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�egeneralminimum lower-order confounding (GMC) criterion for two-level design not only reveals the confounding information
of factor e	ects but also provides a good way to select the optimal design, which was proposed by Zhang et al. (2008).�e criterion
is based on the aliased e	ect-number pattern (AENP). �erefore, it is very important to study properties of AENP for two-level
GMC design. According to the ordering of elements in the AENP, the confounding information between lower-order factor e	ects
is more important than that of higher-order e	ects. For two-level GMC design, this paper mainly shows the interior principles to
calculate the leading elements #

1�2 and #

2�2 in the AENP. Further, their mathematical formulations are obtained for every GMC2�−� design with� = 2�−� according to two cases: (i) 5�/16 + 1 ≤ � < �/2 and (ii)�/2 ≤ � ≤ � − 1.

1. Introduction

To �nd optimal designs in amore elaborate and explicit man-
ner under e	ect hierarchy principle, Zhang et al. [1] �rst int-
roduced the aliased e	ect-number pattern (AENP) and pro-
posed a new criterion of general minimum lower-order con-
founding (GMC) for two-level regular design. Further, they
proved that all the classi�cation patterns conducting the
existing criteria, such as maximum resolution (MR) criterion
[2], minimum aberration (MA) criterion [3], clear e	ects
(CE) criterion [4], andmaximum estimation capacity (MEC)
criterion [5], can be expressed as di	erent functions of the
AENP so that it can be a basis to unify these criteria.

�rough the AENP, we can get a deeper understanding
of properties of the above criteria and relationships among
them. Zhang and Cheng [6] revealed an exact expression of
the average minimum lower-order confounding property of
MAdesign. Hu and Zhang [7] obtained an essential statistical
equivalence ofMECdesign andMAdesign. From the average
least confounding property between lower-order e	ects, MA
designs are most suitable for the situation that all the factors

in experiments are treated to be equally important, while
GMC design has an individual least confounding property
between lower-order e	ects and possesses the maximum
numbers of clear main e	ects and clear two-factor interac-
tions (2�’s). Because of this, GMC designs can be applied
to the experiments which the experimenters have some
prior information to the order of the importance factors. In
practice, the latter situation more o�en happens than the
former one. �erefore, the study for GMC designs should be
signi�cantly important in both theory and application.

Now we review some de�nitions proposed by Zhang et
al. [1]. Let � be a 2�−� design with � factors, � independent
de�ning words, and � = 2�−� runs. We denote the factors
by 1, 2, . . . , �. An �th-order factor e	ect is said to be aliased
with 	th-order factor e	ects at degree 
 if it is simultaneously
aliased with 
 	th-order factor e	ects. �e 0th-order e	ect is
the grand mean and 1st-order e	ect is a main e	ect.

Let #

��(�)� (�) (written by #

��(�)� for short) be the number of�th-order factor e	ects that are aliased with 
 	th-order fac-
tor e	ects. Denote �� = ( �� ); a set { #��(�)� , 0 ≤ 
 ≤ ��,
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0 ≤ �, 	 ≤ �} is called the aliased e
ect-number pattern
(AENP) of the design �. �e set re�ects the overall con-

founding between factor e	ects in the design. De�ne #

��� =
( #��(0)� , #��(1)� , . . . , #��(��)� ) and a design that sequentially max-

imizes the vector

#� = ( #

1�2, #2�2, #1�3, #2�3, #3�2, #3�3, . . .) (1)

is called aGMCdesign, where the ordering of #

���’s is in accor-
dance with the rule: #

��� is before #

��V
if either max(�, 	) <

max(�, V), or max(�, 	) = max(�, V), with � < �, or max(�, 	) =
max(�, V) with � = � and 	 < V. In order to make main
e	ects or 2�’s estimable, we need to give an assumption: the
interactions involving three or more factors are absent. �us,

we only study the leading terms #

1�2 and #

2�2 of AENP for
two-level GMC design in this paper.

Zhang et al. [1] listed all two-level GMC designs of 16 and
32 runs, a number of 64-run GMC designs, and obtained the

values of #

1�2 and #

2�2 by computer algorithm. However, the
method is not suitable for designswith larger runs. Zhang and
Cheng [6] and Chen and Liu [8] provided an important the-
ory for constructing GMC designs. Cheng and Zhang [9] and
Li et al. [10] �nished the construction of GMC 2�−� designs
with �/4 + 1 ≤ � ≤ � − 1. However, there are few articles
that pay attention to calculating the values of elements in
the AENP, especially, the confounding information between
main e	ects and 2�’s, or among 2�’s of two-level GMCdesign.

�is paper mainly reveals the interior principles for cal-

culating the values of #

1�2 and #

2�2 for two-level GMCdesign.
In Section 2, we introduce some notations and obtain useful
lemmas to study the lower-order confounding information of
two-level GMCdesigns. Section 3 and Section 4, respectively,

obtain values of #

1�2 and #

2�2 for GMC 2�−� design with
resolution � ≥ ���, for 5�/16 + 1 ≤ � < �/2 and �/2 ≤� ≤ � − 1. Concluding remarks are given in Section 5.

2. Some Notations and Lemmas

Denote � = � − � and 1, 2, . . . , � stand for � independent
factors. Let�	 be the set containing all main e	ects 1, 2, . . . , �
and all interactions among them, formed by

�1 = {1} , �	 = {�	−1, �, ��	−1} , (2)

where ��	−1 = {��: � ∈ �	−1}. By�eorem 2.7.1 of Mukerjee

and Wu [11], any 2�−� design � can be represented by an �-
subset of�	; that is,� ⊂ �	.

Let �1 = �1 and �
 = {�, ��
−1} for 1 < � ≤ �. Evidently,�	 = ∪	
=1�
. For 5�/16 + 1 ≤ � ≤ � − 1, Li et al. [10]
have gotten that every GMC 2�−� design is constructed by
the last � columns of�	. �erefore, GMC 2�−� designs with5�/16 + 1 ≤ � < �/2 are directly formed by the last �
columns of �	. Denote �	
 = �	 \ �
 with 1 ≤ � < �. For�/2 ≤ � ≤ �− 1, there exists a number � (< �) so that GMC2�−� design is formed by the last � columns of �
 ∪ �	
. �us,
the GMCdesign can be written by�0∪�	
, where�0 consists
of the last � − (� − 2
) columns of �
. To get the lower-order

confounding information of two-level GMC design, we need
to study structure of last �0 columns of�
 for � ≤ � and �0 ≤ �.

Suppose �0 consists of the last �0 columns of �
 (� ≤ �),
where �0 = #{�0} and #� denotes the cardinality of a set �.
�e following example illustrates the structure of�0.
Example 1. Consider � = 7; we select the last �0 columns of�7
to construct�0. Clearly, there are 64 choices besides�0 ≡ �
.
For 1 ≤ �0 ≤ 63,�0 is one of the following six forms.

(i) (� + 1) ⋅ ⋅ ⋅ 7�� for 1 ≤ � < 7.
(ii) (� + 1) ⋅ ⋅ ⋅ 7(�� \ �V

) for 1 ≤ V < � < 7.
(iii) (�+ 1) ⋅ ⋅ ⋅ 7((" + 1) ⋅ ⋅ ⋅ V�� ∪ (�� \�V

)) for 1 ≤ " < V <� < 7.
(iv) (� + 1) ⋅ ⋅ ⋅ 7((" + 1) ⋅ ⋅ ⋅ V(�� \ ��) ∪ (�� \ �V

)) for 1 ≤# < " < V < � < 7.
(v) (� + 1) ⋅ ⋅ ⋅ 7((" + 1) ⋅ ⋅ ⋅ V(($ + 1) ⋅ ⋅ ⋅ #�
 ∪ (�� \ ��)) ∪(�� \ �V

)) for 1 ≤ $ < # < " < V < � < 7.
(vi) (� + 1) ⋅ ⋅ ⋅ 7((" + 1) ⋅ ⋅ ⋅ V(($ + 1) ⋅ ⋅ ⋅ #(�
 \ ��) ∪ (�� \��)) ∪ (�� \ �V

)) for 1 ≤ % < $ < # < " < V < � < 7.
�e above example provides a way to construct�0. Gen-

erally, for any � (� ≤ �), we consider the construction of �0
in �
. De�ne

�� = ��� \ ��� , &�� = (�� + 1) (�� + 2) ⋅ ⋅ ⋅ 	�−1,
1 ≤ # ≤ �, (3)

where 1 ≤ 	� < �� < 	�−1 < ��−1 < ⋅ ⋅ ⋅ < 	� < �� < ⋅ ⋅ ⋅ <	1 < �1 < 	0 = �. �en,�0 can be constructed by either of the
following cases.

Case 1. One has �0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&���� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪�2) ∪ �1).
Case 2. One has �0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&����� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪�2) ∪ �1).

In Case 1, the number of elements in �0 is even since

#{�0} = ∑��=1(2�� − 2��). However, that of�0 in Case 2 is odd

because of #{�0} = ∑�−1�=1 (2�� − 2��) + 2�� − 1.
Consider� ⊂ �	 and any * ∈ �	; de�ne

-2 (�, *) = # {(�1, �2) : �1, �2 ∈ �, �1�2 = *} , (4)

which is the number of 2�’s in � aliased with *. By the de�-
nition of #

��(�)� (�), it can be easily obtained that

#

1�(�)2 (�) = # {*: * ∈ �, -2 (�, *) = 
} , (5)

#

2�(�)2 (�) = (
 + 1) # {*: * ∈ �	, -2 (�, *) = 
 + 1} , (6)

where 
 = 0, 1, . . . , �2. In order to get the lower-order con-
founding of�0 in the above cases, we need to study -2(��, *)
for # ≥ 1.
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Lemma 2. Let�� be de�ned in (3) for # ≥ 1. �en

-2 (��, *) =
{{{{{{{

2��−1 − 2��−1, * ∈ ��� ,2��−1 − 2�� , * ∈ ��� \ ��� ,0, * ∈ �	 \ ��� .
(7)

Proof. For * ∈ �	 \ ��� , we have -2(��, *) = 0. If * ∈ ��� ,
then

-2 (�, *) = # {��� \ ���}2 = 2��−1 − 2��−1. (8)

For * ∈ ��� \ ��� , there are 2��−1 − 1 pairs of factors in��� so
that their interactions are aliased with *. Among these pairs,

there are 2�� − 1 pairs with one factor from ��� and another
from��� \ ��� . �us,

-2 (��, *) = (2��−1 − 1) − (2�� − 1) = 2��−1 − 2�� . (9)

�is completes the proof.

Next we analyze Case 1 of �0. For convenience, by (3),
denote

D (#) = &�� (⋅ ⋅ ⋅ (&��−1 (&���� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪ ��) (10)

for 1 < # ≤ �. Evidently, D(#) ⊂ ���−1 and D(1) = �0 in
Case 1. When �1 ∈ D(#) and �2 ∈ ��−1, we have �1�2 ∈ ��−1.
�us,

# {(�1, �2) : �1 ∈ D (#) , �2 ∈ ��−1, �1�2 = *} = �∑
�=�
# {��}

(11)

for * ∈ ��−1. Otherwise, the value is zero. �en

# {(�1, �2) : �1 ∈ D (#) , �2 ∈ ��−1, �1�2 = *}

= {{{{{

�∑
�=�
(2�� − 2��) , * ∈ ��−1,

0, * ∉ ��−1.
(12)

Based on Lemma 2 and (12), we can get the following result
for Case 1.

Lemma 3. Let �0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&���� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪�2) ∪ �1). �en

-2 (�0, *)

=
{{{{{{{{{{{{{{{{{

B (� + 1)2 , * ∈ ��� ,
B (� + 1) − (B (#) + 2��)

2 , * ∈ ��, # = 1, . . . , �,
B (#)2 , * ∈ ���−1 \ ��� , # = 2, . . . , �,
0, * ∈ �	 \ ��1 ,

(13)

where

B (1) = 0, B (#) = �−1∑
�=1
(2�� − 2��) , # > 1. (14)

Proof. For 1 < D ≤ �, by (10), we have

-2 (&�� (D (D) ∪ ��−1) , *)
= -2 (D (D) ∪ ��−1, *)
= -2 (D (D) , *) + -2 (��−1, *)
+ # {(�1, �2) : �1 ∈ D (D) , �2 ∈ ��−1, �1�2 = *} .

(15)

Hence,

-2 (�0, *)
= �−2∑
�=1
-2 (��, *) + -2 (&���� ∪ ��−1, *)

+ �−1∑
�=2

# {(�1, �2) : �1 ∈ D (D) , �2 ∈ ��−1, �1�2 = *}

= �∑
�=1
-2 (��, *)

+ �∑
�=2
# {(�1, �2) : �1 ∈ D (D) , �2 ∈ ��−1, �1�2 = *} .

(16)

Put �
 into 2� + 1 incompatible parts: ��� , ��+1, and��� \ ���+1 for D = 0, 1, . . . , � − 1. Clearly, if * ∈ �	 \ ��1 , then-2(�0, *) = 0. By Lemma 2 and (12), we, respectively, discuss
the following cases.

(i) If * ∈ ��� , then
# {(�1, �2) : �1 ∈ D (D) , �2 ∈ ��−1, �1�2 = *} = 0 (17)

for 1 < D ≤ � − 1. �us,

-2 (�0, *) = �∑
�=1
-2 (��, *) = �∑

�=1
(2��−1 − 2��−1) . (18)

(ii) If * ∈ �� with 1 < # ≤ �, one has

-2 (�0, *)
= �−1∑
�=1
-2 (��, *) + -2 (��, *)

+ # {(�1, �2) : �1 ∈ D (# + 1) , �2 ∈ ��, �1�2 = *}
= �−1∑
�=1
(2��−1 − 2��−1) + (2��−1 − 2��)

+ �∑
�=�+1

(2�� − 2��)

= �∑
�=1
(2�� − 2��) − �−1∑

�=1
(2��−1 − 2��−1) − 2��−1.

(19)
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(iii) If * ∈ ���−1 \ ��� for # > 1, then
-2 (�0, *) = �−1∑

�=1
-2 (��, *) = �−1∑

�=1
(2��−1 − 2��−1) . (20)

�is completes the proof.

Lemma 3 shows that the value of-2(�0, *) in Case 1 depe-
nds on all pairs {��, 	�}1≤�≤� which relate to #{�0} = ∑��=1(2�� −2��). For instance, take �0 = #{�0} = 42 that is nearer to the
number 25 than 26; we have
�0 = 25 + 23 + 2 = (26 − 25) + (24 − 23) + (22 − 2) . (21)

�us �1 = 6, 	1 = 5, �2 = 4, 	2 = 3, �3 = 2, and 	3 = 1. And take�0 = 54which is closer to the number 26 than 25; one obtains�0 = 26 − 24 + 6 = 26 − 24 + 23 − 2. �en �1 = 6, 	1 = 4, �2 = 3,
and 	2 = 1.

Consider Case 2 of�0. Denote
H (#) = &�� (⋅ ⋅ ⋅ (&��−1 (&����� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪ ��) (22)

for 1 < # ≤ �. Clearly, H(#) ⊂ ���−1 and H(1) = �0 in
Case 2. For two factors �1 ∈ H(#) and �2 ∈ ��−1, one has�1�2 ∈ ��−1. �erefore,

# {(�1, �2) : �1 ∈ H (#) , �2 ∈ ��−1, �1�2 = *}

= {{{{{

�−1∑
�=�

(2�� − 2��) + 2�� − 1, * ∈ ��−1,
0, * ∉ ��−1.

(23)

Speci�cally, if # = �, then

# {(�1, �2) : �1 ∈ &����� , �2 ∈ ��−1, �1�2 = *}
= {2�� − 1, * ∈ ��−1,0, * ∉ ��−1.

(24)

For� ≥ 1 and * ∈ ��� , there are 2��−1 − 1 pairs of factors
in��� , which each interaction is aliased with *. �en

-2 (&����� , *) = -2 (��� , *)
= {2��−1 − 1, * ∈ ��� ,0, * ∈ �	 \ ��� .

(25)

Based on the above results, we can obtain the value of-2(�0, *) for any * ∈ �	 in Case 2.

Lemma 4. Let �0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&����� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪�2) ∪ �1). �en

-2 (�0, *)

=
{{{{{{{{{{{{{

B (�)2 + 2��−1 − 1, * ∈ ��� ,
B (�) − (B (#) + 2��)

2 + 2�� − 1, * ∈ ��, # = 1, . . . , � − 1,B (#)2 , * ∈ ���−1 \ ��� , # = 2, . . . , �,0, * ∈ �� \ ��1 ,
(26)

where B(#) is de�ned in (14).

Proof. By (22), we obtain

-2 (�0, *)
= �−1∑
�=1
-2 (��, *) + -2 (&����� , *)

+ # {(�1, �2) : �1 ∈ &����� , �2 ∈ ��−1, �1�2 = *}
+ �−1∑
�=2

# {(�1, �2) : �1 ∈ H (D) , �2 ∈ ��−1, �1�2 = *} .
(27)

For * ∈ �	 \ ��1 , we have -2(�0, *) = 0. By Lemma 2, (25),
and (23), analyze the following cases.

(i) For * ∈ ��� , we obtain
-2 (�0, *) = �−1∑

�=1
-2 (��, *) + -2 (&����� , *)

= �−1∑
�=1

(2��−1 − 2��−1) + 2��−1 − 1.
(28)

(ii) For * ∈ �� with 1 ≤ # ≤ � − 1, one has
-2 (�0, *)

= �−1∑
�=1
-2 (��, *) + -2 (��, *)

+ # {(�1, �2) : �1 ∈ H (# + 1) , �2 ∈ ��, �1�2 = *}
= �−1∑
�=1
(2��−1 − 2��−1)

+ �−1∑
�=�

(2�� − 2��) − 2��−1 + 2�� − 1

= B (�) − (B (#) + 2��)
2 + 2�� − 1.

(29)

(iii) For * ∈ ���−1 \ ��� with 2 ≤ # ≤ �, -2(�0, *) =
∑�−1�=1(2��−1 − 2��−1).

In Lemma 4, the value of -2(�0, *) is relative to these
pairs {��, 	�}1<�<� and ��. For example, consider �0 = #{�0} =21. Since �0 = (25 − 24) + (23 − 22) + 2 − 1, it yields �1 = 5,	1 = 4, �2 = 3, 	2 = 2, and �3 = 1. Taking �0 = 29, we have�0 = 25 − 3 = 25 − 22 + 1; thus �1 = 5, 	1 = 2, and �2 = 1.

Lemmas 3 and 4, respectively, obtain the value of-2(�0, *) that�0 consists of the last �0 columns of �
 (� ≤ �)
for two cases. �ese results play a key role in calculating #

1�2
and #

2�2’s for all GMC 2�−� designs with 5�/16 + 1 ≤ � ≤�−1. Next sections will, respectively, discuss two-level GMC
designs with the factor number � satisfying (i) 5�/16 + 1 ≤� < �/2 or (ii)�/2 ≤ � ≤ � − 1.
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3. GMC 2�−� Designs with 5�/16+1 ≤ �<�/2
Li et al. [10] showed all GMC 2�−� designs with 5�/16 + 1 ≤� < �/2, constructed by the last � columns of�	. In Section 2,�0 is constructed by Case 1 or Case 2, which is the last �0
columns of�
 (� ≤ �) for �0 = #{�0}.�erefore, for anyGMC2�−� design� with 5�/16 + 1 ≤ � < �/2, its construction is
similar to that of�0. In (3), take 	0 = � = �.
�eorem 5. Consider GMC 2�−� design
� = &�1 (&�2 (⋅ ⋅ ⋅ (&��−1 (&���� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪ �2) ∪ �1)

(30)

with 5�/16 + 1 ≤ � < �/2. �en

(a)

#

1�(�)2 (�) = {�, 
 = 0,0, G#ℎI�$�"I, (31)

(b)

#

2�(�)2 (�)

=

{{{{{{{{{{{{{{{{{{{{{{{

� (2�� − 1)
2 , 
 = �2 − 1,

(� − (B (#) + 2��)
2 ) (2�� − 2��) , 
 = � − (B (#) + 2��)

2 − 1,
# = 1, . . . , �,B (#) (2��−1 − 2��)

2 , 
 = B (#)2 − 1, # = 2, . . . , �,
0, G#ℎI�$�"I,

(32)

where B(#) is de�ned in (14).

Proof. Evidently, � = ∑��=1(2�� − 2��); we have B(� + 1) = �. By
Lemma 3,

-2 (�, *)

=
{{{{{{{{{{{{{{{{{{{{{

�2 , * ∈ ��� ,
� − (B (#) + 2��)

2 , * ∈ ��, # = 1, . . . , �,
B (#)2 , * ∈ ���−1 \ ��� , # = 2, . . . , �,
0, * ∈ �	 \ ��1 .

(33)

(a) Since� ⊂ �	 \ ��1 , hence by (33) and (5)

#

1�(0)2 (�) = # {*: * ∈ �, -2 (�, *) = 0} = # {�} = �. (34)

Otherwise, #

1�(�)2 (�) = 0 for 
 ̸= 0.
(b) Following (33) and (6), we obtain

#

2�(�)2 (�) = (
 + 1)
× [# {*: * ∈ ��� , -2 (�, *) = 
 + 1}

+ �∑
�=1

# {*: * ∈ ��, -2 (�, *) = 
 + 1}

+ �∑
�=2

# {*: * ∈ ���−1 \ ��� , -2 (�, *) = 
 + 1}
+# {*: * ∈ �	 \ ��1 , -2 (�, *) = 
 + 1}] .

(35)

If 
 = �/2 − 1, then
#

2�(�)2 (�) = �# {���}2 = � (2�� − 1)
2 . (36)

For 
 = � − (B(#) + 2��)/2 − 1 with 1 ≤ # ≤ �, one has

#

2�(�)2 (�) = (� − (B (#) + 2��)
2 ) # {��}

= (� − (B (#) + 2��)
2 ) (2�� − 2��) .

(37)

And if 
 = B(#)/2 − 1 with 1 < # ≤ �, then

#

2�(�)2 (�) = B (#) # {���−1 \ ���}2 = B (#) (2��−1 − 2��)
2 . (38)

Otherwise, #

2�(�)2 (�) = 0.
For GMC 2�−� design with 5�/16 + 1 ≤ � < �/2,

�eorem 5 reveals that the value of #

1�2 only depends on the

factor number �. However, the value of #

2�2 is related to the
numbers {��, 	�}1≤�≤� besides �.We illustrate themvia a simple
example.

Example 6. Take � = 5 and � = 10; consider GMC 210−5
design �. Since � = 23 + 2 = (24 − 23) + (22 − 2), clearly,
we have �1 = 4, 	1 = 3, �2 = 2, and 	2 = 1. Hence, 2�1 − 2�1 = 8,2�2−2�2 = 2, 2�1−2�2 = 4, and B(1) = 0, B(2) = 8. By�eorem 5,
we get

#

1�(�)2 (�) = {10, 
 = 0,0, otherwise,

#

2�(�)2 (�) =
{{{{{{{{{

16, 
 = 1,24, 
 = 3,5, 
 = 4,0, otherwise.

(39)

�eorem 5 applies to the case that the factor number �
of GMC design is even. If � is odd, similar to the proof of
�eorem 5, by Lemma 4, one can get the result below.

�eorem 7. Consider GMC 2�−� design
� = &�1 (&�2 (⋅ ⋅ ⋅ (&��−1 (&����� ∪ ��−1) ⋅ ⋅ ⋅ ) ∪ �2) ∪ �1)

(40)

with 5�/16 + 1 ≤ � < �/2. �en
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(a)

#

1�(�)2 (�) = {�, 
 = 0,
0, G#ℎI�$�"I, (41)

(b)

#

2�(�)2 (�)

=

{{{{{{{{{{{{{{{{{{{{{{{

(� − 1) (2�� − 1)
2 , 
 = (� − 1)2 − 1,

(� − (B (#) + 2��)
2 ) (2�� − 2��) , 
 = � − (B (#) + 2��)

2 − 1,
# = 1, . . . , � − 1,

B (#) (2��−1 − 2��)
2 , 
 = B (#)2 − 1, # = 2, . . . , �,

0, G#ℎI�$�"I,
(42)

where B(#) is de�ned in (14).

Proof. Note that � = ∑�−1�=1 (2�� − 2��) + 2�� − 1 = B(�) + 2�� −1.
Example 8. Let � = 5 and � = 11; consider GMC 211−6 design�. Here � = 24 − 23 + 22 − 1; we have �1 = 4, 	1 = 3, and�2 = 2. �us, B(2) = 2�1 − 2�1 = 8 and 2�1 − 2�2 = 4. Following
�eorem 7, it is directly obtained by

#

1�(�)2 (�) = {11, 
 = 0,
0, otherwise,

#

2�(�)2 (�) =
{{{{{{{{{{{{{

24, 
 = 2,
16, 
 = 3,
15, 
 = 4,
0, otherwise.

(43)

4. GMC 2�−� Designs with �/2 ≤ � ≤ �−1
In Section 2, we know that any GMC 2�−� design with�/2 ≤� ≤ � − 1 is constructed by �0 ∪ �	
, where �0 is the last� − (� − 2
) columns of �
 (� < �). Lemmas 3 and 4 have
shown the confounding information of�0. Nextwewill study
a special design �	
 = �	 \ �
 (� < �), which consists of the

last� − 2
 columns of�	. Since � < �, the factor number of

the design �	
 satis�es � − 2
 ≥ �/2. Hence, the design �	

hasGMC. By Lemma 2, we directly give the value of-2(�	
, *)
as follows:

-2 (�	
, *) =
{{{{{{{{{

�2 − 2
, * ∈ �	 \ �
,
�2 − 2
−1, * ∈ �
. (44)

Next we discuss the values of #

1�2 and #

2�2 for GMC design�	
 with � < �.

�eorem9. Consider anyGMCdesign �	
 = �	\�
 for � < �.
�en

(a)

#

1�(�)2 (�	
) = {{{
� − 2
, 
 = �2 − 2
,
0, G#ℎI�$�"I, (45)

(b)

#

2�(�)2 (�	
) =
{{{{{{{{{{{{{{{

(�2 − 2
) (� − 2
) , 
 = �2 − 2
 − 1,
(�2 − 2
−1) (2
 − 1) , 
 = �2 − 2
−1 − 1,
0, G#ℎI�$�"I.

(46)

Proof. (a) If 
 = �/2 − 2
, by (44), then
#

1�(�)2 (�	
) = # {*: * ∈ �	
, -2 (�	
, *) = 
}
= # {�	
} = � − 2
. (47)

Otherwise, #

1�(�)2 (�	
) = 0.
(b) For 
 ≥ 0, note that

#

2�(�)2 (�	
) = (
 + 1)
× [# {*: * ∈ �	
, -2 (�	
, *) = 
 + 1}
+# {*: * ∈ �
, -2 (�	
, *) = 
 + 1}] .

(48)

If 
 = �/2 − 2
 − 1, thus by (44)
#

2�(�)2 (�	
) = (�2 − 2
) # {�	
} = (�2 − 2
) (� − 2
) .
(49)

Similarly, for 
 = �/2 − 2
−1 − 1, we have
#

2�(�)2 (�	
) = (�2 − 2
−1) # {�
} = (�2 − 2
−1) (2
 − 1) .
(50)

For GMC design �	
 (� < �), the values of #

1�2 and #

2�2
only rely on two numbers� and �. In particular, if � = � − 1,
then �	(	−1) = �	. By �eorem 9, one has

#

1�(�)2 (�	) = {{{
�2 , 
 = 0,
0, 
 ̸= 0,
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#

2�(�)2 (�	) = {{{{{
�4 (�/2 − 1) , 
 = �4 − 1,

0, 
 ̸= �4 − 1.
(51)

�e next example is used to illustrate this above result.

Example 10. Consider GMC 216−11 design �54. Since � = 4
and� = 32, one directly gets

#

1�(�)2 (�) = {16, 
 = 0,0, 
 ̸= 0,
#

2�(�)2 (�) = {120, 
 = 7,0, 
 ̸= 7.
(52)

On the other hand, every GMC 2�−� design � with � ≥�/2 can be constructed by the form (� \ �	
) ∪ �	
, where� \ �	
 consists of the last � − (� − 2
) columns of �
. �en,�0 = � \ �	
. Based on Lemma 3 of Li et al. [10], we obtain
the relationship of� and�0 as follows:

-2 (�, *) = {{{{{
� − �2 , * ∈ �	 \ �
,
-2 (�0, *) + �2 − 2
−1, * ∈ �
. (53)

�erefore, we can get the following result.

�eorem11. ConsiderGMC 2�−� design� = �0∪�	
 with � <�, where�0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&����∪��−1) ⋅ ⋅ ⋅ )∪�2)∪�1).
�en

(a)

-2 (�, *) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

�2 , * ∈ ��� ,
� − (& (#) + 2��)

2 , * ∈ ��, # = 1, . . . , �,
& (#)2 , * ∈ ���−1 \ ��� , # = 2, . . . , �,
�2 − 2
−1, * ∈ �
 \ ��1 ,
� − �2 , * ∈ �	 \ �
,

(54)

(b)

#

1�(�)2 (�) =
{{{{{{{{{

� − 2
, 
 = � − �2 ,� − � + 2
, 
 = �2 − 2
−1,
0, G#ℎI�$�"I,

(55)

(c)

#

2�(�)2 (�)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

� (2�� − 1)
2 , 
 = �2 − 1,

(� − (& (#) + 2��)
2 ) (2�� − 2��) , 
 = � − (& (#) + 2��)

2 − 1,
# = 1, . . . , �,& (#) (2��−1 − 2��)

2 , 
 = & (#)2 − 1,
# = 2, . . . , �,

(�2 − 2
−1) (2
 − 2�1) , 
 = �2 − 2
−1 − 1,
(� − �2 ) (� − 2
) , 
 = � − �2 − 1,
0, G#ℎI�$�"I,

(56)

where &(#) = � − 2
 + B(#) and B(#) is de�ned in (14).

Proof. (a) By (53) and Lemma 3, note that

B (� + 1) = # {�0} = �∑
�=1
(2�� − 2��) = � − � + 2
 (57)

yields (a).

(b) For * ∈ �	
, by (a), -2(�, *) = �−�/2. If 
 = �−�/2,
then

#

1�(�)2 (�) = # {�	
} = � − 2
. (58)

Since�0 ⊂ �
 \ ��1 , for 
 = �/2 − 2
−1, we have
#

1�(�)2 (�) = # {�0}
= #{ �⋃
�=1
��} = �∑

�=1
(2�� − 2��) = � − � + 2
. (59)

(c) Since

#

2�(�)2 (�) = (
 + 1)
× [# {*: * ∈ ��� , -2 (�, *) = 
 + 1}
+ �∑
�=1

# {*: * ∈ ��, -2 (�, *) = 
 + 1}
+ �∑
�=2

# {*: * ∈ ���−1 \ ��� , -2 (�, *) = 
 + 1}
+ # {*: * ∈ �
 \ ��1 , -2 (�, *) = 
 + 1}
+# {*: * ∈ �	 \ �
, -2 (�, *) = 
 + 1}] ,

(60)

by (a), the result follows.
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When the factor number � of a GMC design satisfying�/2 ≤ � ≤ � − 1 is even, by �eorem 11, we obtain values of

the corresponding #

1�2 and #

1�2. �e next example illustrates
this point.

Example 12. Let � = 8, � = 7; consider GMC 2154−146 design� = �0 ∪ �87. Since �0 = #{�0} = 26 and
�0 = 25 − 6 = (25 − 23) + (22 − 2) , (61)

we have �1 = 5, 	1 = 3, �2 = 2, and 	2 = 1. �us, 2�1 − 2�1 =24, 2�2 − 2�2 = 2 and &(1) = � − 2
 + B(1) = 128, &(2) =�−2
 +B(2) = 152. By (b) and (c) of�eorem 11, one obtains

#

1�(�)2 (�) =
{{{{{{{

128, 
 = 26,
26, 
 = 64,
0, otherwise,

#

2�(�)2 (�) =

{{{{{{{{{{{{{{{{{{{{{{{{{

3328, 
 = 25,
6144, 
 = 63,
1776, 
 = 73,
456, 
 = 75,
77 
 = 76,
0, otherwise.

(62)

�eorem 13. Consider GMC 2�−� design � = �0 ∪ �	
 with� < �, where�0 = &�1(&�2(⋅ ⋅ ⋅ (&��−1(&����� ∪��−1) ⋅ ⋅ ⋅ )∪�2)∪�1). �en

(a)

-2 (�, *)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(� − 1)2 , * ∈ ��� ,
� − (& (#) + 2��)

2 , * ∈ ��, # = 1, . . . , � − 1,
& (#)2 , * ∈ ���−1 \ ��� , # = 2, . . . , �,
�2 − 2
−1, * ∈ �
 \ ��1 ,
� − �2 , * ∈ �	 \ �
,

(63)

(b)

#

1�(�)2 (�) =
{{{{{{{{{

� − 2
, 
 = � − �2 ,
� − � + 2
, 
 = �2 − 2
−1,
0, G#ℎI�$�"I,

(64)

(c)

#

2�(�)2 (�)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(� − 1) (2�� − 1)
2 , 
 = (� − 1)2 − 1,

(� − (& (#) + 2��)
2 ) (2�� − 2��) , 
 = � − (& (#) + 2��)

2 − 1,
# = 1, . . . , � − 1,

& (#) (2��−1 − 2��)
2 , 
 = & (#)2 − 1,

# = 2, . . . , �,
(�2 − 2
−1) (2
 − 2�1) , 
 = �2 − 2
−1 − 1,
(� − �2 ) (� − 2
) , 
 = � − �2 − 1,
0, G#ℎI�$�"I,

(65)

where &(#) = � − 2
 + B(#) and B(#) is de�ned in (14).

Proof. Only prove (a). Since

# {�0} = �−1∑
�=1

(2�� − 2��) + 2�� − 1 = � − � + 2
, (66)

one has B(�) = �− (�−2
) − (2�� −1). By (53) and Lemma 4,
yields (a).

�e proof of (b) and (c) is similar to those of �eorem 11.
�e following example serves to show its application.

Example 14. Let � = 8, � = 7, and � = 256 and consider

GMC 2135−127 design� = �0 ∪ �87. Since #{�0} = 23 − 1, we
have �1 = 3. By (b) and (c) of �eorem 13, one gets

#

1�(�)2 (�) = {{{{{
128, 
 = 7,7, 
 = 64,0, otherwise,

#

2�(�)2 (�) =
{{{{{{{{{

896, 
 = 6,7680, 
 = 63,469, 
 = 66,0, otherwise.

(67)

5. Concluding Remark

Based on construction of GMC 2�−� designs with 5�/16 +1 ≤ � ≤ � − 1, we obtain the mathematical formulation to
calculate the values of #

1�2 and #

2�2 in theAENP.�ese results
are very useful to analyze the confounding information
among lower-order factors of two-level GMC designs. For
GMC 2�−� designs satisfying � ∉ [5�/16 + 1,� − 1], some
further studies in this direction are in progress.
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