
Restructuring of Deep Neural Network Acoustic Models with Singular Value
Decomposition

Jian Xue, Jinyu Li, and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052
{jianxue; jinyli; ygong}@microsoft.com

Abstract

Recently proposed deep neural network (DNN) obtains
significant accuracy improvements in many large vocabulary
continuous speech recognition (LVCSR) tasks. However,
DNN requires much more parameters than traditional systems,
which brings huge cost during online evaluation, and also
limits the application of DNN in a lot of scenarios. In this
paper we present our new effort on DNN aiming at reducing
the model size while keeping the accuracy improvements. We
apply singular value decomposition (SVD) on the weight
matrices in DNN, and then restructure the model based on the
inherent sparseness of the original matrices. After
restructuring we can reduce the DNN model size significantly
with negligible accuracy loss. We also fine-tune the
restructured model using the regular back-propagation method
to get the accuracy back when reducing the DNN model size
heavily. The proposed method has been evaluated on two
LVCSR tasks, with context-dependent DNN hidden Markov
model (CD-DNN-HMM). Experimental results show that the
proposed approach dramatically reduces the DNN model size
by more than 80% without losing any accuracy.

Index Terms: deep neural network, singular value
decomposition, model restructuring

1. Introduction

Recent significant progress in deep learning has attracted a lot
of interest in automatic speech recognition (ASR)
[1][2][3][4][5][6][7]. The discovery of strong modeling
capability of deep neural network (DNN) and the availability
of high-speed hardware has made it feasible to train huge
networks with tens of millions of parameters. Neural networks
used in acoustic models in ASR have usually been trained to
perform frame classification with cross-entropy criterion or
perform sequential training in recent studies [8][9]. In the
framework of context-dependent DNN Hidden-Markov-Model
(CD-DNN-HMM) [1][2], the conventional Gaussian Mixture
Model (GMM) is replaced by a DNN to evaluate the senone
log likelihood. Besides CD-DNN-HMMs, DNN can also be
used to provide the bottle-neck feature vectors of the GMM in
a GMM-HMM system [10][11] Both applications of DNN in
ASR achieved significant accuracy improvement. CD-DNN-
HMM has been shown to achieve relative 16% [2] and 33%
[4] word error reduction over discriminatively trained CD-
GMM-HMMs, on a voice search task and a switchboard task,
respectively. The work in [10] shows that DNN trained bottle-
neck feature reduces word error rate by 16% relatively on a
large vocabulary business search task

However, the outstanding performance of CD-DNN-HMM
accompanies with huge computation cost – the immense CPU
and memory usage, since it uses much more parameters than
traditional GMM-HMM framework. Although the DNN
training can be speeded up tremendously with Graphics
Processing Unit (GPU)[12], the use of GPU in deployment

machines is implausible. Also, GPU is not always available on
all types of hardware, especially for some small devices,
which limits the application of DNN in a lot of scenarios.

Although the ASR recognition accuracy typically
improves as the network depth and width increase, it is still
shown that a large portion of weight parameters in DNN are
very small [13], which have negligible effect on the output
values of each layer. So we believe that the model can be
compressed to a large extent. The work in [13] exploits the
sparseness in DNN, and presents a nice way to reduce the
model size. The shortcoming of [13] is that the non-zero
parameters always distribute randomly on each layer, so we
need to use indices for the non-zero values, which bring us
extra memory usage. And the optimum implementation for the
work heavily depends on hardware architecture, which makes
it hard to port the system between different frameworks.

In this work we propose a new method to reduce DNN
model size. We apply singular value decomposition (SVD) to
decompose the weight matrices in DNN model, and then
restructure the model based on the sparseness of the original
format. The restructured model has similar layout as original
model, with a couple of extra layers, so all the advanced
speed-up methods, including streaming SIMD extension (SSE)
instructions and GPU implementation [12][14], can be applied
on top of it. After SVD restructuring, the total model size is
reduced extensively with possible accuracy loss (depend on
the extent we compress the model). Then we can fine-tune the
model with restructured model format to improve the accuracy
back.

The rest of the paper is organized as the following. Section
2 describes the structure of DNN used in ASR. Section 3
proposes how to apply SVD on weight matrices in DNN to
restructure the model. Experimental results are presented in
Section 4 to show the effectiveness of the proposed method.
We conclude our work in Section 5.

2. DNN in Automatic Speech Recognition

Fig. 1 DNN used in ASR systems

DNN is a feed-forward, artificial neural network which has
more than one layer of hidden units between its inputs and
outputs. Fig. 1 shows the structure of a DNN used in ASR
systems, where the bottom layer is input layer, the mid-layers
are hidden layers, and the top layer is output layer. Usually the
network is fully connected between adjacent layers.

2.1 CD-DNN-HMM

The CD-DNN-HMM combines the discriminative modeling
power of DNN with the sequential modeling power of HMM.
In CD-DNN-HMM, we replace the GMM in a conventional
GMM-HMM system with a DNN, in which the output layer
consists of all the tied CD phone states (we also called
senones), and each unit in the input layer corresponds to a data
point in input feature vectors. We compute HMM’s state
emission probability density function px|y(x|y=s) by converting
the state posterior probability py|x(y=s|x) obtained from the
DNN to () () () () (1)

where s is a tied CD phone state, x is the input feature vector,
py(y=s) is the prior probability of state s, and p(x) is
independent of state s and can be crossed out during online
evaluation.

We usually choose sigmoid function as the activation
function of all hidden units, and softmax function for output
layer units.

2.2 Training and Decoding

In our current implementation, CD-DNN-HMMs are
initialized from traditional CD-GMM-HMMs. More specially,
the CD-DNN-HMM inherits the model structure, including the
phone set, HMM topology, and tying of context-dependent
states, directly from the CD-GMM-HMM system. In addition,
the senone labels used for training the DNNs are extracted
from the forced alignment generated by CD-GMM-HMM. The
detailed training procedure, including the bridge between CD-
GMM-HMMs and momentum values used in the experiments,
can be found in [2]. We also use GPU to speed up training.

Decoding is carried out by plugging the DNN into a
conventional large vocabulary decoder.

3. SVD based Model restructuring

Currently used DNN in ASR system typically has 5-8 hidden
layers, and each layer consists of a few thousands of units.
With the same amount of training data, the DNN model
usually has 2 to 10 times more parameters than traditional CD-
GMM-HMMs. Also in CD-DNN-HMMs, the lower layers of
DNNs are shared across all units in output layer and need to be
calculated even only a small amount of states are active during
search. Therefore, it is extremely important to reduce the DNN
model size so that fast computation and small memory usage
can be obtained for runtime evaluation, which is critical to
real-world deployment.

Here we present a SVD based model restructuring method
for DNN models. Fig. 2 depicts how to decompose a weight
matrix into two matrices with smaller dimensions.

Fig. 2 SVD decomposition on weight matrices

in DNN models

For a weight matrix A, if we apply SVD on it, we get , (2)

where ∑ is a diagonal matrix with A’s singular values on the
diagonal in the decreasing order. The m columns of U and the
n columns of V are called the left-singular vectors and right-
singular vectors of A, respectively. Since A is a sparse matrix,
a large part of A’s singular values should be very small. Fig. 3
illustrates the distribution of singular values for a 2048×2048
weight matrix in a 5-hidden-layer DNN, where x-axis is the
number of singular values, and y-axis is the accumulated
percentage of total singular values.

Fig. 3 Distribution of singular values for a weight

matrix in a 5-hidden layer DNN

From Fig. 3 we can see that around 15% of singular values
contribute 50% of total values, and around 40% of singular
values contribute 80% of total values. So if we set those small
values to 0, it won’t considerably change the values of
elements in matrix A. Assume we only keep k biggest
singular values of A, we can rewrite formula (2) as , (3)

where
In this way we decompose matrix A into two smaller

matrices U and N. Fig. 4 describes how we apply them back to
the original DNN model. For one single layer in a DNN
model, we replace it with two layers, while the first one has no
nonlinear function, and the second one does. The number of
parameters changes from mn to (m+n)k. We reduce the model
size significantly if k is much smaller than n. In
implementation, the value of k can be set to a pre-decided
value. We can also choose the value of k so that a major part

of A’s singular values are kept.

(a) One layer in original DNN model

b) Two corresponding layers in new DNN model

Fig. 4 Model conversion in restructured DNN

If we restructure the DNN model aggressively with accuracy
loss, we can also fine-tune the model with the same back-
propagation method which is used to train original DNN
model.

4. Experiments

Experiments were done on two different LVCSR tasks, to
completely evaluate the proposed approach.

4.1 Experiments on the LVCSR task with single data

resource

We first evaluated the proposed approach on a Microsoft
internal task. The training data, called Train-1, consists of 750
hours of audios. The test set, called Test-1, has 31829 words in
9562 utterances.

The input feature to CD-DNN-HMM system is a 13-
dimension mean-normalized MFCC feature with up to third-
order derivatives. We augment the feature vectors with
previous and next 5 frames (5-1-5). The speaker-independent
3-state cross-word triphones share 5976 senones, determined
by the baseline CD-GMM-HMM system.

The original DNN used in CD-DNN-HMM has 5 hidden

layers, each with 2048 units. The output layer has 5976 units
corresponding to the 5976 senones. The DNN is initialized
with DBN-pretraining procedure, and then refined with back-
propagation using senone labels derived from the MLE model
alignment [1].

We first apply SVD restructuring on the weight matrix

below the output layer, since it’s the largest one in the model.
Table 1 summarizes the experimental results. The first column
describes the setup of the model, and the number in bracket
means that how many singular values we keep after SVD
decomposition. The third column is the number of parameters
in each model. For example, in the original DNN model the
number of parameters is 572 × 2048 + (2048 × 2048) × 4 +
2048 × 5976 ≈ 29M.

Table 1 Results of SVD restructuring on
output layer on task 1

Acoustic Model WER
Number of
parameters

Baseline, GMM model 29.1% 11M
Original DNN model 25.6% 29M
SVD (1024) 25.6% 25M
SVD (512) 25.7% 21M

SVD (256)
Before fine-tune 28.6%

19M
After fine-tune 25.6%

From Table 1 we can see that model size of our original DNN
model is nearly 3 times of GMM model, which was trained
with both feature space and model space discriminative
training technology: feature minimum phone error (fMPE) and
boosted maximum mutual information (BMMI). We reduce
WER at 12% relatively by replacing GMM model with DNN
model. The following rows in Table 1 verify the effect of the
proposed approach. When we keep only 1/4 of largest singular
values (the SVD-512 case) on the matrix below the output
layer, WER is almost the same as the original model, while we
reduce the overall model size around 30%. If we compress the
model further, keeping only 1/8 of largest singular values,
WER increases a lot, but the following fine-tuning can bring
the accuracy back.

We also apply the method on other weight matrices,
except the one above the input layer, since the number of
parameters in this matrix is much smaller than others, and
restructuring it does not affect the model size considerably.
Table 2 summarizes the results.

Table 2 Results of SVD restructuring
on the whole model on task 1

Acoustic model WER
Number of
parameters

All hidden layers
(512)

Before fine-tune 26.0%
21M

After fine-tune 25.6%

All hidden layers
(256)

Before fine-tune 27.0%
17M

After fine-tune 25.8%

All hidden and
output layers (256)

Before fine-tune 29.7%
7M

After fine-tune 25.4%

All hidden and
output layer (192)

Before fine-tune 36.7%
5.6M

After fine-tune 25.5%

From Table 2 we observe that when we apply SVD on all
hidden layers and keep only 1/4 of largest singular values,
WER increases less than 1% relatively. When we apply SVD
on all hidden layers and keep 1/8 of largest singular values, we
lose 40% of the accuracy improvement, but reduce model size
by 41%. If we compress the model more aggressively, word
accuracy will drop further after SVD decomposition, but fine-
tuning can get the lost accuracy back. Our best setup (last row)
shows that we can reduce the model size more than 80%
without losing any accuracy, which only has half of
parameters compared to GMM model.

To further verify the advantage of the proposed method,
we also built a DNN model with the same model structure as
SVD-256 case on all hidden and output layers from the
beginning. The model got 26.3% WER, which is nearly 4%
worse than the one using proposed method. Also the training
converged slowly. The number of iterations needed to get the
final model is more than the one we built the baseline model

plus the one we used to do fine-tuning after SVD restructuring.

4.2 Experiments on the LVCSR task with multiple data

resources

Our second task is to train a CD-DNN-HMM model for two
different scenarios by mixing the training data from these two
scenarios. Model structure is the same as the one in last
session. Besides the training set Train-1, we also have another
commercial set called Train-2, which has 300 hours of audio.
We use these two training sets to train a single DNN model for
two scenarios. We evaluate the model on test set Test-1 and
another one Test-2 on the second scenario, which has 16028
words in 2286 utterances.

We first apply SVD restructuring using the similar setup
as the one used on last task. Table 3 shows us the results.

Table 3 Results of SVD restructuring
on the whole model on task 2

Acoustic model
WER

Test-1 Test-2

Original DNN model 25.6% 21.0%

All hidden and
output layers (512)

Before fine-tune 26.2% 22.8%

After fine-tune 25.7% 21.0%

All hidden and
output layers (256)

Before fine-tune 30.3% 26.3%

After fine-tune 26.2% 21.3%

All hidden and
output layer (192)

Before fine-tune 33.0% 29.1%

After fine-tune 26.2% 21.5%

From Table 3 we observe that if we keep 512 singular values
for each matrix, we can improve the accuracy back after fine-
tuning. In this setup the model size is reduced by 55%. But if
we compress the model further, keeping 256 or 192 singular
values during SVD restructuring as in Table 2, we lose
accuracy around 2.5% relatively even after fine-tuning. We
believe the reason is that we have multiple data resource on
this task, which is more variant than the single data resource.
The DNN model learned from the mixed training data set thus
needs more parameters to handle the variation, which reduces
its sparseness.

Through the analysis of the singular values of each weight
matrix, we found that their distributions are different. So
keeping the same number of singular values for all the layers
may not be the best way to compress the model. Table 4 gives
us the detail information about it, where the second to fourth
columns describe how many singular values contribute to the
certain percentage of total singular values.

Table 4 Distribution of singular values
in different weights matrices

Weight matrix No. of singular values

20% 30% 40% 50%

Hidden layer 2 95 164 253 366

Hidden layer 3 98 171 263 378

Hidden layer 4 78 140 220 320

Hidden layer 5 87 155 241 343

Output layer 125 232 363 519

From Table 4 we can see that the singular values of weight
matrix for output layer are more spread out than others, which
means that the matrix is denser. In the following experiments
we use the 40% setup to restructure the model and then do
fine-tuning. The final model got 25.9% for WER on Test-1,

and 21.0% on Test-2, which is similar with the setup that we
keep 512 singular values for all the matrices. But we reduce
the model size by another 40%, which is 73% reduction
compared to the original model.

5. Conclusion

In this paper we described the work of DNN model
restructuring. We apply SVD on the weight matrices in DNN,
and then restructure the model based on the sparseness of the
original matrices. The same accuracy as the original DNN can
be maintained when we just apply modest parameter
reduction. If number of parameters of the DNN is reduced
heavily, we can fine-tune the model with the new structure to
get the lost accuracy back. We evaluate the approach on two
LVCSR tasks. On the first task with single training data
resource we can reduce the model size by more than 80%
without any accuracy loss. On another LVCSR task with
multiple data resources, the restructured DNN needs additional
parameters to handle the data source variability. By keeping
the singular values proportional to the total of them in each
layer, we can finally reduce the model size by 73% with less
than 1% relative accuracy loss. These two experiments also
show that the training data variability affects the capacity of
DNN – more parameters are needed for restructured DNN to
model the variability inside heterogeneous training data in
addition to the phonetic variability.

6. Acknowledgements

The authors would like to thank Dong Yu for valuable
discussion and the support on DNN training tool, Emilian
Stoimenov for helpful discussion, and also thank Jui-Ting
Huang for some experimental results.

7. References

[1] D. Yu, L. Deng, and G. Dahl, “Roles of pre-training and fine-
tuning in context-dependent DBN-HMMs for real-word speech
recognition,” in proceedings of NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2010.
[2] F. Seide, G. Li, and D. Yu, “Conversational speech transcription

using context-dependent deep neural networks,” Proc.

Interspeech, pp. 437-440, 2011.
[3] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An

application of pretrained deep neural networks to large
vocabulary conversational speech recognition,”Proc.

Interspeech, 2012.
[4] T. N. Sainath, B. Kingsbury, and B. Ramabhadran,

“Improvements in using deep belief networks for large
vocabulary continuous speech rcognition,” Tech. Rep. UTML TR

2010-003, Speech and Language Algorithm Group, IBM,
February, 2011.

[5] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P.
Novak, A.-r. Mohamed, “Making deep belief networks effective
for large vocabulary continuous speech recognition,” Proc.

ASRU, pp. 30-35, 2011.
[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary

continuous speech recognition with context-dependent DBN-
HMMs,” Proc. ICASSP, pp. 4688-4691, 2011.

[7] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” IEEE Trans. Audio Speech and

Language Process., vol. 20, no. 1, pp. 14-22, Jan. 2012.
[8] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum

Bayes risk training of deep neural network acoustic models using
distributed Hessian-free optimization,” Proc. Interspeech, 2012.

[9] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for
sequence training of context-dependent deep networks for
conversational speech transcription,” Proc. ICASSP, 2013.

[10] D. Yu, and M. L. Seltzer, “Improved bottleneck features using
pretrained deep neural networks,” Proc. Interspeech, pp. 237-
240, 2011.

[11] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-
encoder bottleneck features using deep belief networks,” Proc.

ICASSP, pp. 4153-4156, 2012.
[12] K.-S. Oh, and K. Jung, “GPU implementation of neural

networks,” Pattern Recognition, vol. 37, issue 6, pp. 1311-1314,
June 2004.

[13] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in
deep neural networks for large vocabulary speech recognition,”
Proc. ICASSP, pp. 4409-4412, 2012.

[14] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed
of neural networks on CPUs,” in proceedings of NIPS Workshop

on Deep Learning and Unsupervised Feature Learning, 2011.

