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Abstract. The Ehresmann-Schein-Nambooripad (ESN) Theorem, stating
that the category of inverse semigroups and morphisms is isomorphic to the
category of inductive groupoids and inductive functors, is a powerful tool in
the study of inverse semigroups. Armstrong and Lawson have successively ex-
tended the ESN Theorem to the classes of ample, weakly ample and weakly
E-ample semigroups. A semigroup in any of these classes must contain a semi-
lattice of idempotents, but need not be regular. It is significant here that these
classes are each defined by a set of conditions and their left-right duals.

Recently, a class of semigroups has come to the fore that is a one-sided
version of the class of weakly E-ample semigroups. These semigroups appear
in the literature under a number of names: in category theory they are known
as restriction semigroups, the terminology we use here. We show that the
category of restriction semigroups, together with appropriate morphisms, is
isomorphic to a category of partial semigroups we dub inductive constellations,
together with the appropriate notion of ordered map, which we call inductive

radiant. We note that such objects have appeared outside of semigroup theory
in the work of Exel. In a subsequent article we develop a theory of partial
action and expansion for inductive constellations, along the lines of that of
Gilbert for inductive groupoids.

Introduction

We introduce in this article the notions of constellation and inductive con-
stellation, together with appropriate structure-preserving maps we name radiant
and ordered radiant. An inductive constellation is a set with a partial binary
operation and a partial order, satisfying a number of axioms reminiscent of those
for inductive categories. However, we stress that an inductive constellation is
not, in general, an inductive category, neither is the converse true. Our reason
for studying these structures is to elucidate the class of restriction semigroups,
inspired by the celebrated result below, named to reflect its diverse authorship
as the Ehresmann-Schein-Nambooripad (ESN) Theorem.
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Theorem 0.1. (Lawson, 1998) The category of inverse semigroups and mor-
phisms is isomorphic to the category of inductive groupoids and inductive func-
tors.

We give further details of Theorem 0.1, and its generalisations relevant to our
purposes, in the next section.

For a set X we denote by PT X the semigroup of partial maps on X, under
composition of partial functions from left to right. A semigroup S is a restriction
semigroup (properly a left restriction semigroup) if it is (isomorphic to) a sub-
semigroup of PT X that is closed under the (unary) operation α 7→ α+ = Idom α,
where Idom α is the identity mapping on domα. We refer to idempotents of the
form IY , Y ⊆ X, as local identities and note that EX = {IY : Y ⊆ X} forms
a semilattice. Clearly, PT X itself is a restriction semigroup, and indeed the
canonical one, as we show in Section 3. By the Wagner-Preston Representation
Theorem, inverse semigroups are restriction semigroups, but the latter class is
much wider. It includes, for example, all right cancellative monoids, indeed all
unipotent monoids, that is, monoids having a single idempotent, and all semi-
groups that are semidirect products of semilattices by unipotent monoids. It is
worth remarking that from the very nature of functions, restriction semigroups
are defined in a manner that is not left-right dual.

Restriction semigroups appear in the literature under a plethora of names.
They are first seen in the work of Schweizer and Sklar (1960, 1961, 1965, 1967)
on function systems. The latter are one instance of algebras that arise from
attempts to find axiomatisations of semigroups embedded in PT X for some set
X, and enriched with additional operations. Function systems were revisited by
Schein (1970a), correcting a misconception of Schweizer and Sklar (1967). A
survey of this material, in the setting of relation algebras, was given by Schein in
the first ever Semigroup Forum article (Schein, 1970b) and revisited in Jackson
and Stokes (to appear). A more recent (and not readily available) survey appears
in Chapter 2 of the PhD thesis of the second author (Hollings, 2007a). Restriction
semigroups (under another name) appear for the first time as a class in their own
right in the work of Trokhimenko (1973). They arose in the early 1980s as the type
SL2 γ-semigroups of Batbedat (1981) (see also Batbedat and Fountain (1981)).
More recently, they appear in the work of Jackson and Stokes (2001) in the guise
of (left) twisted C-semigroups and in that of Manes (2006) as guarded semigroups,
motivated by consideration of closure operators and categories, respectively. The
current authors formerly referred to restriction semigroups as weakly left E-ample
semigroups (Gould and Hollings, to appear).

The work of Manes has a forerunner in the restriction categories of Cockett and
Lack (2002), from whose work we take the terminology ‘restriction semigroup’.
Cockett and Lack were influenced by considerations of theoretical computer sci-
ence. If one takes a restriction category C, puts S = Mor C ∪ {0}, where 0 is
an element not appearing in Mor C, then extends the partial binary operation in
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C to S by putting all undefined products to be 0, then one obtains a restriction
semigroup. Conversely, any restriction monoid may be thought of as a restriction
category with one object. This is an elementary indication of the close connection
between restriction semigroups and restriction categories. Cockett has suggested
another connection, reminiscent of our construction of constellations (Cockett,
2008). Cockett’s construction produces a category from a restriction semigroup,
but uses rather more machinery than we require.

The terminology ‘weakly left E-ample’ was first used in Fountain et. al. (1999),
and was arrived at from the starting point of the left ample semigroups of Foun-
tain (1977, 1979) via the route of replacing considerations of the relation R∗ on

a semigroup S by those of R̃ (hence the ‘weakly’) and by making reference to a
specific set of idempotents E (which may not be the whole of E(S)).

A semigroup that is both a restriction semigroup, and which satisfies the left-
right dual conditions together with a compatibility condition, explained in Sec-
tion 1, is called a two-sided restriction semigroup or, in alternative terminology,
a weakly E-ample semigroup. As we explain below, Lawson (1991) extended
Theorem 0.1 to the class of two-sided restriction semigroups.

As may be seen from their representation as semigroups of partial maps, a
restriction semigroup is defined by a set of conditions that are not left-right dual.
Herein lies the difficulty in developing an ‘ESN’ type theorem — categories are
defined via a symmetric set of axioms, and as such will not do for us here. It is
these considerations that lead us to develop the notions of inductive constellation
and ordered radiant. Our main result, Theorem 4.11, shows that the category of
restriction semigroups and appropriate morphisms is isomorphic to the category
of inductive constellations and ordered radiants.

The structure of the paper is as follows. In Section 1 we give further details of
restriction semigroups and related classes, and comment further on Theorem 0.1
and its generalisations to certain classes of non-regular semigroups. In Section 2
we introduce constellations and radiants, giving a number of examples including
one arising from partial mappings of a set; we show later that this constellation
is inductive, and indeed the canonical such. Section 3 provides the specialisation
to inductive constellations and inductive radiants, proving a number of techni-
cal results. The next section presents Theorem 4.11, which is the analogue of
Theorem 0.1 for restriction semigroups and inductive constellations. Finally in
Section 5 we briefly specialise our construction to weakly left ample, left ample,
and inverse semigroups.

Gilbert (2005) studies partial actions of inductive groupoids to inform that of
partial actions of inverse semigroups. He proves in particular that the partial ac-
tion of an inductive groupoid I lifts to an action of an inductive groupoid which
we call SzG(I). This result involving the ‘expansion’ of I to SzG(I) is analogous
to those previously obtained for groups (Kellendonk and Lawson, 2004) and in-
verse semigroups (Lawson et. al., 2006), and subsequently proved for monoids



4 VICTORIA GOULD AND CHRISTOPHER HOLLINGS

(Hollings, 2007b) and restriction semigroups (Gould and Hollings, to appear).
Gilbert connects his approach using inductive groupoids with that for inverse
semigroups in a very natural way. In a subsequent paper, we detail a similar
expansion result for actions and partial actions of inductive constellations, mak-
ing the connection with the approach for restriction semigroups as described in
Gould and Hollings (to appear).

We assume in this paper only a very elementary knowledge of algebraic semi-
group theory, most technical terms being explained when used. The exception is
the notion of an inverse semigroup, but this is essentially used only for illustra-
tion: for further details we recommend Lawson (1998).

1. Preliminaries

We have introduced a restriction semigroup S via its representation as a sub-
semigroup of PT X (for some set X), closed under α 7→ α+ = Idom α. Here we
present without proof abstract descriptions of restriction semigroups, and those
of semigroups in the more specialised classes mentioned in this paper. Until the
final section these latter classes are used only by way of illustration, so the unfa-
miliar reader may safely bypass their definitions until that point. Further details
of the material and claims made in the rest of this section may be found in the
collection of notes Gould (2007).

Formally, a left restriction semigroup is an algebra of type (2, 1), that is, pos-
sessing one binary and one unary operation, where the binary operation is denoted
by juxtaposition and the unary operation by a 7→ a+, satisfying the identities
(first appearing in Jackson and Stokes (2001)):

(xy)z = x(yz),

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+ and xy+ = (xy)+x.

Thus left restriction semigroups are a variety of algebras; we require that mor-
phisms between restriction semigroups preserve both basic operations. To stress
this, we may refer to them as (2, 1)-morphisms.

Let S be a left restriction semigroup; it is clear from the first identity that S

is indeed a semigroup! We let

E = {x+ : x ∈ S}.

Notice that for any x+ ∈ E,

x+x+ = (x+x)+ = x+,

so that as elements of E commute, E ⊆ E(S) is a semilattice. We say that E is
the distinguished semilattice of the left restriction semigroup S.

Right restriction semigroups are defined dually; we denote the unary operation
in this case by a 7→ a∗. An algebra of type (2, 1, 1) with unary operations a 7→ a+

and a 7→ a∗ is a two-sided restriction semigroup if it is a left restriction semigroup
with respect to + and a right restriction semigroup with respect to ∗ and the
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distinguished semilattices coincide. The reader may see that this latter condition
is equivalent to the identities

(x+)∗ = x+ and (x∗)+ = x∗.

Morphisms between two-sided restriction semigroups must preserve the three
basic operations, that is, they must be (2, 1, 1)-morphisms.

For ease of reference in this article we omit the ‘left’ in the term ‘left restriction
semigroup’.

Another approach to restriction semigroups and related classes, of which we

implicitly make constant use, is via the generalisations R∗,L∗, R̃U and L̃U of
Green’s relations R and L.

Let S be a semigroup with subset of idempotents U . The relation R̃U on S is

defined by the rule that for any a, b ∈ S, a R̃U b if and only if for all e ∈ U ,

ea = a if and only if eb = b;

the relation R∗ is defined by the rule that aR∗ b if and only if for any x, y ∈ S1,

xa = ya if and only if xb = yb.

It is easy to see that

R ⊆ R∗ ⊆ R̃U ,

with equality if S is regular and U = E(S). Another useful observation is that

if a ∈ S and e ∈ U , then a R̃U e if and only if ea = a and for any f ∈ U ,

fa = f implies that fe = e. The relations L̃U and L∗ are defined dually. In case

that U = E(S) we may drop the subscript ‘E(S)’ and write R̃ and L̃ for R̃E(S)

and L̃E(S). It is easy to see that (as is the case for R and L) R∗ and L∗ are,

respectively, left and right congruences. On the other hand, R̃U and L̃U need

not be; if R̃U is a left congruence, then we say that Condition (CL) holds (with
respect to U), defining Condition (CR) dually.

Let S be a semigroup and let E ⊆ E(S) be a semilattice; note that we are

not assuming that E = E(S). It is easy to see that if e, f ∈ E, then e R̃E f (or

e L̃E f) if and only if e = f . Thus if S has the property that every R̃E-class
contains an idempotent of E, then we may define a unary operation on S by

a 7→ a+ ∈ E, where a R̃E a+.

Proposition 1.1. The following are equivalent for a semigroup S:
(1) S may be equipped with a unary operation + such that (S, · ,+ ) is a restric-

tion semigroup;
(2) S is isomorphic to a subsemigroup of PT X , closed under α 7→ α+, for

some set X;
(2) S may be equipped with a unary operation + such that E = {a+ : a ∈ S}

is a semilattice, every R̃E-class contains an idempotent of E, Condition (CL)
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holds, and S satisfies Condition (AL):

ae = (ae)+a

for all a ∈ S and e ∈ E.

Condition (AL) is known (for historical reasons) as the (left) ample condi-
tion. Roughly speaking, it gives some control over the position of idempotents in
products.

For convenience we quote a result we use repeatedly, and which follows imme-

diately from the facts that in a restriction semigroup S, R̃E is a left congruence,
and for any a ∈ S, a+ is the minimum left identity of a lying in E.

Lemma 1.2. Let S be a restriction semigroup. Then for any a, b ∈ S,

(ab)+ = (ab+)+ and (ab)+ ≤ a+.

We record here that a restriction semigroup comes equipped with a natural
partial order, defined by

a ≤ b if a = eb for some e ∈ E.

That is, ≤ is a partial order, compatible with the semigroup multiplication, that
restricts to the semilattice partial order on E. Notice that if a, b ∈ S and a ≤ b,
that is, a = eb for some e ∈ E, then

a+ = (eb)+ = eb+ ≤ b+ and a+ ≤ e;

consequently,
a+b = a+eb = a+a = a.

In the spirit of Proposition 1.1 we define two further classes.

Definition 1.3. A semigroup S is weakly left ample if it is a restriction semigroup

with E = E(S) and left ample if in addition R̃ = R∗.

We remark that the classes of weakly left ample and left ample semigroups may
also be defined via representations: a semigroup is weakly left ample if and only
if it is isomorphic to a subsemigroup S of some PT X , closed under +, and such
that every idempotent of S is a local identity, i.e., S satisfies the quasi-identity
x2 = x → x = x+ (see Proposition 1.4 below). Clearly, the only idempotents in
a symmetric inverse semigroup IX are local identities: a semigroup is left ample
if and only if it is isomorphic to a subsemigroup of some IX that is closed under
+.

The classes of right restriction, weakly right ample and right ample semigroups
are defined in a dual manner to the left-handed versions, making use of the

relations L̃E, L̃ and L∗, the unique idempotent of E in the L̃E-class of a ∈ S,
where S is a right restriction semigroup, being a∗. As commented above, a
semigroup is a two-sided restriction semigroup if it is both a left and a right
restriction semigroup (with respect to the same semilattice E); if in addition
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E = E(S) we refer to it as being weakly ample and if further R̃ = R∗ and L̃ = L∗

then it is said to be ample.
The naturalness of the class of restriction semigroups over its close rivals is ap-

parent from the following result, the first part of which we have already observed.

Proposition 1.4. The class of restriction semigroups is a variety of algebras of
type (2, 1), and the class of two-sided restriction semigroups is a variety of type
(2, 1, 1).

On the other hand, the classes of weakly left ample and left ample semigroups
are quasi-varieties of type (2, 1); the classes of weakly ample and ample semigroups
are quasi-varieties of type (2, 1, 1).

It is clear from our comments concerning representation that inverse semi-
groups are ample. Let S be an inverse semigroup, with binary operation denoted
by juxtaposition. A favoured approach to studying S is to ‘throw away’ some of
the products and consider only products of the form

a · b = ab where a−1a = bb−1.

In this way (S, ·) becomes a category, in which the domain and range of elements
are given by

d(a) = aa−1 and r(a) = a−1a.

Moreover, equipped with the natural partial order inherited from the semigroup
S, the category (S, ·) forms an inductive groupoid G(S) = (S, ·,≤). Conversely,
if G = (G, ·,≤) is an inductive groupoid, then we can build an inverse semigroup
I(G) from G. Moreover, for an inverse semigroup S, we have that S = I(G(S)),
and for an inductive groupoid G, we have that G = G(I(G)). This is comprised in
the crucial Theorem 0.1, due variously to Ehresmann, Schein and Nambooripad.
Further details may be found in Lawson (1998).

What Theorem 0.1 is saying to us is that some of the products in an inverse
semigroup, together with the natural partial order, are together enough to deter-
mine all we need to know about our inverse semigroup. Naturally such a result
begs extensions, indeed Nambooripad (1979) provides the generalisation to reg-
ular semigroups. Concentrating here on the case where a semigroup contains
a semilattice of idempotents, Theorem 0.1 was essentially generalised by Arm-
strong (1984) to ample semigroups, although she made no explicit mention of
category equivalence, and by Lawson (1985, 1991) to weakly ample semigroups
and finally to two-sided restriction semigroups. In the first case the required
inductive categories are cancellative, that is, multiplication where defined is can-
cellative on both left and right, and in the second they are unipotent, that is,
the local submonoids are unipotent; no restriction is required in the third case.
The generalisations essentially follow the pattern laid out in Theorem 0.1. For
a semigroup S in any of these classes, we may construct a category (S, ·) by
restricting products to those of the form

a · b = ab where a∗ = b+,
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so that d(a) = a+ and r(a) = a∗. The category (S, ·) inherits the natural partial
order possessed by the semigroup S to become an inductive category (S, ·,≤).

It is now clear that to extend Theorem 0.1 to the class of restriction semigroups
will not be straightforward. Essentially, in trying to construct a category from a
restriction semigroup S, although we could define an operation d(·) corresponding
to the domain operation, and given by d(a) = a+, a ∈ S, we have no notion of
the range r(a). Nevertheless, by throwing away rather fewer of the products in
S, we obtain a partial algebra, equipped with a partial order, satisfying one-sided
conditions reminiscent of the two-sided ones which define an inductive category.
We name these structures inductive constellations and hope that they will be of
interest in their own right.

2. Constellations and radiants

Let P be a set and · be a partial binary operation on P . If the product x · y
is defined, for x, y ∈ P , then we will denote the fact by ‘∃x · y’. Whenever we
write ‘∃(x · y) · z’, for example, it will be understood that we mean ∃x · y and
∃(x · y) · z. An element e ∈ P is idempotent if ∃e · e and e · e = e; the collection
of all idempotents of P will be denoted by E(P ). An idempotent e ∈ P is a left
identity for x ∈ P if ∃e · x and e · x = x. A unary operation a 7→ a+ on P is
said to be image idempotent if its image is contained in E(P ). In this case we
say that

E = {x+ : x ∈ P}

is the distinguished subset (of the unary operation).

Definition 2.1. Let P be a set, let · be a partial binary operation and let + be
an image idempotent unary operation on P with distinguished subset E. We call
(P, · ,+ ) a left constellation if the following axioms hold:

(C1) ∃x · (y · z) ⇒ ∃(x · y) · z, in which case, x · (y · z) = (x · y) · z;
(C2) ∃x · (y · z) ⇔ ∃x · y and ∃y · z;
(C3) for each x ∈ P , x+ is the unique left identity of x in E;
(C4) a ∈ P , g ∈ E, ∃a · g ⇒ a · g = a.

For ease of reference in this article we omit the ‘left’ and refer to a left constel-
lation as a constellation; moreover we may refer to a constellation (P, · ,+ ) more
simply as ‘P ’. If E = E(P ), then we call P a replete constellation.

It is clear that if e ∈ E, then e+ = e. We can therefore characterise E as the
set of idempotents e for which e+ = e; in a replete constellation, e+ = e for all
idempotents e.

The following result shows that the + operation in an constellation mimics
some of the behaviour of the domain operation d(·) in a category:

Lemma 2.2. In a constellation P , if ∃a · b, then (a · b)+ = a+.
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Proof. Since ∃a+ ·a and ∃a · b, we have ∃a+ · (a · b), by (C2). Then ∃(a+ ·a) · b and
(a+ · a) · b = a+ · (a · b), by (C1). Hence a+ · (a · b) = a · b, i.e., (a · b)+ = a+. ¤

Thus a constellation is a one-sided generalisation of a category in which we
have an analogue of domain, namely +, but no notion of range. This means that
we can consider ‘stars’ in P , in the sense of Gilbert (2005, p. 177), but not the
dual notion of ‘costars’.1

Note also:

Lemma 2.3. In a constellation P , ∃a · b ⇐⇒ ∃a · b+.

Proof. (⇒) Since ∃a · b and b = b+ · b, we have ∃a · (b+ · b). Then ∃a · b+, by (C2).
(⇐) From ∃a · b+ and ∃b+ · b, we deduce that ∃a · (b+ · b), i.e., ∃a · b. ¤

We remark that any category C with set of identities Co is certainly a constel-
lation with distinguished subset Co. It is apparent from the results of Section 4
that from any restriction semigroup we may extract a constellation.

We end this section by offering further examples of a constellations, and a
representation theorem. As remarked in the Introduction, for any set X, PT X is
a restriction semigroup, with distinguished semilattice EX . We now construct a
constellation CX from PT X . As a set, CX = PT X ; a restricted product is defined
in CX by

α · β =

{
αβ if αβ+ = α

undefined otherwise

or equivalently

(2.1) α · β =

{
αβ if im α ⊆ dom β

undefined otherwise

it is easy to see that (CX , ·, +) is a constellation with distinguished subset of
idempotents EX , where + has the same meaning as for PT X . This observation
was effectively made by Exel (2006).2 We will call CX the function constellation
on X.

We will see in the next section that CX is in fact an inductive constellation,
and in a sense made precise there, the canonical such. As regards constellations
in general, we also present the following easily verifiable example, rather different
in flavour.

Example 2.4. Let (X,≤) be a quasi-ordered set. We define a partial binary
operation ∗ on X by the rule that

∃x ∗ y if and only if x ≤ y and then x ∗ y = x.

Setting x+ = x for all x ∈ X, (X, ∗,+ ) is a constellation.

1An constellation is then, in some sense, a collection of ‘stars’, hence the name.
2The authors are grateful to M. V. Lawson for this observation.
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We observe that if X has the universal ordering, then the structure obtained
as above is simply a left zero semigroup. Further, for an arbitrary quasi-order,
the classes of the associated equivalence relation are left zero semigroups. We
now show that every constellation embeds into a direct product of a function
constellation and a constellation constructed as in Example 2.4. We must first
make the term ‘embed’ precise.

Definition 2.5. Let P and Q be constellations. A function ρ : P → Q is called
a radiant if:

(R1) ∃s · t in P ⇒ ∃(sρ) · (tρ) in Q, in which case, (sρ) · (tρ) = (s · t)ρ;
(R2) s+ρ = (sρ)+.

We note that a radiant ρ : P → Q is easily shown to map idempotents in P

to idempotents in Q; condition (R2) is needed to ensure that E is mapped into
F , where E is the distinguished subset of idempotents of P and F is that of Q.
The radiant ρ is strong if, in addition, for all s, t ∈ P , if ∃(sρ) · (tρ) then ∃s · t
and an embedding if it is both strong and injective.

Proposition 2.6. Let P be a constellation. For each s ∈ P , let ρs ∈ CP be
defined by

dom ρs = {x ∈ P : ∃x · s}

and for each x ∈ dom ρs,
xρs = x · s.

Then ρ : P → CP given by sρ = ρs is a strong radiant.

Proof. Let s, t ∈ P and suppose first that ∃s · t. We wish to show that ∃(sρ) ·(tρ),
that is, im ρs ⊆ dom ρt. Let x · s ∈ im ρs. Then ∃x · s,∃s · t so by (C1) and (C2),
∃(x · s) · t, that is, x · s ∈ dom ρt.

We continue to assume ∃s · t, so that also ∃(sρ) · (tρ). Let y ∈ dom (sρ) · (tρ),
so that ∃(y · s) · t. Then by (C2), ∃y · (s · t), so that y ∈ dom (s · t)ρ. On the other
hand, if z ∈ dom (s · t)ρ then (C1) gives immediately that z ∈ dom (sρ) · (tρ)
(so that dom (s · t)ρ = dom (sρ) · (tρ)) and zρs·t = (zρs)ρt. We conclude that
(sρ) · (tρ) = (s · t)ρ.

Let s ∈ P ; by Lemma 2.3 and the fact that dom α = dom α+ for any α ∈ PT P ,
we see that dom s+ρ = dom (sρ)+. Moreover, for any x in this common domain,

x(s+ρ) = xρs+ = x · s+ = x = x(ρs)
+ = x(sρ)+,

so that s+ρ = (sρ)+ and ρ is a radiant.
To see that ρ is strong, note that if ∃(sρ) · (tρ), then im ρs ⊆ dom ρt, so that

as s = s+ρs, we have s ∈ dom ρt and so ∃s · t as required. ¤

Let (P, · ,+ ) be a constellation with distinguished subset E = EP . We wish
to show that there is a radiant from P to a constellation constructed as in Ex-
ample 2.4. Let EP be ordered by the universal ordering and let (EP , ∗ ,+ ) be
the associated constellation, as per the recipe of Example 2.4. By our earlier
comments, (EP , ∗ ,+ ) is of course a left zero semigroup.
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Proposition 2.7. Let (P, · ,+ ) be a constellation. Then ν : P → EP given by
sν = s+ is a radiant from the constellation (P, · ,+ ) to the constellation (EP , ∗ ,+ ).

Proof. Suppose that ∃s · t in P . Using Lemma 2.2, we have

(s · t)ν = (s · t)+ = s+ = s+ ∗ t+ = (sν) ∗ (tν).

Moreover, for any s ∈ P ,

s+ν = (s+)+ = s+ = (sν)+,

so that ν is indeed a radiant. ¤

It is clear that if (Pi, · ,
+ ) are constellations for i ∈ {0, 1, 2}, then

(P1 × P2, · ,
+ ) is a constellation, where

∃(x1, x2) · (y1, y2) if and only if ∃x1 · y1, x2 · y2,

in which case

(x1, x2) · (y1, y2) = (x1 · y1, x2 · y2)

and

(x, y)+ = (x+, y+).

Moreover, if ρi : P0 → Pi for i ∈ {1, 2} are radiants, then ρ : P0 → P1 × P2 is a
radiant, where

pρ = (pρ1, pρ2).

Corollary 2.8. Let (P, · ,+ ) be a constellation and let θ : P → CP ×EP be given
by

pθ = (pρ, pν),

where ρ and ν are as in Propositions 2.6 and 2.7, respectively. Then θ is an
embedding into the product constellation (CP × EP , · ,+ ).

Proof. From observations above, coupled with Propositions 2.6 and 2.7, we know
that θ is a radiant. Suppose now that ∃sθ · tθ; then

∃(sρ, sν) · (tρ, tν)

so that in particular, ∃sρ · tρ, whence ∃s · t by Proposition 2.6. Thus θ is strong.
To see that θ is injective, suppose that sθ = tθ. Then sρ = tρ and sν = tν.

The latter gives us that s+ = t+ and from the former

s = s+ · s = s+ · t = t+ · t = t,

as required. ¤
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3. Inductive constellations and ordered radiants

We now introduce an ordering on a constellation, inspired by the notion of an
ordered category.

Definition 3.1. Let (P, · ,+ ) be a constellation and let ≤ be a partial order on
P . We call (P, · ,+ ,≤) an ordered constellation if the following conditions hold:

(O1) a ≤ c, b ≤ d, ∃a · b and ∃c · d ⇒ a · b ≤ c · d;
(O2) a ≤ b ⇒ a+ ≤ b+;
(O3) for e ∈ E and a ∈ P such that e ≤ a+, there exists a restriction e|a which

is the unique element with the properties e|a ≤ a and (e|a)+ = e;
(O4) for all e ∈ E and all a ∈ P , there exists a corestriction a|e which is the

maximum element x with the properties x ≤ a and ∃x · e;
(O5) for x, y ∈ P and e ∈ E, ∃x · y ⇒ ((x · y)|e)+ = (x|(y|e)+)

+
;

(O6) if e, f ∈ E, then, whenever the restriction e|f is defined, it coincides with
the corresponding corestriction.

We note that by (C4), (a|e) · e = a|e.
We can deduce a useful characterisation of the partial product in an ordered

constellation:

Lemma 3.2. For a, b ∈ P ,

∃a · b ⇐⇒ a|b+ = a.

Proof. First suppose that ∃a · b. Then ∃a · b+, by Lemma 2.3. Recall, however,
that a|b+ is defined to be the maximum element x with the properties x ≤ a and
∃x · b+. We therefore deduce that a ≤ a|b+. Consequently, a|b+ = a.

For the converse, suppose that a|b+ = a. We have ∃a · b+, by definition of the
corestriction. Then ∃a · b, by Lemma 2.3. ¤

In an ordered constellation (P, · +,≤), we denote by e ∧ f the greatest lower
bound of e, f ∈ E with respect to ≤, where it exists.

Definition 3.3. Let (P, · ,+ ,≤) be an ordered constellation. We call (P, · ,+ ,≤)
an inductive constellation if the following condition3 holds:

(I) e, f ∈ E ⇒ e ∧ f exists in E and is equal to e|f .

Consider now a non-trivial left zero semigroup S; as remarked in the previous
section, S is a constellation where + is the identity map. If S could be ordered
so that it became inductive, then for any a, b ∈ S, we have from Lemma 3.2 and
Condition (I) that

a = a · b = a|b+ = a|b = b|a = b|a+ = b · a = b,

for any a, b ∈ S, a contradiction. Thus not every constellation is inductive.

3We have been unable to show any interdependence between conditions (C1)-(C4), (O1)-(O6)
and (I).
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The natural partial order on a restriction semigroup PT X is easily seen to
be restriction of mappings. Moreover, with this ordering, and restriction and
corestriction given by

ε|α = εα and α|ν = αν,

where ε, ν ∈ EX , α ∈ PT X and ε ≤ α+, it is not hard to see that (CX , · ,+ ,≤)
is an inductive constellation. The reader not wishing to make the necessary
calculations will note that this follows from the results of the next section.

We now record some results about ordered constellations which will be of use
in later sections; some of these results are one-sided analogues of those originally
used by Armstrong (1984) in the (two-sided) case of cancellative categories.

Lemma 3.4. Let P be an ordered constellation and let a, b, c ∈ P and e, f ∈ E.
Then

(i) a ≤ b ⇒ a = a+|b;
(ii) a ≤ c, b ≤ c and a+ = b+ ⇒ a = b;
(iii) e ≤ f ⇒ ∃e · f and e = e|f = e · f ;
(iv) f ≤ e ≤ a+ ⇒ f |(e|a) = f |a and f |a ≤ e|a;
(v) f ≤ e ⇒ (a|e)|f = a|f and a|f ≤ a|e;
(vi) a ≤ b ⇒ a|e ≤ b|e.

Proof. (i) By (O2), a+ ≤ b+, so a+|b is defined. This is the unique x such
that x ≤ b and x+ = a+. Notice however that a also satisfies these conditions.
Therefore, by uniqueness, a = a+|b.

(ii) By (i), a = a+|c and b = b+|c. Thus a = a+|c = b+|c = b.
(iii) We first note that e|f may be regarded as either a restriction or a core-

striction, by (O6), since e ≤ f . Regarding e|f as a restriction, we observe that
(e|f)+ = e; considering e|f as a corestriction, we have e|f ≤ e. These are prop-
erties shared by e itself, so, by (ii), e|f = e. We know that ∃(e|f) · f and that
(e|f) · f = e|f . But e|f = e, so ∃e · f and e · f = e = e|f .

(iv) Since f ≤ e ≤ a+, both the restrictions f |a and f |(e|a) are defined, as
(e|a)+ = e. In particular, f |a is defined to be the unique x ∈ P such that
x ≤ a and x+ = f . Notice however that f |(e|a) also has these properties:
f |(e|a) ≤ e|a ≤ a and [f |(e|a)]+ = f . Therefore, by uniqueness, f |a = f |(e|a).
The second part follows immediately from the definition of the restriction.

(v) First of all, by definition of the corestriction, we have (a|e)|f ≤ a|e ≤ a

and ∃ ((a|e)|f) · f , in which case,

(3.1) (a|e)|f ≤ a|f,

since a|f is the maximum element with these properties. Next, since ∃f · e (by
(iii)), we have ∃ ((a|f) · f) · e with ((a|f) · f) · e = (a|f) · e, hence a|f ≤ a|e,
by maximality of a|e. Then, since (a|e)|f is the maximum element x with the
properties x ≤ a|e and ∃x · f , we must have a|f ≤ (a|e)|f . Combining this with
(3.1) gives the desired result.
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(vi) If a ≤ b, then we have ∃(a|e) · e and a|e ≤ a ≤ b. But b|e is defined to be
the maximum element with these properties, so a|e ≤ b|e. ¤

We note that there is an alternative way of viewing the restriction of (O3):

Lemma 3.5. For e ∈ E, if e ≤ a+, then ∃e · a and e|a = e · a.

Proof. Suppose that e ≤ a+, so that e|a is defined and is the unique element with
the properties e|a ≤ a and (e|a)+ = e. By Lemma 3.4(iii), we have ∃e ·a+. Then,
by Lemma 2.3, ∃e · a. Now, e · a ≤ a+ · a = a, and (e · a)+ = e, by Lemma 2.2.
Therefore, by uniqueness of the restriction, we have e|a = e · a. ¤

Despite this equality, we will find it useful to retain the notion of restriction
which is given in Definition 3.1, since this affords us the ability to make ‘unique-
ness’ arguments like the one used in the proof of this lemma—this is a method
which will appear many times in this paper. There will be other occasions, how-
ever, when it will be more useful to consider the restriction as a product; we will
switch between the two viewpoints as appropriate.

We next remark a property of ordered constellations which is reminiscent of
the ‘left ample identity’:

Lemma 3.6. Let P be an ordered constellation and let s ∈ P , e ∈ E. Then
(s|e)+|s = (s|e)+ · s = s|e.

Proof. We first observe that the restriction (s|e)+|s is defined, since s|e ≤ s,
hence (s|e)+ ≤ s+. This is the unique element x ∈ P such that x ≤ s and
x+ = (s|e)+. Observe, however, that s|e has these properties itself. Therefore,
(s|e)+|s = s|e, by uniqueness of restrictions. By Lemma 3.5, we can rewrite this
as (s|e)+ · s = s|e. ¤

We now record the following lemma for use in a later section:

Lemma 3.7. In an ordered constellation P , if ∃x · y, then

(x · y)|e =
(
x|(y|e)+

)
· (y|e).

Proof. Suppose that ∃x · y. Then

(
x|(y|e)+

)
· (y|e) =

[(
x|(y|e)+

)+
· x

]
·
(
(y|e)+ · y

)
, by Lemma 3.6

=
[((

x|(y|e)+
)+

· x
)
· (y|e)+

]
· y, by (C1)

=
((

x|(y|e)+
)+

· x
)
· y, by (C4)

=
(
((x · y)|e)+ · x

)
· y, by (O5).
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Now, since ∃ ((x · y)|e)+ ·x and x ·y, we have ∃ ((x · y)|e)+ · (x ·y), by (C2). Then,
by (C1),

(
((x · y)|e)+ · x

)
· y = ((x · y)|e)+ · (x · y), hence

(
x|(y|e)+

)
· (y|e) = ((x · y)|e)+ · (x · y)

= (x · y)|e, by Lemma 3.6,

as required. ¤

We end this section by showing that the inductive constellations CX are canon-
ical in the sense that every inductive constellation sits inside one of the form
CX . For this to make sense, we now strengthen the notion of radiant to a type
of function between inductive constellations that is the analogue of an ordered
functor between inductive groupoids. We call these functions ordered radiants;
they appear in our analogue of Theorem 0.1.

Definition 3.8. Let ρ : P → Q be a radiant of ordered constellations P and Q.
We call ρ an ordered radiant if

(OR1) s ≤ t in P ⇒ sρ ≤ tρ in Q;
(OR2) (a|e)ρ = aρ|eρ, for all a ∈ P and all e ∈ E.

(Observe that (R1) and (OR1), together with the maximality of aρ|eρ, give us
(a|e)ρ ≤ aρ|eρ for free.)

An ordered radiant ρ : P → Q, where P and Q are inductive constellations,
is strong if it is strong as a radiant and, in addition, if sρ ≤ tρ, then s ≤ t.
Notice that a strong ordered radiant is necessarily injective; we refer to it as an
embedding.

Proposition 3.9. Let (P, · ,+ ,≤) be an inductive constellation. Then ρ : P → CP

is an embedding.

Proof. We know from Proposition 2.6 that ρ is a strong radiant.
Suppose that s, t ∈ P and s ≤ t; then by (O2) we have that s+ ≤ t+ so, by

Lemma 3.5, ∃s+ · t and s+ · t = s+|t. If x ∈ dom sρ, then ∃x · s, so that ∃x · s+

also. Moreover, since ∃s+ · t, we deduce that ∃(x · s+) · t = x · t, i.e., x ∈ dom tρ.
Next, using Lemma 3.4, we have

xρs = x · s = x · (s+|t) = x · (s+ · t) = (x · s+) · t = x · t = xρt,

whence sρ ≤ tρ.
On the other hand, if sρ ≤ tρ, then s = s+ · t so that, from Lemma 3.2 and

(I), we have
s+ = s+ · t+ = s+|t+ ≤ t+.

Now from (O1),
s = s+ · t ≤ t+ · t = t.

Suppose now that a ∈ P, e ∈ E; we wish to show that (OR2) holds. As
observed, (a|e)ρ ≤ aρ|eρ, so we need only argue that dom aρ|eρ ⊆ dom (a|e)ρ.
Suppose therefore that u ∈ dom aρ|eρ = dom (aρ)(eρ) where the latter product
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is in PT P . This tells us that ∃u · a and ∃(u · a) · e = u · a. It follows from (O5)
that

u+ = (u · a)+ = ((u · a)|e)+ = (u|(a|e)+)+.

From Lemma 3.4(ii), we deduce that u = u|(a|e)+, and ∃u · (a|e)+ by definition
of corestriction, whence finally ∃u · (a|e), by Lemma 2.3. Thus u ∈ dom (a|e)ρ,
as required. ¤

4. Correspondence

In this section, we will establish the connection between inductive constell-
ations and restriction semigroups. This result is a one-sided analogue of the ESN
Theorem for inductive groupoids, and the theorems of Armstrong and Lawson
for inductive cancellative categories and inductive (unipotent) categories, respec-
tively. We begin by taking a restriction semigroup and constructing from it an
inductive constellation.

Let S be a restriction semigroup with natural partial order relation ≤. We
define the restricted product · in S by

(4.1) a · b =

{
ab if ab+ = a;

undefined otherwise.

Proposition 4.1. If S is a restriction semigroup with natural partial order ≤
and unary operation +, then (S, · ,+ ,≤) is an inductive constellation. Conse-
quently, the semigroup and the constellation share the same distinguished set of
idempotents.

Proof. Let e be any idempotent of S (i.e., e is not necessarily in E). Then
ee+ = (ee+)+e = (ee)+e = e+e = e, so ∃e · e. Moreover, e · e = e. Thus, if e

is idempotent in S, then it is idempotent in (S, ·). Conversely, suppose that e

is an idempotent in (S, ·) (but not necessarily in E). Then ∃e · e and e · e = e,
hence ee = e in S. We have shown that S and (S, ·) have precisely the same
idempotents.

(C1) Suppose that ∃x · (y · z), i.e., yz+ = y and x(yz)+ = x. Then

xy+ = x(yz+)+ = x(yz)+ = x and (xy)z+ = xy,

hence ∃(x · y) · z.
(C2)(⇒) This follows from the proof of (C1).
(C2)(⇐) Suppose that ∃x · y and ∃y · z, i.e., xy+ = x and yz+ = y. Then

x(yz)+ = x(yz+)+ = xy+ = x,

hence ∃x · (y · z).
(C3) For each x ∈ S, there is a left identity x+ ∈ E, where + is defined as

in the original semigroup. For, as x+x+ = x+ we have ∃x+ · x and x+ · x = x.
Suppose now that there is another e ∈ E with ∃e · x and e · x = x. Since ∃e · x,
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we have ex+ = e. But x R̃E x+ so we deduce from ex = x that ex+ = x+. Thus
e = x+. Hence every x ∈ S has a unique left identity x+ in E.

(C4) If ∃a · g, then ag+ = a, by definition of the restricted product. Thus
a · g = ag = ag+ = a.

The constellation also inherits properties (O1)-(O5) and (I) from the original
restriction semigroup. Properties (O1) and (O2) are immediate from the com-
ments following Lemma 1.2.

(O3) Put e|a = ea. Then e|a ≤ a and (e|a)+ = (ea)+ = (ea+)+ = ea+ = e,
since e ≤ a+.

Suppose now that there is another element x ∈ S with these properties. From
x ≤ a and x+ = e, we have x = x+a = ea. The restriction is therefore unique.

(O4) Put a|e = ae. Then a|e ≤ a, since ae = (ae)+a ≤ a, and (a|e)e+ = aee =
ae = a|e, so ∃(a|e) · e.

Now suppose that x is another element with the properties x ≤ a and ∃x · e,
so that xe = x. Then x = xe ≤ ae, by compatibility of ≤. Hence ae is the
maximum element with the specified properties.

(O5) Suppose that ∃x · y. We have
(
x|(y|e)+

)+
=

(
x(ye)+

)+
= (xye)+ = ((x · y)|e)+

.

(O6) The restriction e|f (where defined) and the corestriction e|f are both
equal to ef .

(I) This is true in the original restriction semigroup, with e∧f = ef = e|f . ¤

Notice that starting with the restriction semigroup PT X , the recipe given
in Proposition 4.1 gives the inductive constellation CX presented at the end of
Section 2.

Our next aim is to prove a converse to Proposition 4.1; we must start with an
inductive constellation and construct a restriction semigroup. Let (P, · ,+ ,≤) be
such a constellation. We define the pseudoproduct ⊗ on P by

(4.2) a ⊗ b = (a|b+) · b.

We know from (O4) that (a|b+) ·b+ is always defined. Then, using Lemma 2.3, we
deduce that (a|b+) · b is always defined, hence the pseudoproduct is everywhere
defined. From Lemma 3.2, we note that whenever the product in the constellation
is defined, it coincides with the pseudoproduct. Furthermore:

Lemma 4.2. The pseudoproduct ⊗ is compatible with ≤ in P .

Proof. Let a, b, c, d ∈ P and suppose that a ≤ c and b ≤ d. We have a|b+ ≤ c|b+,
by Lemma 3.4(vi). We also have c|b+ ≤ c|d+, by (O2) and Lemma 3.4(v), hence
a|b+ ≤ c|d+. We therefore deduce from (O1) that

a ⊗ b = (a|b+) · b ≤ (c|d+) · d = c ⊗ d,

as required. ¤
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We have the following converse of Proposition 4.1:

Proposition 4.3. If (P, · ,+ ,≤) is an inductive constellation, then
(P,⊗,+ ) is a restriction semigroup, where ⊗ is the pseudoproduct of (4.2). More-
over, the natural partial order of the restriction semigroup (P,⊗,+ ) and of the
constellation (P, · ,+ ,≤) coincide.

Proof. Let E be the distinguished subset of idempotents of P . We begin by
showing that E forms a semilattice with respect to ⊗. Let e ∈ E, so that ∃e · e
with e · e = e and e+ = e. Then e⊗ e = e · e = e, since · and ⊗ coincide whenever
· is defined. Now let f ∈ E also. We have

e ⊗ f = (e|f+) · f = (e|f) · f = (e ∧ f) · f, by (I)

= e ∧ f, by (C4)

= f ∧ e = . . . = f ⊗ e.

We show that ⊗ is associative. On the one hand we have

a ⊗ (b ⊗ c) = a ⊗
(
(b|c+) · c

)

=
[
a|

(
(b|c+) · c

)+
]
·
[
(b|c+) · c

]

=
[
a|(b|c+)+

]
·
[
(b|c+) · c

]
, by Lemma 2.2,

=
{[

a|(b|c+)+
]
· (b|c+)

}
· c, by (C1),

whilst on the other, we have

(a ⊗ b) ⊗ c =
[
(a|b+) · b

]
⊗ c

=
[(

(a|b+) · b
)
|c+

]
· c.

Discarding the right-hand factors of c, it is sufficient to show that
[
a|(b|c+)+

]
· (b|c+) =

(
(a|b+) · b

)
|c+.

By Lemma 3.7,
(
(a|b+) · b

)
|c+ =

(
(a|b+)|(b|c+)+

)
· (b|c+).

However, b|c+ ≤ b so (b|c+)+ ≤ b+. Therefore, by Lemma 3.4(v),

(a|b+)|(b|c+)+ = a|(b|c+)+,

whence (
(a|b+) · b

)
|c+ =

[
a|(b|c+)+

]
· (b|c+).

Thus ⊗ is associative.
We now show that a+ R̃E a in (P,⊗,+ ), where + is defined as in the original

constellation. Firstly, a+ is a left identity for a:

a+ ⊗ a = (a+|a+) · a = a+ · a = a,

by Lemma 3.4(iii). Now suppose that e ⊗ a = a, for some e ∈ E:

e ⊗ a = a ⇒ (e|a+) · a = a ⇒ e|a+ = a+.
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Then, using (C4),
e ⊗ a+ = (e|a+) · a+ = e|a+ = a+.

Hence a+ R̃E a.
We show that the left ample identity holds:

(a ⊗ e)+ ⊗ a = ((a|e) · e)+ ⊗ a = (a|e)+ ⊗ a =
(
(a|e)+|a+

)
· a.

Observe, however, that a|e ≤ a, so (a|e)+ ≤ a+, whence (a|e)+|a+ = (a|e)+, by
Lemma 3.4(iii). We then have

(a ⊗ e)+ ⊗ a = (a|e)+ · a

= a|e, by Lemma 3.6

= (a|e) · e, by (O4) and (C4)

= a ⊗ e,

hence the left ample identity holds.

We next show that R̃E is a left congruence. Suppose that a R̃E b (so that
a+ = b+) and c ∈ S. Then

(c ⊗ a)+ = [(c|a+) · a]+ = (c|a+)+, by Lemma 2.2

= (c|b+)+, since a+ = b+

= [(c|b+) · b]+ = (c ⊗ b)+

Hence c ⊗ a R̃E c ⊗ b.
We finally confirm that the ordering ≤ in the original inductive constellation

becomes the usual ordering of the restriction semigroup (P,⊗,+ ). Suppose that
a ≤ b in the constellation (P, · ,+ ,≤). By Lemma 3.4(i), a = a+|b. Then, using
Lemma 3.5, we have a = a+ · b = a+ ⊗ b in the semigroup (P,⊗,+ ).

Now suppose that a ≤ b in (P,⊗,+ ), so that a = e ⊗ b, for some idempotent
e ∈ E. Then

a = e ⊗ b = (e|b+) · b = (e ∧ b+) · b.

We have e ∧ b+ ≤ b+ in the constellation, and so a ≤ b+ · b = b in (P, · ,+ ,≤).
Thus (P, · ,+ ,≤) and (P,⊗,+ ) have the same ordering. ¤

Let S be a restriction semigroup. We will denote the inductive constellation
associated to S by P(S). Similarly, if P is an inductive constellation, then we
will denote its associated restriction semigroup by T(P ).

Proposition 4.4. Let S be a restriction semigroup and P be an inductive con-
stellation. Then T(P(S)) = S and P(T(P )) = P .

Proof. Let the operation in S be denoted by juxtaposition. By Proposition 4.1,
P(S) is an inductive constellation under the restricted product:

a · b =

{
ab if ab+ = a;

undefined otherwise.
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Further, in P(S), the unary operation of + coincides with that of S, e|a = ea,
a|e = ae and e ∧ f = ef .

We now construct T(P(S)) by defining the pseudoproduct:

a ⊗ b = (a|b+) · b.

By Proposition 4.3, T(P(S)) is a restriction semigroup under ⊗. It is clear that
S and T(P(S)) share the same underlying set. Observe further that

a ⊗ b = (a|b+) · b = (ab+) · b = (ab+)b = ab,

so the operations in S and T(P(S)) are the same. Hence S = T(P(S)).
We turn now to the second part of the proposition. Let · denote the operation

in P . We construct the restriction semigroup T(P ) by defining the pseudoproduct
⊗ of (4.2).

We next define the restricted product:

a ¯ b =

{
a ⊗ b if a ⊗ b+ = a

undefined otherwise

=

{
(a|b+) · b if (a|b+) · b+ = a

undefined otherwise

=

{
(a|b+) · b if a|b+ = a

undefined otherwise

= a · b,

from Lemma 3.2. We know that P(T(P )) is an inductive constellation under ¯,
and we see that ¯ and · coincide.

It is again clear that P and P(T(P )) share the same underlying set. From
Propositions 4.1 and 4.3, P and P(T(P )) share the same partial order and oper-
ation of +. We must now show they have the same restriction and corestriction.

Let ‘|’ denote restriction and corestriction in P , and ‘‖’ denote the same in
P(T(P )). We then have

a‖e = a ⊗ e = (a|e) · e = a|e,

by (C4) in P .
We now consider the restriction. Let e ∈ E be such that e ≤ a+, for some

a ∈ P(T(P )). Then from Lemma 3.5,

e‖a = e ¯ a = e · a = e|a.

Thus P = P(T(P )). ¤

We now proceed to establish a category-theoretic correspondence between in-
ductive constellations and restriction semigroups. Clearly:

Proposition 4.5. The class of inductive constellations, together with ordered
radiants, forms a category.
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We can show that an ordered radiant ρ automatically satisfies a condition dual
to (OR2):

Lemma 4.6. Let ρ : P → Q be an ordered radiant of ordered constellations P

and Q. Then (e|a)ρ = eρ|aρ, for a ∈ P and e ∈ E with e ≤ a+.

Proof. If e ≤ a+, then eρ ≤ a+ρ = (aρ)+, so the restriction eρ|aρ is defined.
We note that eρ|aρ is the unique element x of Q with the properties x ≤ aρ

and x+ = eρ. Observe however that (e|a)ρ ≤ aρ, by (OR1), and that (e|a)ρ+ =
(e|a)+ρ = eρ. Therefore, by uniqueness, (e|a)ρ = eρ|aρ. ¤

The following further property of ordered radiants will prove useful very shortly:

Lemma 4.7. Let ρ : P → Q be an ordered radiant of inductive constellations P

and Q. Then ρ preserves pseudoproducts.

Proof. Let s, t ∈ P . Then

(s ⊗ t)ρ =
(
(s|t+) · t

)
ρ = (s|t+)ρ · (tρ), by (R1)

= (sρ|t+ρ) · (tρ), by (OR2)

=
(
sρ|(tρ)+

)
· (tρ), by (R2)

= (sρ) ⊗ (tρ),

as required. ¤

An ordered radiant between inductive constellations is analogous to a (2,1)-
morphism between restriction semigroups. We will make this statement more
precise via the following pair of propositions:

Proposition 4.8. Let ρ : P → Q be an ordered radiant of inductive constellations
P and Q. We define T(ρ) := ρT : T(P ) → T(Q) to be the same function on the
underlying sets. Then ρT is a (2,1)-morphism between the restriction semigroups
T(P ) and T(Q).

Proof. We have (aρT)+ = (aρ)+ = a+ρ = a+ρT. It follows from Lemma 4.7 that
ρT preserves pseudoproducts. ¤

Proposition 4.9. Let ϕ : S → T be a (2,1)-morphism between restriction semi-
groups S and T . We define P(ϕ) := ϕP : P(S) → P(T ) to be the same function
on the underlying sets. Then ϕP is an ordered radiant between the constellations
P(S) and P(T ).

Proof. Suppose that ∃s · t in P(S), so that st+ = s in S. Then

(sϕ)(tϕ)+ = (sϕ)(t+ϕ) = (st+)ϕ = sϕ

in T , so ∃(sϕ) · (tϕ) in P(T ), and

(sϕP) · (tϕP) = (sϕ) · (tϕ) = (sϕ)(tϕ) = (st)ϕ = (s · t)ϕP.
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It is clear that ϕP preserves + and order, since these are unchanged in the
passage from semigroups to constellations.

Finally, we have

aϕP|eϕP = aϕ|eϕ = (aϕ)(eϕ) = (ae)ϕ = (a|e)ϕP,

as required. ¤

The following result is easy to see, given Propositions 4.8 and 4.9.

Proposition 4.10. Let ϕ : S → T be a (2,1)-morphism of restriction semigroups
and ρ : P → Q be an ordered radiant of inductive constellations. Then T(P(ϕ)) =
ϕ and P(T(ρ)) = ρ.

We can now gather together the results of Propositions 4.1, 4.3, 4.4, 4.8, 4.9
and 4.10 into the following theorem, which is our promised analogue of Theo-
rem 0.1.

Theorem 4.11. The category of restriction semigroups and (2,1)-morphisms is
isomorphic to the category of inductive constellations and ordered radiants.

It is illustrative to revist Proposition 3.9 in the light of the above. Let
(P, ·,+ ,≤) be an inductive constellation. From Theorem 6.2 of Gould (2007),
a result originally due to Trokhimenko (1973),

ν : T(P ) → PT T(P ) = PT P , s 7→ νs

is an embedding, where
dom νs = P ⊗ s+

and for each x ∈ dom νs,
xνs = x ⊗ s.

From Proposition 4.9,

νP : P(T(P )) → P(PT P ) = CP

is an ordered radiant, where νP is the same function as ν on the underlying sets;
clearly νP remains injective. We claim that ν = νP coincides with ρ as introduced
in Proposition 2.6. Let s ∈ P ; then

x ∈ dom νs ⇔ x ∈ P ⊗ s+

⇔ x = p ⊗ s+ for some p ∈ P

⇔ x = (p|s+) · s+ for some p ∈ P

⇔ x = p|s+ for some p ∈ P

⇔ ∃x · s+

⇔ ∃x · s
⇔ x ∈ dom ρs.

Moreover, for x ∈ dom νs = dom ρs,

xνs = x ⊗ s = (x|s+) · s = x · s = xρs.
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Hence νs = ρs so that ν = νP = ρ as required. However, Proposition 2.6 says
something rather stronger — that νP is a strong ordered radiant.

5. Some special cases

We end this article by briefly describing the inductive constellations that cor-
respond to some special classes of restriction semigroups.

Our first result is immediate.

Corollary 5.1. The category of weakly left ample semigroups and (2, 1)-morph-
isms is isomorphic to the category of replete inductive constellations and ordered
radiants.

At the other extreme, we consider the case where |E| = 1. It is clear that
a category with one object is a monoid; we see that the analogous situation
holds for inductive constellations. First, let M be a restriction semigroup with
distinguished semilattice E = {1}. Since a+ = 1 for any a ∈ M , it is clear that
1 is a left identity for M ; further, for any a ∈ M we have that

a 1 = (a 1)+a = 1 a = a,

so that M is a monoid with identity 1. It follows that in P(M), multiplication
is everywhere defined and coincides with that of M . It is easy to see that any
monoid is a restriction semigroup with trivial distinguished semilattice {1}, the
natural partial order is equality, and a (2, 1)-morphism between monoids regarded
as restriction semigroups with trivial distinguished semilattices coincides with a
monoid morphism.

On the other hand, let P = (P, · ,+ ,≤) be an inductive constellation with
trivial distinguished subset {1}. Then T(P ) is a restriction semigroup with trivial
distinguished semilattice {1}, so that from the above, multiplication in P =
P(T(P )) is everywhere defined and hence coincides with that of T(P ); further,
P is a monoid, and ≤ is equality. Moreover, it is now clear from (O4) that for
any a ∈ P , a|1 = a. Consequently, an ordered radiant between two inductive
constellations having trivial distinguished subsets is the same thing as a monoid
morphism.

Corollary 5.2. The category of restriction semigroups having trivial distinguished
semilattices and (2, 1)-morphisms coincides with the category of monoids and
monoid morphisms, and also with the category of inductive constellations having
trivial distinguished subsets and ordered radiants.

We now turn our attention to left ample semigroups. We say that an inductive
constellation P is right cancellative if for any a, b, c ∈ P , if ∃b · a, ∃c · a and
b · a = c · a, then b = c. Note that a right cancellative inductive constellation is
necessarily replete.
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Corollary 5.3. The category of left ample semigroups and (2, 1)-morphisms is
isomorphic to the category of inductive right cancellative constellations and or-
dered radiants.

Proof. Let S be a left ample semigroup. Then S is weakly left ample, so that
P(S) is an inductive constellation. Suppose now that in P(S), ∃b · a,∃c · a and
b · a = c · a. It follows that in S, ba = ca, b = ba+ and c = ca+. Since aR∗ a+ we
have that

b = ba+ = ca+ = c,

so that P(S) is right cancellative.
Conversely, suppose that P is an inductive right cancellative constellation; we

know that T(P ) is weakly left ample; it remains to show that R∗ = R̃ in T(P ).
Suppose then that a, b, c ∈ P and b ⊗ a = c ⊗ a. Hence

(b|a+) · a = (c|a+) · a,

and so b|a+ = c|a+ since P is right cancellative. Consequently,

b ⊗ a+ = (b|a+) · a+ = b|a+ = c|a+ = (c|a+) · a+ = c ⊗ a+.

It follows that aR∗ a+ and it is then clear that R̃ = R∗ as required. ¤

Finally we define an inductive constellation P to have right inverses if, for any
a ∈ P , there exists ā ∈ P with ∃a · ā and a · ā = a+. It is easy to see that if
P has right inverses then it is right cancellative, and hence replete. We remark
that any semigroup morphism between inverse semigroups preserves the unary
operation of inverse, hence also that of a 7→ a+ = aa−1.

Corollary 5.4. The category of inverse semigroups and semigroup morphisms
is isomorphic to the category of inductive constellations with right inverses and
ordered radiants.

Proof. Let S be an inverse semigroup. Certainly P(S) is an inductive constella-
tion. Let a ∈ P ; then (a−1)+ = a−1a and in S, a(a−1)+ = a. Consequently, in P ,
we have that ∃a · a−1 and a · a−1 = aa−1 = a+.

Conversely, suppose that P is an inductive constellation with right inverses.
Then T(P ) is a weakly left ample semigroup, hence in particular, E(T(P )) is a
semilattice. Let a ∈ T(P ). In P we know there is an element ā such that ∃a · ā
and a · ā = a+. We therefore have ∃(a · ā) · a = a+ · a = a. Recall that if u · v is
defined in P , then u · v = u ⊗ v. Consequently, a = a ⊗ ā ⊗ a in T(P ) so that
T(P ) is regular, hence inverse, thus completing the proof. ¤
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Izv. Vysš. Učebn. Zaved. Matematika 4(95):91-102 (Russian).
Schein, B. M. (1970b). Relation algebras and function semigroups. Semigroup

Forum 1:1-62.
Schweizer, B., Sklar, A. (1960). The algebra of functions. Math. Ann. 139:366-382.
Schweizer, B., Sklar, A. (1961). The algebra of functions II. Math. Ann. 143:440-

447.
Schweizer, B., Sklar, A. (1965). The algebra of functions III. Math. Ann. 161:171-

196.
Schweizer, B., Sklar, A. (1967). Function systems. Math. Ann. 172:1-16.
Trokhimenko, V. S. (1973). Menger’s function systems. Izv. Vysš. Učebn. Zaved.
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Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-

003 Lisboa, Portugal

E-mail address: cdh500@cii.fc.ul.pt


