Corollary 4.3 with p = 1 we would get h0(IX∩Γ,Γ(2)) > 1 and length(X ∩ Γ) <
2 · 2 + 1 − 1 = 4.

Coble [Cob22] and Conner [Con11] assert that two Veronese surfaces in P
5 can intersect in at

most 10 points: see [EHP03] for a modern treatment. Using directly Theorem 4.1 one can prove a
(nonoptimal) bound of 12.

We can also get a result for zero-dimensional intersections of scrolls.

Proposition 4.7. Let X and Γ be two nondegenerate rational scrolls of dimensions m and n,
respectively, in P

r with m � n and such that X ∩ Γ is a zero-dimensional scheme. Then
length(X ∩ Γ) � nr + m − (

n
2

)
+ 1.

Proof. From Corollary 4.3 we obtain that h0(IX∩Γ,Γ(2)) � r −m. On the other hand, if we restrict
the minimal free resolution of IX to Γ we obtain a complex which fails to be exact off a zero-
dimensional subscheme of Γ. Since IX is 2-regular and Γ is rational scroll, standard cohomological
vanishings and an argument as in Theorem 1.1, or as in Lazarsfeld [Laz04, Proposition B.1.2], show
that h1(IX∩Γ,Γ(2)) = 0. We have also h0(IΓ(2)) =

(
r−n+1

2

)
(for instance, from the Eagon–Northcott

complex) and the claimed bound follows now via direct computation.
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