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Transversal gates play an important role in the theory of fault-tolerant quantum computation due to

their simplicity and robustness to noise. By definition, transversal operators do not couple physical

subsystems within the same code block. Consequently, such operators do not spread errors within code

blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are

required, as it is invariably the case that some encoded gates cannot be implemented transversally. This

observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal.

Here we show that the ability of a quantum code to detect an arbitrary error on any single physical

subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.
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Quantum computation appears to be intrinsically more
powerful than its classical counterpart. Efficient quantum
algorithms have been found for certain problems that,
using the best known classical algorithms, require resour-
ces that scale as a superpolynomial function of the problem
size [1–3]. However, implementing a computation large
enough to take advantage of such scaling properties is a
daunting challenge. Given the difficulty of constructing
quantum hardware, it seems likely that the software for
the first quantum computers will need to incorporate sig-
nificant amounts of error checking.

As in the classical case, quantum errors are rendered
detectable by encoding the system of interest into a sub-
space of a larger, typically composite, system. A quantum
code simply specifies which states of a quantum system
correspond to which logical (encoded) information states.
Errors that move states outside of the logical subspace can
be detected by measuring the projector P onto this sub-
space. Thus, an error E is detectable, in the sense that it can
be discovered or eliminated, if and only if

PEP / P:

Of course, not all errors can be detected; for any nontrivial
code there are operators that act in a nontrivial way within
the logical subspace. Most commonly, quantum codes are
designed to permit the detection of independent, local
errors and, as a consequence, are incapable of detecting
some errors that affect many subsystems.

For quantum computation, it is necessary not only to
detect errors but also to apply operators (gates) that trans-
form the logical state of the code. Even when error pro-
cesses are local and independent, however, the operations
entailed in computing can generate correlated errors from
uncorrelated ones. Thus, for error detection to be effective,
it is important that the logical operators employed during a
quantum computation be designed to limit the spread of
errors. It is particularly important that operators do not
spread errors within code blocks, where a block of a

quantum code is defined as a collection of subsystems for
which errors on subsystems in the collection are detected
independently of those on subsystems outside of it.
Managing the spread of errors is the subject of the theory
of fault-tolerant quantum computing [4,5]. One of the
primary techniques of this theory is the use of transversal
encoded gates.
We label as ‘‘transversal’’ any partition of the physical

subsystems of a code such that each part contains one
subsystem from each code block. Given a transversal
partition of a code, an operator is called transversal if it
exclusively couples subsystems within the same part. Put
another way, an operator is transversal if it couples no
subsystem of a code block to any but the corresponding
subsystem in another code block. Transversal operators are
inherently fault tolerant. They can spread errors between
code blocks, thereby increasing the number of locations at
which a code block’s error might have originated, but,
since errors on different code blocks are treated indepen-
dently, the total number of errors necessary to cause a
failure is unchanged. This is in contrast to nontransversal
operators, where, for example, an encoded gate coupling
every subsystem in a code block might convert an error on
a single subsystem into an error on every subsystem of the
code block.
In view of the above, it would be highly desirable to

carry out quantum computations exclusively using trans-
versal encoded gates. To allow for arbitrary computation, it
is necessary that the set of gates employed be universal,
that is, that it be capable of implementing any encoded
operator on the logical state space to arbitrarily high accu-
racy. However, in spite of substantial effort, no gate set for
a nontrivial quantum code has yet been found that is both
universal and transversal. Consequently, a long-standing
question in quantum information theory is whether there
exist nontrivial quantum codes for which all logical gates
can be implemented transversally. For stabilizer codes, this
question has recently been answered in the negative. Zeng,
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Cross, and Chuang [6] showed that transversal unitary
operators are not universal for stabilizer codes on two-level
subsystems (qubits); the companion result for the case of
d-level subsystems (qudits) was proven by Chen et al. [7].
In this Letter we present a more general proof based on the
structure of the Lie group of transversal unitary operators.
Our result applies to all local-error-detecting quantum
codes, that is, all quantum codes capable of detecting an
arbitrary error on any single subsystem.

An outline of the argument is as follows: The set of
logical unitary product operators, G, is a Lie subgroup of
the Lie group of unitary product operators, T . As a Lie
group, G can be partitioned into cosets of the connected
component of the identity, C; these cosets form a discrete
set, Q. Using the fact that the Lie algebra of C is a
subalgebra of T , it can be shown that the connected
component of the identity acts trivially for any local-
error-detecting code. This implies that the number of logi-
cally distinct operators implemented by elements of G is
limited to the cardinality of Q. Because of the compact-
ness of T , this number must be finite. A finite number of
operators can approximate infinitely many only up to some
fixed accuracy; thus, G, the set of logical unitary product
operators, cannot be universal. Transversal operators may
be viewed as product operators with respect to a transversal
partitioning of the code, so the ability to detect an arbitrary
error on a transversal part implies the nonexistence of a
universal, transversal encoded gate set.

We begin by exploring the structure of various sets of
unitary operators and subsequently move to our central
theorem. The following material relies heavily on results
from topology and the theory of Lie groups. An accessible
introduction to these topics can be found, for example, in
Refs. [8,9] and on Wikipedia [10].

Consider a quantum system of finite dimension d. The
setUðdÞ of unitary operators on a d-dimensional quantum
system forms a compact, connected Lie group with a Lie
algebra consisting of the Hermitian operators. (Following
the convention in physics, we include a factor of i in the
mapping between elements of the Lie algebra and Lie
group.) Thus, any unitary operator U 2 UðdÞ satisfies

U ¼ eiH

for some Hermitian operator H.
Now consider a composite quantum systemQ composed

of n physical subsystems, where the dimension of the jth
subsystem is dj. LetT denote the set of all unitary product

operators, that is, all operators of the form

On
j¼1

Uj;

where Uj 2 UðdjÞ. Being a direct product of a finite

number of compact Lie groups, T is also a compact Lie
group. For the same reason,T has a Lie algebra t given by
the direct sum of the Lie algebras of the component groups.

Given a quantum code C on the system Q, the set of
logical unitary operators on Q is defined as the subset of
unitary operators that preserve the code space. In terms of a
projector P onto the code states of C, this is the statement
that a unitary operator U is a logical operator if and only if

ðI � PÞUP ¼ 0: (1)

Note that ðI � PÞUP is a continuous function of U.
Lemma 1.—The set of logical unitary operators forms a

group.
Proof.—Let P be the projector onto the logical subspace

of a quantum code. The set of logical unitary operators,L,
consists of all unitary operators U satisfying

PUP ¼ UP:

The set L fulfills the four requirements of a group: The
multiplication of unitary operators is associative. The iden-
tity, I, is contained in L as

PIP ¼ P2 ¼ P ¼ IP:

The group property of closure is satisfied since

PUVP ¼ PUPVP ¼ UPVP ¼ UVP

for any U, V 2 L. The inverse Uy of any U 2 L is
contained in L since

ðPUyPÞðPUPÞ ¼ ðPUyÞðUPÞ ¼ P;

which implies that PUyP is the inverse of PUP on the
subspace P and therefore that

UyðPÞ ¼ UyðPUPPUyPÞ ¼ UyUPPUyP ¼ PUyP:

h
Lemma 2.—The logical operators contained in a Lie

group of unitary operators form a Lie subgroup.
Proof.—Let L be the set of logical unitary operators for

a given code, let A be a Lie group of unitary operators,
and let B ¼ A \L. Lemma 1 shows that L is a group.
Because the intersection of two groups is a group, B is a
subgroup of A. Topologically speaking, L is a closed set
since, as seen from Eq. (1), it is a preimage of a closed set
under a continuous function. Being a Lie group,A is also
a topologically closed set, and therefore B is as well. That
B is a Lie subgroup of A follows from a theorem by
Cartan (see p. 3 of Ref. [11]), which states that a topologi-
cally closed subgroup of a Lie group is a Lie subgroup. h
Theorem 1.—For any nontrivial local-error-detecting

quantum code, the set of logical unitary product operators
is not universal.
Proof.—Let Q, as defined earlier, be a composite quan-

tum system supporting a local-error-detecting code C. The
set of unitary product operators on Q is the compact Lie
group that was earlier denoted by T .
Lemma 2 shows that G, the subset of unitary product

operators that are also logical operators, forms a Lie sub-
group of T .
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As a Lie group, G can be partitioned into cosets of the
connected component of the identity, C, where C is a Lie
subgroup of G. This set of cosets is the quotient group
Q ¼ G=C and constitutes a topologically discrete group.

Because C is a connected Lie group, any element C 2 C
can be written as

C ¼ Y
k

eiDk ;

where Dk is in c, the Lie algebra of C. For any D 2 c and
� 2 <, the operator ei�D is also in C and is, consequently, a
logical gate satisfying

0 ¼ ðI� PÞei�DP:
Since ðI � PÞIP ¼ 0, we also have

0 ¼ lim
�!0

ðI � PÞ
�
ei�D � I

i�

�
P ¼ ðI� PÞDP

for all D 2 c.
As C is a Lie subgroup of the Lie group T , its Lie

algebra c must be a subalgebra of t, the Lie algebra of
T . Consequently, every element D 2 c can be written in
the form

D ¼ Xn
j¼1

�jHj;

where �j 2 < and Hj is a Hermitian operator applied to

the jth subsystem. Any local Hermitian operator can be
written as a sum over local error operators, so

PHjP / P;

where P is the projector onto the code space of C.
Combining the preceding three equations yields

DP ¼ PDP ¼ P
Xn
j¼1

�jHjP ¼ Xn
j¼1

�jPHjP / P

for all D 2 c, which shows that

CP ¼ Y
k

eiDkP / P:

Since C is a unitary operator, the constant of proportion-
ality must be one. Thus, whether it is trivial or not, all
operators contained in C act as the identity on the code
space.

Let F be a set consisting of one representative from
each coset of C in G. The preceding paragraph shows that
every operator in the group G acts on the code space as an
operator from F . In other words, for every G 2 G,

GP ¼ FCP ¼ FP

for some F 2 F and C 2 C.
The operators induced by G on the logical quantum

system are closed under composition and limited in num-
ber to the cardinality of F . The set F is discrete since its

elements are representatives taken from each of the cosets
comprising the discrete groupQ ¼ G=C. It follows that F
is also finite, being a discrete subset of a compact group,
namely T . However, for a nontrivial encoded quantum
system, the number of logically distinct operators is un-
countably infinite. As the set of all unitary operators is a
metric space, a finite number of unitary operators cannot
approximate infinitely many to arbitrary precision. (By
contrast, the Solovay-Kitaev theorem [12,13] states that a
universal, and infinite, set of operators can be generated by
composition from certain finite sets of operators. In our
case, composition yields nothing new.) Thus, G, the set of
logical product operators, is not universal. h
Theorem 1 considers only product gates, but the same

basic approach can be applied to the case of transversal
gates.
Corollary 1.—For any nontrivial local-error-detecting

quantum code, the set of transversal, logical unitary opera-
tors is not universal.
Proof.—This result follows directly from an application

of Theorem 1 in which the physical subsystems are re-
placed by transversal parts. Each part contains a set of
physical subsystems that can be coupled by transversal
operators. Transversal operators may therefore be regarded
as product operators on the transversal parts. Theorem 1
thus proves that the set of transversal, logical unitary
operators is not universal for any nontrivial quantum
code capable of detecting an arbitrary error on a single
transversal part. For a local-error-detecting code, the con-
dition that any error on a single transversal part be detect-
able is satisfied since this corresponds to a single-
subsystem error on each of the code blocks. h
As with any impossibility proof, perhaps the most inter-

esting aspect of Corollary 1 is how it can be circumvented.
The most obvious circumvention, and an avenue that has
been thoroughly explored, is to employ nonunitary opera-
tors [14–16]. The standard method of achieving universal
fault-tolerant quantum computation takes this approach,
making extensive use of measurements and classical
feed-forward during the preparation, testing, and coupling
of ancillary states. Alternatively, one might retain unitarity
and instead loosen the requirements of transversality or
universality or even error detection, options that we discuss
in turn.
Among the alternatives listed, nontransversal operators

provide the most promising approach to circumventing
Theorem 1. References [6,7] discuss the possibility of
achieving universality through the addition of coordinate
permutations, which, taken in isolation, are fault tolerant.
Zeng, Cross, and Chuang note that the encoded Hadamard
gate for the Bacon-Shor codes [17] involves a coordinate
permutation and therefore is not transversal. In fact, for
these codes, some sequences of encoded Hadamard and
controlled-NOT gates are not fault tolerant; a single physi-
cal gate failure is capable of producing two errors on a
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single code block. Strict fault tolerance is achieved by
checking for errors prior to coupling code blocks using a
new transversal partition. Such codes demonstrate that it is
sufficient for individual logical gates to avoid directly
coupling subsystems of a code block. A quantum code
for which there existed a universal set of encoded gates
each transversal in isolation would be extremely useful.

Along a different line, we might imagine demanding less
than full universality. Finite groups of operators are already
an important component of schemes for fault-tolerant
quantum computing. These schemes typically take advan-
tage of the existence of codes for which the Clifford gates,
a finite subgroup of all gates, are both sufficient for error
detection and transversally implementable. The Clifford
gates are not the only set that can be implemented trans-
versally, however. It would be interesting to quantify the
maximum size of finite group that is achievable transver-
sally and to investigate the computational power of the
non-Clifford finite gate groups.

Given a local error model, it seems unprofitable to
abandon local error detection entirely. In order to violate
the assumptions of our proof, however, it is sufficient that
detection not be deterministic. It might be possible to find a
family of codes satisfying both the universality and trans-
versality conditions for which the probability of failing to
detect an error on a single subsystem can be made arbi-
trarily small. The usefulness of such a family of codes
would depend on the scaling of the failure probability with
the size of the code.

In conclusion, we have presented a proof that the ability
of a quantum code to detect arbitrary errors on component
subsystems is incompatible with the existence of a univer-
sal, transversal, and unitary encoded gate set. Our proof
makes no assumptions about the dimensions of the quan-
tum subsystems beyond requiring that they be finite. The
quantum system encoded is assumed to be nontrivial, that
is, to have dimension greater than one. The precise struc-
ture of the quantum code and its initialization state are
unspecified. Our result rules out the use of transversal
unitary operators with local error detection as an exclusive
means to obtain universality, but it also suggests some
interesting new avenues of investigation.
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