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Abstract—The amount of information available on the Web
has been growing dramatically, raising the importance of tech-
niques for searching the Web. Recently, Web Tables emerged
as a model, which enables users to search for information in
a structured way. However, effective presentation of results for
Web Table search requires (1) selecting a ranking of tables that
acknowledges the diversity within the search result; and (2) sum-
marizing the information content of the selected tables concisely
but meaningful. In this paper, we formalize these requirements
as the diversified table selection problem and the structured table
summarization problem. We show that both problems are compu-
tationally intractable and, thus, present heuristic algorithms to
solve them. For these algorithms, we prove salient performance
guarantees, such as near-optimality, stability, and fairness. Our
experiments with real-world collections of thousands of Web
Tables highlight the scalability of our techniques. We achieve
improvements up to 50% in diversity and 10% in relevance over
baselines for Web Table selection, and reduce the information loss
induced by table summarization by up to 50%. In a user study,
we observed that our techniques are preferred over alternative
solutions.

I. INTRODUCTION

Handling the information explosion driven by the Web
requires means to search data. Against this background, Web
Tables [5] that are extracted from HTML tables or directly
uploaded by users became a common structure for data on
the Web. Their popularity is explained by the advantages of a
tabular structure for collecting, maintaining, and making sense
of data. Web Tables allow for a structured and condensed
representation of data compared to free-format text, thereby
enabling efficient storage and effective presentation of data.
In addition, Web Tables support complex search scenarios,
in which users are able to formulate structured queries that
go beyond keyword-based search. Because of their benefits,
Web Tables have been put forward by several systems, among
them Google Webtables [5], YAGO [32], TableFinder [38],
Factual [36], and Socrata [37].

The availability of corpora of billions of Web Tables [5,
29] calls for means for efficient search. To this end, techniques
to find and rank Web Tables for a given user search query have
been developed [5, 38]. However, the result of these techniques
is typically a list of Web Tables ranked by their relevance,
which is not appropriate for effectively browsing and exploring
the data. On the one hand, data on the Web are often reused by
copying and adapting existing sources [10, 24]. Hence, search
results contain several tables that are highly relevant, but very
similar in structure and content [30]. By including very similar
Web Tables at the top of the result list, users actually lose
information on the completeness and diversity of the result. On
the other hand, Web Tables are large in size, up to hundreds

or thousands of data tuples. Hence, effective exploration of the
data requires support for quickly assessing the content of a
table, ideally by selecting a few tuples that represent the original
data. However, arbitrary selection of tuples to provide a table
summary is not meaningful since it hides regularities in the
data and, again, poses a problem with respect to completeness.
That is, the diversity of data in a Web Table cannot be assessed
effectively.

In this paper, we formalize the requirements for effective
browsing and exploration of results for Web Table search as
two problems, diversified table selection and structured table
summarization, and present solutions for them.

We approach the problem of diversified table selection
with a measure of the goodness of a selection. It combines
the relevance scores obtained from Web Table search with
measures for similarity of the schema and the data tuples of Web
Tables, thereby accounting for diversity in the presented result.
Diversified table selection is then defined as an optimization
problem using the goodness measure. We show that this problem
is NP-complete and, therefore, propose a greedy algorithm with
several salient performance guarantees such as near-optimality,
stability, and fairness. In particular, stability ensures that the
table selection can be extended in a consistent manner to support
incremental data exploration.

Our technique for table summarization selects a set of
representative tuples of a table that induce little information
loss with respect to non-selected tuples and preserve regularities
of underlying data. Our technique exploits the similarity of
data tuples as the basis to define an optimization problem over
measures for information loss and data regularity. Since the
problem turns out to be NP-complete, we present a heuristic
approach that derives clusters of similar tuples and returns a
representative sample of them. Again, stability is a particular
feature of our approach: a table summary can be extended in
size to support a user in drilling down into a search result.

In sum, this paper makes the following contributions.

• Section II: We first describe the background for our work
in terms of a user interaction scheme for Web Table search
and requirements for effective result presentation. Further,
we present a formal model for our approach.

• Section III: We introduce the problem of diversified table
selection based on a goodness function that unifies both,
the relevance and the diversity of a ranked list of Web
Tables. We prove that the problem is NP-complete, propose
a heuristic algorithm, and prove that our solution is near-
optimal, stable, fair, and efficient.

• Section IV: We introduce structured table summarization
as a problem that refers to the identification of a subset of



data tuples with minimal information loss regarding non-
selected tuples and maximal preservation of regularities
in the data. We show that the problem is NP-complete
and approximate its solution with a heuristic based on
hierarchical clustering. We prove that our approximation
is efficient and stable.

• Section V: We evaluate our techniques with real-world
collections of thousands of Web Tables, showing that our
techniques scale for large datasets. For table selection, we
achieve improvements up to 50% in diversity and 10%
in relevance over baselines. For table summarization, we
reduce the information loss induced by a table summary
by up to 50%. We further present a user study indicating
that our techniques are preferred over alternative solutions,
which confirms the effectiveness of our approach.

In the remaining sections, we review related work (Sec-
tion VI), before we present conclusions (Section VII).

II. SEARCH OF WEB TABLES

To motivate our work, we first discuss a user interaction
scheme for search over Web Tables and elaborate on require-
ments for table selection and table summarization. Then, we
present a comprehensive formal model for Web Table search.

A. Motivation

User interaction scheme. Most systems for retrieving informa-
tion from a corpus of Web Tables implement a user interaction
scheme that relies on keyword-based search. For a keyword
query, a system returns a list of tables that is typically presented
as a list of hyperlinks. These pointers are sometimes enriched
with information on the schema of the respective table, e.g., by
listing the attributes of a table. Given the search results, a user
then browses and explores the data to identify which subsets
of the data sources best meet their information needs. A user
iteratively follows the pointers to the Web Tables, scrolls over
the data tuples to get an overview of the provided content, and
returns to the list of search results to explore another source.

Requirements for table selection. The result quality of Web
Table search clearly depends on the ability to select tables of
high relevance to a user query and much work has been devoted
to the computation of relevance scores, cf., [25]. However,
selecting tables for presentation to the user purely based on
relevance is not effective. The list of top retrieval results will
be polluted with redundant data sources. Since Web data is
often a copied and slightly modified, many tables in the result
list will be similar in structure and content [10, 24].

Against this background, table selection should not only
consider the relevance scores of tables, but also the diversity
of the result list in order to support effective exploration of the
data [8]. Diversification of a set of Web Tables is challenging
since there is no a well-established objective function that
defines what an optimal search result should be for a given query.
Defining such a notion of optimality, on the one hand, requires
consideration of many dimensions and types of diversity. On
the other hand, the inherent trade-off between relevance and
diversity needs to be made.

To achieve a selection of tables that balances relevance and
diversity, we argue that a good selection result should satisfy
the following requirements.

(R1) Schema and instance diversity. Web Tables from different
sources show various types of heterogeneity. They may
have no schema in common, assume different attribute
semantics, or use noisy and ambiguous representations
of attribute values. Hence, diversification of Web Tables
should embrace both, the schematic structure as well as
the data tuples.

(R2) Consideration of table popularity. Large groups of similar
Web Tables in the search results hint at popular data that
was frequently copied and modified. This implies a high
chance to satisfy user information needs and, thus, should
be considered when selecting tables.

(R3) Avoidance of table redundancy. Selection of very similar
tables leads to high redundancy in the search result.
Therefore, selection of a table should be done relative to
other tables that have been selected.

We will later elaborate on a user study, which suggests that
a technique satisfying these requirements is indeed preferred
over a technique that does not.

Requirements for table summarization. Most systems for
Web Table search present hyperlinks to data sources along with
table headers. To effectively support a user in the exploration of
the data and quickly skip irrelevant results, however, a concise
representation of the table content is needed. Notably, Google
Webtables [5] provide such a table summary by selecting a few
data tuples. Nevertheless, such a summary is rarely meaningful.
Tuples are selected arbitrarily or randomly, which prevents a
user from assessing diversity and regularity of the data.

To effectively support the exploration of data stored in Web
Tables, we argue that meaningful table summarization should
satisfy the following requirements.

(R4) Avoidance of tuple redundancy. Selection of very similar
tuples leads to high redundancy in a table summary. Thus,
the decision about the selection of a tuple should be based
on the set of already selected tuples.

(R5) Highlighting of data regularities. Presenting the tuples of
a table summary in random or arbitrary order hides data
regularities. Hence, table summarization should provide
a user with clues about the characteristics of the data by
ordering them in a structured way.

(R6) Multi-resolution support. Table summaries should be
flexible in size to support data exploration by drilling
down into a search result without turning to the original
data source. Here, it is crucial to create summaries that
can be extended consistently, i.e., by selecting additional
data tuples without altering the already presented tuples.

Again, the results of our user study indicate these requirements
indeed give rise to technique that is preferred by users.

Example. To illustrate the requirements for table selection
and table summarization, Fig. 1 depicts the result for a search
for Web Tables on standard of living indices. There are three
relevant data sources, each given as a table with different
attributes. Here, the relevance ranking corresponds to the table
indices, i.e., T1 is most relevant and T3 is third-most relevant.



Country HDI Change 
Italy 0.874 -2 
France 0.893 -2 
Cyprus 0.848 -2 
Latvia 0.814 -2 
Chile 0.819 3 
US 0.910 -19 
India 0.727 1 

Country GDP Continent 
Norway High Europe 
Ireland High Europe 
Sweden High Europe 
Chad Low Africa 
Congo Low Africa 
Mali Low Africa 

T1 T2 T3 Country HDI 
Italy 0.874 
France 0.893 
Cyprus 0.848 
Latvia 0.814 
Chile 0.819 
US 0.910 
India 0.727 

Country HDI Change 
Italy 0.874 -2 
France 0.893 -2 
Cyprus 0.848 -2 
Latvia 0.814 -2 

T1 T2 Country HDI 
Italy 0.874 
France 0.893 
Cyprus 0.848 
Latvia 0.814 

Country HDI Change 
Italy 0.874 -2 
US 0.910 -19 
India 0.727 1 
Chile 0.819 3 

Country GDP Continent 
Norway High Europe 
Sweden High Europe 
Congo Low Africa 
Mali Low Africa 

T1 T3 

… 

Result presentation options 

Relevant tables 

(1) 

(2) 

Fig. 1: Example scenario for Web Table search

Suppose that a user should be presented with two tables as
a search result (e.g., on the first result page) and each of them
is to be summarized by three tuples. Fig. 1 depicts two of the
various selection and summarization options.

Option (1) selects tables T1 and T2 and provides summaries
that are built of the first three rows of each table. This solution
is problematic for two reasons. First, the two selected tables
are very similar in structure and content, so that a user gets an
incomplete view on the results on living indices. Second, the
summaries hide a lot of the data of non-selected tuples (e.g.,
only value ‘-2’ is considered for attribute Change). This issue
persist even if the summary is extended by another tuple.

Option (2), in turn, provides a more diversified table selec-
tion, covering not only information on the Human Development
Index (HDI), but also on the Gross Domestic Product (GDP)
as different measures for the standard of living. In addition, the
table summaries hide less information on non-selected tuples
(e.g., three different values are considered for attribute Change)
and hint at regularities of the data (e.g., regarding attributes
GDP and Continent). Also, changing the resolution of the table
summary and adding a data tuple to the summaries indeed
yields a more complete picture of the underlying data (e.g.,
including another value for attribute Change). As such, option
(2) illustrates how table selection and table summarization that
meet the aforementioned requirements provide a much more
effective presentation of the search results.

B. Model

We based our techniques on a compact model for search of
Web Tables. We denote a universal corpus of Web Tables by U .
Each table T ∈ U is defined as a tuple T = 〈S,D〉 with S being
a set of attributes S = {a1, . . . , an} and D = {d1, . . . , dm}
being a set of data tuples (i.e., rows of the table). The set of
attributes S represents meta-data and defines the table schema.
A data tuple (or data instance) d ∈ D is a function d : S → V
from the attributes S to some domain V of attribute values.

Most techniques for search of Web Tables assign a relevance
score to each table in order to rank the search results. We
capture these relevance scores as a function r : U → [0, 1].

User 

Search Interface 

Table Selection Table Summarization 

h

Query Presentation 

S l ti

r: relevance scores U*: selected tables 

U: corpus of tables 

T bl S

D: tuples of a table a table
D*: tuples for summary 

Presentation Framework 

Table Relevance Scoring 
r: relevance  

scores 

Fig. 2: Overview of the approach

We denote a sequence of n tables by U∗ = 〈T1, . . . , Tn〉,
Ti ∈ U for 1 ≤ i ≤ n. For a table T = 〈S,D〉, a sequence of n
tuples is denoted by D∗ = 〈d1, . . . , dn〉, di ∈ D for 1 ≤ i ≤ n.
For both types of sequences, we use . as a concatenation
operator. We overload set notation for sequences, meaning that
set operators applied to a sequence are evaluated based on the
set of sequence elements. For instance, T ∈ U∗ means that T
is part of the set of elements of sequence U∗ and |U∗| is the
number of unique elements (i.e., the length of sequence |U∗|
if all its elements are distinct).

Using this model, Fig. 2 gives an overview of the approach
taken in this work. Given a user query, in a first step, the
relevance scores (r) for a corpus of Web Tables (U) are
computed, e.g., using the techniques presented by Cafarella et
al. [5] or Venetis et al. [38]. Based on the derived relevance
scores, we define table selection and table summarization as the
two steps conducted to support a user in effective exploration
and browsing of the search results:

(1) Table selection: Select a sequence of distinct tables U∗ =
〈T1, . . . , Tk〉, Ti ∈ U for 1 ≤ i ≤ k that is significantly
smaller than the corpus, k � |U|. Here, selection of the top-
k results is of particular practical relevance for information
retrieval, cf., [25]. An appropriate value for k depends on
the user and the application context.

(2) Table summarization: For a table T = 〈S,D〉, we select a
sequence of distinct data tuples D∗ = 〈d1, . . . , dk〉, di ∈ D
for 1 ≤ i ≤ k that is significantly smaller than the set
of all tuples, k � |D|. Selection of the top-k results is
particularly relevant and well-investigated for answering
database queries [3]. The value of k is also context specific.

Note that a single search involves one execution of table
selection, but many executions of table summarization. On
the one hand, a summary is derived for each of the selected
tables. On the other hand, users may drill down into a search
result by adapting the size of the table summary.

III. DIVERSIFIED TABLE SELECTION

This section proposes a technique for diversified table
selection that satisfies the requirements outlined in Section II-A.
To achieve diversification that embraces both schema and
instances (requirement R1), we first present similarity measures
of Web Tables that relate to the schematic structure as well as
the data tuples (Section III-A). Then, Section III-B defines
a measure of goodness for a search result that takes into



consideration the table popularity (R2) and table redundancy
(R3). Using this measure, we define diversified table selection
as an optimization problem and prove its NP-completeness
(Section III-C). Finally, we provide a heuristic algorithm to
approximate the optimal solution that comes with several salient
performance guarantees (Section III-D).

A. Table Similarity

As outlined earlier, heterogeneity of Web Tables that stem
from different sources is observed along several dimensions.
Examples include the absence of a common schema, different
semantics of attributes, or noisy and ambiguous representations
of attribute values. To cater for these dimensions of heterogene-
ity, we first define measures for schema similarity and data
similarity, before deriving a combined measure.

Schema Similarity. We compute the schema similarity of two
tables by matching their sets of attributes. To this end, we
exploit algorithms for schema matching [2] that construct a
set of weighted attribute correspondences. Technically, for
two schemas of tables, S1 and S2, schema matching first
constructs an |S1| × |S2| similarity matrix over S1 × S2,
denoted by m(S1, S2), where mi,j(S1, S2) ∈ [0, 1] represents
a degree of similarity between the attributes i and j of S1 and
S2, respectively. A variety of specific measures for attribute
similarity has been proposed, including string-edit distances,
vector-based metrics and language models, cf., [2]. Schema
matching then uses the similarity matrix to extract a set of
attribute correspondences C1,2 ⊆ (S1 × S2), e.g., by solving
the maximum weighted bipartite sub-graph problem [26].

Following this line, we define schema similarity of two Web
Tables T1 = 〈S1, D1〉 and T2 = 〈S2, D2〉 as an aggregation
over the similarity of attribute correspondences in the matching:

ssim(T1, T2) =

∑
(i,j)∈C1,2

mi,j(S1, S2)

max(|S1|, |S2|) (1)

Data Similarity. We evaluate similarity of data instances of
Web Tables by matching attribute values. Similarity measures
for attributes values have also been investigated in the field of
schema matching. However, most of these techniques exploit
data type similarities [2]. For Web Tables, such type information
is rarely available and we have to rely on measures for textual
similarity as they are the basis for searching Web documents [4].
To reflect the tabular structure of Web Tables, our approach
measures textual similarity by column, i.e., considers all values
related to a certain attribute.

To implement this idea for an attribute a ∈ S of some
Web Table T = 〈S,D〉, we first extract all attribute values,
given as {d(a)|d ∈ D}. We treat all these values as strings
and apply basic techniques for textual pre-processing (splitting
by delimiters, stop word removal, case normalization) yielding
a set of terms K(a,D) representing the instances of attribute
a in table T . By applying this approach to all attributes, we
obtain a term corpus for table T , K(S,D) =

⋃
a∈S K(a,D).

For two tables T1 = 〈S1, D1〉 and T2 = 〈S2, D2〉, the union of
these corpora is defined as K(1, 2) = K(S1, D1)∪K(S2, D2).

The actual similarity assessment is grounded on binary
feature vectors L(a, k) of length |K(1, 2)|, which indicate

for each term k ∈ K(1, 2) whether the instances of attribute
a ∈ S1 ∪ S2 contain a term that is similar to k (L(a, k) = 1)
or not (L(a, k) = 0). To decide whether there exists such
a similar term, we again rely on the large set of textual
similarity measures proposed in the literature, cf., [2] and
apply a similarity threshold.

Given two attributes a1 and a2 of tables T1 and T2,
respectively, the similarity of their data instances is measured
as the normalized product of their feature vectors:

s(a1, a2) =

∑|K(1,2)|
k=1 L(a1, k)L(a2, k)√∑|K(1,2)|

k=1 (L(a1, k))2
√∑|K(1,2)|

k=1 (L(a2, k))2
(2)

Based on the similarity of data instances per attribute, we
derive the data similarity of two Web Tables. To account for
the high number of possible combinations between attributes of
two tables, we aggregate over the maximum similarity scores
per attribute of either table. Then, data similarity of Web Tables
T1 = 〈S1, D1〉 and T2 = 〈S2, D2〉 is defined as follows:

dsim(T1, T2) =
1

2
(
∑

a1∈S1

max
a2∈S2

s(a1, a2)+
∑

a2∈S2

max
a1∈S1

s(a1, a2))

(3)

Combined Similarity. To achieve a comprehensive similarity
assessment of Web Tables, we rely on a weighted average of
schema similarity and data similarity, denoted by M :

M(T1, T2) = α · ssim(T1, T2) + β · dsim(T1, T2) (4)

Parameters α, β ≥ 0 allow for tuning the importance
of schema similarity and data similarity. It may be chosen
based on prior knowledge about the reliability of either type
of information. Without this, we set α = β = 0.5 for
normalization.

B. Goodness of Table Selection

To balance relevance and diversity in a top-k selection
of Web Tables, we design a goodness measure for such a
selection. Clearly, selection is driven by the given relevance
scores of tables. However, taking up the requirements identified
in Section II-A, the goodness measure should incorporate table
popularity (R2) and table redundancy (R3) in the selection.
Therefore, we define goodness of a selection of tables based
on the overall, weighted relevance of a selected table, which
is reduced by the relevance of similar tables that have also
been selected. Intuitively, this approach favors examples from
groups of similar tables, but penalizes the selection of multiple
relevant tables that are very similar to each other.

Let U be a corpus of tables, r a relevance ranking, and U∗ =
〈T1, . . . , Tn〉, Ti ∈ U , 1 ≤ i ≤ n a selection. Then, we define
q(T ) =

∑
T ′∈U M(T, T ′)r(T ′) as the importance of table

T ∈ U in the corpus given the relevance ranking. In practice,
the size of the corpus typically renders exact computation of
the importance impossible. Therefore, q(T ) will be calculated
based on a subset U ′ ⊆ U with |U ′| � |U|. Existing techniques
to find and rank Web Tables typically extract such a subset of
tables for which the relevance score exceeds a threshold.



With w ∈ R+ as a positive weight parameter, we define
goodness as follows (overloading set notation as detailed
in Section II-B):

gU,r(U
∗) = w

∑

T∈U∗
q(T )r(T )−

∑

T1,T2∈U∗
M(T1, T2)r(T1)r(T2) (5)

While our notion of goodness is motivated by the need to
consider table popularity and table redundancy in the selection,
it also shows several intuitive properties that are detailed below.
The respective proofs can be found in the appendix.

The first property considers the influence of the relevance
scores. We observe that the more relevant a table is, the higher
are the chances of it to be part of the selection.

Proposition 1 (Strength of Relevance). Let U be a corpus
of tables, r a relevance ranking, U∗ = 〈T1, . . . , Tn〉, Ti ∈ U ,
1 ≤ i ≤ n a selection, and T ∈ (U \ U∗) a non-selected table.
Let r′ be a relevance score defined such that r′(T ) > r(T )
and r′(x) = r(x) for x ∈ (U \ {T}). For w ≥ 2 it holds that:

gU,r′(U
∗.T ) ≥ gU,r(U

∗.T )

Our notion of goodness further shows monotonicity. That is,
when adding more tables to an existing selection, the goodness
of the overall selection will increase.

Proposition 2 (Monotonicity). Let U be a corpus of tables, r
a relevance ranking, U∗ = 〈T1, . . . , Tn〉, Ti ∈ U , 1 ≤ i ≤ n a
selection, and U ′ ⊆ (U \ U∗) a set of non-selected tables. For
w ≥ 2 it holds that:

gU,r(U
∗.U ′) ≥ gU,r(U

∗)

Finally, our goodness measures shows submodularity, which
refers to the property that marginal gains in goodness start to
diminish due to saturation of the objective. That is, the marginal
benefit of adding tables to the selection decreases w.r.t. the size
of the selection.

Proposition 3 (Submodularity). Let U be a corpus of tables,
r a relevance ranking, U∗ = 〈T1, . . . , Tn〉, Ti ∈ U , 1 ≤ i ≤ n
a selection, and T, T ′ ∈ (U \U∗) non-selected tables. Then, it
holds that:

gU,r(U
∗.T ) + gU,r(U

∗.T ′) ≥ gU,r(U
∗.T.T ′) + gU,r(U

∗)

C. Diversified Table Selection Problem

Using the notion of goodness, diversified table selection is
defined as an optimization problem. That is, we are interested
in finding a selection of top-k tables with maximal goodness.

Problem 1 (Diversified Table Selection). Let U be a corpus
of tables, r a relevance ranking, and k a threshold for the
number of tables. Then, the diversified table selection problem
is defined to be:

argmax
U∗=〈T1,...,Tk〉,Ti∈U,1≤i≤k

gU,r(U
∗) (6)

Diversified table selection defines a notion of optimality for
table selection. Yet, the problem turns out to be intractable.

Theorem 1. Diversified table selection is NP-complete.

Proof (Sketch): We prove the theorem by reduction from
the Densest k-Subgraph problem, which is known to be NP-
complete [16, 19].

Algorithm 1: Heuristic for diversified table selection.
input : A corpus of tables U with relevance function r,

a measure for table similarity M ,
a weight factor w ≥ 2, and a threshold for the number of tables k.

output : A selection of tables U∗ = 〈T1, . . . , Tk〉, Ti ∈ U , 1 ≤ i ≤ k.

1 U∗ ← 〈〉;
// Compute ranking score for each table in the corpus

2 Let s : U → R, s(T ) �→ w · r(T ) · ∑T ′∈U M(T, T ′)r(T ′);

3 while |U∗| < k do
4 Tm ← argmaxT∈U,T /∈U∗ s(T ) ;

5 U∗ ← U∗.Tm ;
// Update ranking score for the remaining tables

6 s′ ← s;
7 Let s : U → R, s(T ) �→ s′(T ) − 2 · r(Tm) · M(T, Tm) · r(T );

8 return U∗

D. Heuristic Diversified Table Selection

Given that diversified table selection is intractable, below,
we present a heuristic algorithm to approximate its solution,
for which we prove various performance guarantees.

Heuristic Algorithm. Our algorithm exploits two of the
aforementioned properties of the goodness function gU,r, i.e.,
monotonicity and submodularity, to achieve a provably near-
optimal solution. The algorithm iteratively expands the selection
of tables by adding the table that maximizes the objective
function. Thus, solving the problem requires k iterations.

The details of our heuristic are given in Algorithm 1. It takes
a set corpus of tables U with relevance function r, a measure
for table similarity M , a weight factor w, and a threshold for
the number tables k as input and returns a selection U∗ of k
tables. We begin by computing a ranking score for each table
T ∈ U that is based on the weight factor, the table relevance,
and the table importance (line 2). In the actual greedy selection
step, we select k tables. In each iteration, we add the table with
the highest ranking score (lines 4 and 5), before the ranking
score is updated for the remaining tables (line 7). The latter
avoids re-computation of the ranking scores from scratch in
each iteration. As detailed in Section III-B, in practice, the
selection procedure is typically not applied over the whole
corpus, but a subset U ′ ⊆ U with |U ′| � |U| as it is extracted
by existing techniques to find and rank Web Tables.

Algorithm Analysis. First, we observe that the approximation
error of the proposed algorithm is bounded.

Guarantee 1 (Near-Optimality). Algorithm 1 is a (1− 1/e)-
approximation for diversified table selection.

Proof: For any monotone, submodular function f with
f(∅) = 0 it is known that an iterative algorithm selecting the
element e with maximal value of f(S ∪ {e})− f(S) with S
as the elements selected so far has a performance guarantee of
(1− 1/e) ≈ 0.63 [28]. This result is applicable to Algorithm 1,
since our goodness function gU,r is monotonic (Proposition 2)
and submodular (Proposition 3), it holds gU,r(∅) = 0 (Eq. (5)),
and the ranking score is defined as s(T ) = gU,r(U

∗.T ) −
gU,r(U

∗) (lines 2 and 7).

Next, we consider the complexity of our heuristic.

Guarantee 2 (Complexity). The time and space complexity of
Algorithm 1 are O(|U|2 + k|U|) and O(|U|2), respectively.



Proof: Time complexity: The quadratic term |U|2 stems
from the computation of the ranking score. The linear term k|U|
is explained by k iterations, in each of which we iterate over
all remaining tables, for selection of Tmax and for updating
the ranking score.

Space complexity: Storing table similarities requires
|U||U−1|

2 space since M is symmetric and M(T, T ) is fixed.

Existing techniques for Web Table search return a subset
U ′ ⊂ U with |U ′| � |U| since users cannot exhaustively
explore thousands of tables. Thus, time and space complexity is,
respectively, O(|U ′|2 + k|U ′|) and O(|U ′|2), which is tractable
in real world datasets as we will demonstrate in our evaluation.

Further, our algorithm shows stability in the selection, which
is important to support incremental data exploration. If a user
is first presented with the top-10 tables, but then extends the
result to the top-20, the expectation is clearly that the top-10
remain unchanged.

Guarantee 3 (Stability). For U∗ as returned by Algorithm 1,
let U∗

k1
= 〈T1, . . . , Tk1

〉, U∗
k2

= 〈T ′
1, . . . , T

′
k2
〉 be selections

with Ti ∈ U∗, 1 ≤ i ≤ k1, T ′
j ∈ U∗, 1 ≤ j ≤ k2, and

0 < k1 ≤ k2. Then, it holds that Ti = T ′
i for 1 ≤ i ≤ k1.

Proof: In Algorithm 1, the construction of U∗ is performed
stepwise and elements are never removed from U∗. The
selection also is deterministic: we always add the table with
highest ranking score (line 4). Thus, a larger selection sequence
comprises a smaller selection sequence as a prefix.

Finally, we also highlight that the selection heuristic is
fair in the sense that it is genuinely driven by the relevance
function.

Guarantee 4 (Fairness). Let U be a corpus of tables. For any
set of tables U ⊂ U , there exists a relevance function r, s.t.
Algorithm 1 returns U∗ = 〈T1, . . . , T|U |〉, Ti ∈ U, 1 ≤ i ≤ |U |.

Proof: Given U , we define r as r(T ) = 1 if T ∈ U and
r(T ) = 0 otherwise. Then, the ranking score s(T ) is positive
if T ∈ U , whereas s(T ) = 0 if T /∈ U . Hence, the algorithm
selects only elements from U .

IV. TABLE SUMMARIZATION

This section takes up the requirements on table summa-
rization outlined in Section II-A and presents a technique
to derive concise and meaningful summaries of tables. To
avoid tuple redundancy (requirement R4) and highlight data
regularities (R5) in the result, we first define a notion of repre-
sentativeness for table summaries (Section IV-A). Intuitively,
the selected tuples should be similar to non-selected tuples.
The presented measure of representativeness is then used to
formulate structured table summarization as an optimization
problem (Section IV-B). The problem turns out to be intractable,
so that we also propose a clustering-based algorithm to
approximate the solution (Section IV-C). We prove that the
algorithm shows stability when increasing the size of the
summary, thereby supporting multi-resolution summaries (R6).

A. Representativeness of Table Summaries

Representativeness of table summaries is grounded in two
dimensions, information loss and data regularity, that follow

directly from the aforementioned requirements. The former
relates to the amount of information that is not captured by a
table summary, i.e., the loss of information induced by non-
selected tuples with respect to the entire data of a table. Data
regularity, in turn, reflects the ability to provide a user with
clues about the characteristics of the table data. As such, it
serves as a reverse proxy for the tuple redundancy in the table
summary. Data regularity, in turn, reflects the ability to provide
a user with clues about the characteristics of the table data.

Against this background, information loss guides which
tuples to select for a table summary and data regularities are
exploited to order the selected tuples.

TABLE I: An exemplary Web Table

ID Country GDP Continent

∗(I) 1 United States High America
2 Mali Low Africa

∗(II) 3 Mexico Medium America
∗(III) 4 Ireland High Europe
∗(IV) 5 Sweden High Europe
∗(V) 6 Congo Low Africa

7 Canada High America
8 Norway High Europe

∗(VI) 9 Chad Low Africa

As an example, consider Table I. Assuming that six tuples
should be selected for a summary, the tuples marked with
‘∗’ would form a representative selection. This set has low
information loss since it covers all possible values of attributes
GDP and Continent. Further, ordering the tuples as indicated
by the Roman numerals (I)-(VI) supports discovery of data
regularities. For instance, the highlighted relation between GDP
indexes and continents becomes visible once tuples with equal
continent values are listed close to each other.

To quantify information loss and data regularity, we assess
the similarity of tuples. In contrast to data similarity discussed
in Section III-A that compares attribute values of different
tables, tuple similarity compares two tuples in isolation, based
on their values. Technically, tuple similarity is a function tsim :
D × D → [0, 1] over the tuples of a table T = 〈S,D〉. To
instantiate this function, we rely on similarity measures as
proposed in the literature, e.g., the Jaccard similarity coefficient
over 3-grams of the attribute values [34].

Information Loss. Using a notion of tuple similarity, infor-
mation loss of a table summary is defined as follows. Let
T = 〈S,D〉 be a table and D∗ = 〈d1, . . . , dn〉, di ∈ D,
1 ≤ i ≤ n, a summary of T . The information loss of D∗

is defined as the sum of loss scores of all non-selected tuples,
where the loss score of a non-selected tuple is its dissimilarity
with respect to the most similar selected tuple:

IL(D∗) =
∑

d∈(D\D∗)

1− max
d′∈D∗

tsim(d, d′) (7)

It holds that IL(∅) = |D| and IL(D) = 0.

Data Regularity. Let D∗ = 〈d1, . . . , dn〉, di ∈ D, 1 ≤ i ≤
n be a summary of a table T = 〈S,D〉. Then, we define
data regularity for the summary as the sum of similarities of
consecutive pairs:

DR(D∗) =
n−1∑

i=1

tsim(di, di+1) (8)



The measure for data regularity ensures that tuples are presented
in a meaningful order rather than randomly or arbitrarily.

B. Structured Table Summarization Problem

To avoid tuple redundancy and highlight data regularities in
a table summary, we define the structured table summarization
problem. It refers to the identification of a summary, such
that tuples with minimal information loss are selected and
their ordering maximizes data regularity. Clearly, information
richness of the summary is most relevant for Web Table search,
so that minimization of information loss is prioritized.

Problem 2 (Structured Table Summarization). Let T = 〈S,D〉
be a table and k a threshold for the size of the summary. The
structured table summarization problem is the identification
of a sequence of distinct tuples D∗ = 〈d1, . . . , dk〉, di ∈ D,
1 ≤ i ≤ k that satisfies the following conditions in decreasing
priority:

(1) Minimal information loss: there is no other selection D′ =
〈d′1, . . . , d′k〉, d′i ∈ D, 1 ≤ i ≤ k s.t. IL(D′) < IL(D∗).

(2) Maximal data regularity: there is no permutation D′ of
D∗ such that DR(D′) > DR(D∗).

Unfortunately, already the minimization of information loss
requires investigating all subsets of size k of tuples of a Web
Table, which is intractable. In particular, we observe that the
decision of whether there is a subset with information loss less
than a threshold is NP-complete.

Theorem 2. Let T = 〈S,D〉 be a table. The problem of
deciding whether there exists a sequence of distinct tuples
D∗ = 〈d1, . . . , dk〉, di ∈ D, 1 ≤ i ≤ k of length k with
information loss less than a positive number δ is NP-complete.

Proof (Sketch): We prove the theorem by using the
restriction technique [17] and show that k-medoids clustering,
which is known to be NP-complete [21], is a special case of
our problem. A tuple can be represented by a data point and the
dissimilarity between two tuples is the distance between two
data points. Hence, the information loss in Eq. (7) is equivalent
to the objective function of the k-medoids clustering problem.

C. Heuristic Table Summarization

To cope with the inherent complexity of structured table
summarization, we propose a heuristic algorithm based on
clustering of similar tuples. Intuitively, we select a few tuples
from each cluster, so that the selection will have low information
loss since tuples that very similar to the selected ones can be
expected to be part of the same cluster. Then, by placing
selected tuples that are similar close to one another in the
result sequence, we achieve high data regularity.

We implement this approach using agglomerative hierarchi-
cal clustering [20] – a connectivity-based clustering technique.
Using agglomerative hierarchical clustering has several advan-
tages compared to other connectivity-based clustering methods,
such as k-medoids or k-means. First, k-medoids and k-means
are sensitive to initialization and the choice of parameter k.
Second, the cluster center obtained using k-means may not
be an actual tuple of the table. Third, hierarchical clustering
ensures stability of the result when increasing the solution

Algorithm 2: Clustering-based Table Summarization

input : A set of tuples D,
a measure for tuple similarity tsim,
a threshold for the number of tuples k.

output : A sequence of tuples D∗ = 〈d1, . . . , dk〉, di ∈ D, 1 ≤ i ≤ k.

// Step 1: Clustering -- Build a cluster tree
1 T ← agglomerativeHierarchicalClustering(D, tsim);

// Step 2: Ordering -- Reorder the tree
2 foreach pair of node siblings (n, ns) of T do

// Linkage distance function
3 l ← distance(ns, getLeftChild(n));
4 r ← distance(ns, getRightChild(n));

// Make children of n nearer to ns
5 if (isLeftChild(n) ∧ l < r) ∨ (isRightChild(n) ∧ l > r) then
6 swap(getLeftChild(n), getRightChild(n));

// Step 3: Selection -- Find k representative tuples
7 D∗ ← 〈〉 ;
// Cut tree horizontally, get k max heights nodes

8 N ← cutoffKNodes(T , k) ;
// Select leaves that gain most information

9 foreach n ∈ N in topological order do
10 if isLeaf (n) then D∗ ← D∗.n ;
11 else
12 l∗ ← argmin(l∈getAllLeaves(n)) IL(D∗.l) ;

13 D∗ ← D∗.l∗ ;

14 return D∗

size. In our setting, this property is important to support multi-
resolution table summaries (requirement R6), so that a user
can drill down into search results by consistently extending the
summary.

Heuristic Algorithm. The idea of our algorithm is summarized
as follows: We first build a tree that provides a hierarchy of
clusters that merge with each other at certain distances. The
distance between two clusters is derived from the dissimilarity
values of their tuples. We then flip nodes in this tree to bring
similar tuples (leaves of the tree) closer to each other. Finally,
we traverse the tree top-down to select k representative leaves
that minimize information loss.

As outlined in Algorithm 2, our approach takes a set of
tuples D, a measure for tuple similarity tsim, and a threshold
for the number of tuples k as input and returns a selection
D∗ of k tuples. The algorithm involves three steps: clustering,
ordering, and selection.

As a first step, we run hierarchical clustering on set D to
obtain a cluster tree, using a linkage criterion such as single
linkage, complete linkage, or average linkage [33]. Second,
we move similar tuples (tree leaves) close to each other to
maximize data regularity. To this end, we traverse the tree and
flip nodes. More precisely, for each left node, if its left child
is more similar to its sibling than its right child, we swap its
children; and vice-versa (line 6). Third, we select a sequence
of k leaf nodes and attempt to minimize information loss. We
find a cut-off point by scanning the tree from the root to the
leaves (line 8). The cut-off point is reached in that scan when
the number of clusters is exactly k. For each cluster obtained,
we select the leaf for which inclusion minimizes information
loss (lines 9 to 13), which is prioritized.

Algorithm Analysis. The proposed algorithm shows several
desired properties. First, we consider time complexity.

Guarantee 5 (Complexity). The time complexity of Algorithm 2



TABLE II: Real-world collections of Web Tables

Domain #Web Tables Avg. #Rows Avg. #Attributes

Climate 5907068 75.18 4.01
Country 6232132 172.44 4.88
Location 17983748 108.05 4.71
People 463443 48.36 4.94
Organization 6666436 123.76 4.01
Company 6451838 64.29 5.49
Phone 2435812 78.43 4.52
City 7157037 143.02 5.55
Fast Food 225752 57.45 4.10

is O(|D|2 log |D|).
Proof: Clustering takes O(|D|2 log |D|) time [27]. The

ordering step visits each tree node once and potentially swaps
the children, which needs O(|D|) time. The cut-off point for
selection is determined in O(|D| log |D|) time [22]. The final
loop takes O(|D| − k) time. Thus, the overall time complexity
is O(|D|2 log |D|).

There are several optimizations that avoid building the full
cluster tree [12]. However, these techniques compromise the
stability of the approach as established by the next property, so
that multi-resolution table summaries would not be supported.

Guarantee 6 (Stability). For D∗ as returned by Algorithm 2,
let D∗

k1
= 〈d1, . . . , dk1

〉, D∗
k2

= 〈d′1, . . . , d′k2
〉 be summaries

with di ∈ D∗, 1 ≤ i ≤ k1, d′j ∈ D∗, 1 ≤ j ≤ k2, and
0 < k1 ≤ k2. Then, for all indices i, i′, 1 ≤ i < i′ ≤ k1 there
are indices j, j′, i ≤ j < j′ ≤ k2, s.t. di = d′j and di′ = d′j′ .

Proof: A tree obtained by hierarchical clustering shows
stability w.r.t. the clusters [31]. The selection step of Algo-
rithm 2 does not change the tree and is greedy regarding the
minimization of information loss. Hence, increasing the number
of clusters (lowering the cut-off point) can only extend the
selection. Since the nodes are considered in topological order,
the order of tuples in the sequence is preserved.

V. EXPERIMENTAL EVALUATION

We evaluated our methods using a large collection of real-
world Web Tables. Our experiments show that our approach
leads to improvements over baselines of up to 50% in
diversity and 10% in relevance for table selection, and reduces
information loss induced by table summarization by up to 50%.
In a user study, we further observed that participants preferred
the proposed techniques over alternative solutions.

A. Experimental Setting

Datasets and Setup. We conducted our experiments using a
large real-world collection of Web Tables [35] covering nine
domains. The dataset is summarized in Table II. Each domain
comes with subtopics (20 on average, 180 in total) that we
used as keywords for Web Table search.

Unless otherwise stated, we run experiments on the 1000
tables with the highest relevance scores. This is a realistic setup
since arguably, users cannot explore all tables in the search
result. Results are computed by taking the average over all
queries and all domains. All experiments ran on an Intel Core
i7 system (2.8GHz, 4GB RAM). We used the COMA++ [1]
schema matching system to derive attribute similarity matrices
and constructed binary feature vectors (cf., Section III-A) using

the Longest-Common-Substring measure. Tuple similarity was
assessed with the Jaccard similarity coefficient over 3-grams
of the string representation of the data.

Evaluation Measures. We use the following measures:

Subtopic recall (S-Recall). A popular metric to evaluate diversity
of search results is subtopic recall [41]. A table may cover many
subtopics, so that a set of tables is diverse if it contains many
subtopics. For a query q, the metric measures the proportion
of unique subtopics retrieved in the result U∗:

S-Recall(q, U∗) =
| ∪T∈U∗ subtopics(T )|

subtopics(q)

Normalized relevance. This metric measures the relevance of
the diversified result set w.r.t. the top-k relevant set returned by
search engines [41], i.e, it indicates how well a diversification
algorithm preserves relevance when diversifying the result.
Formally, normalized relevance (∈ [0, 1]) of a top-k table
selection U∗ from corpus U is defined as the sum of selected
relevance scores over the sum of the k highest relevance scores:

nR(U , r, U∗) =
∑

T∈U∗ r(T )

maxU=〈T1,...,T|U∗|〉,Ti∈U,1≤i≤|U∗|
∑

T∈U r(U)

Here, a higher score indicates higher relevance and
nR(U , r, U∗) = 1 means that U∗ is exactly the selection of
tables with the highest relevance scores.

Normalized Information Loss. To evaluate the quality of table
summarization, one cannot use the information loss defined
in Eq. (7) since the measure is not scaled and changing
the problem parameters (table size, parameter k) leads to
incomparable values. Hence, we define normalized information
loss as a comparison of a top-k table summary D∗ with a
baseline D0 that is obtained by random sampling of k tuples:

nIL(D∗, D0) =
IL(D0)

IL(D∗)

Here, a value of larger than one means that D∗ suffers less
from information loss than D0, and vice-versa.

Normalized Data Regularity. Following the same reasoning,
we also define normalized data regularity to evaluate table
summarization. For the top-k table summary D∗ and D0 as
the baseline obtained by random sampling, we have:

nDR(D∗, D0) =
DR(D∗)
DR(D0)

Again, a value larger than one means that D∗ performs better
in terms of data regularity than D0, and vice-versa.

B. Evaluation of Table Selection

Efficiency. To study the effects of the top-k value on the
computation time required by our heuristic algorithm for
diversified table selection, Fig. 3 shows the computation time
(in ms) relative to the result size. We observe that a solution
is obtained quickly, in less than 140ms for k = 50, which can
be seen as the maximum number of search results a user can



handle. In fact, we observe a linear trend of computation time
despite the super quadratic time complexity of our algorithm.
This highlights that our approach is efficient for real datasets.
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Fig. 3: Computation Time of Diversified Table Selection

Effectiveness (Top-K). Next, we study the effects of varying
the top-k value on the diversity and relevance of the result. We
use S-Recall and Normalized Relevance to measure diversity
and relevance of the table selection returned by our approach,
respectively. We randomly set the tunning parameter α (trade-
off between schema similarity and data similarity) and w (trade-
off between relevance and diversity) according to uniform
distributions U (0, 1) and U (1, 2), respectively. The final result
is computed as the average of 100 runs.
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Fig. 4: Top-k vs. diversity
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Fig. 5: Top-k vs. relevance

The results are depicted in Fig. 4 and 5. When increasing the
top-k value, both S-Recall and Normalized Relevance increase
as well. This is expected because of two reasons. First, when
the size of the result set increases, more dissimilar tables are
included as a result of the output objective of Algorithm 1,
leading to higher S-Recall. Second, if we consider larger results,
more relevant tables are chosen by our algorithm since the
chance that they are dissimilar is higher, leading to higher
Normalized Relevance. We conclude that our algorithm is
stable and (except for a very few outliers) non-decreasing with
the number of representative tables presented to user.

Comparison with k-medoids clustering. Next, we compare
the effectiveness of our diversified table selection approach
over another diversification algorithm – k-medoids clustering.
As proposed in [13], k-medoids clustering can be used to
diversify search results by generating k clusters of relevant
results and picking a representative from each cluster. For
the comparison, we measure relative improvement as Δ =
(X −X0)/X0, where X is the diversity (S-Recall) or relevance
(Normalized Relevance) of the selection of our approach and
X0 is the respective value when using k-medoids clustering.
We randomly set the tuning parameters as discussed above and
take the average result over 100 runs.

The result for relative improvement in diversity (S-recall) is
illustrated in Fig. 6 for an increasing top-k value. Interestingly
but not surprisingly, the diversity is not continuously improved.
At the beginning, diversity improvement increases sharply with
the top-k value and reaches a maximum when k ≈ 30. Then,
the diversity improvement gradually falls down and reaches
zero when k = 60. We conclude that when more relevant
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Fig. 6: Diversity improvement
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Fig. 7: Relevance improvement

results are included, dissimilar tables are shifted forward to
the front of the selection, so that diversity of the top relevant
results is higher.

The relative improvement in normalized relevance is de-
picted in Fig. 7. In general, the normalized relevance of our
algorithm is always better than for the method based on k-
medoids clustering. This result confirms that our algorithm
can improve diversity without loss of relevance. Another
key observation is that the relative improvement decreases
when increasing the top-k value. This is expected since,
when selecting more tables, the number of k-medoids clusters
increases which increases chances to select relevant tables.

C. Evaluation of Table Summarization

Efficiency. To investigate the efficiency of our heuristic for
structured table summarization, we measure computation time
(in ms) when varying table sizes (tuples per table) from 50
to 100 and top-k values from 5 to 20. Three different linkage
strategies are used for hierarchical clustering: HierSingle (single
linkage), HierComplete (complete linkage), and HierAverage
(average linkage).

TABLE III: Computation Time (ms) of Table Summarization

Table Size × K HierSingle HierComplete HierAverage

50 × 5 60.269 65.488 49.684
50 × 10 65.452 60.937 51.79
50 × 15 69.948 85.551 64.648
50 × 20 86.897 121.625 71.372
100 × 5 115.487 194.91 104.547
100 × 10 187.299 478.561 179.917
100 × 15 194.504 658.073 254.477
100 × 20 271.09 846.499 227.732

Table III lists the computation times observed for the
different configurations. Computation time increases if table
size or top-k value increase. However, for all configurations,
table summaries are created in less than one second. In most
cases, HierAverage performs best.

Effectiveness (Information Loss). Next, we study the effec-
tiveness of our approach in terms of information loss of the
obtained table summaries. We vary table size from 50 to 400
and the top-k value from 5 to 45. The three aforementioned
hierarchical clustering strategies are compared to the baseline
method, which randomly selects a list of k tuples over the
whole table. Note that a larger normalized information loss
indicates that a technique suffers less from information loss.

For different table sizes (and a fixed top-k value of 10),
Fig. 8 shows the normalized information loss of our approach
(with three hierarchical clustering strategies) and the baseline
(Random). We observe significant improvements for the medium
ranges of table sizes. For the boundary cases of small (size
< 50) and large (size > 350), there are no improvements
over the baseline. This is explained by two reasons. For small
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tables, random selection of tuples works well since virtually
no information loss can be implied by non-selected tuples. For
large tables, a fixed summary size of k = 10 cannot capture
sufficient information about non-selected tuples in the first
place, so that structured table summarization has little effect.

For different top-k values (and a fixed table size of 150),
the results in terms of the normalized information loss are
shown in Fig. 9. We observe significant improvements for all
cases except the smallest result size (k = 5). After reaching
the maximum the ratios drop since more tuples are presented
to user and, thus, less information is lost in comparison to
random selection.

In sum, the results emphasize that our improves the quality
of table summaries in terms of avoided information loss by up
to 50% compared to the baseline method.

Effectiveness (Data Regularity). We further study the results
in terms of data regularity in table summaries. Again, we vary
table sizes and the top-k value as outlined above.

For different table sizes (and a fixed top-k value of 10),
Fig. 10 illustrates the normalized data regularity. In general,
our method achieves data regularity values higher than the
baseline (up to a factor of 1.5). Another key finding is that the
difference ratio decreases when table size increases. This is
because of the fixed top-k value: to capture more information
with 10 tuples, the selected tuples need to be more dissimilar to
minimize information loss. As a consequence, data regularity
is reduced.

The effect of different top-k values (under a fixed table
size of 150) on normalized data regularity is illustrated in
Fig. 11. Again, our summarization strategies perform better
than the baseline (up to a factor of nearly 1.8). Data regularity
increases when increasing the top-k value until about 35 tuples
(except for HierComplete). This is expected since increasing
the top-k value increases the number of clusters in our table
summarization algorithm. Hence, selected tuples from these
clusters are more similar, increasing data regularity. However,
the difference ratio drops down for larger k. This is because,
with fixed table size, increasing the top-k value further increases
the chances of selecting similar tuples by random sampling,
leading to higher data regularity.

Overall, the results underline that our approach is able to

consider data regularities in table summaries.

D. User Study

To evaluate our techniques also from a user perspective,
we conducted a user study using the CrowdFlower system.
We designed two surveys in which a user is assigned to a
certain evaluation task, called HIT. In each HIT, a number of
questions on the result quality had to be answered. We allowed
a maximum number of 10 users for each HIT and finally count
all user responses to determine a trend in the result perception.

Below, we first discuss table selection before turning to
table summarization. Finally, we reflect on limitations of the
study.

Benefits of Table Selection. For this experiment, we designed
HITs that ask users to compare two selections of tables for a
given query. For each keyword, we retrieved a collection of
relevant tables from Google Web Tables. A first list (baseline) is
built by selecting the tables according to their relevance scores.
A second list (Diversified Table Selection, DTS) contains the
tables selected by our technique. Then, we built a HIT for each
keyword (so there are 180 HITs in total) that comprised two
questions. First, we asked users to rate the diversity of the DTS
list against the baseline by five choices: from (1) highly less
diverse to (5) highly more diverse. In the second question, we
asked users which of the lists they prefer.

To make the study independent from table summarization
techniques, no sample data of the tables was presented to the
participants. We further considered only cases in which the
number of identical tables in the two lists is less than 70% to
prevent users from being confused with close to identical list.
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For the first question on the diversity of the lists of selected
tables, the percentages of user answers are shown in Fig. 12.
We observe that 51.73% of the users answered that the selection
derived with our technique is highly (13.72%) or slightly
(38.01%) more diverse; whereas only few users considered
it to be slightly (15.02%) or highly (4.08%) less diverse than
the baseline. This confirms that our technique is sound and
indeed increases diversity of table selection.

As illustrated in Fig. 13, 59.09% of the users prefer the
DTS list over the baseline, which highlights the importance
of diversification for satisfying the search intent of users and
suggests that our selection technique helps to achieve it.

Benefits of Table Summarization. For this experiment, we
designed HITs in which users were shown two versions of a
summary of a Web Table. We randomly selected 10 of the tables
retrieved for each keyword. Then, a first baseline summary
shows tuples that were chosen randomly from the table. The
second version (Structured Table Summarization, STS) selected



the tuples using our summarization technique. For each table,
we build three separate HITs in which the number of tuples in
both versions is fixed to 5, 20, and 50, respectively. The reason
for separating different sizes of the tables into different HITs
is to avoid dependence of user answers. This leads to 5400
(180 keywords × 10 tables × 3 sizes) HITs in total. For each
HIT, we ask users which version is easier to read and which
of the versions they prefer.
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Fig. 14: Summary - Readability
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Fig. 15: Summary - Preference

Fig. 14 illustrates that for all summary sizes, users consider
the STS version to be more readable than the baseline. This
trend gets stronger with larger summaries. Over 80% of the
users opt for the STS version for summaries of size 50.

The results shown in Fig. 15 indicate that the majority of
users also prefers the STS version over the baseline. Again,
the trend is stronger for larger summaries. For summaries with
50 tuples, more than 72% of the users prefer the STS version.

In sum, the results on readability and preference illustrate
the effectiveness of our method for table summarization.

Limitations. Reflecting on limitations of our user study, we
note that, despite the large number of HITs, the number of
participants in the study is too small to allow for conclusions
on the statistical significance of our observations. However, the
user study consistently indicates that the proposed techniques
lead to better results for table selection and table summarization
than the baselines that represent the state-of-the-art.

VI. RELATED WORK

Web Tables. Handling structured data in the Web has received
a lot of attention in recent years. Early work includes Cafarella
et al. [5], who report on massive extraction of structured
data from the surface Web. Google Squared [9] and Fusion
Table [18] are prominent applications that allow for table-based
handling of Web data. Based on the model of Web Tables, the
challenges of annotating, searching, matching, and clustering
these tables have been addressed in the research community.
Annotations provide semantics for a Web Table by associating
the table columns and rows with types and relations [43].
Search aims at retrieval of Web Tables by matching table
columns to keywords of a search query [29]. Matching enables
data integration for Web sources by establishing the semantic
correspondences between Web Table columns [15]. Clustering
focuses on measuring the relatedness between Web Tables
in order to group, join, or union them for simplifying the
large-scale table corpus and improving table search [11]. Our
work builds on the result of Web Table search and aims at
supporting a user in browsing and exploring the retrieved tables.
Our approach to table selection is further inspired by clustering
of Web Tables, as the goodness function for a selection favors

examples from groups of similar tables, but penalizes the
selection of multiple tables from the same group.

Diversification Techniques. The importance of diversification
in search results has been long acknowledged in information
retrieval [14]. Diversification techniques are often categorized
as being threshold-based [39], function-based [23], or graph-
based [42]. Threshold-based algorithms define a threshold on
one criterion (i.e. either relevance or diversity), and then select
the results that both satisfy this threshold and optimize the other
criterion. Function-based approaches combine both relevance
and diversity in a unified function to extract a result set that
maximizes this function. Graph-based approaches model the
search results and their relations as a graph, and rank them
according to the collective information inferred from the graph.
In this work, we motivate the need for diversification for
Web Table search and propose a function-based approach for
diversified table selection.

Table Summarization. Table summarization is an active field
of research and has been mainly studied for relational databases.
While numerous techniques for table summarization have been
proposed, the one by Chandola and Kumar [7] is closest
to our work. Their approach uses clustering-based sampling
to select representative tuples and leverages frequent sets to
consider data regularities in relational tables. However, unlike
our work, this approach is not stable if the size of the summary
is increased, so that it lacks support for multi-resolution
summarization. We overcome this limitation by combining
hierarchical-based clustering and ordering techniques. In many
cases, table summarization may also consider meta-data (e.g.,
table attribute taxonomies) [6]. In our setting of Web Tables,
however, meta-data is either unavailable or costly to build up.
Therefore, our technique for table summarization relies on
the Web Table content itself. Table summarization may not
only refer to a single table, but to a whole relational database,
as proposed by Yang et al. [40]. They present a clustering-
based method to select the tables that represent the database
while maintaining the relations (e.g., foreign-keys) between the
tables. Despite the fact that such relations do not exist between
tables in the Web, the use case of Web Table search requires
separate summarization of tables from diverse data sources. As
such, instead of exploiting relations between tables, we target
summaries that highlight relations between tuples of a table.

VII. CONCLUSIONS

This paper proposed techniques to support a user in
browsing and exploring a result for Web Table search. Based on
requirements identified for such support techniques, we formally
defined two problems: diversified table selection and structured
table summarization. The former relates to the selection of
tables based on their relevance while ensuring diversity within
the result. The latter refers to the selection of tuples to provide
a concise yet meaningful summary of a table. We showed that
both problems are intractable. Hence, we developed heuristic
algorithms for their approximation that come with performance
guarantees, such as near-optimality, stability and fairness. Our
evaluation showed that our techniques outperform respective
baseline methods significantly, up to 50% in diversity for table
selection and up to 50% reduction of information loss induced
by table summarization. Our user study showed that participants
indeed saw a clear benefit in using the proposed techniques.



In future work, we aim at adapting our approach to other
Web data sources that are not tabular. Also, we intend to
devise applications on top of our techniques and support data
exploration beyond keyword search.
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[23] O. Küçüktunç et al. “Diversified recommendation on graphs: pitfalls,
measures, and algorithms”. In: WWW. 2013, pp. 715–726.

[24] X. Li et al. “Truth finding on the deep web: is the problem solved?”
In: VLDB. 2012, pp. 97–108.

[25] C. D. Manning et al. Introduction to information retrieval. Vol. 1.
Cambridge university press, 2008.

[26] A. Marie et al. “On the Stable Marriage of Maximum Weight Royal
Couples”. In: IIWeb. 2007, pp. 1–6.

[27] F. Murtagh. “A survey of recent advances in hierarchical clustering
algorithms”. In: CJ (1983), pp. 354–359.

[28] G. Nemhauser et al. “An analysis of approximations for maximizing
submodular set functions–I”. In: MP (1978), pp. 265–294.

[29] R. Pimplikar et al. “Answering table queries on the web using column
keywords”. In: PVLDB. 2012, pp. 908–919.

[30] F. Radlinski et al. “Redundancy, diversity and interdependent document
relevance”. In: SIGIR. 2009, pp. 46–52.

[31] S. P. Smith et al. “Stability of a hierarchical clustering”. In: PR (1980),
pp. 177–187.

[32] F. M. Suchanek et al. “Yago: a core of semantic knowledge”. In: WWW.
2007, pp. 697–706.

[33] G. J. Szekely et al. “Hierarchical clustering via joint between-within
distances: Extending Ward’s minimum variance method”. In: JOC
(2005), pp. 151–183.

[34] P.-N. Tan et al. Introduction to data mining. Pearson Education India,
2007.

[35] http:// lsirwww.epfl.ch/web table/ .
[36] http://www.factual.com/ .
[37] http://www.socrata.com/ .
[38] P. Venetis et al. “Recovering Semantics of Tables on the Web”. In:

PVLDB. 2011, pp. 528–538.
[39] M. R. Vieira et al. “On query result diversification”. In: ICDE. 2011,

pp. 1163–1174.
[40] X. Yang et al. “Summarizing relational databases”. In: PVLDB. 2009,

pp. 634–645.
[41] C. X. Zhai et al. “Beyond independent relevance: methods and evaluation

metrics for subtopic retrieval”. In: SIGIR. 2003, pp. 10–17.
[42] B. Zhang et al. “Improving web search results using affinity graph”.

In: SIGIR. 2005, pp. 504–511.
[43] M. Zhang et al. “InfoGather+: Semantic Matching and Annotation of

Numeric and Time-varying Attributes in Web Tables”. In: SIGMOD.
2013, pp. 145–156.

APPENDIX: PROOFS OF GOODNESS PROPERTIES

Monotonicity follows by the following transformation (w ≥ 2):
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Submodularity follows by the following transformation:
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Strength of Relevance follows by this transformation (w ≥ 2):
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