## Pacific

 Journal of MathematicsRESTRICTIONS OF RANK-2 SEMISTABLE VECTOR BUNDLES ON SURFACES IN POSITIVE CHARACTERISTIC

Atsushi Noma

# RESTRICTIONS OF RANK-2 SEMISTABLE VECTOR BUNDLES ON SURFACES IN POSITIVE CHARACTERISTIC 

Atsushi Noma


#### Abstract

We work over an algebraically closed field of positive characteristic. Let $E$ be a semistable rank-2 vector bundle with respect to a very ample line bundle $\mathcal{O}(1)$ on a smooth projective surface. The purpose here is to give an effective bound $d_{0}$ such that if $d \geq d_{0}$ the restriction of $E$ to a general member $C \in|\mathcal{O}(d)|$ is semistable.


## 1. Introduction.

Let $E$ be a rank- $r$ torsion free sheaf on a normal projective variety of dimension $n \geq 2$ defined over an algebraically closed field $k$. Assume that $E$ is semistable with respect to a very ample line bundle $\mathcal{O}(1)$ : Namely, if we set $\mu(F)=\left(c_{1}(F) \cdot \mathcal{O}(1)^{n-1}\right)$ for a subsheaf $F$ of $E, \mu(E) \geq \mu(F)$ holds for all subsheaf $F$ of $E$.

A problem of finding a condition when the restriction $E \mid C$ to a member $C \in|\mathcal{O}(d)|$ is semistable on $C$ has been considered by several authors ([1], [3], [6], [7], [8]): Maruyama [6] proved that if $r<n$ then $E \mid C$ is semistable for general $C \in|\mathcal{O}(d)|$ for every $d \geq 1$; Mehta and Ramanathan [7] proved that there exists an integer $d_{0}$ such that if $d \geq d_{0}$ then $E \mid C$ is semistable for general $C \in|\mathcal{O}(d)|$; Flenner [3] proved that if $k$ is of characteristic 0 and $d$ satisfies $\frac{\binom{d+n}{d}-d-1}{d}>\left(\mathcal{O}(1)^{n}\right) \cdot \max \left(\frac{r^{2}-1}{4}, 1\right)$ then $E \mid C$ is semistable for general $C \in|\mathcal{O}(d)|$. In other direction, in characteristic 0, Bogomolov [1] and Moriwaki [8] obtained an effective bound $d_{0}$ for some special restriction $E \mid C$ to be semistable.

The purpose here is to give an effective bound $d_{0}$ in positive characteristic when $E$ is a rank-2 vector bundle on a surface: If $d \geq d_{0}$ the restriction $E \mid C$ of $E$ to a general member $C \in|\mathcal{O}(d)|$ is semistable.

Our result is the following.
Theorem. Let $S$ be a smooth projective surface over an algebraically closed field $k$ of characteristic char $(k)=p>0$ and $\mathcal{O}_{S}(1)$ a very ample line bundle on $S$. Let $E$ be a rank-2 semistable vector bundle with respect to $\mathcal{O}_{S}(1)$ on S. Set $\operatorname{deg} S=\left(\mathcal{O}_{S}(1)^{2}\right), \Delta(E)=c_{2}(E)-(1 / 4) c_{1}^{2}(E)$, and $\nu=\min \{(\mathcal{M}$.
$\left.\left.\mathcal{O}_{S}(1)\right)>0: \mathcal{M} \in \operatorname{Pic} S\right\}$. Let $d$ be an integer with

$$
d> \begin{cases}\frac{\Delta(E)}{\nu}+\frac{\sqrt{\Delta(E)}}{2 \sqrt{3 \operatorname{deg} S}}, & \text { if } \Delta(E)>0 \\ 0, & \text { if } \Delta(E) \leq 0\end{cases}
$$

Then the restriction $E \mid C$ to a general $C \in\left|\mathcal{O}_{S}(d)\right|$ is semistable on $C$.
The theorem is proved based on ideas of Ein [2] and Flenner [3].

## 2. Proof of Theorem.

Set $L=\mathcal{O}_{S}(d)$. Let $\mathbb{P}^{2 *}$ be the projective space of lines in $\mathbb{P}^{2}$ and $\mathbb{F}$ the incidence correspondence $\left\{(x, \ell) \in \mathbb{P}^{2} \times \mathbb{P}^{2 *}: x \in \ell\right\}$, namely

$$
\mathbb{F}=\mathbb{P}_{\mathbb{P}^{2}}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right) \subseteq \mathbb{P}_{\mathbb{P}^{2}}\left(\wedge^{2} H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right) \otimes \mathcal{O}_{\mathbb{P}^{2}}\right)=\mathbb{P}^{2} \times \mathbb{P}^{2 *}
$$

Let $\phi: S \rightarrow \mathbb{P}^{2}$ be a (separable) finite morphism defined by a 2 -dimensional, base-point-free, linear subsystem $\mathfrak{d}$ of $|L|$ containing a general curve $C \in|L|$. Pulling-back the correspondence $\mathbb{F}$ by $\phi$, we have the following diagram:


We denote the composite $X \rightarrow \mathbb{F} \rightarrow \mathbb{P}^{2 *}$ by $\rho$.
Assume that the restriction $E \mid C$ to a general curve $C \in \mathfrak{d} \subset|L|$ is not semistable. In other words, the restriction $\pi^{*} E \mid \rho^{-1}(\ell)$ to $\rho^{-1}(\ell)$ for a general $\ell \in \mathbb{P}^{2 *}$ is not semistable, since $\rho^{-1}(\ell)$ is isomorphic to a divisor $C \in \mathfrak{d}$ and $\pi^{*} E\left|\rho^{-1}(\ell) \cong E\right| C$ under this isomorphism. Consider a relative HarderNarasimhan filtration (HN-filtration) of $\pi^{*} E$ over $\rho$, which has a property that its restriction to $\rho^{-1}(\ell)$ for a general $\ell \in \mathbb{P}^{2 *}$ is the HN-filtration of $\pi^{*} E \mid \rho^{-1}(\ell)$ (see [4, (3.2)]). By assumption, the relative HN-filtration is $0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset \mathcal{E}_{2}=\pi^{*} E$ and we may assume that $\mathcal{E}_{1}$ is locally free of rank 1 on $X$. Hence if $W$ denotes the class of the tautological bundle of $X=\mathbb{P}_{S}\left(\phi^{*}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right)\right)$, we have $\mathcal{E}_{1} \cong \mathcal{O}_{X}(a W) \otimes \pi^{*} \mathcal{M}$ for some $a \in \mathbb{Z}$ and $\mathcal{M} \in \operatorname{Pic} S$, since $\operatorname{Pic} X \cong \mathbb{Z} W \oplus \pi^{*} \operatorname{Pic} S$ (see [5, Ch. III Ex. 12.5]). Since $\mathcal{M}\left|\pi\left(\rho^{-1}(\ell)\right) \subset E\right| \pi\left(\rho^{-1}(\ell)\right)$ is the HN-filtration of $E \mid \pi\left(\rho^{-1}(\ell)\right)$ for a general $\ell \in \mathbb{P}^{2 *}$, we have

$$
\begin{equation*}
\left(c_{1}(E)-2 \mathcal{M} \cdot L\right)<0 . \tag{1}
\end{equation*}
$$

Consequently $H^{0}\left(\rho^{-1}(\ell), \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right) \mid \rho^{-1}(\ell)\right) \cong k$ for a general $\ell \in \mathbb{P}^{2 *}$, and hence $\rho_{*} \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right)$ is of rank 1 and reflexive. Therefore we have $\rho_{*} \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right)=\mathcal{O}_{\mathbb{P}^{2 *}}(-t)$ for some $t \in \mathbb{Z}$. The semistability of $E$ implies

$$
\begin{equation*}
t>0 \tag{2}
\end{equation*}
$$

since $H^{0}\left(\mathbb{P}^{2 *}, \rho_{*} \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right)\right)=H^{0}\left(X, \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right)\right)=H^{0}\left(S, E \otimes \mathcal{M}^{\vee}\right)$ and (1) holds. The natural map $\mathcal{O}_{X}(-t W)=\rho^{*} \rho_{*} \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right) \rightarrow \pi^{*}\left(E \otimes \mathcal{M}^{\vee}\right)$ induces an exact sequence
$0 \rightarrow \mathcal{O}_{X}(-t W) \otimes \pi^{*} \mathcal{M} \rightarrow \pi^{*} E \rightarrow \mathcal{O}_{X}(t W) \otimes \pi^{*} \mathcal{O}_{S}\left(c_{1}(E)-\mathcal{M}\right) \otimes \mathcal{I}_{Z} \rightarrow 0$
with a closed subscheme $Z$ of codimension 2 in $X$.
The surjection in (3) induces a unique morphism $\sigma: X \backslash Z \rightarrow \mathbb{P}_{S}(E)$ with

$$
\begin{aligned}
\sigma^{*} \mathcal{O}_{\mathbb{P}(E)}(1) & =\mathcal{O}_{X}(t W) \otimes \pi^{*} \mathcal{O}_{S}\left(c_{1}(E)-\mathcal{M}\right) \mid(X \backslash Z) \\
\sigma^{*} \Omega_{\mathbb{P}(E) / S}^{1} & =\mathcal{O}_{X}(-2 t W) \otimes \pi^{*} \mathcal{O}_{S}\left(2 \mathcal{M}-c_{1}(E)\right) \mid(X \backslash Z)
\end{aligned}
$$

by the universal property of projective bundle $\tau: \mathbb{P}_{S}(E) \rightarrow S$. If the differential

$$
d \sigma: \sigma^{*} \Omega_{\mathbb{P}(E) / S}^{1} \rightarrow \Omega_{X / S}^{1} \mid(X \backslash Z)
$$

is zero, then $S$-morphism $\sigma$ factors through the relative Frobenius $F_{(X \backslash Z) / S}$ : $X \backslash Z \rightarrow(X \backslash Z)^{(1)}$ of $X \backslash Z$ over $S$ (see [2, (1.4)]). Namely there exists an $S$ morphism $\sigma_{1}:(X \backslash Z)^{(1)} \rightarrow \mathbb{P}_{S}(E)$ such that $\sigma=\sigma_{1} \circ F_{(X \backslash Z) / S}$. Here for an $S$-scheme $Y$, by $Y^{(r)}$ we denote the base change of the structure morphism $\eta: Y \rightarrow S$ by the $r$ th (absolute) Frobenius $F_{S}^{r}: S \rightarrow S ; F_{Y / S}^{r}: Y \rightarrow Y^{(r)}$ is the $S$-morphism induced by the (absolute) Frobenius $F_{Y}^{r}: Y \rightarrow Y$ of $Y$ and the structure morphism $\eta$ by the property of products. Furthermore, if $d \sigma_{1}=0$, then there exists a morphism $\sigma_{2}:(X \backslash Z)^{(2)} \rightarrow \mathbb{P}_{S}(E)$ such that $\sigma=\sigma_{2} \circ F_{(X \backslash Z) / S}^{2}$. Proceeding in this way with $[2,(1.4)]$, we claim that there exists a morphism $\sigma_{r}:(X \backslash Z)^{(r)} \rightarrow \mathbb{P}_{S}(E)$ such that $\sigma=\sigma_{r} \circ F_{(X \backslash Z) / S}^{r}$ and the relative differential

$$
d \sigma_{r}: \sigma_{r}^{*} \Omega_{\mathbb{P}(E) / S}^{1} \rightarrow \Omega_{X^{(r)} / S}^{1} \mid(X \backslash Z)^{(r)}
$$

is nonzero for some $r \geq 0$. In fact, suppose that we have a morphism $\sigma_{r}:(X \backslash Z)^{(r)} \rightarrow \mathbb{P}_{S}(E)$ such that $\sigma=\sigma_{r} \circ F_{(X \backslash Z) / S}^{r}$ for some $r \geq 0$. Here we set $\sigma_{0}=\sigma$ if $r=0$. Then we have the following diagram:

$$
\begin{aligned}
& X \backslash Z \quad{ }^{F_{(X / Z) / S}^{r}} \quad(X \backslash Z)^{(r)} \\
& X \xrightarrow{F_{X / S}^{r}} \quad X^{(r)} \quad \mathbb{P}_{S}(E) \\
& \downarrow \pi \quad \downarrow \pi_{r} \quad \swarrow \tau \\
& S \quad=\quad S .
\end{aligned}
$$

Since $X \cong \mathbb{P}_{S}\left(\phi^{*}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right)\right)$, we have $X^{(r)} \cong \mathbb{P}_{S}\left(F_{S}^{r *} \phi^{*}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right)\right)$. If $W^{\prime}$ is the class of the tautological line bundle of $X^{(r)}$ over $S$, then $F_{X / S}^{r *} \mathcal{O}_{X^{(r)}}\left(W^{\prime}\right) \cong$ $\mathcal{O}_{X}\left(p^{r} W\right)$ and $\Omega_{X^{(r)} / S}^{1} \cong \pi_{r}^{*}\left(p^{r} L\right) \otimes \mathcal{O}_{X^{(r)}}\left(-2 W^{\prime}\right)$. On the other hand, $F_{X / S}^{r *} \pi_{r}^{*} \mathcal{A} \cong \pi^{*} \mathcal{A}$ for every $\mathcal{A} \in \operatorname{Pic} S$. Since $\sigma=\sigma_{r} \circ F_{(X \backslash Z) / S}^{r}$ and Pic $X^{(r)} \cong$ $\mathbb{Z} W^{\prime} \oplus \pi_{r}^{*} \operatorname{Pic} S$, the morphism $\sigma_{r}$ induces an exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{X^{(r)}}\left(-\frac{t}{p^{r}} W^{\prime}\right) \otimes \pi_{r}^{*} \mathcal{M} \rightarrow \pi_{r}^{*} E \\
& \rightarrow \mathcal{O}_{X^{(r)}}\left(\frac{t}{p^{r}} W^{\prime}\right) \otimes \pi_{r}^{*} \mathcal{O}_{S}\left(c_{1}(E)-\mathcal{M}\right) \otimes \mathcal{I}_{Z^{\prime}} \rightarrow 0
\end{aligned}
$$

and we have $t / p^{r} \in \mathbb{Z}$, where $Z^{\prime}$ is a codimension 2 closed subscheme of $X^{(r)}$. Since $t>0$, the latter implies that $\sigma$ factors through the relative Frobenius over $S$ only in finite times. Therefore for some $r \geq 0$, the morphism $\sigma_{r}$ must have the nonzero relative differential $d \sigma_{r}$, as required.

We take such $r \geq 0$ and $\sigma_{r}:(X \backslash Z)^{(r)} \rightarrow \mathbb{P}_{S}(E)$. If $C \in \mathfrak{d} \subset|L|$, since $C \cong \rho^{-1}(\ell) \cong F_{X / S}^{r}\left(\rho^{-1}(\ell)\right)$ for some $\ell \in \mathbb{P}^{2 *}$, we can consider $C \subset X^{(r)}$. Then we have $\mathcal{O}_{X^{(r)}}\left(W^{\prime}\right) \mid C \cong \mathcal{O}_{C}$ and $\pi_{r}^{*} \mathcal{A}|C \cong \mathcal{A}| C$ for every $\mathcal{A} \in \operatorname{Pic} S$. The restriction $d \sigma_{r} \mid C$ to general $C \in \mathfrak{d}$ is nonzero by the choice of $r$. This implies that

$$
\begin{equation*}
\left(L \cdot 2 \mathcal{M}-c_{1}(E)\right) \leq p^{r}\left(L^{2}\right) \leq t\left(L^{2}\right), \tag{4}
\end{equation*}
$$

since

$$
\begin{aligned}
\sigma_{r}^{*} \Omega_{\mathbb{P}(E) / S}^{1} \mid C & =\mathcal{O}_{C}\left(2 \mathcal{M}-c_{1}(E)\right) \\
\Omega_{X^{(r)} / S}^{1} \mid C & =\mathcal{O}_{C}\left(p^{r} L\right),
\end{aligned}
$$

and since $t / p^{r} \in \mathbb{Z}$.
Restricting the exact sequence (3) to a general member $W \in\left|\mathcal{O}_{X}(W)\right|$ not containing any associate points of $Z$, we have an exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathcal{O}_{W}(-t W) \otimes \pi^{*} \mathcal{M}\left|W \rightarrow \pi^{*} E\right| W \\
& \rightarrow \mathcal{O}_{W}(t W) \otimes \pi^{*} \mathcal{O}_{S}\left(c_{1}(E)-\mathcal{M}\right) \mid W \otimes \mathcal{I}_{Z \cap W} \rightarrow 0
\end{aligned}
$$

On the other hand, we note that $W^{3}=0$ and $W^{2} \cdot \pi^{*} \mathcal{A}=(\mathcal{A} \cdot L)$ for any $\mathcal{A} \in \operatorname{Pic} S$, since $W^{2}-\pi^{*} L \cdot W+\left(\pi^{*} L^{2}\right)=W^{2}-c_{1}\left(\phi^{*}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right)\right)$. $W+c_{2}\left(\phi^{*}\left(\Omega_{\mathbb{P}^{2}}^{1}(2)\right)\right)=0$. Thus from the exact sequence above, noting that
$W \rightarrow S$ is birational via $\pi$, we have

$$
\begin{aligned}
c_{2}(E)= & c_{2}\left(\pi^{*} E \mid W\right) \\
= & -t^{2}\left(\mathcal{O}_{W}(W)^{2}\right)+t\left(\mathcal{O}_{W}(W) \cdot \pi^{*} \mathcal{O}_{S}\left(2 \mathcal{M}-c_{1}(E)\right) \mid W\right) \\
& +\left(\pi^{*} \mathcal{M}\left|W \cdot \pi^{*} \mathcal{O}_{S}\left(c_{1}(E)-\mathcal{M}\right)\right| W\right)+\operatorname{deg}(Z \cap W) \\
= & t\left(L \cdot 2 \mathcal{M}-c_{1}(E)\right)-\left(\mathcal{M} \cdot \mathcal{M}-c_{1}(E)\right)+\operatorname{deg}(Z \cap W) \\
\geq & t\left(L \cdot 2 \mathcal{M}-c_{1}(E)\right)-\left(\mathcal{M} \cdot \mathcal{M}-c_{1}(E)\right),
\end{aligned}
$$

and hence

$$
\Delta(E) \geq 2 t\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)-\left(\left(\mathcal{M}-(1 / 2) c_{1}(E)\right)^{2}\right)
$$

By the Hodge index theorem for $L$ and $\mathcal{M}-(1 / 2) c_{1}(E)$, we have

$$
\begin{equation*}
\Delta(E) \geq 2 t\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)-\frac{\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)^{2}}{\left(L^{2}\right)} \tag{5}
\end{equation*}
$$

From (4) and (5), it follows that

$$
\Delta(E) \geq 3 \frac{\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)^{2}}{\left(L^{2}\right)}
$$

When $\Delta(E) \leq 0$, this contradicts (1). When $\Delta(E)>0$, we have

$$
\begin{equation*}
\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right) \leq \sqrt{\frac{\Delta(E)\left(L^{2}\right)}{3}} . \tag{6}
\end{equation*}
$$

On the other hand, from (5), it follows

$$
\frac{\Delta(E)}{\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)}+\frac{\left(L \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right)}{\left(L^{2}\right)} \geq 2 t .
$$

Since $L=\mathcal{O}_{S}(d)$, by using the assumption $\left(\mathcal{O}_{S}(1) \cdot \mathcal{M}-(1 / 2) c_{1}(E)\right) \geq \nu / 2$ to the first term and (6) to the second term, we have

$$
\frac{1}{d}\left(\frac{\Delta(E)}{\nu}+\frac{\sqrt{\Delta(E)}}{2 \sqrt{3 \operatorname{deg} S}}\right) \geq t
$$

By assumption of $d$, we have $t<1$ hence $t \leq 0$, which contradicts (2). This completes the proof.
Remark. Let $S, \mathcal{O}_{S}(1), E$ and $d$ be as in Theorem.
(1) Let $\mathfrak{d}$ be a 2 -dimensional linear subsystem of $\left|\mathcal{O}_{S}(d)\right|$ defining a separable, finite morphism from $S$ to $\mathbb{P}^{2}$. The proof of theorem implies that the restriction $E \mid C$ is semistable for a general member $C \in \mathfrak{d}$.
(2) Assume that $\Delta(E)>0$ and that the restriction $E \mid C$ to be a general member of $C \in\left|\mathcal{O}_{S}(1)\right|$ is not semistable with HN-filtration $0=\mathcal{E}_{0} \subset \mathcal{E}_{1} \subset$ $\mathcal{E}_{2}=E \mid C$. Then it follows from (6) that

$$
\operatorname{deg} \mathcal{E}_{1}-(1 / 2) \operatorname{deg}(E \mid C) \leq \sqrt{\operatorname{deg} S \cdot \Delta(E) / 3}
$$

holds. This inequality is exactly that of Ein in $[2,(4.1)]$ when $S=\mathbb{P}^{2}$ and $\mathcal{O}_{S}(1)=\mathcal{O}_{\mathbb{P}^{2}}(1)$.
(3) I do not know the bound in Theorem is optimal or not. For example, let $E$ be the $m$ th Frobenius pull-back $F^{m *}\left(\Omega_{\mathbb{P}^{2}}(2)\right)$ of the twisted cotangent bundle on $\mathbb{P}^{2}$, which plays an important role in the proof of Theorem. We know that $E$ is semistable (see for example [2]) and $\Delta(E)=p^{2 m} / 4$. Thus Theorem implies that $E \mid C$ is semistable on a general curve $C$ of degree $d$ if $d>p^{2 m} / 4+p^{m} /(4 \sqrt{3})$. On the other hand, from a calculation of $H^{0}\left(C, E\left(-\left(p^{m}+1\right) / 2\right) \mid C\right)$ by using the Euler sequence, it follows that $E \mid C$ is semistable for general $C$ of degree $d$ if $d>\left(3 p^{m}+5\right) / 4$ for $p \neq 2$.

## References

[1] F.A. Bogomolov, On stability of vector bundles on surfaces and curves, in 'Einstein Metrics and Yang-Mills Connections', eds. T. Mabuchi and S. Mukai, Lecture Notes in Pure and App. Math., 145 (1993), 187-221, Dekker, New York.
[2] L. Ein, Stable vector bundles on projective spaces in char $p>0$, Math. Ann., 254 (1980), 53-72.
[3] H. Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helevetici, 59 (1984), 635-650.
[4] O. Forster, A. Hirschowitz and M. Schneider, Type de scindage généralisé pour les fibrés stables, in 'Vector bundles and differential equations', Proceedings, Nice, 1979, ed. A. Hirxhowitz, Progress in Math., 7 (1980), 65-81, Birkhäuser, Basel, Boston, Stuttgart.
[5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52 (1977), SpringerVerlag, Berlin/New York.
[6] M. Maruyama, Boundedness of semi-stable sheaves of small ranks, Nagoya Math. J., 78 (1980), 65-94.
[7] V. Mehta and A. Ramanathan, Semi-stable sheaves on projective varieties and their restriction to curves, Math. Ann., 258 (1982), 213-224.
[8] A. Moriwaki, Arithmetic Bogomolov-Gieseker's inequality, Amer. J. Math., 117 (1995), 1325-1347.

Received July 21, 1997 and revised March 10, 1998.
Yokohama National University
79-2 Tokiwadai, Hodogaya-ku
YоконамА 240-8501
Japan
E-mail address: noma@ed.ynu.ac.jp

