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1 Introduction

In this paper, we investigate a Lagrangian formulation of higher-spin (HS) theories in

arbitrary dimensions. The aim of this work is, in particular, to obtain restrictions for all

possible independent interaction vertices of order n ≥ 4 for massless higher-spin fields,

extending the three-dimensional results of [1]. Together with the earlier results on the

cubic vertices [2–9] (see also [10–15]), this work intends to complete the classification of

all independent interacting deformations of free massless HS Lagrangians [16, 17] to the

lowest order in the deformation parameters (coupling constants) in Minkowski spacetime

of arbitrary dimensions d ≥ 3.

HS Gravities [18–20] (see, e.g., [21, 22] for reviews) are generalisations of Einstein’s

General Relativity which involve higher-spin gauge fields. These are symmetric tensor

– 1 –



J
H
E
P
0
6
(
2
0
2
0
)
1
1
8

(Fronsdal) fields1 φµ1...µs , described by the Fronsdal action [16] at free level, describing

massless particles of spin s upon quantisation.2 A set of free HS fields can be described

by a Lagrangian which is a sum of Fronsdal Lagrangians for spin s fields. However, a full

non-linear Lagrangian of interacting Fronsdal fields is not available to date.

Such theories are strongly constrained by gauge invariance, necessary for consistency.

These gauge transformations extend those of General Relativity — spacetime reparametri-

sations, or diffeomorphisms — to larger symmetries, involving gauge parameters that are

Lorentz tensors of rank (s− 1) for each massless spin s field. This extension of symmetries

can potentially resolve some problems of General Relativity (singularities, quantisation

problem, etc.), making HS Gravity an attractive field of investigation.

The corresponding gauge transformation for free fields reads3

δ(0)φµ1...µs = s ∂(µ1
ǫµ2...µs) , (1.1)

which generalises the well known expressions for massless vector fields (s = 1) in gauge

theory and the Graviton (s = 2) in linearised gravity theory.

The naive intuition from lower-spin model building suggests that one can pick an

arbitrary collection of fields, including massless HS fields, and the gauge symmetries will

partly constrain the interactions, leaving room for a large parameter space of theories. It

turns out that the severe constraints from HS gauge invariance rule out theories with an

arbitrary choice of the particle content. Therefore, one is easily led to negative results if one

chooses an arbitrary starting setup for constructing a theory with massless HS spectrum.

This striking difference from textbook examples makes it tempting to conclude (after some

attempts) that such theories cannot exist.

The problem can be traced to the global symmetries of the theory (see, e.g., [23]). One

can construct a HS theory by looking for suitable global symmetry algebras, which have

to satisfy the so-called admissibility condition [24]. In this way, infinitely many potential

candidate algebras are ruled out (see, e.g., [25, 26]). This is crucial in deriving a list of

admissible HS algebras [27, 28] and constructing full non-linear HS equations [18–20] in

the frame formulation, proving the existence of a theory with massless HS fields. The

resulting theory, however, has unusual properties: there is an infinite tower of massless

higher-spin fields with s = 0, 1, 2, . . . and a necessarily non-zero cosmological constant [29].

The need for a non-zero cosmological constant is related to diffeomorphism transformations,

as explained in [30, 31], essential for the Fradkin-Vasiliev solution to the Aragone-Deser

problem [32]. This argument, together with the holographic conjectures (see, e.g., [33, 34])

motivated the intense studies of HS interactions, especially in (Anti-)de Sitter ((A)dS)

background [35–50].

The frame-like formulation of HS gravities that led to successful developments (in-

cluding Vasiliev’s non-linear equations [18–20] and their recent generalisations [51, 52])

registered less progress so far in understanding the corresponding Lagrangian formulation.

On the other hand, the metric-like formulation [16, 17, 48] is a simple suitable setup for

1The index s is the spin of the field and µi = 0, . . . , d− 1 in d dimensions.
2In this paper, we will restrict ourselves to integer-spin (bosonic) fields for simplicity.
3The round (square) brackets denote (anti-)symmetrisation with weight one.
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classifying interaction vertices and deriving restrictions on interacting Lagrangians. Here,

we work in the framework of the Noether-Fronsdal program (see [53–68] for related liter-

ature and [9] for a recent summary of the status of the problem) to classify independent

vertices of order n ≥ 4 in arbitrary dimensions d ≥ 3, generalising the d = 3 results

obtained earlier in [1].

The situation is different only in three dimensions, where the interacting HS theo-

ries can admit arbitrary Einstein backgrounds (including Minkowski) as well as a finite

spectrum of massless HS fields (see, e.g., [69–74]). However, such massless HS fields do

not correspond to propagating particles in d = 3, while the inclusion of matter leads to a

situation similar to the higher-dimensional story in many ways.

It is also interesting to note here, that four dimensions is also somewhat special: there,

the Aragone-Deser problem is relevant at the Lagrangian level for descriptions using Frons-

dal fields, while the minimal coupling to gravity is available at the level of amplitudes (see,

e.g., [7, 75–78]) and light-cone vertices [2–4, 79–82] together with other vertices that are

absent in spacetime dimensions d ≥ 5. Most importantly, these vertices seem to be essential

for the consistency of the non-linear theory [3, 4] in four dimensions.

The Noether-Fronsdal program is a systematic approach to perturbatively construct a

Lagrangian L for an arbitrary interacting HS theory order by order. In this procedure, L

is expanded in powers of small parameters gn,

L = L2 +
∑

n≥3

gnLn +O(g2n) . (1.2)

Here, L2 denotes the free Fronsdal Lagrangian and another sum over the different kinds of

n-point vertices Ln is suppressed.

The action must be gauge-invariant, hence, δL equals a total derivative, where δ is

obtained by a deformation of the free gauge transformation δ(0),

δ = δ(0) +
∑

k≥1

δ(k) .

Here, the deformation δ(k) is of k-th order in the fields. Since our aim is to find constraints

for the independent vertex structures (i.e. linear in the coupling constants4), the n-point

vertex must satisfy

δ(0)Ln + δ(n−2)L2 = 0 up to total derivatives . (1.3)

In this paper, we find restrictions for all independent n-point vertices Ln for massless

HS fields in arbitrary dimension d ≥ 3, such that they satisfy eq. (1.3).5 From that, we

deduce a simple classification of vertices. For a summary of the explicit results, see the

beginning of section 7.

4Gauge invariance provides constraints to fix the terms proportional to higher powers of coupling con-

stants. We are interested here in the structures that parametrise the non-trivial deformations at the lowest

order in the coupling constants.
5We consider a flat Minkowski spacetime but comment also on (A)dS backgrounds in section 7.
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The paper is organised as follows: in section 2, we set up notations and provide the

mathematical framework for our analysis. There, we discuss that we have to analyse three

different cases separately: large dimensions d ≥ 2n − 1 (see section 3), low dimensions

d < n (see section 5) and the intermediate case (see section 4 and comments in section 7).

We mostly consider parity-even vertices, but give a generalisation to parity-odd vertices in

section 6. We finally conclude in section 7.

2 Preliminaries

We want to constrain the n-point independent vertices Ln that may constitute the lowest

order deformations of the free Lagrangian for massless HS fields. For this purpose, we

restrict ourselves to the traceless and transverse (TT) sector of the Lagrangian as in [1].

We refer the reader to a more detailed discussion6 on the TT vs off-shell vertices in [48]. In

the following, we therefore assume that the tensors φµ1...µs that describe the gauge fields,

are traceless, divergence-free and the corresponding free equation of motion is given by the

(massless) Klein-Gordon equation, hence

gµ1µ2φµ1...µs = 0 , ∂µ1φµ1···µs = 0 , ∂ν∂ν φµ1...µs

∣∣
free e.o.m.

= 0 . (2.1)

The relaxation of these conditions will allow to reconstruct the full off-shell counterpart of

the TT vertices as in [6, 48].

2.1 Vertex generating operators

It is very convenient to contract the indices of the fields each with an auxiliary vector

variable aµ,

φ(s)(x, a) =
1

s!
φµ1...µs(x)a

µ1 · · · aµs . (2.2)

This has several advantages: first, we do not have to tackle expressions with too many

indices and secondly, the tensor φµ1···µs is by construction symmetric. We will also note

later on that the complexity of index contractions will be reduced a lot. For example, using

the short-hand notation Pµ = ∂xµ and Aµ = ∂aµ , the relations in eq. (2.1) simplify to

A2 φ(s) = 0 , A · P φ(s) = 0 , P 2 φ(s)
∣∣
free e.o.m.

= 0 . (2.3)

We call these relations collectively Fierz equations [83].

Now, each n-point vertex Ln in eq. (1.2) is a product of n massless bosonic fields (and

possibly derivatives thereof). But it has to be a Lorentz scalar, hence, all indices of the

fields (and of the derivatives) must be fully contracted. For now, let us concentrate on

parity-even vertices — we consider parity-odd vertices in section 6. Then, we can write Ln

in the following, very convenient way:

Ln(x) = V

(
n∏

i=1

φi(xi, ai)

)∣∣∣∣∣xi=x
ai=0

. (2.4)

6For massive fields, the restriction to TT is a choice of field redefinition freedom and therefore completely

legitimate (as discussed in appendix B.1 of [26]), while for massless fields it can introduce subtleties in some

formulations, as discussed in section 4.5 of [48].
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This needs some explanation:

• We use the notation set up in eq. (2.2) and drop the spin labels of the fields: φi is a

spin si field, φi = φ(si).

• The term in brackets represents a function of the spacetime coordinates xi and the

auxiliary vector variables ai. The vertex generating operator V performs the index

contractions between the fields φi as follows: let Pµ
i = ∂xµ

i
and Aµ

i = ∂aµi as in

eq. (2.3). Then, V must be a polynomial in the following commuting variables:

zij = Ai ·Aj

∣∣
1≤i≤j≤n

, yij = Ai · Pj

∣∣
1≤i,j≤n

, sij = Pi · Pj

∣∣
1≤i≤j≤n

. (2.5)

The operator zij induces a single contraction of indices between the fields φi and

φj , whereas yij will take one index of the field φi and contract it with a derivative

which acts on the field φj . Finally, the operators sij will introduce extra derivatives

(a derivative of φi is contracted with a derivative of φj); these are called Mandelstam

variables.

• Since all of the indices in Ln have to be contracted, we discard all terms that still

contain at least one of the auxiliary variables when V acted on the terms in brackets.

Thus, we set ai = 0 in the end, which ensures that Ln is Lorentz invariant. Finally,

we also set xi = x. The splitting of the coordinates is useful to keep track of the

derivatives acting on different fields, and has no physical consequences.

All in all, we translated the problem of ‘what is the most general form of the parity-

even n-point vertex Ln’ to the question ‘what is the most general form of the vertex

generating operator V in the polynomial ring R[yij , zij |i≤j , sij |i≤j ]’. The connection be-

tween Lagrangian Ln and operator V is given by eq. (2.4). We also ensured that Ln is

Lorentz invariant.

There are two questions arising now. First of all, there are equivalence relations for

Lagrangians: e.g., two Lagrangians that differ by a total derivative lead to the same action.

We call them equivalent in this case. What does this imply for the corresponding vertex

generating operators? Secondly, how do we have to constrain V such that Ln is gauge

invariant? We present a general answer to these questions in the remainder of this section

and give more details in sections 3 and 5.

2.2 Equivalence relations for vertex generating operators

We must take into account that different Lagrangians may describe the same theory. We

say that they are equivalent in this case and evidently, we are only interested in Ln up to

equivalence. When we encode the Lagrangians via vertex generating operators, we need to

introduce a notion of equivalence for operators: vertex operators V and V ′ are equivalent,

V ≈ V ′, iff the two Lagrangians Ln and L′
n, constructed from them via eq. (2.4) are also

equivalent. We are hence only interested in V up to equivalence and summarise the different

kinds of equivalence relations in the following.

The first kind of equivalence relations arises from field redefinitions φi 7→ φi + δφi,

where δφi is non-linear in the fields. These do not change the theory, but affect the
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Lagrangian. For example, terms in L2 may contribute to Ln when the fields are redefined

non-linearly. But in this way, the n-point vertices only change by terms that vanish when

the free equations of motion are imposed. We say that two Lagrangians are equivalent,

when they are related by such field redefinitions and deduce from eq. (2.4) that we can

choose V to be independent of sii. Furthermore, we assume that V does not depend on zii
and yii because the fields are traceless and divergence-free.

Mathematically speaking, we impose the equivalence relations

yii ≈ 0, zii ≈ 0, sii ≈ 0 (2.6)

and deduce that each operator in the ideal 〈yii, zii, sii〉 ⊂ R[yij , zij |i≤j , sij |i≤j ] is equivalent

to 0. Hence, we can construct equivalence classes of vertex generating operators,

[V] ∈
R[yij , zij |i≤j , sij |i≤j ]

〈yii, zii, sii〉
.

The quotient ring is isomorphic to the subring R = R
[
yij |i 6=j , zij |i<j , sij |i<j

]
,

R[yij , zij |i≤j , sij |i≤j ]

〈yii, zii, sii〉
≃ R ⊂ R[yij , zij |i≤j , sij |i≤j ] ,

so we can choose the vertex generating operator as V ∈ R. In other words, we simply

dropped the dependence of V on yii, zii and sii.

Secondly, acting with the operator Dµ =
∑n

j=1 P
µ
j on the term in brackets in eq. (2.4)

gives a total derivative in the Lagrangian. This does not change the action and hence, does

not affect the theory. Therefore, we impose the equivalence relations

Ai ·D =

n∑

j=1

yij ≈ 0, Pi ·D =

n∑

j=1

sij ≈ 0 . (2.7)

These together generate an ideal ID ⊂ R and in the following, we consider equivalence

classes of vertex generating operators in the quotient ring

[V] ∈
R

ID
.

As for the equivalence relations in eq. (2.6), we could choose a convenient representative V

in R, but it turns out to be better to keep the quotient ring structure for now.

A last equivalence stems from ‘Schouten identities’, i.e. relations following from over-

antisymmetrisation of spacetime indices. These spacetime dimension-dependent identities

are exact relations at the Lagrangian level. In the polynomial ring R, however, we forgot

that we work in d dimensions. Therefore, we have to impose Schouten identities as equiva-

lence relations for vertex generating operators,7 which form an ideal IS ⊂ R as follows: let

7Formally, let ιd be the map

ιd : R → R[Pµ
i , A

µ
i ]

V(zij , yij , sij) 7→ V(Ai ·Aj , Ai · Pj , Pi · Pj)

that replaces the operators zij , yij and sij by their definitions in eq. (2.5). ιd therefore reintroduces the

operators Pi and Ai and hence, spacetime indices in d dimensions in the vertex generating operator V. The

kernel ι−1
d (0) of this map is what we call the ideal of Schouten identities in d dimensions.

– 6 –
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b = (P1, . . . , Pn, A1, . . . An) be a vector of derivative operators and consider the symmetric

2n× 2n matrix

B =
(
bK · bL

)∣∣
K,L∈(1,...,2n)

=

(
S YT

Y Z

)
. (2.8)

Here, S = (sij), Y = (yij), Z = (zij) are symmetric (n × n)-matrices with elements

in R. With the equivalence relations in eq. (2.6), the diagonal elements of S, Y and Z

vanish equivalently. We also keep in mind that there are further equivalence relations from

eq. (2.7) which introduce a linear relation among the first n rows (and columns) of B, but

we do not apply them right now.

Then, the ideal IS is generated by all (d + 1) × (d + 1) minors of B. We show this

in a moment, but note first that this implies that IS is trivial for d ≥ 2n − 1. Indeed,

in this case, there is only one such minor, namely when equality holds. This minor is

detB, which is equivalent to zero due to the equivalence relations in ID (the first n rows

add up to a total derivative). Now we show that for d < 2n − 1, the above statement

is true. Indeed, remove (2n − d − 1) rows and columns from B, such that only the rows

K1, . . . ,Kd+1 ∈ (1, . . . , 2n) and the columns L1, . . . , Ld+1 ∈ (1, . . . , 2n) remain and call the

resulting (d+ 1)× (d+ 1)-matrix M . Then,

detM = δµ1
ν1

· · · δ
µd+1
νd+1 Bµ1K1 · · ·Bµd+1Kd+1

Bν1
[L1

· · ·B
νd+1

Ld+1]

= δ
µ1···µd+1
ν1···νd+1

Bµ1K1 · · ·Bµd+1Kd+1
Bν1

L1
· · ·B

νd+1

Ld+1
(2.9)

and acting with it on the term in brackets in eq. (2.4) yields a term in the Lagrangian

with over-antisymmetrised indices. On the other hand, each term in the Lagrangian with

over-antisymmetrised indices corresponds to a vertex generating operator V that contains

a factor of the form on the r.h.s. of eq. (2.9) for a certain set of indices Ki, Li ∈ (1, . . . , 2n).

Hence, V ∈ IS .

At this step, it is convenient to introduce the notion of the level of a Schouten identity.

To this end, let us first define the level of the rows and columns of B as follows: the first

n rows and columns of B are of level 0 and all others are of level 1. Furthermore, each

(d+1)× (d+1)-submatrix M of B that is obtained by removing rows and columns inherits

those row and column levels from B. Then, the sum of row and column levels of M equals

the power of Aµ
i operators in ιd(detM). This is what we call the level of the Schouten

identity detM ≈ 0. Denote by I(k) the ideal generated by all Schouten identities of level

k, then we have

IS =

2d+2∑

k=0

I(k) , (2.10)

where again, d denotes the spacetime dimension.

Now, we consider three cases:

• For large dimensions, d ≥ 2n−1, as discussed before, there are no non-trivial Schouten

identities at all (the only possible Schouten identities arise in the case d = 2n − 1,

but they are zero up to total derivatives, so they are already contained in ID). This

case is much simpler and we treat it separately in section 3.

– 7 –
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• For large values of n, d < n, only the subideal I(0) might be trivial (namely for

d+1 = n, where the level 0 Schouten identities vanish up to a total derivative and thus

are already contained in ID). Thanks to the variety of Schouten identities available,

we are able to perform a lot of simplifications. We treat this case in section 5.

• In the intermediate case 2n − 2 ≥ d ≥ n only the ideals of level 2d − 2n + 4, . . . , 2n

are non-trivial. We will not study this case in full detail here, but a general charac-

terisation of the corresponding vertices is given in section 7.

All in all, we have now considered all possible equivalences for parity-even Lagrangians.

Because of the freedom of field redefinitions, we consider V ∈ R and we divide out the ideals

generated by total derivatives (ID) and Schouten identities (IS),

[V] ∈
R

I
, I = IS + ID . (2.11)

2.3 Imposing gauge invariance

Finally, we require that L is gauge invariant, i.e. that it satifies eq. (1.3). What does this

imply for the corresponding vertex generating operator V? Note first that the second term

in eq. (1.3) vanishes when the free equations of motions are imposed. In other words, the

requirement of gauge invariance for the independent vertex structures reads

δ
(0)
k Ln ≈ 0 , (2.12)

where δ
(0)
k is the free gauge transformation of the field φk (see eq. (1.1)).

The latter can be simplified by contracting the tensor for the gauge parameter in

eq. (1.1) with auxiliary vector variables aµ as well,

ǫ(s−1)(x, a) =
1

(s− 1)!
ǫµ1...µs−1(x)a

µ1 · · · aµs−1 . (2.13)

Again, we drop the spin index, ǫk = ǫ(sk−1), and the linearised gauge transformation of the

k-th field φk in eq. (1.1) reads

δ
(0)
k φk(xk, ak) = ak · Pk ǫk(xk, ak), (no sum).

Note that this gauge transformation must be consistent with eqs. (2.3). We therefore

impose the Fierz equations also for the gauge parameter.

All in all, we can now impose the restrictions for the vertex generating operators V

from gauge invariance, eq. (2.12):

δ
(0)
k Ln = V ak · Pk

(
ǫk(xk, ak)

i 6=k∏

1≤i≤n

φi(xi, ai)

)∣∣∣∣∣xi=x
ai=0

≈ 0 .

Since all the auxiliary vector variables ai are set to zero in the end, it immediately follows

that Ln is gauge invariant if and only if the corresponding vertex generating operator V ∈ R

(via eq. (2.4)) satisfies

for all k ∈ {1, . . . , n} : [V, ak · Pk] =: DkV ∈ IS + ID . (2.14)

– 8 –
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Here, we defined the operators Dk of gauge variations. These act as linear first-order

differential operators on the vertex V:

Dk =

n∑

j=1

(
yjk

∂

∂zkj
+ skj

∂

∂ykj

)
. (2.15)

3 The case 2n − 1 ≤ d

We start with the case of sufficiently high spacetime dimensions where the classification of

vertices is the simplest because there are no Schouten identities and we only have to take

into account total derivatives, hence, I = ID.

3.1 Gauge invariants

To derive the n-th order independent vertices we first recall the constraints on the vertex

generating operators yij , zij , sij in eqs. (2.6) and (2.7) and count the independent variables:

yii ≈ 0 ,
n∑

j=1

yij ≈ 0 , n(n− 2) variables yij , (3.1a)

zij = zji , zii ≈ 0 ,
n(n− 1)

2
variables zij , (3.1b)

sij = sji , sii ≈ 0 ,

n∑

j=1

sij ≈ 0 ,
n(n− 3)

2
variables sij . (3.1c)

The vertex depends altogether on 2n(n−2) variables, and is subject to n linear differential

equations that stem from eqs. (2.14) and (2.15).8 If these differential equations are linearly

independent, the solution should depend on 2n(n− 2)− n = n(2n− 5) variables.

For cubic vertices, n = 3, this would give three invariants, while we know that the

solution depends on four invariants y12 , y23 , y31 and G = y12 z23 + y23 z31 + y31 z12 . The

reason is that the three equations are not linearly independent in that case: y12D1 +

y23D2 + y31D3 ≈ 0. Due to this relation, we have, e.g., the Yang-Mills cubic vertex

V YM
3 = G and the Einstein-Hilbert cubic vertex V EH

3 = G2.

On the other hand, one can easily see from eq. (2.15) that the operators Dk are linearly

independent for n ≥ 4. Hence, the general form of the vertices should depend on n(2n− 5)

invariants composed of sij , yij , zij .

At this point, we introduce gauge invariant operators, which are more suitable as the

building blocks of n-th order vertices. These are given through the following variables:

sij = sji
n(n− 3)

2
variables , (3.2)

cij = yij yji − sij zij = cji ,
n(n− 1)

2
variables , (3.3)

ci,jk = yij sik − yik sij = −ci,kj ,
n(n− 2)(n− 3)

2
variables . (3.4)

8Notice that the operators Dk are consistent with these constraints (3.1), which means that Dk acting

on a constraint will lead to a constraint. Therefore we can leave the operators Dk in the general form stated

in eq. (2.15) and do not need to express them in terms of a set of independent variables.
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It is easy to show that these expressions are gauge invariant:

Dk sij = 0 , Dk cij = 0 , Dk ci,jl = 0 . (3.5)

Counting the number of the variables sij and cij is straightforward. In order to count

the number of ci,jk variables, we count separately the number of choices for i and the number

of choices for the antisymmetric pair jk for a given i and multiply them. Naively, we choose

i in n possible ways, and the antisymmetric pair jk takes values in {i+1 , . . . , i−2 (mod n)},

therefore takes (n−2)(n−3)
2 values, hence the number of ci,jk’s given above. These variables

ci,jk are not linearly independent though, satisfying the following relations:

3 ci,[jk si|l] ≡ ci,jk sil + ci,kl sij + ci,lj sik = 0 . (3.6)

These naively are n(n−2)(n−3)(n−4)
6 many, given by multiplying the n possible choices of i

and (n−2)(n−3)(n−4)
6 choices of the antisymmetric triple jkl. But again, this counting is

redundant, due to linear relations between equations, involving different choices of jkl.

These relations are also given by adding another sim and antisymmetrising the four indices

jklm. This chain of reducibility can be resummed to get all linearly independent variables

of ci,jk. This is done by finding the number of possible values of jk antisymmetrised pairs

that correspond to the independent variables, by summing up with changing signs the

numbers of components of antisymmetric tensors of gl(n− 2), starting from rank two:9

n−2∑

i=2

(−1)i
(
n− 2

i

)
= n− 3 . (3.7)

This means that the number of independent variables ci,jk is n(n − 3). We see that

the variables ci,jk are redundant and we choose the following set of independent variables:

Y j
i := ci,i+j i+1 , (3.8)

where now j = 2, . . . , n− 2, taking n− 3 possible values (indices are always meant modulo

n). Thus, the number of variables Y j
i is altogether n(n− 3). It is elementary to show that

any other variable ci,jk can be expressed through Y j
i using eq. (3.6):

ci,jk =
ci,j i+1 sik − ci,k i+1 sij

si i+1
=

Y j−i
i sik − Y k−i

i sij
si i+1

. (3.9)

Therefore altogether we have:

n(n− 3)

2
+

n(n− 1)

2
+ n(n− 3) = n(2n− 5) invariants. (3.10)

Given that the number of independent invariants sij , cij , Y
j
i is the same as the number of

variables that should constitute the building blocks of n-th order independent vertices, it

is already tempting to conclude that the most general solution is an arbitrary function of

9Remind, that the index j takes n− 2 independent values in yij (and therefore in ci,jk) due to (3.1a).
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these variables. We will show this now, by allowing for dividing by Mandelstam variables

and making the replacements

zij =
1

sij
(yij yji − cij) , (3.11)

and, consecutively,

yii+j =
1

sii+1
(yii+1 sii+j − Y j

i ) , j = 2, . . . , n− 2 mod n , (3.12)

expressing the vertex operator in terms of the variables sij , cij , Y
j
i and yii+1. Correspond-

ingly, the gauge variation in terms of these variables is generated by the operators

Dk = skk+1
∂

∂ykk+1
, (3.13)

which turn into a single derivative. Therefore, the new gauge invariance equations for the

vertex operator give:

DkV(sij , cij , Y
j
i , yii+1) = skk+1

∂

∂ykk+1
V(sij , cij , Y

j
i , yii+1) ≈ 0 . (3.14)

If we go to a set of independent variables, we can conclude that the yii+1-derivative is equal

to zero, and the vertex can be solely written in terms of the gauge invariant combinations

sij , cij , Y
j
i . A gauge invariant local vertex generating operator V in high enough dimension

(d ≥ 2n− 1) is then in one-to-one correspondence to a polynomial in sij , cij , Y
j
i , allowing

inverse powers of Mandelstam variables in such a way that V becomes polynomial in the

variables sij , yij and zij , when re-expressing the combinations cij and Y j
i .

3.2 Building blocks of vertices

We have just shown that any gauge-invariant vertex V of order n for d ≥ 2n − 1 can be

rewritten as a function of the invariants cij , Y
j
i and sij . This function is polynomial in cij

and Y j
i , but can contain inverse powers of the Mandelstam variables sij .

In this subsection we address the question: ‘what is the most general form of this

function if we assume that the vertex is local?’ First of all it is clear that any polynomial

of cij , Y
j
i and sij defines a local and gauge-invariant vertex. Now let us analyse the case

that the vertex contains a single pole in one sij when written in terms of the invariants:

V =
1

sij
P(cij , Y

j
i , skl) . (3.15)

Here, we assume that the polynomial P does not explicitly depend on this specific sij . For

V to be local, the inverse of sij has to be compensated by a term proportional to sij that

arises when the invariants are rewritten in terms of sij , yij , zij . One can show that in this

case, V is a linear combination of

bijkℓ =
1

sij
(cij sik sjℓ − ci,jkcj,iℓ) and

1

sij
(sikci,jℓ − siℓci,jk) (3.16)
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multiplied by polynomials in cij , Y
j
i and the Mandelstam variables.10 The second expres-

sion is simply equal to ci,kℓ (see eq. (3.6)), so it is again a polynomial in skl and c variables.

The first one can be rewritten as

bijkℓ = det



sij sik yji
sℓj sℓk yjℓ
yij yik zij


+ skℓcij . (3.17)

Hence, up to a shift by a polynomial in Mandelstam and c variables, the building block

bijkℓ can be written as a determinant of a 3 × 3-submatrix of the matrix B (see eq. (2.8)).

This nicely fits with the observation that also the c invariants are just minors of B,

cij = − det

(
sij yji
yij zij

)
, ci,jk = det

(
sik sij
yik yij

)
. (3.18)

Notice that these minors as well as the (3× 3)-example above have the property that each

(n+ i)-th row (column) of the second block is accompanied by the corresponding (i-th) row

(column) of the first block. This ensures gauge invariance because the i-th gauge variation

transforms the (n + i)-th row (column) into the i-th row (column) leading to a vanishing

determinant. Translating such a building block to the fields, the resulting expression is a

pure curvature term: a tensor index of a field i occurs in an antisymmetric combination

with an index of a derivative acting on the field.

Of course all such minors can be written as polynomials in the c invariants with

negative powers of Mandelstam variables allowed. This can be explicitly seen when in

the determinant we add to the (j + n)-th column the j-th column multiplied by −
yjj+1

sjj+1
,

and similarly we add to the (i + n)-th row the i-th row multiplied by −yii+1

sii+1
. Then one

arrives at

det

(
(sij) (yji)

(yij) (zij)

)
= det


 (sij)

(
1

sjj+1
cj,ij+1

)
(

1
sii+1

ci,ji+1

) (
1

sijsii+1sjj+1
(cj,j+1 ici,i+1 j − sii+1sjj+1cij)

)

 .

(3.19)

Here, the labels i and j only run through the values that correspond to the rows and

columns present in the minor that we are considering.

There is one additional possibility due to the linear dependencies in B: we can take

the determinant of the (2n− 1)× (2n− 1) submatrix that is obtained by deleting, e.g., the

first row and column. This is still gauge invariant because the gauge transformation with

respect to the variables of the first field transforms the first row of the second block into a

linear combination of the n− 1 rows of the first block, and the determinant still vanishes.

Expressed in terms of fields, such a building block corresponds to a term of the form

δ
[µ2···µ2n]
ν2···ν2n φ(1)

µn+1

νn+1∂µ2∂
ν2φ(2)

µn+2

νn+2 · · · ∂µn∂
νnφ(n)

µ2n

ν2n , (3.20)

which is gauge invariant up to total derivatives. This Lovelock-type vertex can be gener-

alised in a way, where one computes the determinant of the minor of B containing n − 1

10Note that ci,jk can be expressed as a polynomial in Y ’s and Mandelstam variables via eq. (3.9).
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rows and columns from the first block and arbitrary number m of rows and columns from

the second block, but these do not introduce new building blocks.11

Note that also the Mandelstam variables sij are 1×1-minors. It is tempting to speculate

that all gauge invariant local vertices V can be written as polynomials in the types of

minors of B mentioned above. If this speculation is correct, then for a spin configuration

s1 ≥ s2 ≥ · · · ≥ sn (n ≥ 4) the lowest number of derivatives in a parity-even local vertex is

s1 + s2 + · · ·+ sn − 2⌊ sn2 ⌋, and is achieved only for s̄i = si − 2⌊ sn2 ⌋ (i = 1, . . . , n) satisfying

polygon inequalities: s̄1 ≤ s̄2+ · · ·+ s̄n. In fact, taking into account the results of section 6,

we can make a stronger statement for the special case d = 2n−1: if the polygon inequalities

between quantities s̃i = si−sn (i = 1, . . . , n−1) are satisfied (s̃1 ≤ s̃2+· · ·+s̃n−1), the lowest

number of derivatives in a vertex is N(si) = s1+ · · ·+sn−1, where the corresponding vertex

is parity-odd for odd sn. When these polygon inequalities are not satisfied, the number of

derivatives in the local vertex will be higher than N(si).

4 Lower dimension: dealing with Schouten identities

In the previous section we have discussed the gauge-invariant vertices when we do not have

to consider Schouten identities. When we go to lower dimensions, the ideal of relations

is enlarged from ID to ID + IS . Gauge-invariant vertex generating operators for large

dimensions still define gauge-invariant operators in lower dimensions, but a priori, enlarging

the ideal could have two effects: first, inequivalent vertices become equivalent, and second,

new vertices arise that are gauge-invariant only up to the now larger set of equivalence

relations. We will show in the following that the latter possibility does not lead to new

equivalence classes of vertices for n ≥ 4, but that for all gauge-invariant vertex generating

operators there are equivalent operators12 which are gauge-invariant already without the

use of Schouten identities. While this holds for quartic and all higher vertices in arbitrary

dimensions, for cubic vertices (n = 3) dimension-dependent vertices appear precisely in

dimension d = 3 (studied in [8, 9]).13

To show this, we start with a vertex generating operator V as a polynomial in sij , yij , zij
that in d dimensions is gauge invariant,

DkV ∈ ID + IS . (4.1)

In V we now express the variables zij and yij in terms of cij , Y
j
i and yii+1,

V = PV(cij , Y
j
i , yii+1) , (4.2)

11By adding total derivatives they can be transformed to an expression of the type (3.19) where the n−1

rows (columns) of the first block contain the m rows (columns) corresponding to those of the second block.
12As long as we can divide by Mandelstam variables.
13We would like to make a side remark here on the cubic vertices of Fronsdal fields in d = 2, discussed in

the appendix B of [9]. It can be shown, that the vertex (s, s, 0) is also trivial (due to the Schouten identity

yi yi+1 zi−1 ≈ 0 in the notations of [9]) for s ≥ 2. The only non-trivial parity-even vertices remaining are

thus V(1,1,0) = y1 y2, V(s,s,1) = y3 z
s
3 and the current coupling V(s,0,0) = ys

1 that has the same form as in

arbitrary dimensions (the latter was forgotten in [9]). Note, that the on-shell triviality is not a reason to

exclude the vertices as long as they cannot be removed via a local field redefinition, even if we assume that

Fierz equations (which are stronger than free Fronsdal equations) can be removed by a field redefinition.

This subtlety is discussed in detail in [48].
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where PV is a polynomial in the given variables. We suppressed the dependence on Man-

delstam variables, which can also occur with negative powers. In these variables, the gauge

variation Dk is written as a derivative with respect to ykk+1 as in eq. (3.13), so we have

DkV = skk+1
∂

∂ykk+1
PV(cij , Y

j
i , yii+1) ∈ ID + IS . (4.3)

When we expand PV in powers of y12,

PV(cij , Y
j
i , yii+1) =

K∑

k=0

qk(cij , Y
j
i , y23, . . . , yn1)(y12)

k , (4.4)

we apply (D1)
K to the expression and obtain

K!(s12)
KqK ∈ ID + IS . (4.5)

When we allow ourselves to divide by Mandelstam variables, we conclude that

qK ∈
1

(s12)K
(ID + IS) . (4.6)

Similar relations can be found for all other terms in the expansion in y12 and also in the

other variables yii+1. Hence, we find that

V − PV(cij , Y
j
i , yii+1)

∣∣∣
yii+1=0

∈
1

∆
(ID + IS) , (4.7)

where ∆ is a product of powers of Mandelstam variables. Therefore, V is equivalent to

an operator depending only on cij and Y j
i which already defines a gauge invariant vertex

operator without the need of Schouten identities.

We conclude that in all dimensions, vertex generating operators can be expressed in

terms of the operators identified for large dimensions. The main task for lower dimensions

is therefore to work out explicitly the equivalences between such operators that are induced

by Schouten identities. Here, the case of low dimensions, d < n, is special because many

Schouten identities arise that reduce the independent equivalence classes considerably. This

will be discussed in detail in the subsequent section. The identifications in the intermediate

case will be stated in the discussion in section 7.

In the remainder of this section we give a heuristic geometric argument why generically

one does not expect new vertices to appear when we lower the dimension. In the sense

of algebraic geometry, the ideal I = IS + ID defines a variety V (I) as the zero-set of the

polynomials contained in I. If I was a prime ideal, we could think of the ring R/I as the

ring of polynomial functions on this variety. The gauge variations Dk define n vector fields

on this variety, and we are looking for functions on V (I) that are constant along the vector

fields. When we enlarge the ideal to I ′ ⊃ I by going from higher to lower dimensions where

new Schouten identities occur, we concentrate on a subvariety V (I ′) of V (I). Generically,

if the vector fields do not degenerate on this subvariety, functions that are constant along

Dk on V (I ′) can be lifted to constant functions on V (I).
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The above argument only gives a very rough picture, because apart from the possible

degeneration of the vector fields, there are two subtleties: first, as it was said, the argument

only applies to prime ideals, but the ideals that occur are usually not prime; secondly, there

could be constant polynomials on V (I ′) whose lifts to V (I) are not polynomial. Therefore,

this picture can only be seen as a heuristic explanation why generically we do not expect

new gauge invariant vertices to appear when we lower the dimension.

5 The case n > d

In this section, we find general restrictions for gauge invariant n-point vertices with n > d.

Our result is a simple characterisation of equivalence classes [V] ∈ R/I for vertex generating

operators. The results are summarised in section 5.4.

As discussed in section 2.2, we have the full set of Schouten identities at hand in order

to find a simple representative V for a given vertex. This has the advantage that a lot

of simplifications are possible. On the other hand, the structure of the set of Schouten

identities is complicated, and the number of linearly independent Schouten identities in

the polynomial ring, 1
2

(
2n−1
d+1

) ((
2n−1
d+1

)
+ 1
)
for n ≥ 4, is large and rapidly growing with n.

This problem was solved in [1] for d = 3 by observing that many Schouten identities become

dependent when multiplied with an appropriate product ∆ of Mandelstam variables. By

multiplying a given vertex V with ∆, the remaining independent Schouten identities can

be used to deduce strong constraints for the vertex V itself. Essentially, one can treat the

Mandelstam variables in the manipulations like numbers and also divide by them. This

concept can be also employed in higher dimensions.

Formally, to be able to divide by certain combinations of Mandelstam variables, we

introduce the ring of fractions, M−1R. Here, M is a multiplicatively closed set containing

all (finite) products of non-zero minors of the submatrix S of B (see eq. (2.8)): these are

the expressions we want to divide by. More explicitly, let Mi(S) be the set of non-zero

minors of S,14 and let M = Mon[Mi(S)] be the set of monomials in these minors. Then,

the ring of fractions consists of formal quotients,

M−1R =

{
r

∆

∣∣∣∆ ∈ M, r ∈ R

}
, (5.1)

with the obvious rules for addition and multiplication. As also 1 ∈ M , we can identify R

via r 7→ r
1 as subring of M−1R. The ideal I = IS + ID ⊂ R can then be seen as a subset

of M−1R which generates an ideal IM in M−1R. Using the embedding of R into M−1R,

we have an induced map of the quotient rings,

iM :
R

I
→

M−1R

IM
. (5.2)

14First, non-zero minors of order one are just the Mandelstam variables sij with i 6= j. Secondly, all

minors of order 2, 3, . . . , d are generically non-zero — even when the equivalence relations in eq. (2.7) are

applied. Finally, all minors of order greater than d do vanish due to Schouten identities. Hence, Mi(S)

consists of all (2 × 2) , (3 × 3) , . . . (d × d) subdeterminants of S as well as the Mandelstam variables sij

with i 6= j.
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As we will argue below, this map is injective, and therefore we can characterise equiva-

lence classes of vertices uniquely by equivalence classes in the ring of fractions. The crucial

observation is now that in M−1R many of the generators of the ideal become dependent,

so that IM has a simple set of generators.

This section is structured as follows. In section 5.1 we find a simple set of generators

for IM , which enables us to find a convenient representative of [V] in the quotient of the

ring of fractions in section 5.2. We then impose gauge invariance in section 5.3, which

leads to strong restrictions on the vertex V. In d = 3, these restrictions completely rule

out independent vertices (as reported in [1]), in higher dimensions the restrictions are less

strict, and we discuss them in section 5.4. In order to make the structure of this paper

better accessible, we collect some proofs in section 5.5.

Before we proceed, we want to show that iM is indeed injective. If iM ([V]) = [0], this

means that V ∈ R ∩ IM . Then, there is some ∆ ∈ M such that ∆V ∈ I. If ∆V defines

a trivial vertex, then also V corresponds to a trivial vertex, which can be seen in Fourier

space, where the operators sij are numbers. In particular, the polynomial ∆ is non-zero on

the subvariety defined by k2i = 0 and
∑

ki = 0. Now, if ∆V defines a trivial vertex, then

∆V
∏

i

φ̂i(ki, ai)
∣∣∣
ai=0

(5.3)

vanishes on this subvariety. The factor ∆ is non-vanishing almost everywhere. Hence, since

V only depends polynomially on kµi , V applied on the fields φ̂i must vanish. So we conclude

that V ≈ 0, hence [V] = [0].

5.1 A minimal generating set of Schouten identities

In this section, we find a simple set of generators for the ideal IM in two steps. First,

any Schouten identity multiplied with a certain ∆ ∈ M = Mon[Mi(S)] is an element in

the ideal generated by the equivalence relations in eq. (2.7) and all Schouten identities up

to level 215 (recall the notion of level introduced in the paragraph before eq. (2.10)). In

other words,

there exists ∆ ∈ Mon[Mi(S)] such that ∆ · IS ⊂
2∑

k=0

I(k) + ID . (5.4)

We show this in section 5.5.1. This observation implies that in the ring of fractions where

we are allowed to divide by ∆, we need far less generators for the Schouten identities.

In order to perform the second step, we introduce some more notations: first,

Nij =




sij · · · sij+d−1
...

. . .
...

si+d−1 j · · · si+d−1j+d−1


 (5.5)

is a d × d submatrix of S, hence, detNij ∈ Mi(S) and Nij has full rank. Secondly, let

B1(i, j) with i, j = 1, . . . , n be the following (d + 1) × (d + 1) submatrix of B: it contains

15This proof relies on the fact that n > d.
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the rows and columns i, i + 1, . . . , i + d − 1 (modulo n) as well as another row j and the

column i+ n. Hence,

detB1(i, j) = det




0

yii+1

Nii ...

yii+d−1

sji · · · sji+d−1 yij




∈ I(1) .16 (5.6)

Finally, let B2(i, j) with i, j = 1, . . . , n be the (d+1)×(d+1) submatrix of B containing the

rows i, i+1, . . . , i+d−1 (modulo n) and i+n, as well as the columns j, j+1, . . . , j+d−1

(modulo n) and j + n. Hence,

detB2(i, j) = det




yji

Nij

...

yji+d−1

yij · · · yij+d−1 zij




∈ I(2) .

With these notations, we show in section 5.5.2 that there exists ∆ ∈ M = Mon[Mi(S)]

such that

∆ · (IS + ID) ⊂ I(0) +

〈
n∑

k=1

sik , detB1(i, j) , detB2(i, j)
∣∣∣ i, j = 1, . . . , n

〉
. (5.7)

Denote the family of generators of I(0) by (detB0(A)), where A labels the different equiv-

alence relations. Then, we can conclude that IM is generated as

IM =

〈
n∑

k=1

sik , (detB0(A)) , detB1(i, j) , detB2(i, j)
∣∣∣ i, j = 1, . . . , n

〉
. (5.8)

5.2 The choice of representative

Now, let us investigate the relevant ideal IM in order to choose a convenient representative

for V in its equivalence class [V] ∈ M−1R/IM .

We start by considering the Schouten identities detB2(i, j) ∈ I(2), with i 6= j. Using

a Laplace expansion along the last column, they read

0 ≈ detB2(i, j) = zij detNij + terms that do not contain any zkl . (5.9)

Since detNij ∈ Mi(S), we can divide by it in M−1R, and express zij by an expression

independent of any zkl. Hence, we may choose the representative of [V] to be independent

of zij . In the same way, the Schouten identities detB1(i, j) ∈ I(1) take the form

0 ≈ detB1(i, j) = yij detNii + p(sij , yii+1, . . . , yii+d−1) .

16Note that this is true for all j = 1, . . . , n. If for example j = i, then detB1(i, j) = 0 ∈ I(1).
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Here, the polynomial p only depends on yii+1, . . . , yii+d−1,
17 and the Mandelstam variables.

Using these Schouten identities, we can replace all of the operators yij in V except for

yii+1, . . . , yii+d−1.

Finally, we perform a change of variables in V. Similarly to eq. (3.8) we introduce the

combinations

Y j
i = sii+1yii+j − sii+jyii+1 for j = 2, . . . , d− 1 , (5.10)

and replace all yii+2, . . . , yii+d−1 in terms of these variables and yii+1. This can be done,

because sii+1 ∈ M and we can divide by it in M−1R. We arrive at

V ≈ PV(yii+1, Y
j
i , sij) , (5.11)

where PV is a polynomial in yii+1, Y
j
i and the Mandelstam variables (with coefficients that

can contain inverse powers of elements in Mi(S)). More explicitly, we can see [V] as an

element in the quotient

[V] ∈
M−1

R

[
yii+1, Y

j
i , sij

]

〈
(detB0(A)) ,

∑n
j=1 sij , detB2(i, i)

∣∣ i = 1, . . . , n
〉 . (5.12)

There are several reasons to introduce the Y j
i variables. First, they are the gauge invariant

combinations of the yij variables — we have discussed this already in section 3 and it

will become important in section 5.3. Secondly, the remaining level-2 Schouten identities

detB2(i, i) can be written solely in terms of the Y j
i ’s and the Mandelstam variables, and

they do not depend explicitly on yii+1. We show this in the remainder of this section: for

this purpose, consider

s2ii+1 detB2(i, i) = det




0

sii+1yii+1

Nii ...

sii+1yii+d−1

0 sii+1yii+1 · · · sii+1yii+d−1 0




.

The determinant of the matrix does not change when yii+1 times the first row is subtracted

from the last one and yii+1 times the first column is subtracted from the last one. Hence,

using the definition of Y j
i in eq. (5.10), we find

s2ii+1 detB2(i, i) = det




0

0

Nii Y 2
i
...

Y d−1
i

0 0 Y 2
i · · · Y d−1

i 0




= −
d−1∑

j,k=2

Y j
i (adjNii)jk Y

k
i =: qi2(Y

j
i , sjk) .

17The indices are considered modulo n.
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Here, we used a Laplace expansion along the last row and column, and adjNii denotes

the adjugate matrix of Nii. The resulting polynomials qi2 are quadratic in the Y j
i variables

with coefficients that still depend on the Mandelstam variables. However, the qi2’s are

independent of yii+1. We comment on their structure in section 5.4. All in all, we can

replace the generators detB2(i, i) by qi2 because we are allowed to divide by Mandelstam

variables. Hence, we have the following result:

[V] ∈
M−1

R

[
yii+1, Y

j
i , sij

]

〈
(detB0(A)) ,

∑n
j=1 sij , q

i
2

∣∣ i = 1, . . . , n
〉 .

5.3 General restrictions from gauge invariance

With the results of the previous sections, we now show that the polynomial PV introduced

in eq. (5.11) can be chosen to be independent of yii+1 if the operator V corresponds to a

gauge invariant Lagrangian Ln. From now on, we will always consider V as an element in

the bigger ring of fractions.

Starting from eq. (2.14) and using that the operators ak · Pk commute with all Man-

delstam variables, we find that a gauge invariant vertex Ln requires

for all k ∈ {1, . . . n} : [V, ak · Pk] ∈ IM ,

where Ln and V are related via eq. (2.4). Now, since the ideal IM is gauge invariant,

[IM , ak · Pk] ⊂ IM , we deduce that the polynomial in eq. (5.11) satisfies

[PV , ak · Pk] ∈

〈
(detB0(A)) ,

n∑

j=1

sij , q
i
2(Y

j
i )
∣∣ i = 1, . . . , n

〉
.

With

[yii+1, ak · Pk] = δiksii+1 ⇒ [Y j
i , ak · Pk] = δik (sii+jsii+1 − sii+1sii+j) = 0 ,

it follows immediately that

for all k = 1, . . . , n : skk+1∂ykk+1
PV ∈

〈
(detB0(A)) ,

n∑

j=1

sij , q
i
2(Y

j
i )
∣∣ i = 1, . . . , n

〉
.

The generators of the ideal on the r.h.s. do not depend on yii+1. We conclude that PV can

be chosen to be independent of yii+1. More explicitly,

V ≈ PV(Y
j
i , sij) , [V] ∈

M−1
R
[
Y k
i , sij

]
〈
(detB0(A)) ,

∑n
j=1 sij , q

i
2(Y

j
i ) | i = 1, . . . , n

〉 . (5.13)

5.4 Restrictions for V

Let us summarise our results. Eq. (5.13) states that each gauge invariant vertex V is

equivalent to a vertex PV that does only depend on Mandelstam variables and Y j
i . In
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particular, translating back to the vertex in terms of Pµ
i and Aµ

i operators, we have the

following relation:

ιd(Y
j
i ) = 2PiµAiνP

µ

[i+1P
ν
i+j] = 2Pi[µA|i|ν]P

µ
i+1P

ν
i+j .

Now, in the vertex generated by PV , an index of the ith field is only generated by Aµ
i

via a corresponding Y j
i . Hence, the ith field enters the Lagrangian via a curvature term

(each index of the field is antisymmetrised with an index of a partial derivative acting

on it). We deduce that PV generates a Lagrangian that can be written solely in terms of

curvature terms.

The drawback of this analysis is that we do not control locality on the way to this

result. PV might not have a local form, since it can have inverse powers of Mandelstam

variables. We can only say that for each gauge invariant vertex (generated by V), there is

a ∆ ∈ M such that ∆V can be written only in terms of curvatures.

Much stricter conditions can be found in three dimensions [1]. In that case, there

is only one Y j
i and the corresponding Schouten identity is qi2 = −s2ii+1(Y

2
i )

2. Hence,

detB2(i, i) = (Y 2
i )

2 ≈ 0 and PV is only linear in Yi. One can then deduce that V itself

is at most linear in each of the operators Aµ
i , which means that the corresponding vertex

Ln contains no higher-spin fields at all. Indeed, in d = 3 there are simply no on-shell

non-trivial curvature terms for higher-spin fields.

Our analysis also applies to the case d = 2. Here, no Y j
i remain, and therefore there

are no independent vertices for n ≥ 4 involving massless Fronsdal fields of spin s ≥ 1.

5.5 Proofs

5.5.1 Proof of eq. (5.4)

Let detM = 0 be a Schouten identity that stems from a (d + 1) × (d + 1)-submatrix M

of B such that detM 6∈ ID. Let r (s) be the number of level-0 rows (columns) of M .

Furthermore, let r̄ (s̄) be the number of level-1 rows (columns) of M . Hence, r + r̄ =

s + s̄ = d + 1. Without loss of generality, we assume r ≥ s.18 Furthermore, let s̄ ≥ 2,

hence, the level of the Schouten identity detM = 0 is r̄ + s̄ ≥ 2. In particular, equality

holds if and only if s̄ = 2 and r̄ = 0.

With the submatrix M given, we construct a (d + 2) × (d + 2)-submatrix M̃ of B as

follows:

• Removing (2n− d− 2) rows and columns from B results in M̃ .

• There is a level-0 row (which we call Row) and a level-0 column (called Col) in M̃ ,

such that removing Row and Col in M̃ yields M . Hence, M̃ contains (r + 1) level-0

rows and (s+ 1) level-0 columns.

• The construction of M̃ might not be unique, but is always possible. This can be seen

as follows: first, there is at least one level-0 row of B that is not part of M (otherwise,

18If r < s, we choose MT instead of M , which yields the same Schouten identity detMT = detM . MT

is a submatrix of B as well because B is symmetric.
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s level-0 columns

r
level-0

row
s

M =

(s+ 1) level-0 columns

(r
+
1)

level-0
row

s

Row

C
ol

6= 0M̃ =

Figure 1. Visualisation of the matrices M and M̃ .

M would contain all level-0 rows of B which means that detM ∈ ID which contradicts

our assumption). Furthermore, there are at least two level-0 columns of B that are

not part of M , because s̄ ≥ 2 and hence, s ≤ d − 1.19 In particular, we can always

choose M̃ such that the intersection of Row and Col contains a non-zero Mandelstam

variable.

The construction of the matrix M̃ is visualised in figure 1.

For M̃ , Cramers rule states that

I(d+2)×(d+2) det M̃ − M̃ · CT = 0, (5.14)

where C = (cij) denotes the cofactor matrix of M̃ = (m̃ij). In particular, cij is (up to a

factor of ±1) equal to the determinant of the (d+1)×(d+1)-submatrix obtained by deleting

the i-th row and the j-th column from M̃ . In other words, cij is a (d+ 1)× (d+ 1)-minor

of B, hence cij ∈ IS . In the following, we consider only part of eq. (5.14):

δji det M̃ −
s+1∑

k=1

m̃jkcik −
d+2∑

k=s+2

m̃jkcik = 0 i = 1, . . . , s+ 1, j ∈ J . (5.15)

Here, J is a (non-unique) subset of s+ 1 level-0 rows that contains Row. In other words,

J ⊂ {1, . . . , r + 1} , |J | = s+ 1 , Row ∈ J .

Performing a Laplace expansion of det M̃ along the last column of M̃ (which is of level 1

because of s̄ ≥ 2), we deduce that det M̃ is a linear combination of Schouten identities of

level r̄ + s̄− 1 and r̄ + s̄− 2. Hence,

det M̃ ∈ I(r̄ + s̄− 1) + I(r̄ + s̄− 2) .

19B has more than d level-0 columns, since n > d.
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Furthermore, in the third term of eq. (5.15), the Schouten identities cik with k > s + 1

are of level (r̄ + s̄ − 1). We therefore conclude that the middle term is an element in the

following ideal:

for all i = 1, . . . , s+ 1, j ∈ J :

(
s+1∑

k=1

m̃jkcik

)
∈ I(r̄ + s̄− 1) + I(r̄ + s̄− 2) . (5.16)

Now, denote by N = (m̃jk) (with j ∈ J and k ∈ {1, . . . , s + 1}) the (s+ 1)× (s+ 1)-

submatrix of M̃ that occurs in eq. (5.16). It is also a submatrix of S because it only

consists of level-0 rows and columns. Since s+1 ≤ d, we deduce that detN ∈ Mi(S).20 In

particular, detN 6= 0 and by inverting N in eq. (5.16) using Cramers rule, we find

for all j ∈ J, k ∈ {1, . . . , s+ 1} : detN · cjk ∈ I(r̄ + s̄− 1) + I(r̄ + s̄− 2) .

Finally, setting j = Row and k = Col, we have cjk = detM — which corresponds

to the Schouten identity of level (r̄ + s̄) we started with. It follows directly that for all

detM ∈ I(r̄ + s̄), either detM ∈ ID or

∃ detN ∈ Mi(S) : detN · detM ∈ I(r̄ + s̄− 1) + I(r̄ + s̄− 2) . (5.17)

In other words,

∃∆ ∈ Mon[Mi(S)] : ∆ · I(r̄ + s̄) ⊂ I(r̄ + s̄− 1) + I(r̄ + s̄− 2) + ID

and a recursion over r̄ and s̄ proves the general statement in eq. (5.4).

5.5.2 Proof of eq. (5.7)

We prove eq. (5.7) in three steps. It directly follows from eq. (5.4), as well as

eqs. (5.18), (5.22 and 5.26).

Part 1: first of all, we show that

∃∆ ∈ Mon[Mi(S)] : ∆I(2) ⊂ I(0) + I(1) +
〈
detB2(i, j)

∣∣ i, j = 1, . . . , n
〉
. (5.18)

For this purpose, consider an arbitrary level-2 Schouten identity detM ≈ 0, with M being

a (d + 1) × (d + 1)-submatrix of B. As explained in the previous section, we may assume

that M has either one (r̄ = 1, s̄ = 1) or two level-1 columns (r̄ = 0, s̄ = 2). In the latter

case, the proof of the previous section goes through and eq. (5.17) is satisfied. Hence, we

only need to consider the other case (r̄ = s̄ = 1). In particular, we show that if M contains

the level-1 row i+ n and the level-1 column j + n of B, then:

∃∆ ∈ Mon[Mi(S)] : ∆detM ∈ I(1) + 〈detB2(i, j)〉 , (5.19)

which implies eq. (5.18).

We prove eq. (5.19) by induction. For the following discussion, we fix i and j. Let

I2(K,L) be the ideal generated by all level-2 Schouten identities detM ≈ 0, such that the

(d+ 1)× (d+ 1)-submatrix M of B has the following properties:

20In the case that s = 0, N is just a Mandelstam variable. But within the construction of M̃ , we chose

Row and Col such that its intersection (which is N in that case) is non-zero. Therefore, detN = N 6= 0.
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i) M contains the level-1 row i+ n and the level-1 column j + n of B.

ii) K rows (L columns) of M stem from the rows i, . . . , i+d−1 (columns j, . . . , j+d−1)

(modulo n) of B.

Hence, I2(d, d) = 〈detB2(i, j)〉 and eq. (5.19) is a recursive consequence of the following

two propositions:

if K < d , ∃∆ ∈ Mon[Mi(S)] : ∆ · I2(K,L) ⊂ I(1) + I2(K + 1, L) , (5.20)

if L < d , ∃∆ ∈ Mon[Mi(S)] : ∆ · I2(K,L) ⊂ I(1) + I2(K,L+ 1) . (5.21)

Here, we present the proof of eq. (5.21). Eq. (5.20) can be shown in the same way,

except that the roles of rows and columns are interchanged. We start with a (d+1)×(d+1)-

submatrix M of B, such that detM ∈ I2(K,L) with L < d. For M given, we construct a

(d+ 2)× (d+ 2)-matrix M̃ as follows:

• Removing the first row from M̃ yields a (d+ 1)× (d+ 2)-submatrix M̂ of B.

• There is a unique k0 ∈ {1, . . . , d+ 1}, such that removing the k0-th column from M̂

yields M . We construct M̃ such that the k0-th column stems from one of the columns

j, . . . , j + d− 1 (modulo n) of B, which is possible because L < d.

• Note that M̂ has d + 1 level-0 columns. Hence, at least one of those cannot stem

from one of the columns j, . . . , j + d− 1 (modulo n) of B. Let us agree that at least

the l0-th column has this property. Obviously, l0 6= k0.

• The first two rows of M̃ coincide, hence, det M̃ = 0.

Now, Cramers rule states that M̃CT = 0, where C = (ckl) is the cofactor matrix of

M̃ = (m̃kl). The first column of this matrix equation reads

d+2∑

l=1

m̃klc1l = 0 .

Note that up to a factor of ±1, c1l is the determinant of the (d+1)×(d+1)-matrix obtained

by removing the first row and the lth column from M̃ . Hence, c1l ∈ I(2) for l ≤ d+ 1 and

c1 d+2 ∈ I(1). In particular, c1k0 ∝ detM ∈ I2(K,L) and c1l0 ∝ detMl0→k0 ∈ I2(K,L+1),

where the matrix Ml0→k0 differs from M by only one column. Indeed, it contains the k0-th

column of M̃ instead of the l0-th. We deduce that

l 6=l0∑

1≤l≤d+1

m̃klc1l ∈ I(1) + I2(K,L+ 1) .

Now, consider only the rows 2, . . . , d+ 1 of that relation. The matrix N = (m̃kl) with

k ∈ {2, . . . , d + 1} and l ∈ {1, . . . , d + 1}\{l0} is a (d × d)-submatrix of S and can hence,

be inverted using Cramers rule. We find that

detN · c1l ∈ I(1) + I2(K,L+ 1)

and setting l = k0 finally proves eq. (5.21).
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Part 2: in a second step, we show that

∃∆ ∈ Mon[Mi(S)] : ∆I(1) ⊂ I(0) + 〈detB1(i, j) | i, j = 1, . . . , n〉 . (5.22)

The proof is similar to the previous one. Let detM ≈ 0 be an arbitrary level-1 Schouten

identity, where M is a (d+1)×(d+1)-submatrix of B. As explained in the previous section,

we may assume that M has exactly one level-1 column (r̄ = 0, s̄ = 1). In particular, we

show that if M contains the level-1 column i+ n of B, then:

∃∆ ∈ Mon[Mi(S)] : ∆detM ∈ I(0) + 〈detB1(i, j) | j = 1, . . . , n〉 , (5.23)

which implies eq. (5.22).

Again, we prove eq. (5.23) by induction for a fixed i. Let I1(K,L) be the ideal generated

by all level-1 Schouten identities detM ≈ 0, such that the (d+ 1)× (d+ 1)-submatrix M

of B has the following properties:

i) M contains the level-1 column i+ n of B.

ii) K rows (L columns) of M stem from the rows (columns) i, . . . , i+ d− 1 (modulo n)

of B.

Hence, I1(d, d) = 〈detB1(i, j) | j = 1, . . . , n〉 and eq. (5.23) is a recursive consequence of

the following two propositions:

if K < d , ∃∆ ∈ Mon[Mi(S)] : ∆ · I1(K,L) ⊂ I(0) + I1(K + 1, L) , (5.24)

if L < d , ∃∆ ∈ Mon[Mi(S)] : ∆ · I1(K,L) ⊂ I(0) + I1(K,L+ 1) . (5.25)

Here, we give the proof of eq. (5.25), Eq. (5.24) follows analogously. For a given

(d+ 1)× (d+ 1)-submatrix M of B, such that detM ∈ I1(K,L) with L < d, we construct

a (d+ 2)× (d+ 2)-matrix M̃ as follows:

• Removing the first row from M̃ yields a (d+ 1)× (d+ 2)-submatrix M̂ of B.

• There is a unique k0 ∈ {1, . . . , d+ 1}, such that removing the k0-th column from M̂

yields M . Again, we construct M̃ such that the k0-th column stems from one of the

columns i, . . . , i+ d− 1 (modulo n) of B, which is possible because L < d.

• Note that M̂ has d+ 1 level-0 columns. Hence, at least one of those (say, the l0-th)

cannot stem from one of the columns i, . . . , i+d−1 (modulo n) of B. Again, l0 6= k0.

• The first two rows of M̃ coincide, hence, det M̃ = 0.

Now, Cramers rule states that M̃CT = 0, where C = (ckl) is the cofactor matrix of

M̃ = (m̃kl). Considering the first column of this matrix equation, we have

d+2∑

l=1

m̃klc1l = 0 .
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Up to a factor of ±1, c1l is the determinant of the (d + 1) × (d + 1)-matrix obtained by

removing the first row and the lth column from M̃ . Hence, c1l ∈ I(1) for l ≤ d + 1 and

c1 d+2 ∈ I(0). In particular, c1k0 ∝ detM ∈ I1(K,L) and c1l0 ∝ detMl0→k0 ∈ I1(K,L+1),

where the matrix Ml0→k0 differs from M by only one column (it contains the k0-th column

of M̃ instead of the l0-th). We deduce that

l 6=l0∑

1≤l≤d+1

m̃klc1l ∈ I(0) + I1(K,L+ 1) .

Again, we only consider the rows 2, . . . , d+ 1 of that relation. The matrix N = (m̃kl)

with k ∈ {2, . . . , d+ 1} and l ∈ {1, . . . , d+ 1}\{l0} is a (d× d)-submatrix of S and can be

inverted using Cramers rule. Finally,

detN · c1l ∈ I(0) + I1(K,L+ 1)

and setting l = k0 proves eq. (5.25).

Part 3: finally, we prove that for any i ∈ {1, . . . , n},

detNii

n∑

j=1

yij ∈

〈
n∑

j=1

sij

〉
+ 〈detB1(i, j)〉 , (5.26)

where Nii ∈ Mi(S) is defined in eq. (5.5).

Fix i ∈ {1, . . . , n}. Then, for any j ∈ {1, . . . , n}, let Nii(k → j) be the matrix Nii,

where the (k + 1)st row is replaced by
(
sji sji+1 · · · sji+d−1

)
. In particular,

n∑

j=1

detNii(k → j) ∈

〈
n∑

j=1

sij

〉
, (5.27)

because the determinant of Nii(k → j) is linear (especially in the (k + 1)st row).

Now, a Laplace expansion of detB1(i, j) (see eq. (5.6)) with respect to the last column

results in

detB1(i, j) = yij detNii −
d−1∑

k=0

yik+1 detNii(k → j) ,

which holds for all j ∈ {1, . . . , n}. In particular,

detNii

n∑

j=1

yij =
n∑

j=1

detB1(i, j) +
d−1∑

k=0

yik+1

n∑

j=1

detNii(k → j) ,

which, taking eq. (5.27) into account, proves eq. (5.26).

6 Parity-odd vertices

So far, we only discussed parity-even vertices, i.e. terms in the Lagrangian which do not

involve the epsilon tensor ǫµ1···µd
. However, the discussion of the previous sections can

simply be generalised also for parity-odd vertices.

– 25 –



J
H
E
P
0
6
(
2
0
2
0
)
1
1
8

First of all, the most general form of a parity-odd vertex is given by eq. (2.4) but with

V replaced by

Ṽ =
∑

I1···Id

QI1···IdṼ
I1···Id , (6.1)

where ṼI1···Id ∈ R[yij , zij |i≤j , sij |i≤j ] contains the parity-even contractions21 and

QI1···Id = ǫµ1···µd
bµ1

I1
· · · bµd

Id
(6.2)

is totally antisymmetric in its indices (Ik ∈ {1, . . . , 2n}). The derivative operators bI were

introduced in section 2.2, right before eq. (2.8). Note that for i = 1, . . . , n, we have bi = Pi

and bi+n = Ai. The structure of the gauge-invariant parity-odd vertices depends on the

dimension:

• For d ≥ 2n, there are no parity-odd n-point vertex operators, because QI1···Id = 0

(the vector b has only 2n− 1 independent entries up to total derivatives).

• In the case n > d, we again make use of the fact that we consider [Ṽ] in the ring of

fractions. The crucial point is that the general form of an elementary building block

QI1···Id of parity-odd vertices can be highly simplified, when it is multiplied with the

upper-left d× d submatrix of S. Denote this matrix by Sd. Its determinant,

detSd =
1

d!
ǫµ1···µd

ǫν1···νdb
µ1
1 · · · bµd

d bν11 · · · bνdd ,

is a non-zero minor of S, hence, detSd ∈ Mi(S) and we conclude that

detSd ·QI1···Id = (B1I1 · · · BdId)
∣∣
[I1···Id]

·Q1···d .

In other words, for any parity-odd vertex in the Lagrangian given by the vertex

generating operator Ṽ in eq. (6.1), we find

detSd · Ṽ = Q1···d · V , (6.3)

where V ∈ R[yij , zij |i≤j , sij |i≤j ] as in the parity-even case.

Now, since we work in the ring of fractions, we can divide by det Sd ∈ Mi(S). Fur-

thermore, Q1···d is gauge invariant:

[Q1···d, ak · Pk] = 0 .

Hence, along the same lines as in section 5, we find that

Ṽ ≈ Q1···d · PV(Y
j
i , sij) . (6.4)

• The intermediate case, n ≤ d ≤ 2n− 1, can be tackled in a similar way. Let Sn−1 be

the upper left (n − 1) × (n − 1) submatrix of S. Up to a factor, its determinant is

given by

detSn−1 ∝ ǫµ1···µd
ǫν1···νn−1

µn···µdbµ1
1 · · · b

µn−1

n−1 bν11 · · · b
νn−1

n−1 .

21We discussed these in the previous sections where they were called V.
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Multiplying it to the general vertex in eq. (6.1) yields

detSn−1Ṽ ∝
∑

I1···Id

ǫν1···νn−1
µn···µd bµ1

1 · · · b
µn−1

n−1 bν11 · · · b
νn−1

n−1 bI1 µ1 · · · bId µd
Ṽ [I1···Id] .

We again work in the ring of fractions. Hence, we can divide by det Sn−1, because it

is a nonzero minor of S. We finally find

Ṽ ≈
∑

In···Id

Q1···n−1 In···IdV̂
In···Id .

Here, we collect all direct parity even index contractions into one vertex generating

operator V̂In···Id , which is fully antisymmetric in its indices. Note that In, . . . , Id > n

because the Q-tensor is fully antisymmetric.22 In particular, with eq. (6.2), the Q-

tensor reduces to a “square-root of a Horndeski-type operator”,

Q1···n−1 In···Id = ǫµ1···µd
Pµ1
1 · · ·P

µn−1

n−1 Aµn

In−n · · ·A
µd

Id−n .

It is trivially gauge invariant up to total derivatives:

[Q1···n−1 In···Id , ak · Pk] ≈ 0 .

Hence, as in the case n > d, we conclude that

Ṽ ≈
∑

In···Id

Q1···n−1 In···Id · P
In···Id
V (Y j

i , sij) ,

where the polynomials PIn···Id
V only depend on Y j

i and the Mandelstam variables.

E.g. for d = 2n− 1, there is only one term in the sum, namely

Ṽ ≈ Q1···n−1n+1···2n · Pn+1···2n
V (Y j

i , sij) .

Note that Q1···n−1n+1···2n squares to the Lovelock operator (3.20). This covers also

the case of n = 3 and d = 5, where PV is parity-even cubic vertex operator [6]. These

covariant parity-odd 5d vertices match the light-cone classification [5].

In all cases the vertices can be brought to a form in which they are gauge invariant

without the use of Schouten identities. We conclude, that the situation with parity-odd

vertices is analogous to the parity-even ones: Schouten identities do not give rise to new

vertices except for the cubic ones in three dimensions, studied in [9].

7 Discussion

In this work, we complete the classification of independent vertices of arbitrary order n ≥ 3

for massless bosonic fields with arbitrary spin in arbitrary spacetime dimensions d ≥ 2.23

22If one of those indices equals n, Q1···n In+1···Id vanishes equivalently because it equals a total derivative.
23We concentrate on the traceless-transverse (TT) part of the vertices for classification, as discussed in

the beginning of section 2.
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We briefly summarise the results:

• For dimensions d ≥ 2n−1 there are no non-trivial Schouten identities. After reducing

to the independent Mandelstam variables, we find that all gauge invariant operators

can be expressed as polynomials in the gauge-invariant combinations cij and Y j
i ,

V ∈ M−1
1 R[sij , cij , Y

j
i ] , (7.1)

where M1 is the set of all products of Mandelstam variables sij (i 6= j). The invariant

combinations Y j
i are labelled by i = 1, . . . , n and j = 2, . . . , n− 2.

• For dimensions d < n we have the full set of Schouten identities at our disposal. All

gauge invariant operators are already generated by the Y j
i ’s, where i = 1, . . . , n and

j = 2, . . . , d− 1. All remaining relations are generated by level-0 Schouten identities

and specific quadratic expressions qi2 in the variables Y j
i ,

[V] ∈
M−1

R[sij , Y
j
i ]

〈(detB0(A)), qi2〉
, (7.2)

where again we reduced to the independent Mandelstam variables.

• In the intermediate case (2n− 1 > d ≥ n), we have Schouten identities, but because

d ≥ n the non-trivial Schouten identities involve at least (d− n) + 2 ≥ 2 level-1 rows

and columns. By an argument analogous to the one leading to eq. (5.4) one can show

that in the ring of fractions all Schouten identities are generated by those that contain

n− 1 level-0 rows and columns and (d− n) + 2 rows and columns of level-1. Let us

denote them by detB2(d−n)+4(A), where A labels the possible choices of the level-1

rows and columns. These generators are all gauge-invariant (up to total derivatives),

and hence we can express them in terms of the invariant combinations cij and Y j
i as

in section 3. Then the gauge invariant vertices are classified by equivalence classes

[V] ∈
M−1

R[sij , cij , Y
j
i ]

〈detB2(d−n)+4(A)〉
. (7.3)

An interesting question is whether the higher order vertices can induce deformations of

gauge transformations for the fields involved. Deformations arise when the gauge variation

is non-trivial before imposing the equations of motion. Terms in the variation that contain

the equations of motion have to be compensated by a non-trivial δ(n−2) in eq. (1.3). We have

found that in all dimensions, as long as we are allowed to divide by Mandelstam variables,

the independent gauge-invariant vertices can be expressed in terms of the combinations

cij and Y j
i = ci,i+ji+1, but these — as defined in eq. (3.3) and eq. (3.4) — are manifestly

gauge-invariant without need of the equations of motion. This strongly suggests that the

vertex does not induce a deformation. Strictly speaking we can only conclude that ∆V

for an appropriate product ∆ of Mandelstam variables does not induce any deformation.

However, in Fourier space ∆ is simply a (generically non-zero) number and should not
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change the general structure of deformations, hence we do not expect that V itself can

induce a deformation.24

To recapitulate, as soon as we allow for dividing by Mandelstam variables (and hence,

we loose manifest locality), the independent vertices of order n ≥ 4 can be all written in

terms of linearised curvatures of HS fields. Therefore they are manifestly gauge invariant

with respect to linearised gauge transformations and do not introduce deformations for

the latter. On the other hand, if such deformations of the gauge transformations, induced

from cubic vertices, exist in the theory, then these vertices will be completed by further

non-linear terms. This is similar to higher-curvature terms in Einstein Gravity, whose non-

linear structure is gauge invariant with respect to full diffeomorphisms, induced from the

Einstein-Hilbert cubic vertex. Such non-linear completions may make use of a non-linear

generalisation of de Wit-Freedman curvatures [86], which are not known in the metric-like

formulation (see, however, [87]). In the frame formulation, these vertices would correspond

to structures that make use of Weyl tensors and their descendants (zero form sector of

the Vasiliev system). In light of our findings here, the three dimensional results of [1] can

be interpreted as a particular case of the general dimensional results: all the independent

vertices are given through linearised curvatures, which are on-shell trivial in d = 3.

Even though the classification is done for Minkowski spaces, we expect the vertices

found here to deform smoothly to (A)dS spacetimes as it happens for cubic vertices. In-

deed, the existence of (A)dS extensions for linearised de Wit-Freedman curvatures for HS

fields [88] allows to straightforwardly lift vertices given through curvatures to (A)dSd. This

is also true for the operators (3.20) and their parity-odd counterparts given in section 6,

where one can simply replace derivatives with (A)dSd covariant ones.

Our results should have a direct analogue for correlation functions of conserved tensors

in d − 1 dimensional conformal field theories, which can be classified with similar meth-

ods [89]. For n = 3 there is a precise match between independent vertices and three-point

functions [5–7, 39, 48, 49, 89–91]. It would be interesting to compare our findings for n ≥ 4

with the group theoretic results of [92].

Next, we would like to note that there is another interpretation of eq. (2.12) which

we solved here. One can think of eq. (2.12) as a Ward identity for an n-point amplitude

computed in a theory of interacting HS fields. It is clear from our discussion, that the

building blocks of the amplitudes are given through cij , Y
j
i = ci,i+ji+1 and Mandelstam

variables, including negative powers of the latter. They correspond to arbitrary tensor

contractions of linearised curvatures [86] of HS gauge fields and their derivatives. These

linear de Wit-Freedman curvatures (or their traceless part: the Weyl tensors) and their

derivatives are the only on-shell non-zero gauge invariants with respect to the linearised

gauge transformations. It is natural that the amplitudes for n ≥ 4 should be given through

gauge invariant quantities, as they are observable.

The amplitude interpretation might be less motivated in three dimensions since there

are no propagating HS massless particles in three dimensions. As proved in [1], there

24This fits nicely with the observation obtained within the BRST formalism for spins up to s = 4 that

deformations of the gauge algebra can only arise from cubic vertices [60, 84, 85] and observations about

some quartic vertices [66, 67].
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are no candidate invariants for amplitudes with such fields either for d = 3. There is

one difference between amplitudes and vertices though — the latter are supposed to be

local, while the former do not have to. Given that one can always multiply the candidate

invariant vertices (amplitudes) by a non-vanishing function of Mandelstam variables, one

can show that relaxing locality would not help to get non-zero amplitudes in d = 3. There

is an interesting conclusion to be made here: since the amplitude is a sum of exchanges25

and contact vertices, vanishing amplitudes imply that the exchanges and contact vertices

should cancel each other. This is only possible if the non-local parts of the exchanges sum

up to zero, which should be specific to three dimensions and is presumably due to the

special structure of vertices and Schouten identities present only in three dimensions. We

plan to study the Lagrangian formulation of metric-like non-linear HS theories with(out)

matter in the near future to expose these special properties of HS gravities in d = 3.

Note added. We learned from Euihun Joung and Massimo Taronna about their preprint

with related results [95], which will appear on arxiv simultaneously.
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[64] W. Rühl, Solving Noether’s equations for gauge invariant local Lagrangians of N arbitrary

higher even spin fields, arXiv:1108.0225 [INSPIRE].

[65] A.K.H. Bengtsson, Investigations into light-front quartic interactions for massless fields (I):

non-constructibility of higher spin quartic Amplitudes, JHEP 12 (2016) 134

[arXiv:1607.06659] [INSPIRE].

[66] M. Taronna, On the non-local obstruction to interacting higher spins in flat space, JHEP 05

(2017) 026 [arXiv:1701.05772] [INSPIRE].

[67] R. Roiban and A.A. Tseytlin, On four-point interactions in massless higher spin theory in

flat space, JHEP 04 (2017) 139 [arXiv:1701.05773] [INSPIRE].

[68] D. Ponomarev, A note on (non)-locality in holographic higher spin theories, Universe 4

(2018) 2 [arXiv:1710.00403] [INSPIRE].

[69] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

[70] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like

higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017

[arXiv:1208.1851] [INSPIRE].

[71] S. Fredenhagen and P. Kessel, Metric- and frame-like higher-spin gauge theories in three

dimensions, J. Phys. A 48 (2015) 035402 [arXiv:1408.2712] [INSPIRE].

[72] S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow valley of colored (Anti) de Sitter

gravity in three dimensions, JHEP 04 (2016) 055 [arXiv:1511.05220] [INSPIRE].

[73] S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin

(A)dS3 gravity, JHEP 05 (2016) 150 [arXiv:1511.05975] [INSPIRE].

[74] A. Campoleoni, S. Fredenhagen and J. Raeymaekers, Quantizing higher-spin gravity in

free-field variables, JHEP 02 (2018) 126 [arXiv:1712.08078] [INSPIRE].

[75] P. Benincasa and E. Conde, Exploring the S-matrix of massless particles, Phys. Rev. D 86

(2012) 025007 [arXiv:1108.3078] [INSPIRE].

[76] D. Ponomarev, Off-shell spinor-helicity amplitudes from light-cone deformation procedure,

JHEP 12 (2016) 117 [arXiv:1611.00361] [INSPIRE].

[77] B. Nagaraj and D. Ponomarev, Spinor-helicity formalism for massless Fields in AdS4,

Phys. Rev. Lett. 122 (2019) 101602 [arXiv:1811.08438] [INSPIRE].

[78] B. Nagaraj and D. Ponomarev, Spinor-helicity formalism for massless fields in AdS4 II:

potentials, arXiv:1912.07494 [INSPIRE].

[79] D. Ponomarev and E.D. Skvortsov, Light-front higher-spin theories in flat space, J. Phys. A

50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].

[80] R.R. Metsaev, Light-cone gauge cubic interaction vertices for massless fields in AdS4, Nucl.

Phys. B 936 (2018) 320 [arXiv:1807.07542] [INSPIRE].

– 34 –

https://doi.org/10.1016/j.nuclphysb.2010.11.009
https://arxiv.org/abs/1002.1358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1358
https://doi.org/10.1007/JHEP04(2012)029
https://doi.org/10.1007/JHEP04(2012)029
https://arxiv.org/abs/1107.5843
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5843
https://arxiv.org/abs/1108.0225
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0225
https://doi.org/10.1007/JHEP12(2016)134
https://arxiv.org/abs/1607.06659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06659
https://doi.org/10.1007/JHEP05(2017)026
https://doi.org/10.1007/JHEP05(2017)026
https://arxiv.org/abs/1701.05772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05772
https://doi.org/10.1007/JHEP04(2017)139
https://arxiv.org/abs/1701.05773
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05773
https://doi.org/10.3390/universe4010002
https://doi.org/10.3390/universe4010002
https://arxiv.org/abs/1710.00403
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00403
https://doi.org/10.1007/JHEP11(2010)007
https://arxiv.org/abs/1008.4744
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4744
https://doi.org/10.1088/1751-8113/46/21/214017
https://arxiv.org/abs/1208.1851
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1851
https://doi.org/10.1088/1751-8113/48/3/035402
https://arxiv.org/abs/1408.2712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2712
https://doi.org/10.1007/JHEP04(2016)055
https://arxiv.org/abs/1511.05220
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05220
https://doi.org/10.1007/JHEP05(2016)150
https://arxiv.org/abs/1511.05975
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05975
https://doi.org/10.1007/JHEP02(2018)126
https://arxiv.org/abs/1712.08078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.08078
https://doi.org/10.1103/PhysRevD.86.025007
https://doi.org/10.1103/PhysRevD.86.025007
https://arxiv.org/abs/1108.3078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3078
https://doi.org/10.1007/JHEP12(2016)117
https://arxiv.org/abs/1611.00361
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00361
https://doi.org/10.1103/PhysRevLett.122.101602
https://arxiv.org/abs/1811.08438
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.08438
https://arxiv.org/abs/1912.07494
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.07494
https://doi.org/10.1088/1751-8121/aa56e7
https://doi.org/10.1088/1751-8121/aa56e7
https://arxiv.org/abs/1609.04655
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04655
https://doi.org/10.1016/j.nuclphysb.2018.09.021
https://doi.org/10.1016/j.nuclphysb.2018.09.021
https://arxiv.org/abs/1807.07542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.07542


J
H
E
P
0
6
(
2
0
2
0
)
1
1
8

[81] R.R. Metsaev, Cubic interactions for arbitrary spin N -extended massless supermultiplets in

4d flat space, JHEP 11 (2019) 084 [arXiv:1909.05241] [INSPIRE].

[82] D. Ponomarev, Chiral higher spin theories and self-Duality, JHEP 12 (2017) 141

[arXiv:1710.00270] [INSPIRE].
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