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Abstract	26	

	27	

Restriction	site-associated	DNA	sequencing	(RADseq)	provides	researchers	with	28	

the	 ability	 to	 record	 genomic	 polymorphism	 across	 thousands	 of	 loci	 for	 non-29	

model	 organisms,	 with	 the	 potential	 to	 revolutionise	 the	 field	 of	 molecular	30	

ecology.	 However,	 as	 with	 other	 genotyping	 methods,	 RADseq	 is	 prone	 to	31	

different	 sources	 of	 error	 that	 may	 have	 consequential	 effects	 for	 population	32	

genetic	 inferences,	 and	 that	have,	 as	yet,	 received	 limited	attention	 in	terms	of	33	

the	estimation	and	reporting	of	genotyping	error	rates.	Here,	we	rely	on	sample	34	

replicates,	 under	 the	 expectation	 of	 genotype	 identity,	 to	 quantify	 genotyping	35	

error	in	the	absence	of	a	reference	genome.	We	then	use	sample	replicates	to	(1)	36	

optimize	 de	 novo	 assembly	 parameters	 of	 the	 program	 Stacks,	 by	 minimizing	37	

error	 and	maximizing	 the	 retrieval	 of	 informative	 loci,	 and;	 (2)	 quantify	 error	38	

rates	for	loci,	alleles	and	SNPs.	As	an	empirical	example	we	use	a	double	digest	39	

RAD	 dataset	 of	 a	 non-model	 plant	 species,	Berberis	alpina,	 sampled	 from	high	40	

altitude	mountains	of	Mexico.	41	

	42	

Introduction	43	

	44	

Restriction	 site-associated	 DNA	 sequencing	 (RADseq)	 is	 a	 genotyping	 method	45	

created	by	Baird	et	al.	(2008),	it	provides	a	reduced	representation	of	a	genome	46	

from	 which	 it	 is	 possible	 to	 analyse	 variation	 in	 DNA	 sequences.	 It	 has	47	

subsequently	developed	into	a	family	of	related	approaches	(reviewed	by	Davey	48	

et	 al.	 2011)	 that	 allow	 subsampling	 of	 a	 genome	 at	 putatively	 homologous	49	

locations	 across	 many	 individuals	 to	 identify	 and	 type	 single	 nucleotide	50	
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polymorphisms	(SNPs)	in	short	DNA	sequences.	These	approaches	apply	to	non-51	

model	organisms,	 regardless	of	 genome	size	and	previous	genomic	knowledge,	52	

and	thousands	of	 loci	 for	hundreds	of	 individuals	can	potentially	be	sequenced	53	

rapidly	and	at	low	cost.	As	a	result,	RADseq	is	increasingly	being	used	across	the	54	

spectrum	 of	 evolutionary	 analysis,	 ranging	 from	 phylogenetic	 relationships	55	

within	 a	 genus	 (e.g.	 Jones	 et	 al.	 2013),	 to	 genome	wide	 association	 studies	 to	56	

identify	of	 regions	under	selection	 (e.g.	Hohenlohe	et	al.	 2010;	Parchman	et	al.	57	

2012;	 Richards	 et	 al.	 2013),	 through	 to	 ecological	 and	 conservation	 studies	58	

(Narum	et	al.	2013).	 	59	

Although	the	validity	of	RADseq	data	has	been	demonstrated,	the	method	60	

suffers	 from	 genotyping	 errors,	 as	 all	 molecular	 markers	 do	 to	 some	 degree.	61	

RADseq	is	prone	to	both	technical	and	human	sources	of	error	(Table	1),	similar	62	

to	 some	 types	 of	 error	 that	 have	 been	 identified	 for	 other	molecular	markers	63	

(e.g.	Bonin	et	al.	2004)	and	inferences	from	next	generation	sequencing	(Pool	et	64	

al.	2010;	Gompert	&	Buerkle	2011).	Wet	lab	procedures,	parallel	sequencing	and	65	

the	 properties	 of	 the	 species	 genome	 also	 contribute	 to	 error	 in	 several	ways	66	

(Table	1),	leading	to	variance	in:	(a)	the	total	reads	per	individual	in	a	pool;	(b)	67	

the	number	of	loci	represented	in	each	individual;	(c)	the	read	count	of	a	locus;	68	

and	(d)	the	read	counts	of	alternative	alleles	at	polymorphic	loci	(Hohenlohe	et	69	

al.	2012).	For	example,	differences	in	amplification	success	during	the	PCR	step	70	

may	 lead	 to	 variation	 of	 depth	 of	 coverage	 among	 loci	 and	 individuals,	71	

potentially	causing	locus	or	allele	dropouts	(Supporting	Information	1).		72	

The	 consequences	 and	 statistical	 ways	 to	 account	 for	 error	 have	 been	73	

widely	 discussed	 for	 several	 other	 molecular	 makers,	 from	 AFLPs	 and	74	

microsatellites	(Bonin	et	al.	2004;	Pompanon	et	al.	2005;	Price	&	Casler	2012)	to	75	
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whole-genome	sequence		inferences	(Pool	et	al.	2010;	Gompert	&	Buerkle	2011).	76	

Error	can	lead	to	incorrect	biological	conclusions,	such	as	an	artificial	excess	of	77	

homozygotes	 (Taberlet	 et	 al.	 1996),	 false	 departure	 from	 Hardy–Weinberg	78	

equilibrium	(Xu	et	al.	 2002),	overestimation	of	 inbreeding	 (Gomes	et	al.	 1999),	79	

unreliable	 inferences	 about	 population	 structure	 (Miller	 et	 al.	 2002),	 wrong	80	

estimations	 of	 nucleotide	 diversity	 and	 incorrect	 inferences	 from	 the	 allele	81	

frequency	 spectrum,	 such	 as	 demographic	 expansion	 from	 the	 confounding	82	

influence	 of	 low	 frequency	 error-derived	 SNPs	 (Pool	 et	 al.	 2010).	 These	83	

potentially	 inaccurate	 inferences	 can	 be	 mitigated	 and	 accounted	 for	 if	 error	84	

rates	are	 	 reported	 (Bonin	et	al.	 2004;	Pompanon	et	al.	 2005;	Pool	et	al.	 2010;	85	

Davey	 et	 al.	 2011;	 Price	 &	 Casler	 2012)	 or	 incorporated	 into	 data	 analysis	86	

(Gompert	 &	 Buerkle	 2011;	 Gautier	 et	 al.	 2013a).	 This	 is	 important	 for	 the	87	

robustness	 of	 any	 study	 and	 meta-analysis.	 However,	 the	 quantification	 and	88	

reporting	 of	 such	 errors	 has	 been	 largely	 overlooked	 by	 most	 recent	 RAD	89	

studies.	90	

In	 addition	 to	 errors	 introduced	 during	 wet	 lab	 and	 sequencing	91	

procedures,	 errors	 arise	 during	 the	 bioinformatic	 processing	 of	 RADseq	 data	92	

(Table	1).	For	instance,		when	RAD	sequences	are	assembled	into	loci	and	alleles,	93	

often	using	distance-based	criteria,	genotyping	results	will	vary	according	to	the	94	

algorithm	used	(Davey	et	al.	2013)	(note	that	we	refer	to	a	locus	as	a	short	DNA	95	

sequence	 produced	 by	 clustering	 together	 unique	 RAD	 alleles;	 in	 turn,	 alleles	96	

differ	 from	 each	 other	 by	 small	 number	 of	 SNPs).	 Several	 assembly	 and	97	

genotyping	 tools	 have	 been	 recently	 released	 to	 handle	 RADseq	 data,	 such	 as	98	

RaPiD	 (Willing	et	al.	2011),	RADtools	 (Baxter	et	al.	2011),	graph-based	distance	99	

clustering	approaches	(Peterson	et	al.	2012),	Stacks	(Catchen	et	al.	2011,	2013),	100	
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Rainbow	 (Chong	et	al.	2012)	and	pyRAD	(Eaton	2013).	 It	 is	 to	be	expected	that	101	

different	 parameters	 and	 settings	 within	 a	 given	 tool	 will	 result	 in	 different	102	

levels	 of	 assembly-related	 error.	 For	 instance,	 Stacks	 relies	 on	 a	 set	 of	 core	103	

parameters	(summarized	in	Table	2)	to	create	sets	of	short-read	sequences	that	104	

match	(i.e.	stacks)	and	then	to	curate	and	assemble	them	into	genotyped	loci	per	105	

individual.	Catchen	et	al.	(2013)	have	explored	how	variation	in:	1)	the	minimum	106	

number	of	raw	reads	required	to	form	a	stack	(-m),	2)	the	mismatches	allowed	107	

between	 stacks	 (-M),	 3)	 the	 maximum	 stacks	 per	 locus	 parameter	 (-108	

max_locus_stacks)	 and	 4)	 modulating	 the	 assumed	 rate	 of	 sequencing	 errors	109	

(using	a	bounded	SNP	calling	model)	affect	 the	recovery	of	RAD	loci	within	the	110	

program.	 To	 do	 so,	 they	 ran	 the	 de	 novo	 pipeline	 using	 different	 parameter	111	

values	 and	 compared	 the	 results	 to	 the	 expected	 loci	 based	 on	 a	 reference	112	

genome.	 They	 concluded	 that	 the	 optimal	 values	 for	 these	 parameters	 will	113	

depend	 upon	 the	 polymorphism	of	 the	 genome	being	 analysed,	 the	 amount	 of	114	

sequencing	 error	 and	 the	 depth	 of	 sequencing	 performed.	 The	 authors	115	

recommend	to	test	a	range	of	parameter	values	in	order	to	optimize	the	analysis	116	

of	each	RADseq	dataset.	However,	their	strategy	to	asses	if	true	or	erroneous	loci	117	

were	 assembled	 involved	 a	 reference	 genome,	 so	 therefore	 alternative	 criteria	118	

are	need	for	taxa	where	such	reference	is	not	available.		119	

Here,	we	 show	 that	 sample	 replicates	 can	 be	 used	 not	 only	 to	 estimate	120	

error	 rates,	but	also	 to	optimize	 the	de	novo	assembly	of	RADseq	data.	This	 is	121	

particularly	 important	 for	 low	 coverage	 datasets,	 facilitating	 the	 recovery	 of	122	

more	loci	than	could	otherwise	be	reliably	achieved.	The	central	premise	is	that	123	

DNA	replicates	derived	 from	 the	 same	sample	 should	have	 the	same	genotype.	124	

Thus,	after	running	any	de	novo	assembly	pipeline	with	different	combinations	of	125	
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parameters,	one	can	evaluate	which	settings	optimise	 for	a	high	number	of	loci	126	

and	 low	 differences	 between	 replicate	 pairs	 (Supporting	 Information	 1).	 To	127	

demonstrate	this,	we	use	double-digest	RADseq	(Parchman	et	al.	2012;	Peterson	128	

et	 al.	 2012)	 data	 generated	 from	 populations	 of	 Berberis	 alpina,	 a	 non-model	129	

plant	 species	 growing	 in	 high	 altitude	 mountains	 of	 Mexico.	 We	 focus	 on	 the	130	

program	Stacks,	an	efficient	and	well	documented	 software	 that	 is	 increasingly	131	

being	used	by	molecular	ecologists,	but	 the	 same	principle	 could	be	applied	 to	132	

other	assembly	and	genotyping	tools	for	RADseq	data.				133	

	134	

Methods	135	

	136	

Study	system	and	sampling		137	

The	 example	 species	 of	 our	 analyses	 is	Berberis	 alpina	 (Zamudio	 2009a;	 b),	 a	138	

diploid	plant	with	a	probable	genome	size	of	between	0.5	to	1.83	Gbp	based	on	139	

values	 of	 related	 species	 (Rounsaville	 and	 Ranney,	 2010).	 Berberis	 alpina	140	

inhabits	 the	 Transmexican	 Volcanic	 Belt	 (TMVB),	 a	 biodiversity	 hotspot	 for	141	

temperate	forest	plant	species	(Rzedowski	1978;	Myers	et	al.	2000;	Calderón	de	142	

Rzedowski	&	Rzedowski	2005)	where	many	plants	are	rare	and	restricted	to	one	143	

or	a	few	mountain	tops	(Koleff	et	al.	2008).			144	

	 Berberis	alpina	was	sampled	in	the	TMVB	and	nearby	areas	of	the	Sierra	145	

Madre	 Oriental	 (SMOr)	 during	 September-October	 2010	 and	 April-May	 2011	146	

(Sampling	 localities:	 doi:XXXXXXX/dryad.XXXXXX).	 Populations	 were	 found	 in	147	

only	seven	locations	that	represent	the	known	distribution	of	the	species	within	148	

the	 TMVB	 (Fig.	 1).	 In	 the	mountain	 Cerro	 San	 Andrés,	 collected	 samples	were	149	

later	 identified	 as	 the	 closely	 related	 species	 B.	 moranensis	 based	 upon	150	
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morphological	differences	(Zamudio	pers.	com.),	but	were	retained	for	analysis.	151	

Fresh	 young	 leaves	 of	 6-25	 specimens	 per	 mountain	 (depending	 upon	152	

population	 sizes)	 were	 collected	 and	 kept	 on	 ice	 while	 transported	 to	 the	153	

molecular	 ecology	 laboratory	 within	 the	 Instituto	 de	 Ecología,	 Universidad	154	

Nacional	 Autónoma	 de	 México	 (UNAM).	 Herbarium	 specimens	 were	 prepared	155	

and	deposited	within	the	Herbario	Nacional	in	Mexico	City.	Berberis	pallida	and	156	

B.	trifolia	collected	 in	 the	TMVB	 in	October	2012	were	used	as	outgroups.	Half	157	

the	tissue	of	each	sample	was	stored	at	-80ºC	at	UNAM,	with	the	remainder	dried	158	

in	silica	gel	for	transport	to	the	University	of	East	Anglia	(UEA),	England	where	159	

samples	were	maintained	at	-20ºC	until	extraction.	Samples	were	collected	with	160	

SEMARNAT	permit	No.		SGPA/DGGFS/712/2896/10.	161	

	162	

Molecular	methods	163	

DNA	 extractions	 of	Berberis	alpina	 	 and	B.	moranensis	were	 performed	 at	UEA	164	

using	 the	Qiagen	DNeasy	 Plant	Mini	 Kit	 (69106).	DNA	 extractions	 of	 outgroup	165	

samples	were	performed	at	UNAM	using	a	CTAB	method	(Vázquez-Lobo,	1996)	166	

with	fresh	tissue.	Seventy-five	specimens	of	B.	alpina	and	B.	moranensis	(6-10	per	167	

population)	 plus	 three	 samples	 of	B.	 trifolia	 and	 three	 of	B.	 pallida	 (outgroup	168	

species)	 were	 used	 to	 prepare	 double	 digest	 RAD	 libraries	 (Parchman	 et	 al.	169	

2012;	 Peterson	 et	 al.	 2012)	 using	 the	 enzymes	 EcoRI-HF	 and	 MseI,	 T4	 DNA	170	

Ligase	 and	 Phusion	 Taq	 from	New	England	Biolabs.	 Supporting	 Information	 2	171	

contains	the	complete	lab	protocol,	including	reaction	mixes	and	quality	details	172	

of	 the	 sequencing.	 Individual	 DNA	 extracts	 were	 randomly	 divided	 into	 three	173	

groups	(BERL1,	BERL2,	BERL3),	each	corresponding	to	a	libraries	sequenced	in	174	

an	independent	lane.	Each	group	was	comprised	of	27	Berberis	sp.	samples	and	5	175	
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replicates	 for	a	 total	of	32	barcoded	(sequence	tagged)	 individuals.	For	each	of	176	

the	groups,	the	5	replicates	consisted	in	4	intra-library	(group)	replicates	and	1	177	

inter-library	replicate.	Replicates	had	the	same	DNA	source	but	were	treated	and	178	

barcoded	independently.	Replicates	were	chosen	randomly	but	included	at	least	179	

one	 replicate	 per	 outgroup	 and	 population.	Within	 each	 group	of	 32	 barcoded	180	

samples,	positions	on	PCR	plates	were	randomly	selected.	The	digestion,	ligation	181	

and	PCR	steps	were	performed	in	the	same	plate	for	the	three	groups.	Samples	of	182	

the	 same	 group	were	 then	 pooled	 together	 and	 the	 size	 selection	 for	 all	 three	183	

groups	was	performed	in	the	same	gel.	Each	of	the	three	groups	were	sequenced	184	

with	single-end	reads	(100bp	long),	in	a	separate	lane	of	an	Illumina	HiSeq2000	185	

with	 the	 service	 provided	 by	 the	 Lausanne	 Genomic	 Technologies	 Facility,	186	

Switzerland.		187	

	188	

Basic	quality	filtering	and	general	bioinformatics	pipeline	189	

All	 raw	reads	were	 trimmed	 to	 84bp	 because	a	 considerable	 quality	 drop	was	190	

found	in	the	subsequent	positions	of	BERL3.	Quality	filtering	and	demultiplexing	191	

were	 performed	 with	 a	 custom	 PerL	 script	 equivalent	 to	 the	 Stacks	 program	192	

process_rad_tags	 (this	 custom	 script	was	 developed	 prior	 to	 the	 release	 of	 the	193	

update	 of	 process_rad_tags	 that	 allows	 for	 single-end	 double	 digested	 data).	194	

Demultiplexed	data	was	then	de	novo	 assembled	and	genotyped	using	Stacks	v.	195	

1.01	 (Catchen	 et	al.	 2013),	 first	 with	 the	 default	 settings	 and	 all	 samples	 as	 a	196	

exploratory	 run,	 and	 then	 with	 the	 settings	 and	 subset	 of	 samples	 described	197	

below	 for	 the	 experiments:	 (i)	 exploratory	 analysis	 of	 Stacks	 assembly	 key	198	

parameters	 and	 SNP	 calling	 model	 using	 replicates,	 and;	 (ii)	 effect	 of	 using	199	

different	 parameters	 on	 the	 output	 information	 content	 and	 on	 the	 detection	 of	200	
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genetic	structuring.	Trimming,	demultiplexing	and	Stacks	de	novo	assembly	were	201	

performed	using	a	computer	cluster.	202	

	203	

Experiment	 1.	 Exploratory	 analysis	 of	 Stacks	 assembly	 key	 parameters	 and	 SNP	204	

calling	model	using	replicates	205	

We	 explored	 the	 effect	 on	 error	 rates	 and	 amount	 of	 loci	 recovered	 of	 using	206	

different	 de	 novo	 assembly	 conditions	 and	 SNP	 calling	 model	 settings	 within	207	

Stacks.	To	do	so	we	used	eleven	replicate	pairs	(those	of	the	15	replicated	pairs	208	

that	 yielded	 enough	 reads	 to	 have	 >50%	of	 the	mean	number	 of	 loci	 in	 a	 first	209	

exploratory	analyses	of	the	full	dataset)	to	run	Stacks	multiple	times	with	a	range	210	

of	parameter	values.	For	the	assembly,	the	following	key	parameters	were	tested	211	

with	 the	 values	 specified	 in	 parenthesis:	 the	 minimum	 number	 of	 raw	 reads	212	

required	to	form	a	stack	(–m	2	to	15),	the	number	of	mismatches	between	stacks	213	

when	 processing	 an	 individual�(-M	 2	 to	 10),	 mismatches	 between	 loci	 when	214	

building	the	catalog	(-n	0	to	5)	and	maximum	stacks	per	locus	(–max_locus_stacks	215	

2	 to	6),	 varying	only	one	parameter	at	 a	 time,	 and	 fixing	 the	 rest	 to	m=3,	M=2,	216	

n=0	 and	 max_locus_stacks=3.	 The	 value	 of	 –N	 was	 always	 defined	 as	 M+2.	217	

Regarding	 the	 SNP	 calling	 model,	 we	 compared	 the	 default	 (where	 error	 rate	218	

varies	 freely)	 and	 the	 a	 bounded	model,	 testing	 also	 several	 values	 (0.5,	 0.25,	219	

0.15,	0.1,	0.05	and	0.0056)	for	the	upper	bound	(sequencing	error	upper	bound,	a	220	

parameter	 used	 by	 the	 bounded	model,	 Catchen	 et	al.	2013).	 Note	 that	 values	221	

>0.15	 represent	 high	 and	 unrealistic	 levels	of	 sequencing	 error.	The	minimum	222	

was	 set	 to	 0.0056	 because	 this	was	 the	 PhiX	 estimate	 of	 sequencing	 error	 for	223	

BERL3	(which	had	the	largest	sequencing	error	of	all	lanes)	at	cycle	100	(instead	224	

of	75	to	compensate	for	a	slight	quality	drop	at	80-84	bp).	As	for	the	rest	of	the	225	
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settings,	 three	 different	 minimum	 coverage	 values	 (m=3,	 4	 and	 10)	 were	226	

explored	and	the	remaining	of	the	parameters	were	set	to	the	values	considered	227	

to	 perform	 better	 in	 the	 assembly	 exploratory	 analyses	 (M=2,	 N=4,	 n=3,	228	

max_locus_stacks=3,	see	results).		229	

		 Outputs	were	 then	processed	as	detailed	 in	General	processing	of	Stacks	230	

outputs	 (see	below)	and	the	results	were	analysed	 in	R	v.	2.15.1	(R.	Core	Team	231	

2012)	to	estimate:	(1)	the	number	of	output	loci	and	SNPs;	(2)	locus,	allele	and	232	

SNP	error	rates	(as	defined	in	Error	rates,	see	below),	and;	(3)	Euclidean	distance	233	

matrices	among	 individuals	 to	build	neighbour	 joining	 (NJ)	dendrograms	 (as	a	234	

visual	way	to	examine	if	replicate	pairs	cluster	together,	as	would	be	expected).	235	

	 	236	

Experiment	2.	The	effect	of	parameter	 values	on	output	 information	 content	and	237	

the	detection	of	genetic	structuring	238	

To	 examine	 the	 effect	 of	 using	 different	Stacks	 settings	 on	 the	 full	 dataset	 (78	239	

specimens)	we	ran	Stacks	with	four	de	novo	parameter	profiles,	namely:	default,	240	

optimal,	 near	 optimal	 and	 high	 coverage.	 The	 default	 values	 were	m=3,	M=2,	241	

N=4,	 n=0,	 max_locus_stacks=3	 and	 the	 default	 SNP	 calling	 model.	 The	 other	242	

parameter	profiles	were	given	values	 that	provided	 the	highest	number	of	 loci	243	

and	SNPs	at	the	lowest	error	rates	in	the	exploratory	analysis	using	the	replicate	244	

pairs	(M=2,	N=4,	n=3,	max_locus_stacks=3	and	a	SNP	calling	model	with	an	upper	245	

bound	of	0.05,	see	results)	but	increasing	the	minimal	coverage:	m=3	(optimal),	246	

m=4	 (near	optimal)	 and	m=10	 (high	 coverage).	Note	 that	we	define	optimal	as	247	

the	profile	 that	performed	better	 in	 the	assembly	exploratory	analyses	 for	our	248	

data,	and	thus	optimal	parameter	values	will	vary	 for	other	RADseq	data.	Each	249	

parameter	 profile	 was	 used	 to	 run	 Stacks	 with	 all	 samples	 of	 B.	 alpina,	 B.	250	
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moranensis	 populations	 (75),	 the	 three	 samples	 of	 the	 closest	 outgroup	 (B.	251	

trifolia)	and	the	replicates	(14).		252	

	 Outputs	were	 then	processed	as	detailed	 in	General	processing	of	Stacks	253	

outputs,	 and	 locus,	 allele	 and	 SNP	 error	 rates	 (as	 defined	 in	Error	 rates)	were	254	

estimated	 for	 each	 profile.	 Afterwards,	 only	 one	 sample	 of	 each	 replicate	 pair	255	

was	 retained	 with	 the	 non-replicated	 samples	 to:	 (1)	 estimate	 an	 Euclidean	256	

distance	matrix	based	on	the	SNPs;	(2)	perform	a	principal	coordinates	analysis	257	

(PCoA);	 (3)	 normalize	 the	 distance	 matrix	 and	 extract	 the	 distances	 between	258	

individuals	of	the	same	population;	and	(4)	run	the	population	program	of	Stacks	259	

to	estimate	FST	between	population	pairs	using	only	samples	from	B.	alpina	and	260	

B.	moranensis		and	the	loci	present	in	80%	of	the	samples.	261	

	262	

General	processing	of	Stacks	outputs	263	

Stacks	outputs	 of	 experiments	 1	and	 2	were	 imported	 to	 a	 desktop	 computer,	264	

where	data	was	visualized	and	exported	as	allele	and	coverage	matrices.	These	265	

matrices	were	then	analysed	with	custom	R	scripts	to:	(1)	estimate	the	number	266	

of	 reads	 and	 coverage	 per	 locus,	 per	 individual	 and	 per	 lane;	 (2)	 filter	data	 to	267	

keep	only	those	samples	having	more	than	50%	of	the	mean	number	of	loci	per	268	

sample,	and	only	those	loci	present	in	at	least	80%	of	the	barcoded	samples;	and	269	

(3)	output	as	plink	 format	 the	 loci	 and	 samples	 that	passed	 the	previous	 filter.	270	

Further	analyses	were	performed	as	described	before	for	each	experiment.	271	

	272	

	273	

Error	rates	274	
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Replicate	pairs	were	used	 to	estimate	 three	error	 rates	using	 custom	R	scripts	275	

(github.com/AliciaMstt/RAD-error-rates):	 (1)	 locus	 error	 rates,	 corresponding	276	

to	missing	data	at	the	locus	level	and	measured	as	the	number	of	loci	present	in	277	

only	one	of	 the	samples	of	 a	 replicate	pair,	divided	by	 the	 total	number	of	 loci	278	

found;	 (2)	 allele	 error	 rate,	 calculated	 as	 the	 number	 of	 allele	 mismatches	279	

between	replicate	pairs,	divided	by	the	number	of	loci	being	compared;	and	(3)	280	

SNP	 error	 rate,	 measured	 as	 the	 proportion	 of	 SNP	 mismatches	 between	281	

replicate	pairs.		282	

	 Note	 that	 we	 refer	 to	 a	 locus	 as	 a	 short	 DNA	 sequence	 produced	 by	283	

clustering	together	unique	RAD	alleles;	in	turn,	alleles	differ	from	each	other	by	a	284	

small	number	of	SNPs.	We	define	a	missing	 locus	as	 that	absent	 in	at	 least	one	285	

sample	 of	 a	 replicate	 pair,	 but	 present	 in	 any	 other	 sample	 of	 the	 dataset.	 In	286	

addition	to	the	locus	error	rate,	we	further	examined	the	distribution	of	missing	287	

data	 within	 replicate	 pairs	 by	 estimating:	 (1)	 the	 number	 of	 missing	 loci	 per	288	

replicate	 pair;	 (2)	 the	 proportion	 of	 missing	 loci	 (number	 of	 missing	 loci	 per	289	

replicate	pair	over	 the	 total);	 and	 (3)	 the	percentage	of	missing	 loci	of	 a	 given	290	

sample	 replicate	 that	 were	 not	 the	 same	 missing	 loci	 in	 the	 other	 replicate	291	

(proportion	 of	 missing	 loci	 different	 within	 a	 replicate	 pair).	 Supporting	292	

Information	 1	 provides	 a	 diagram	detailing	 the	 differences	 between	 replicates	293	

estimated	here.		294	

	 The	 R	 scripts	 utilized	 here	 used	 the	 packages:	 adegenet_1.3-7	 (Jombart	295	

2008),	 ape_3.0-8	 (Paradis	 et	 al.	 2004),	 gtools_2.7.1	 (Warnes	 et	 al.	 2013),	296	

multicore_0.1-7	(Urbanek	2011)	and	stringr_0.6.2	(Wickham	2012).	All	custom	R	297	

and	 Perl	 scripts	 and	 Stacks	 jobs	 used	 in	 this	 study	 are	 available	 in	 Dryad	298	

repository.	doi:XXXXXXX/dryad.XXXXXX	299	
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	300	

Results	and	discussion	301	

	302	

RAD	sequencing	output	and	coverage	303	

An	average	of	1,632,914	 reads	per	sample	were	obtained	after	demultiplexing,	304	

with	 no	 major	 differences	 between	 lanes	 or	 populations.	 Full	 details	 of	305	

sequencing	 output	 are	 provided	 in	 Supporting	 Information	 2.	 In	 a	 first	306	

exploratory	 analysis	 (using	 Stacks	 default	 settings	 and	 post-filtering	 the	 data	307	

with	 the	 >50%	 and	 80%	 criteria	 described	 in	 the	 basic	 quality	 exploration	308	

section),	 fifteen	out	of	 the	96	samples	had	too	 few	reads	and	therefore	did	not	309	

pass	the	 filter	of	sharing	>50%	of	 the	mean	number	of	 loci	with	the	rest	of	 the	310	

samples.	Among	these	were	the	 interlibrary	replicate	sequenced	 in	 lane	BERL1	311	

(PeB01_ir1)	and	one	sample	of	a	replicate	pair	(MaB21).	Also,	a	strong	lane	effect	312	

associated	with	lane	BERL3	was	found.	Samples	sequenced	from	this	lane	were	313	

found	to	cluster	together	within	a	NJ	dendogram,	while	the	samples	from	BERL1	314	

and	BERL2	were	intermixed,	clustering	typically	by	geography.	The	source	of	the	315	

lane	effect	was	determined	to	be	a	single	SNP	found	in	position	70	of	many	reads,	316	

which	 was	 then	 identified	 as	 an	 artefact	 by	 the	 sequencing	 facility.	 Deleting	317	

position	70	in	all	the	demultiplexed	reads	removed	the	lane	effect.	318	

In	 general,	 mean	 coverage	 per	 locus	 was	 low	 (increasing	 the	 min.	319	

coverage	-m	from	3	to	10	produced	a	substantially	 lower	number	of	 loci,	Fig.	2	320	

and	Table	 3).	 Coverage	 is	 the	main	 filter	 to	 distinguish	 sequencing	 error	 from	321	

real	 variation.	However,	 if	 coverage	 is	 generally	 low,	 a	high	 filter	 threshold	 for		322	

coverage	 can	 lead	 to	 allele	 dropout,	 which	 in	 turn	 becomes	 genotyping	 error.	323	

Assembling	and	genotyping	a	low	coverage	RAD-seq	dataset	like	that	of	Berberis	324	
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is	thus	challenging,	and	may	lead	researchers	to	keep	only	a	small	fraction	of	the	325	

loci	and	alleles	 that	have	high	coverage	 for	all	samples	which,	as	shown	below,	326	

may	 not	 be	 the	 most	 reliable	 data.	 Many	 RADseq	 datasets	 may	 have	 low	327	

coverage,	particularly	for	species	for	which	exact	genome	size	is	unknown,	or	if	a	328	

study	 design	 aims	 for	 more	 individuals	 or	 loci	 to	 increase	 the	 accuracy	 of	329	

population	genetic	parameters	(Buerkle	&	Gompert	2013).	330	

	331	

Exploratory	analysis	of	Stacks	assembly	parameters	and	SNP	calling	model	using	332	

replicates	333	

We	ran	Stacks	with	11	replicate	pairs	(22	samples).	After	filtering	the	output	so	334	

that	 all	 samples	 shared	 >50%	 of	 the	 mean	 number	 of	 loci	 per	 sample,	 most	335	

assembly	parameter	profiles	 recovered	19-20	samples	and	only	 runs	with	n≥3	336	

recovered	all	22.	The	samples	that	were	not	recovered	for	some	of	the	parameter	337	

profiles	explored	for	Stacks	either	had	a	small	number	of	reads	relative	to	other	338	

samples,	 or	 belonged	 to	 the	 more	 distant	 outgroup	 (B.	 pallida,	 OutBs).	 These	339	

samples	did	not	share	>50%	of	 the	mean	number	of	 loci	with	the	remainder	of	340	

the	dataset	and	thus	were	excluded	by	the	filtering	step.	When	both	samples	of	a	341	

replicate	 pair	 passed	 filtering,	 they	 clustered	 together	 in	 the	 NJ	 dendogram	342	

(Supporting	 Information	 3),	with	 two	 exceptions:	 (1)	 the	 interlibrary	 replicate	343	

(PeB01)	pair	clustered	together	in	only	18	of	36	parameter	profiles	tested,	and	in	344	

the	remaining	analyses	it	formed	a	paraphyletic	group	with	other	samples	from	345	

the	same	population,	and	(2)	one	replicate	pair	(AjB21)	did	not	cluster	together	346	

in	 9	 occasions,	 clustering	 instead	with	 other	 populations.	Why	 only	 these	 two	347	

samples	were	affected	does	not	seem	to	be	related	to	their	number	of	reads,	so	348	

maybe	 it	 was	 due	 to	 contamination	 (AjB21)	 or	 a	 slight	 lane	 effect	 (PeB01).	349	
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Importantly,	the	parameter	profiles	at	which	incorrect	clustering	occurred	were	350	

high	values	 for	minimal	coverage	(-m)	and	the	number	of	mismatches	between	351	

loci	when	processing	an	 individual	(-M).	This	suggests	 that	setting	–m	too	high	352	

can	 lead	 to	 locus/allele	 dropout	 large	 enough	 to	 cause	 incorrect	 inferences	 of	353	

individual	 differentiation.	 Why	 setting	 -M	 to	 high	 values	 causes	 differences	354	

between	 replicates	 is	 less	 evident,	 but	 it	 is	 likely	 related	 to	 the	 formation	 of	355	

nonsensical	 loci	 (Catchen	 et	 al.	 2013).	 That	 not	 all	 replicates	 pairs	 clustered	356	

together	 indicates	 that	differentiation	among	 individuals	 should	be	 interpreted	357	

with	 care,	 and	 that	 this	 occurred	 only	with	 some	 parameter	 values	 highlights	358	

that	assembly	settings	can	be	tuned	to	minimize	differences	between	replicates.		359	

	 Across	all	the	explored	parameter	profiles,	the	number	of	loci	recovered	360	

ranged	from	~200	to	>5,000	(Fig.	2a),	the	number	of	SNPs	ranged	from	~200	to	361	

>8,000	 (Fig.	2b),	 and	 the	 total	number	of	missing	 loci	ranged	 from	50	 to	>500	362	

(Fig.	3a).	In	general	the	parameters	that	control	the	minimal	coverage	(-m)	and	363	

number	of	mismatches	allowed	between	loci	when	building	the	catalog	of	loci	(-364	

n)	contributed	most	to	the	variance	of	the	amount	of	data	(Fig.	2a)	and	missing	365	

loci	produced	(Fig.	3a	and	3b).		366	

	 A	 key	 source	 of	 variation	 between	 replicate	 pairs	 is	 that	 the	 identity	of	367	

most	 (>70%)	 of	 the	 missing	 loci	 in	 a	 given	 replicate	 is	 not	 the	 same	 in	 its	368	

corresponding	 pair	 (Fig.	 3c),	 which	 leads	 to	 a	 locus	 error	 rate	 typically	 >10%	369	

(Fig.	 3d)	 regardless	 of	 the	 parameter	 values	 used.	 As	 these	 differences	 are	370	

between	 samples	 from	 the	 same	 DNA	 source	 that	were	 processed	 together,	 it	371	

seems	that	stochastic	PCR	and	sequencing	sampling	events	are	the	main	source	372	

of	heterogeneous	coverage	among	loci.		373	

	 Allele	 error	 rates	 ranged	 from	 ~5%	 to	 >15%,	 depending	 on	 the	374	
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parameter	 profile	 used	 to	 execute	 Stacks	 (Fig	 4a).	 Allele	mismatches	 between	375	

replicates	can	be	caused	by	allelic	dropout,	or	by	the	acceptance	of	error-based	376	

variation	 during	 assembly.	 Similarly,	 the	 SNP	 error	 rate	 ranged	 from	 ~2%	 to	377	

12%	(Fig.	4b).		Again,	the	most	important	differences	were	related	to	changes	in	378	

–m	 and	–n.	 Increased	values	of	 –m	decreased	the	allele	error	 rate,	but	not	 to	a	379	

level	below	10%,	and	at	a	cost	of	yielding	fewer	loci.	Similarly,	the	SNP	error	rate	380	

was	reduced	from	~7%	at	n=0	to	~2.5%	at	n=3.		381	

	 The	parameter	–m	controls	the	total	number	of	raw	reads	per	sample	to	382	

create	a	stack,	so	the	higher	it	is	set,	the	lower	is	the	probability	that	there	will	be	383	

enough	reads	per	locus	to	assemble	an	allele.	Setting	-m	to	a	higher	value	could	384	

also	result	in	genuine	alleles	being	considered	as	secondary	reads	(reads	that	are	385	

not	 used	 to	 assemble	 reference	 alleles	 and	 that	 are	 set	 aside),	 and	 as	 a	386	

consequence	treated	as	sequencing	errors	(see	Stacks	documentation	for	further	387	

details).	For	the	Berberis	dataset,	the	danger	of	labelling	stacks	with	concurrent	388	

sequencing	errors	is	reduced	by	the	fact	that	the	data	was	run	in	three	different	389	

lanes	with	a	randomized	sample	design.	390	

	 The	 parameter	 –n	 modulates	 the	 maximum	 number	 of	 mismatches	391	

allowed	between	loci	when	building	the	catalog	(list	of	all	loci	and	alleles	in	the	392	

population	 created	 by	 Stacks).	 So,	 if	 n=0,	 there	 would	 be	 loci	 represented	393	

independently	 across	 individuals	 that	 are	 in	 reality	 homologous	 alleles	 of	 the	394	

same	 locus.	When	n>0,	Stacks	 uses	 the	 consensus	 sequence	 from	each	 locus	 to	395	

attempt	to	merge	 loci	(Stacks	documentation).	 Increasing	-n	may	have	resulted	396	

in	 significant	 error	 reduction	 for	 the	 Berberis	 data	 set	 because	 replicates	397	

involved	 samples	 from	 geographically	 isolated	 populations	 and	 outgroups,	398	

conditions	that	would	be	expected	to	result	in	loci	that	exhibit	fixed	differences	399	
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among	populations.	By	merging	 fixed	alleles	 into	a	 single	 locus	 the	allele	error	400	

rate	decreased,	probably	because	the	chances	of	assembling	the	same	true	alleles	401	

in	both	replicates	increased.	A	potential	negative	consequence	of	a	high	value	of	402	

–n	is	the	creation	of	erroneous	loci,	which	can	be	assembled	for	reasons	such	as	403	

the	acceptance	of	short	sequencing/PCR	error-based	stacks,	and	the	clustering	of	404	

repetitive	sequence	regions,	(Catchen	et	al.	2013).	However,	the	locus	error	rate	405	

did	not	vary	significantly	when	–n	varied	from	0	to	5	(Fig.	3d),	so	it	seems	that	406	

the	erroneous	loci	that	were	potentially	created	have	less	weight	than	the	error	407	

reduction	benefits	gained	from	increasing	the	value	of	–n.		408	

	 Regarding	the	SNP	calling	model,	reducing	the	upper	bound	increases	the	409	

chance	 of	 calling	 true	 heterozygous	 loci	 instead	 of	 wrongly	 labelling	 them	 as	410	

homozygous	 loci	with	 sequencing	 error	 (Catchen	 et	 al.	 2013).	For	 the	Berberis	411	

data,	 differences	 in	 genotyping	 errors	 were	 found	 only	 after	 decreasing	 the	412	

upper	 bound	 down	 to	 0.0056	 in	 the	 runs	 of	 m=3	 and	 m=4	 (Supporting	413	

Information	 4),	 such	 that	 the	 allele	 error	 rate	 decreased	 from	 >5%	 down	 to	414	

approximately	2.5%.		However,	this	increased	the	SNP	error	rate	from	~2.5	%	to	415	

7%.	Thus,	 for	 the	Berberis	dataset,	 it	seems	better	 to	 leave	 the	upper	bound	of	416	

the	 SNP	 calling	 model	 to	 a	 relatively	 high	 value.	 Finally,	 there	 were	 no	417	

differences	 in	 loci	 error	 rate	 between	 the	 SNP	 calling	 models	 (Supporting	418	

Information	4b).	419	

	 In	summary,	for	the	Berberis	dataset	the	parameter	values	that	seemed	to	420	

both	increase	the	number	of	loci	and	reduce	the	SNP	and	allele	error	rates	were	421	

m=3,	M=2,	N=4,	n=3,	max_locus_stacks=3	and	a	SNP	calling	model	with	an	upper	422	

bound	of	0.05.	423	

	424	
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Effect	 of	 using	 different	 parameters	 on	 the	 output	 information	 content	 and	 on	425	

detection	of	genetic	structuring	426	

The	four	combinations	of	Stacks	settings	(optimal,	near	optimal,	default	and	high	427	

coverage)	used	 to	process	 the	 full	dataset	differed	 in	 the	number	of	 recovered	428	

loci,	number	of	SNPs	and	error	rates	(Table	3).	Among	the	four	combinations,	the	429	

optimal	 profile	 generated	 the	 highest	 number	 of	 RAD-loci	 (6,292)	 and	 SNPs	430	

(11,057)	and	had	the	lowest	allele	(5.9%)	and	SNP	(2.4%)	error	rates,	although	431	

the	locus	error	rate	(17%)	was	high	(Table	3).	The	smallest	locus	error	rate	was	432	

found	with	the	high	coverage	setting	(8.8%,	Table	3),	but	this	parameter	profile	433	

produced	 the	 highest	 allele	 and	 SNP	 error	 rates	 (8.7%	 and	 5.7%	 respectively)	434	

and	the	smallest	number	of	loci	and	SNPs	(292	and	502,	Table	3).	435	

	 The	 SNP	 error	 rate	 is	 important	 for	 population	 genetic	 and	436	

phylogeographic	analyses.	If	SNP	error	is	high	within	a	given	dataset,	less	of	the	437	

observed	 genetic	 variation	would	 be	 explained	 by	 the	geographic	origin	 of	 the	438	

samples,	 and	 noise	 will	 contribute	 more	 to	 the	 genetic	 distance	 between	439	

individuals.	 From	 a	 drift-mutation-migration	 equilibrium	 perspective,	440	

individuals	sampled	from	the	same	geographic	region	should	be	expected	to	be	441	

genetically	more	 similar	 in	 datasets	with	 smaller	 SNP	 error	 rates.	 As	 a	 simple	442	

way	to	test	this,	the	genetic	distances	between	individuals	of	the	same	sampling	443	

locality	were	compared	among	the	four	combinations	of	Stacks	settings	explored	444	

here.	 As	 expected,	 the	 data	with	 the	 smallest	 SNP	 error	 rate	 (optimal	 profile)	445	

systematically	 produced	 shorter	 genetic	 distances	 between	 individuals	 of	 the	446	

same	sampling	 locality,	 if	 compared	 to	 the	other	 three	parameter	profiles	 (Fig.	447	

5).		448	

	 To	be	of	relevance	for	population	genetics	and	phylogeographic	analyses,	449	
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molecular	 markers	 must	 not	 only	 have	 minimal	 noise,	 but	 also	 provide	450	

meaningful	 variation	 (Zhang	 &	 Hare	 2012;	 Price	 &	 Casler	 2012).	 The	Berberis	451	

data	produced	by	 the	optimal	parameter	profile	 resulted	 in	 substantial	 genetic	452	

variation,	80%	of	which	was	explained	by	the	first	two	axes	of	the	PCoA,	which	453	

clustered	 samples	 by	 population	 origin	 (Supporting	 Information	 5).	 The	 same	454	

axes	 of	 the	 PCoAs	 produced	with	 the	 data	 from	 the	 high	 coverage	 and	 default	455	

parameter	 profiles	 explained	 only	 47%	 and	 57%,	 respectively	 (Table	 3,	456	

Supporting	Information	5).	Also,	the	mean	value	of	the	pairwise	FST	matrix	was	457	

higher	for	the	data	produced	by	the	optimal	parameter	profile	(0.19)	compared	458	

to	the	default	(0.07)	or	any	of	the	other	Stacks	settings	examined	(Table	3).	This	459	

is	congruent	with	simulations	that	show	that	low	coverage	datasets	with	a	larger	460	

sample	of	sites	in	the	genome	would	yield	more	accurate	and	precise	population	461	

genetics	parameter	estimates	(Buerkle	&	Gompert	2013).	462	

	 Assembling	 Berberis	 data	 de	 novo,	 with	 the	 optimal	 parameter	 profile,	463	

maximised	 the	 number	 of	 informative	 SNPs	 and	 minimized	 the	 error	 that	464	

increases	intra-population	variation	(Fig.	5),	adding	further	support	for	optimal	465	

assembly	parameter	values	(test	a	range	and	choose	those	that	both	increase	the	466	

number	of	output	loci	and	reduce	the	SNP	and	allele	error	rates)	yielding	reliable	467	

data.	We	advice	researchers	to	include	replicates	and	follow	the	same	principles	468	

of	analysis	presented	here,	regardless	of	the	de	novo	assembly	tool.	In	the	case	of	469	

RADseq	datasets	already	produced	without	DNA	replicates,	we	recommend	the	470	

exploration	 of	 a	 range	 of	 parameter	 values	 to	 maximize	 the	 amount	 of	 SNPs	471	

recovered	and	minimize	the	genetic	dissimilarity	between	 individuals	 from	the	472	

same	sampling	locality.	This	recommendation	should	be	used	as	a	starting	point	473	

and	 with	 care,	 as	 locality	 may	 be	 the	 wrong	 metric	 to	 use	 when	 minimizing	474	
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genetic	dissimilarity	in	some	cases	(e.g.	hybrid	zones,	breeding	areas).	475	

	476	

Error	rate	implications	and	recommendations	for	RADseq	analyses	477	

Next-generation	 sequencing	 methods	 applied	 to	 population	 genetic	 inference	478	

need	to	account	not	only	 for	sequencing	error,	but	also	 for	assembly	error	and	479	

missing	data	(Pool	et	al.	2010;	Davey	et	al.	2011).	Including	DNA	replicates	in	the	480	

preparation	 of	 RADseq	 libraries	 (see	 below	 for	 some	 recommendations)	481	

improves	the	characterisation	of	error	derived	from	different	sources	(Table	1)	482	

and	provides	the	ability	 to	partition	error	 into	 locus,	allele	and	SNP	rates.	High	483	

locus	 error	 rates,	 such	 as	 the	 >10%	 error	 for	 all	 combinations	 of	 parameters	484	

evaluated	 for	B.	alpina	(Fig.	3d,	Table	3)	can	be	accommodated	as	missing	data	485	

and	mitigated	by	appropriate	statistical	corrections	(Pool	et	al.	2010;	Davey	et	al.	486	

2011),	 as	 is	 possible	 to	 do	 with	 principle	 components	 analysis,	 principal	487	

coordinates	analysis	and	STRUCTURE	(Pritchard	et	al.	2000).	However,	incorrect	488	

SNP	calling	and	allelic	dropout	are	more	problematic	 if	data	analyses	are	to	be	489	

performed	 under	 the	 assumption	 that	 genotypes	 are	 known	 with	 complete	490	

certainty.	Allele	error	can	affect	both	allele	frequency	estimates	and	the	accurate	491	

discrimination	 of	 different	 genotypes	 (Bonin	 et	 al.	 2004),	 and	 SNP	 error	 will	492	

inflate	nucleotide	diversity	and	skew	the	SNP	Frequency	Spectrum	toward	rare	493	

SNPs	 (Johnson	 &	 Slatkin	 2008;	 Pool	 et	 al.	 2010),	 affecting	 the	 meaningful	494	

biological	interpretation	of	the	data.	Excitingly,	as	population	genomics	and	next-495	

generation	sequencing	technology	and	analytical	tools	further	develop,	genotype	496	

uncertainty	 could	be	 incorporated	 into	data	analysis	 itself	 (Buerkle	&	Gompert	497	

2013),	 using	 Bayesian	 hierarchical	 models	 and	 genotype	 probabilities	 rather	498	

than	 genotypes	 per	 se	 (Gompert	 &	 Buerkle	 2011;	 Buerkle	 &	 Gompert	 2013;	499	
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Gautier	et	al.	2013a).	But	 for	 this	 to	account	not	only	 for	sequencing	error,	but	500	

the	full	range	of	sources	that	may	affect	RADseq	(Table	1),	DNA	replicates	should	501	

be	included	to	allow	for	error	rate	estimation.	502	

	 The	 estimation	 of	 genotyping	 error	 is	 affected	 by	 sample	 size,	 as	503	

exemplified	 by	 the	 variance	 of	 error	 rate	 estimation	 across	 replicates	 for	 the	504	

Berberis	 data	 (Fig.	 3,	 Fig.	 4	 and	 Table	 3).	 Including	multiple	 replicates	 is	 thus	505	

useful,	but	 there	 is	no	minimum	number	 for	RADseq	studies.	For	B.	alpina,	we	506	

aimed	to	replicate	~15%	of	the	samples,	but	as	some	samples	failed	we	achieved	507	

11%.	The	number	of	replicates	for	a	given	study	will	be	a	function	of	the	final	use	508	

of	 the	 data,	 the	 targeted	 coverage	 depth,	 and	 the	 precision	 in	 error	 rate	509	

estimation	 needed.	 Replicates	 should	 be	 randomly	 chosen	 while	 also	 broadly	510	

representing	 important	 data	 features	 such	 as	geography	 and	 taxonomy.	 In	 the	511	

case	of	geographic	sampling,	we	would	recommend	the	inclusion	of	at	least	one	512	

sample	replicate	per	sampling	location.	513	

	 Regarding	recommendations	to	reduce	error	rate,	as	has	been	suggested	514	

for	other	marker	systems	(e.g.	Bonin	et	al.	2004,	Pompanon	et	al.	2005),	good	lab	515	

practice	and	experimental	design	will	help	to	minimize	error	rate.		In	the	case	of	516	

RADseq	data,	locus	and	allele	recovery	depend	on	the	level	of	coverage	of	reads	517	

for	each	allele,	locus	and	individual,	but	as	shown	here	large	numbers	of	markers	518	

can	be	recovered	reliably	from	low	coverage	datasets	(down	to	~7x,	as	the	mean	519	

for	 BERL1	 here).	 Thus,	 given	 budget	 limitations,	 coverage	 depth	 may	 be	520	

sacrificed	for	increased	sampling	for	both	the	number	of	individuals,	and	sites	in	521	

the	 genome,	 both	 of	which	 can	 provide	 better	 estimates	 of	 population	 genetic	522	

parameters	(Buerkle	&	Gompert	2013).	However,	studies	 that	require	very	low	523	

error	 rates,	 or	 that	 are	 rightly	 recovering	 paralogs,	 should	 consider	 increasing	524	
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the	coverage	up	to	60x	(Davey	et	al.	2011).	We	have	shown	that	error	rates	can	525	

also	be	reduced	at	the	bioinformatics	stage	by	assembling	data	and	calling	SNPs	526	

with	an	optimal	 combination	of	parameters.	However,	 in	a	 similar	way	 to	how	527	

the	 number	 of	 variable	 loci	 needed	 for	 a	 RADseq	 study	 depends	 upon	 the	528	

biological	question	 (Catchen	et	 al.	 2011;	Hohenlohe	et	 al.	 2012;	Peterson	et	 al.	529	

2012),	the	acceptable	error	rate	will	also	be	study	specific.	In	the	case	of	Berberis	530	

alpina,	 the	 quantification	 of	 RAD	 allele	 and	 SNP	 error	 rates	 found	 for	 the	531	

optimized	 Stacks	 settings	 (5.9%	 and	 2.4%,	 respectively,	 Table	 3)	 provides	532	

reassurance	 that	 the	 geographic	 structuring	 of	 genetic	 variation	 is	 biologically	533	

meaningful,	 but	 would	 warn	 against	 more	 fine-scale	 analyses	 of	 individual	534	

relatedness	 if	 differences	 between	 individuals	 fell	 within	 the	 error	 rate	535	

threshold.	536	

We	have	demonstrated	that	the	use	of	sample	replicates	is	an	important	537	

procedure	 for	both	the	estimation	of	error	rates	and	for	 the	optimization	of	de	538	

novo	 assemblage	 and	 genotyping	 parameters.	 We	 focused	 on	 Stacks,	 but	 the	539	

same	principle	can	be	applied	to	the	other	assembly	tools	for	RADseq	data.	Thus,	540	

we	suggest	that	the	use	of	replicates	for	RADseq	studies	should	be	encouraged,	541	

and	 we	 consider	 it	 pertinent	 to	 extend	 Crawford	 et	 al.'s	 (2012)	 call	 for	more	542	

transparent	reporting	of	genotyping	error	to	RADseq	data.	543	
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	714	

Figure	1.	Surveyed	mountains	for	B.	alpina	within	the	Sierra	Madre	Oriental	(1-3)	715	
and	 the	 Transmexican	 Volcanic	 Belt	 (4-17).	 Populations	 where	 B.	 alpina	 was	716	
found	 are	 El	 Zamorano	 (Za),	 Nevado	 de	 Toluca	 (To),	 Ajusco	 (Aj),	 Tlaloc	 (Tl),	717	
Iztaccihuatl	 (Iz),	La	Malinche	(Ma)	and	Cofre	de	Perote	(Pe).	B.	moranensis	was	718	
found	 on	 Cerro	 San	 Andrés	 (An).	 As	 outgroups	 B.	 pallida	 (black	 stars)	 and	 B.	719	
trifolia	(white	star)	where	sampled.		720	

Figure	2.	Total	number	of	a)	RAD-loci	and	b)	SNPs	obtained	using	different	values	721	
on	Stacks	core	parameters.	 In	each	run	only	one	parameter	varied	and	the	rest	722	
were	set	to	m=3,	M=	2,	n=0	and	max_locus_stacks	(mx.lcs)	=	3	and	N=	M+2.		723	

Figure	 3.	 Effect	 on	missing	 data	 obtained	 using	 different	 values	 on	Stacks	 core	724	
parameters.	In	each	run	only	one	parameter	varied	(shown	in	x	axis)	and	the	rest	725	
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were	set	as	explained	in	Fig.	2.	a)	total	number	of	missing	loci;	b)	proportion	of	726	
missing	loci	relative	to	the	total,		c)	proportion	of	missing	loci	different	within	a	727	
replicate	pair	and	d)	locus	error	rate.	728	

Figure	 4.	 Effect	 on	 a)	 the	 allele	 error	 rate	 and	 b)	 the	 SNP	 error	 rate	 of	 using	729	
different	 values	 on	 Stacks	 core	 parameters.	 In	 each	 run	 only	 one	 parameter	730	
varied	(shown	in	x	axis)	and	the	rest	were	set	as	explained	in	Fig.	2.	731	

Figure	 5.	 Effect	 on	 the	 genetic	 distance	 between	 individuals	 of	 the	 same	732	
population	of	analyzing	the	full	dataset	with	different	Stacks	profiles:	default	and	733	
the	settings	that	were	considered	to	perform	better	in	the	exploratory	parameter	734	
analyses	but	using	a	range	of	values	 for	–m:	m=10	(high	coverage	),	m=4	(near	735	
optimal)	and	m=3	(optimal).	736	

	737	

	738	

	739	

	740	

	741	

	742	

	743	
	744	
	745	
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Table	1.		Potential	causes	of	genotyping	error	for	RADseq	data	at	different	levels	746	
	747	

Source	 Reason	 Reference*	
Common	to	any	molecular	makers	

Technical		
Errors	related	inversely	to	the	quality	of	reagents	and	equipment,	and	to	the	organization	
of	the	laboratory	in	different	rooms	to	avoid	contaminations.	

A	

Human	mistake	
Sample	swaps,	pipetting	errors,	confusion	in	the	data	entry	or	during	concentration	
measurements	

A	

Wet	lab	(mostly	RAD	specific)	
Enzyme	sensitivities	to	
DNA	quality	and	
quantity	

Digestion	and	PCR	efficiency	may	be	irregular	among	samples,	which	can	underrepresent	
some	restriction	fragments	

A	

Pooling	concentrations	
Samples	with	higher	concentration	can	be	overrepresented	in	the	sequencing	output	if	
they	are	not	pooled	in	equimolar	amounts	

B,	C	

Shearing	step	(single	
digest)	

	

Sonication	shears	DNA	of	different	lengths	with	different	efficiencies.	This	biases	read	
depth	at	RAD	loci	depending	on	restriction	fragment	length	

	

D	

PCR	errors	
PCR	error	gets	amplified	and	can	appear	in	multiple	reads	resembling	an	alternative	allele	
at	a	locus.	PCR	error	may	differ	among	samples	depending	on	reaction	conditions	and	
experimental	design	

E	

PCR	bias	

PCR	amplification	can	occur	more	readily	on	one	allele	or	barcode,	biasing	their	
representation.	Differences	in	amplification	success	leads	to	variation	of	coverage	among	
loci	and	individuals,	potentially	resulting	in	allelic	dropout	or	non-representation	of	some	
loci	

A,	C,	E	

Size	selection	(double	
digest)	

Different	fragments	may	be	selected	if	more	than	one	excision	is	performed.	Imprecise	
size	selection	can	include	fragments	of	lengths	relatively	distant	from	the	size-selection	

C	
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target	mean	

Exposure	to	UV	light		
Can	produce	fragmentation	(that	could	lead	to	locus/allele	dropouts)	and	mutation	of	
DNA	strands	(that	introduces	non-biological	variation).		

I	

Next	Generation		Sequencing	(NGS)	

Sequencing	error	
NGS	introduces	sequencing	error	(0.1–1.0%	per	nucleotide)	into	many	of	the	reads.	This		
can	vary	across	samples,	RAD	sites	and	positions	in	the	reads	for	each	site. 	

E,	K	

Sequencing	sampling	

	

The	sampling	process	of	a	heterogeneous	library	inherent	in	NGS	introduces	sampling	
variation	in	the	number	of	reads	observed	across	RAD	sites	as	well	as	between	alleles	at	a	
single	site	

E	

Barcode	error	 
PCR	or	sequencing	errors	at	the	barcode	of	a	fragment	can	reduce	the	number	of	reads	
obtained	for	it 

E	

Genome	intrinsic	

GC	content	
RAD	loci	with	high	GC	content	are	sequenced	at	higher	depths	compared	to	RAD	loci	with	
low	GC	content,	this	increases	with	high	number	of	PCR	cycles	

D	

Variation	in	the	
restriction	site	

If	there	is	variation	in	the	restriction	site,	for	a	diploid	organism	one	allele	will	be	cut	by	
the	restriction	enzyme	and	the	other	will	not	when	truly	it	exists	

D,	G	

DNA	methylation	
For	some	restriction	enzymes	digestion	is	impaired	or	blocked	by	methylated	DNA.	The	
same	gene	could	or	could	not	be	methylated	in	different	individuals	or	tissues.		

J	

Bioinformatic	

Handling	variation	in	
coverage	

Coverage	is	the	main	filter	to	distinguish	real	variation	from	sequencing	errors,	repetitive	
regions	and	duplicates.	But		if	there	is	coverage	heterogeneity	among	samples	and	alleles,	
or	if	the	general	coverage	is	low,	setting	the	filters	with	minimal	coverage	values	too	high	
can	lead	to	allele	drop.	Setting	it	too	low,	however,	can	lead	to	incorrect	SNP	calls.	 

E,	D,	F	

Mismatches	parameters	

The	number	of	mismatches	allowed	to	distinguish	alleles	and	loci	in	an	individual	and	in	
the	population	influences	the	number	of	real	alleles	and	loci	that	are	retrieved	

	

F	
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Fragment	length	
Alleles	will	drop	out	as	restriction	fragment	length	decreases	because	RAD	loci	from	short	
restriction	fragments	have	low	read	depths.	The	efficacy	of	different	bioinformatics	tools	
at	dealing	with	this	varies.	

D	

Paralogs	and	repetitive	
regions	handling		

Paralogous	regions	with	similar	sequences	can	be	erroneously	assembled	together	 E	

Presence	of	indels	
Stacks	and	RADtools	are	unable	to	handle	indels,	therefore		indel-containing	loci	are	not	
clustered	together,	while	they	can	be	recovered	by	RaPiD	and	graph-based	clustering	
approaches	

C,	D	

Mapping	using	a	
reference	genome	

Mapping	of	alleles	that	are	different	from	the	reference	genome	is	less	probable	than	for	a	
reference-matching	allele,	causing	a	bias	in	allele	frequency	toward	the	allele	found	in	the	
reference	sequence.	It	may	additionally	reduce	the	number	of	SNPs	discovered	and	bias	
estimates	of	nucleotide	diversity	toward	smaller	values	

H	

*	References:	A)	Bonin	et	al.	2004;	B)	Baird	et	al.	2008;	C)	Peterson	et	al.	2012,	D)	Davey	et	al.	2013;	E)	Hohenlohe	et	al.	2012;	F)	Catchen	748	
et	al.	2013,	G)	Gautier	et	al.	2013b	and	H)	Pool	et	al.	2010,	I)	Grundemann	&	Schomig	1996	,	J)	Roberts	et	al.	2010,	K)	Meacham	et	al.	749	
2011	and	Loman	et	al.	2012.		750	
	751	
	752	
	753	
Table	2.	Role	of	Stacks	core	parameters	in	loci	assembly	and	potential	sources	of	genotyping	error	754	

Parameter		 How	it	affects	assembly	and	genotyping	error	*	
minimum	number	of	
identical,	raw	reads	
required	to	create	a	stack	
(–m	)	
	
default	3	

Reads	with	convergent	sequencing	errors	are	likely	to	be	erroneously	labelled	as	stacks	if	–m	is	too	
low.	True	alleles	will	not	be	recorded	and	will	drop	out	if	–m	is	too	high.	
	
It	can	decrease	the	genotyping	error	by	distinguishing	real	loci	from	PCR	and	sequencing	error,	but	
increase	error	by	calling	a	heterozygous	locus	as	homozygous	when	minimum	coverage	is	set	too	high	
and	one	of	the	alleles	is	therefore	dropped.	
	

number	of	mismatches	 If	-M	is	too	low	some	real	loci	will	not	be	formed,	and	their	alleles	will	be	treated	as	different	loci	
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allowed	between	loci	
when	processing	a	single	
individual	(-M	)	
	
default	2	

(undermerging),	if	it	is	too	large	repetitive	sequences	will	chain	together	and	form	large	nonsensical	
loci	(overmerging).	
	

number	of	mismatches	
allowed	between	loci	
when	building	the	catalog	
(-n)	
	
default	0	

When	n	=	0	there	would	be	loci	represented	independently	across	individuals	that	truly	are	the	same	
locus,	and	if	n	>	0	Stacks	uses	the	consensus	sequence	from	each	locus	to	attempt	to	merge	loci.	
	
This	is	important	for	population	studies	where	monomorphic	or	fixed	loci	could	exist	in	different	
individuals.	Merging	fixed	alleles	as	a	single	locus	can	increase	the	chances	of	assembling	real	alleles,	
and	therefore	decrease	the	allele	error	rate.		However,	erroneous	loci	will	be	created	if	the	–n	value	is	
too	high.	

maximum	number	of	
stacks	at	a	single	de	novo	
locus	(	–max_locus_stacks	)	
		
default	3	

The	expectation	for	nonrepetitive	genomic	regions	is	that	a	monomorphic	locus	will	produce	a	single	
stack	because	the	two	sequences	on	the	two	homologous	chromosomes	are	identical	and	thus	
indistinguishable.	In	contrast,	a	polymorphic	locus	will	produce	two	stacks	representing	alternative	
alleles.	Confounding	cases	that	may	arise	from	short,	sequencing	error-based	stacks	or	from	repetitive	
sequences,	where	hundreds	of	loci	in	the	genome	may	collapse	to	a	single	putative	locus.	–
max_locus_stacks	allows	to	identify	and	blacklist	confounding	cases. 

SNP	calling	model	 In	the	default	SNP	calling	model	the	error	parameter	is	allowed	to	vary	freely,	whilst	in	a	bounded-
error	model	the	boundary	value	is	substituted	if	the	maximum-likelihood	value	of	ε	exceeds	a	lower	or	
upper	bound.	One	consequence	is	that	reducing	the	upper	bound	increases	the	chance	of	calling	
heterozygous	a	locus.	This	allows	to	balance	the	tolerance	for	false	positive	vs.	false	negative	rates	in	
calling	genotypes,	which	in	turn	influences	the	genotyping	error.	
	

*	Parameters	explanation	as	in	Catchen	et	al.	2013	and	Stacks	documentation,	effect	on	genotyping	error	as	discussed	here.	755	
	756	

	757	
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	758	

Table	3.		Information	content,	error	rates	and	efficacy	to	detect	structuring	of	genetic	variation	for	the	full	dataset	processed	759	
with	different	Stacks	parameter	settings.	760	
	761	

 optimal near optimal high coverage default 
Number of RAD-loci 6292 2449 292 4554 
Total number of SNPs 11057 4353 502 7736 
Mean read coverage per 
sample 10.32 (SD 4.16) 15.30 (SD 5.9) 58.92 (SD 21.9) 11.50 (SD 4.65) 
Mean locus error rate 0.1738 (SD 0.103) 0.1657 (SD 0.100) 0.0882 (SD 0.088) 0.1590 (SD 0.094) 
Mean allele error rate  0.0592 (SD 0.013) 0.0599 (SD 0.010) 0.0879 (SD 0.023) 0.0841 (SD 0.017) 
Mean SNP error rate 0.0243 (SD 0.006) 0.0321 (SD 0.006) 0.0578 (SD 0.019) 0.0423 (SD 0.010) 
Variation explained by   
first two axes of PCoA* 80(39)% 82(34)% 47(22)% 57(32)% 

Mean of FST pairwise 
matrix* 0.19(0.07) 0.15(0.04) 0.03(0.01) 0.07(0.04) 

     
*	Results	outside	parenthesis	were	obtained	using	all	the	samples	of	the	dataset,	and	the	value	inside	parenthesis	corresponds	to	the	762	
results	if	excluding	the	samples	from	El	Zamorano	and	the	outgroup.	El	Zamorano	(B.	alpina	population	from	SMOr)	was	excluded	763	
because	it	explained	as	much	variation	as	the	B.	trifolia	outgroup	(Supporting	Information	5).		764	


