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Abstract 

Recently proposed deep neural network (DNN) obtains 
significant accuracy improvements in many large vocabulary 
continuous speech recognition (LVCSR) tasks. However, 
DNN requires much more parameters than traditional systems, 
which brings huge cost during online evaluation, and also 
limits the application of DNN in a lot of scenarios. In this 
paper we present our new effort on DNN aiming at reducing 
the model size while keeping the accuracy improvements. We 
apply singular value decomposition (SVD) on the weight 
matrices in DNN, and then restructure the model based on the 
inherent sparseness of the original matrices. After 
restructuring we can reduce the DNN model size significantly 
with negligible accuracy loss. We also fine-tune the 
restructured model using the regular back-propagation method 
to get the accuracy back when reducing the DNN model size 
heavily. The proposed method has been evaluated on two 
LVCSR tasks, with context-dependent DNN hidden Markov 
model (CD-DNN-HMM). Experimental results show that the 
proposed approach dramatically reduces the DNN model size 
by more than 80% without losing any accuracy. 

Index Terms: deep neural network, singular value 
decomposition, model restructuring 

1. Introduction 

Recent significant progress in deep learning has attracted a lot 
of interest in automatic speech recognition (ASR) 
[1][2][3][4][5][6][7]. The discovery of strong modeling 
capability of deep neural network (DNN) and the availability 
of high-speed hardware has made it feasible to train huge 
networks with tens of millions of parameters. Neural networks 
used in acoustic models in ASR have usually been trained to 
perform frame classification with cross-entropy criterion or 
perform sequential training in recent studies [8][9]. In the 
framework of context-dependent DNN Hidden-Markov-Model 
(CD-DNN-HMM) [1][2], the conventional Gaussian Mixture 
Model (GMM) is replaced by a DNN  to evaluate the senone 
log likelihood. Besides CD-DNN-HMMs, DNN can also be 
used to provide the bottle-neck feature vectors of the GMM in 
a GMM-HMM system [10][11] Both applications of DNN in 
ASR achieved significant accuracy improvement. CD-DNN-
HMM has been shown to achieve relative 16% [2] and 33% 
[4] word error reduction over discriminatively trained CD-
GMM-HMMs, on a voice search task and a switchboard task, 
respectively. The work in [10] shows that DNN trained bottle-
neck feature reduces word error rate by 16% relatively on a 
large vocabulary business search task 

However, the outstanding performance of CD-DNN-HMM 
accompanies with huge computation cost – the immense CPU 
and memory usage, since it uses much more parameters than 
traditional GMM-HMM framework. Although the DNN 
training can be speeded up tremendously with Graphics 
Processing Unit (GPU)[12], the use of GPU in deployment 

machines is implausible. Also, GPU is not always available on 
all types of hardware, especially for some small devices, 
which limits the application of DNN in a lot of scenarios.  

Although the ASR recognition accuracy typically 
improves as the network depth and width increase, it is still 
shown that a large portion of weight parameters in DNN are 
very small [13], which have negligible effect on the output 
values of each layer. So we believe that the model can be 
compressed to a large extent. The work in [13] exploits the 
sparseness in DNN, and presents a nice way to reduce the 
model size. The shortcoming of [13] is that the non-zero 
parameters always distribute randomly on each layer, so we 
need to use indices for the non-zero values, which bring us 
extra memory usage. And the optimum implementation for the 
work heavily depends on hardware architecture, which makes 
it hard to port the system between different frameworks.  

In this work we propose a new method to reduce DNN 
model size. We apply singular value decomposition (SVD) to 
decompose the weight matrices in DNN model, and then 
restructure the model based on the sparseness of the original 
format. The restructured model has similar layout as original 
model, with a couple of extra layers, so all the advanced 
speed-up methods, including streaming SIMD extension (SSE) 
instructions and GPU implementation [12][14], can be applied 
on top of it.  After SVD restructuring, the total model size is 
reduced extensively with possible accuracy loss (depend on 
the extent we compress the model). Then we can fine-tune the 
model with restructured model format to improve the accuracy 
back. 

The rest of the paper is organized as the following. Section 
2 describes the structure of DNN used in ASR. Section 3 
proposes how to apply SVD on weight matrices in DNN to 
restructure the model. Experimental results are presented in 
Section 4 to show the effectiveness of the proposed method. 
We conclude our work in Section 5. 

2. DNN in Automatic Speech Recognition 

 
Fig. 1 DNN used in ASR systems 



DNN is a feed-forward, artificial neural network which has 
more than one layer of hidden units between its inputs and 
outputs. Fig. 1 shows the structure of a DNN used in ASR 
systems, where the bottom layer is input layer, the mid-layers 
are hidden layers, and the top layer is output layer. Usually the 
network is fully connected between adjacent layers. 

2.1 CD-DNN-HMM 

The CD-DNN-HMM combines the discriminative modeling 
power of DNN with the sequential modeling power of HMM. 
In CD-DNN-HMM, we replace the GMM in a conventional 
GMM-HMM system with a DNN, in which the output layer 
consists of all the tied CD phone states (we also called 
senones), and each unit in the input layer corresponds to a data 
point in input feature vectors. We compute HMM’s state 
emission probability density function px|y(x|y=s) by converting 
the state posterior probability py|x(y=s|x) obtained from the 
DNN to     (     )      (     )  (   )   ( )                   (1) 

where s is a tied CD phone state, x is the input feature vector, 
py(y=s) is the prior probability of state s, and p(x) is 
independent of state s and can be crossed out during online 
evaluation. 

We usually choose sigmoid function as the activation 
function of all hidden units, and softmax function for output 
layer units. 

2.2 Training and Decoding 

In our current implementation, CD-DNN-HMMs are 
initialized from traditional CD-GMM-HMMs. More specially, 
the CD-DNN-HMM inherits the model structure, including the 
phone set, HMM topology, and tying of context-dependent 
states, directly from the CD-GMM-HMM system. In addition, 
the senone labels used for training the DNNs are extracted 
from the forced alignment generated by CD-GMM-HMM. The 
detailed training procedure, including the bridge between CD-
GMM-HMMs and momentum values used in the experiments, 
can be found in [2]. We also use GPU to speed up training. 

Decoding is carried out by plugging the DNN into a 
conventional large vocabulary  decoder.  

3. SVD based Model restructuring 

Currently used DNN in ASR system typically has 5-8 hidden 
layers, and each layer consists of a few thousands of units. 
With the same amount of training data, the DNN model 
usually has 2 to 10 times more parameters than traditional CD-
GMM-HMMs. Also in CD-DNN-HMMs, the lower layers of 
DNNs are shared across all units in output layer and need to be 
calculated even only a small amount of states are active during 
search. Therefore, it is extremely important to reduce the DNN 
model size so that fast computation and small memory usage 
can be obtained for runtime evaluation, which is critical to 
real-world deployment.  

Here we present a SVD based model restructuring method 
for DNN models. Fig. 2 depicts how to decompose a weight 
matrix into two matrices with smaller dimensions. 

 
Fig. 2 SVD decomposition on weight matrices 

in DNN models 
 

For a     weight matrix A, if we apply SVD on it, we get                   ,                                   (2) 
 

where ∑ is a diagonal matrix with A’s singular values on the 
diagonal in the decreasing order. The m columns of U and the 
n columns of V are called the left-singular vectors and right-
singular vectors of A, respectively. Since A is a sparse matrix, 
a large part of A’s singular values should be very small. Fig. 3 
illustrates the distribution of singular values for a 2048×2048 
weight matrix in a 5-hidden-layer DNN, where x-axis is the 
number of singular values, and y-axis is the accumulated 
percentage of total singular values. 
 

 
Fig. 3 Distribution of singular values for a weight  

matrix in a 5-hidden layer DNN 
 

From Fig. 3 we can see that around 15% of singular values 
contribute 50% of total values, and around 40% of singular 
values contribute 80% of total values. So if we set those small 
values to 0, it won’t considerably change the values of 
elements in matrix A. Assume we only keep   k biggest 
singular values of A, we can rewrite formula (2) as                            ,          (3) 

where                 
In this way we decompose matrix A into two smaller 

matrices U and N. Fig. 4 describes how we apply them back to 
the original DNN model. For one single layer in a DNN 
model, we replace it with two layers, while the first one has no 
nonlinear function, and the second one does. The number of 
parameters changes from mn to (m+n)k. We reduce the model 
size significantly if k is much smaller than n. In 
implementation, the value of k can be set to a pre-decided 
value. We can also choose the value of k so that a major part 



of A’s singular values are kept. 
 

 
(a) One layer in original DNN model 

 

 
b) Two corresponding layers in new DNN model 

 
Fig. 4 Model conversion in restructured DNN 

 
If we restructure the DNN model aggressively with accuracy 
loss, we can also fine-tune the model with the same back-
propagation method which is used to train original DNN 
model. 

4. Experiments 

Experiments were done on two different LVCSR tasks, to 
completely evaluate the proposed approach. 

4.1 Experiments on the LVCSR task with single data 

resource 

We first evaluated the proposed approach on a Microsoft 
internal task. The training data, called Train-1, consists of 750 
hours of audios. The test set, called Test-1, has 31829 words in 
9562 utterances.  

The input feature to CD-DNN-HMM system is a 13-
dimension mean-normalized MFCC feature with up to third-
order derivatives. We augment the feature vectors with 
previous and next 5 frames (5-1-5). The speaker-independent 
3-state cross-word triphones share 5976 senones, determined 
by the baseline CD-GMM-HMM system.  

 
The original DNN used in CD-DNN-HMM has 5 hidden 

layers, each with 2048 units. The output layer has 5976 units 
corresponding to the 5976 senones. The DNN is initialized 
with DBN-pretraining procedure, and then refined with back-
propagation using senone labels derived from the MLE model 
alignment [1]. 

 
We first apply SVD restructuring on the weight matrix 

below the output layer, since it’s the largest one in the model. 
Table 1 summarizes the experimental results. The first column 
describes the setup of the model, and the number in bracket 
means that how many singular values we keep after SVD 
decomposition. The third column is the number of parameters 
in each model. For example, in the original DNN model the 
number of parameters is 572 × 2048 + (2048 × 2048) × 4 + 
2048 × 5976 ≈ 29M. 

Table 1 Results of SVD restructuring on 
output layer on task 1 

Acoustic Model WER 
Number of 
parameters 

Baseline, GMM model 29.1% 11M 
Original DNN model 25.6% 29M 
SVD (1024) 25.6% 25M 
SVD (512) 25.7% 21M 

SVD (256) 
Before fine-tune 28.6% 

19M 
After fine-tune 25.6% 

 
From Table 1 we can see that model size of our original DNN 
model is nearly 3 times of GMM model, which was trained 
with both feature space and model space discriminative 
training technology: feature minimum phone error (fMPE) and 
boosted maximum mutual information (BMMI). We reduce 
WER at 12% relatively by replacing GMM model with DNN 
model. The following rows in Table 1 verify the effect of the 
proposed approach. When we keep only 1/4 of largest singular 
values (the SVD-512 case) on the matrix below the output 
layer, WER is almost the same as the original model, while we 
reduce the overall model size around 30%. If we compress the 
model further, keeping only 1/8 of largest singular values, 
WER increases a lot, but the following fine-tuning can bring 
the accuracy back. 

We also apply the method on other weight matrices, 
except the one above the input layer, since the number of 
parameters in this matrix is much smaller than others, and 
restructuring it does not affect the model size considerably. 
Table 2 summarizes the results. 

Table 2 Results of SVD restructuring  
on the whole model on task 1 

Acoustic model WER 
Number of 
parameters 

All hidden layers 
(512) 

Before fine-tune 26.0% 
21M 

After fine-tune 25.6% 

All hidden layers 
(256) 

Before fine-tune 27.0% 
17M 

After fine-tune 25.8% 

All hidden and 
output layers (256)  

Before fine-tune 29.7% 
7M 

After fine-tune 25.4% 

All hidden and 
output layer (192) 

Before fine-tune 36.7% 
5.6M 

After fine-tune 25.5% 
 
From Table 2 we observe that when we apply SVD on all 
hidden layers and keep only 1/4 of largest singular values, 
WER increases less than 1% relatively. When we apply SVD 
on all hidden layers and keep 1/8 of largest singular values, we 
lose 40% of the accuracy improvement, but reduce model size 
by 41%. If we compress the model more aggressively, word 
accuracy will drop further after SVD decomposition, but fine-
tuning can get the lost accuracy back. Our best setup (last row) 
shows that we can reduce the model size more than 80% 
without losing any accuracy, which only has half of 
parameters compared to GMM model. 

To further verify the advantage of the proposed method, 
we also built a DNN model with the same model structure as 
SVD-256 case on all hidden and output layers from the 
beginning. The model got 26.3% WER, which is nearly 4% 
worse than the one using proposed method. Also the training 
converged slowly. The number of iterations needed to get the 
final model is more than the one we built the baseline model 



plus the one we used to do fine-tuning after SVD restructuring. 

4.2 Experiments on the LVCSR task with multiple data 

resources 

Our second task is to train a CD-DNN-HMM model for two 
different scenarios by mixing the training data from these two 
scenarios. Model structure is the same as the one in last 
session. Besides the training set Train-1, we also have another 
commercial set called Train-2, which has 300 hours of audio. 
We use these two training sets to train a single DNN model for 
two scenarios. We evaluate the model on test set Test-1 and 
another one Test-2 on the second scenario, which has 16028 
words in 2286 utterances.  

We first apply SVD restructuring using the similar setup 
as the one used on last task. Table 3 shows us the results. 

Table 3 Results of SVD restructuring  
on the whole model on task 2 

Acoustic model 
WER 

Test-1 Test-2 

Original DNN model 25.6% 21.0% 

All hidden and 
output layers (512) 

Before fine-tune 26.2% 22.8% 

After fine-tune 25.7% 21.0% 

All hidden and 
output layers (256)  

Before fine-tune 30.3% 26.3% 

After fine-tune 26.2% 21.3% 

All hidden and 
output layer (192) 

Before fine-tune 33.0% 29.1% 

After fine-tune 26.2% 21.5% 

 
From Table 3 we observe that if we keep 512 singular values 
for each matrix, we can improve the accuracy back after fine-
tuning. In this setup the model size is reduced by 55%. But if 
we compress the model further, keeping 256 or 192 singular 
values during SVD restructuring as in Table 2, we lose 
accuracy around 2.5% relatively even after fine-tuning. We 
believe the reason is that we have multiple data resource on 
this task, which is more variant than the single data resource. 
The DNN model learned from the mixed training data set thus 
needs more parameters to handle the variation, which reduces 
its sparseness.  

Through the analysis of the singular values of each weight 
matrix, we found that their distributions are different. So 
keeping the same number of singular values for all the layers 
may not be the best way to compress the model. Table 4 gives 
us the detail information about it, where the second to fourth 
columns describe how many singular values contribute to the 
certain percentage of total singular values. 

Table 4 Distribution of singular values  
in different weights matrices 

Weight matrix No. of singular values 

20% 30% 40% 50% 

Hidden layer 2 95 164 253 366 

Hidden layer 3 98 171 263 378 

Hidden layer 4 78 140 220 320 

Hidden layer 5 87 155 241 343 

Output layer 125 232 363 519 

 
From Table 4 we can see that the singular values of weight 
matrix for output layer are more spread out than others, which 
means that the matrix is denser. In the following experiments 
we use the 40% setup to restructure the model and then do 
fine-tuning. The final model got 25.9% for WER on Test-1, 

and 21.0% on Test-2, which is similar with the setup that we 
keep 512 singular values for all the matrices.  But we reduce 
the model size by another 40%, which is 73% reduction 
compared to the original model. 

5. Conclusion 

In this paper we described the work of DNN model 
restructuring. We apply SVD on the weight matrices in DNN, 
and then restructure the model based on the sparseness of the 
original matrices. The same accuracy as the original DNN can 
be maintained when we just apply modest parameter 
reduction. If number of parameters of the DNN is reduced 
heavily, we can fine-tune the model with the new structure to 
get the lost accuracy back. We evaluate the approach on two 
LVCSR tasks. On the first task with single training data 
resource we can reduce the model size by more than 80% 
without any accuracy loss. On another LVCSR task with 
multiple data resources, the restructured DNN needs additional 
parameters to handle the data source variability. By keeping 
the singular values proportional to the total of them in each 
layer, we can finally reduce the model size by 73% with less 
than 1% relative accuracy loss. These two experiments also 
show that the training data variability affects the capacity of 
DNN – more parameters are needed for restructured DNN to 
model the variability inside heterogeneous training data in 
addition to the phonetic variability.  
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