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Abstract

Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful
in planning influenza prevention and control activities. To encourage development and innovation in influenza
forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013–14
Unites States influenza season.

Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013–2014 influenza
season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran
from December 1, 2013–March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national
level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make
the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness
Surveillance Network (ILINet).

Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2,
2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted
the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season
duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly
forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13.
As the season progressed, the forecasts became more stable and were closer to the season milestones.

Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast
accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build
upon the methods developed during this contest to improve the accuracy of influenza forecasts.

Keywords: Influenza, Forecasting, Prediction, Modeling

Background
Each year annual seasonal epidemics of influenza occur
in the United States; however, these seasonal epidemics
vary in their timing and intensity [1–3]. Preparing for
and responding appropriately to influenza epidemics and
pandemics is a critical function of public health. Trad-
itionally, planning and response have relied on

surveillance data to provide situational awareness [3–5]
and information on historic experiences to inform quali-
tative judgments about what may happen next. A prom-
ising new approach has emerged that could help provide
a timelier and systematic foundation for public health
decision-making: infectious disease forecasting. Infec-
tious disease forecasting combines traditional and
internet-derived data on influenza activity with novel
mathematical strategies to forecast the progression of an
epidemic over a season. These forecasts can provide in-
formation for early public health action, such as
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targeting resources for influenza prevention and control
and communicating prevention messages to the public.
Initial work describing influenza forecasting methods
was promising [6, 7].
To better understand influenza forecasts and improve

their usefulness to public health decision making, the
Centers for Disease Control and Prevention (CDC) orga-
nized a flu forecasting challenge with the primary objec-
tives of 1) examining the accuracy of influenza forecasts,
2) increasing interest in influenza forecasting, and 3) im-
proving the utility of influenza forecasts. CDC also
wanted to encourage researchers to utilize novel sources
of digital surveillance data (e.g., Twitter data, internet
search query data, internet-based surveys) to make their
forecasts and connect forecasts to public health decision
making. The development of better forecasting models
would help CDC improve its ability to monitor influenza
in the United States and ultimately improve the preven-
tion and control of influenza.
On November 25, 2013, CDC announced the Predict

the Influenza Season Challenge [8]. Challenge contes-
tants were asked to forecast the start, peak, and intensity
of the 2013–2014 influenza season at the national level
and at any or all Health and Human Services (HHS) re-
gion level(s) in the United States. Contestants were free
to use any mathematical or statistical model that utilized
digital surveillance data. In this report, we present the ag-
gregated results and the lessons learned from the challenge.

Methods
The requirements and criteria for the selection of the
winner have been described more fully in the Federal
Register Notice announcing the challenge on November
23, 2013 [8]. Briefly, the challenge period ran from
December 1, 2013–March 27, 2014, and contestants were
required to submit a total of 9 biweekly forecasts over the
challenge period that contained forecasts for the start,
peak, length, and intensity of the 2013–2014 influenza
season at the national level to be eligible for judging.
Teams had to use a form of digital surveillance data (e.g.,
Twitter data, mining internet search term data, Internet-
based surveys) as part of their forecasts but could use
other data sources, including those of traditional influenza
surveillance systems (e.g. the U.S. Outpatient Influenza-
like Illness Surveillance Network [ILINet]). A team’s sub-
mission also had to include a narrative describing the
methodology of the forecasting model. The forecasting
methodology could be changed during the course of the
contest, but teams had to submit an updated narrative de-
scribing the changes.
All milestones were compared to ILINet. The current

ILINet system began during the 1997–1998 influenza
season, and ILINet has since demonstrated the ability to
provide accurate information on the timing and impact

of influenza activity each season [9]. ILINet consists of
more than 2,900 outpatient healthcare providers around
the country who report data to CDC weekly on the
number of patients with influenza-like illness (ILI) and
the total number of patients seen in their practices [5].
ILINet data are based on a reporting week that starts on
Sunday and ends on Saturday of each week; data are re-
ported through the FluView surveillance report the fol-
lowing Friday [4]. Therefore, the most current ILINet
data can lag the calendar date by 1–2 weeks.
We defined the start of the season as the first surveil-

lance week in ILINet where the weighted number of
visits for ILI divided by the total number of patient visits
(the ILINet percentage) was above the national baseline
value of 2.0 % and remained there for at least two add-
itional weeks. We defined the peak week of the season
as the surveillance week that the ILINet percentage was
the highest. Two values were used to measure the intensity
of the influenza season. The first was season duration,
which was defined as the number of weeks that the ILINet
percentage remained above baseline. The second was the
highest numeric value that the ILINet percentage reached
in the United States [4]. Weeks for the contest were defined
by Morbidity and Mortality Weekly Report (MMWR) sur-
veillance weeks; the MMWR calendar is available at http://
wwwn.cdc.gov/nndss/script/downloads.aspx. Contestants
were also eligible to submit milestone forecasts for any or
all of the 10 HHS regions to add to their final scores.
Forecasts were considered accurate if they were within

1 week or one percent of the actual value calculated
from ILINet. The selection of the winner for this chal-
lenge was based on an evaluation of the methodology
used to make the forecast and the accuracy of the fore-
cast. Contestant submissions were judged by a panel of
reviewers that included two CDC staff outside the Influ-
enza Division and one faculty member from a noncom-
peting university. Judges scored submissions on a scale
of 0 to 100 points using the following criteria: the
strength of the methodology (25 points), which assessed
how clearly the results and uncertainty in the forecasts
were presented and how the data sources and forecast
methodology were described; the accuracy, timeliness,
and reliability of the forecasts for the start, peak week,
and intensity of the influenza season (65 points); and the
scope of the geography (US plus one or more HHS Re-
gions) that the source data represented (10 points). Up
to 50 bonus points were awarded to any contestant that
submitted forecasts for the 10 HHS regions; the number
of bonus points was based on the number of regions
with a forecast and the strength of the methodology and
the accuracy, timeliness, and reliability of the forecasts.
The winner was awarded a cash prize of $75,000. The
results presented in this analysis are based on the fore-
casts from teams that met the eligibility criteria.
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Results
Sixteen individuals or teams initially registered for the
challenge, 15 entered at least one forecast, 11 submitted
nine biweekly forecasts, and 9 submitted forecasts for all
required milestones and are included in this report. The
majority of teams used Twitter (n = 6 teams) and/or
Google Flu Trends data (n = 5 teams) as a data source to
inform their forecasting models. Teams also utilized
digital data sources such as Wikipedia search inquiries
and HealthMap data; 3/9 (33 %) teams utilized more
than one digital data source (Table 1). Five out of 9
(56 %) teams employed statistical methods like time
series analysis and generalized linear models, and 4/9
(44 %) employed mechanistic models that incorporated
compartmental modeling (e.g., Susceptible-Exposed-
Infected-Recovered [SEIR] models) (Table 1). Eight out
of 9 teams made forecasts for at least one HHS region
during the challenge period (Table 1). Two teams pro-
vided multiple forecasts using distinct methods or data
sources as part of their submission. A total of 13 fore-
casts were evaluated over the contest period.
Based on values from ILINet, the 2013–14 influenza

season in the United States began on MMWR week 48
(late November), peaked on week 52 (late December) at
4.6 %, and lasted for 14 consecutive weeks (Table 2). Vi-
rologic data indicated that pH1N1 viruses predominated
nationally and in all 10 regions for the majority of the
influenza season but that influenza B viruses became the
predominant virus nationally in week 13 (late March)
[3]. The median submitted milestone forecasts are

shown for the United States in Table 3 and for the 10
HHS regions in Additional file 1: Tables S1–S10. The 13
biweekly forecasts of the milestones for the United
States submitted by the 9 teams (the grey lines) are pre-
sented in Figs. 1, 2, 3 and 4 along with the milestones as
calculated from ILINet (the black line). The first fore-
cast was due on December 2, 2013, when ILINet data
for surveillance week 46 were available. The median
value of the 13 forecasts received for the start of the
influenza season was week 50 (corresponding to the
calendar week beginning December 8, 2013), for the
week that the ILINet percentage would peak was
week 5 (the week beginning January 26, 2014), for the
ILINet peak was 3.45 %, and for the median fore-
casted season duration was 13 weeks (Table 3). When
compared to the ILINet results, 3/13 (23 %) individ-
ual forecasts correctly forecasted the start of the in-
fluenza season within one week, 1/13 (8 %) correctly
forecasted the peak within 1 week, 3/13 (23 %) cor-
rectly forecasted the peak ILINet percentage within
1 %, and 4/13 (31 %) correctly forecasted the dur-
ation within 1 week (Table 4); national-level accuracy
results for the 13 predictions received by each mile-
stone are available in Additional file 1: Tables S11–S14.
For the forecast submitted on December 19, when ILI-

Net data from surveillance week 49 were available, the
contestants adjusted their models based on updated ILI-
Net and digital data and the median forecast for the
peak week shifted from week 5 to week 2 (the week be-
ginning January 5, 2014). The median forecast for the

Table 1 Characteristics of nine teams that competed in the Predict the 2013–14 Influenza Season Challenge

Team Digital Data source Model type Regional
forecasta

Brief descriptiond

A Wikipedia mechanisticb Yes Susceptible-Exposed-Infected-Recovered (SEIR) model using
data assimilation to probabilistically fit models to ILINet data

B Twitter mechanistic Yes SEIR model initialized with current Twitter and ILINet data

C Google Flu Trends; Twitter statisticalc Yes Utilized method of analogues, Kalman filtering, Poisson regression,
and an ensemble method averaging the results of the three models
to forecast ILINet

D Google Flu Trends statistical Yes Utilized empirical Bayes model and a spatio-temporal
likelihood function

E Google Flu Trends; Twitter statistical Yes Utilized multiplicative time series model

F Google Flu Trends mechanistic Yes Susceptible-infected-recovered-susceptible (SIRS) model initialized
with Google Flu Trends data and data assimilation methods

G Twitter statistical No Extrapolation of filtered Twitter data

H Google Flu Trends; HealthMap;
Twitter

mechanistic Yes Statistical models used to make short term forecasts and agent
based models combined with mean field models with non-linear
optimization techniques used to output long term forecasts.

I Twitter statistical Yes Utilized time series model and method of analogues
aYes denotes forecast for ≥1 region (for all weeks)
bIncludes models that incorporate compartmental modeling like Susceptible-Exposed-Infected-Recovered [SEIR] models
cIncludes models like time series analysis and generalized linear models
dAdditional information on methodology and results for select teams available in references [34–38]
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peak ILINet percentage increased to 4.48 %, and the me-
dian forecast for season duration increased to 14 weeks.
The number of submissions that correctly forecasted the
peak week increased to 2/13 (15 %), the peak percentage
to 6/13 (46 %), and the duration of the season to 6/13
(46 %). As the season progressed, the median forecasts
for peak week, peak percentage, and peak duration for
the United States became more stable and a majority of
the 13 predictions converged on the season milestones
calculated from ILINet (Tables 2, 3 and 4; Figs. 1, 2, 3, 4).
After a review of the forecasts and the results from the

ILINet system, the judges found that Jeffrey Shaman’s
team from Columbia University was the overall winner
of CDC’s Predict the Influenza Season Challenge [10].

Discussion
This challenge represents the first nationally coordinated
effort to forecast an influenza season in the United
States. CDC organized the challenge to support the con-
tinued technical innovation required to forecast the in-
fluenza season. The results of this challenge indicate

that while forecasting has become technically feasible
and reasonably accurate forecasts can be made in the
short term, further work refining forecasting method-
ology and identifying the best uses of forecasts for public
health decision making are needed. CDC continues to
work with the researchers who participated in the chal-
lenge to refine and adapt methodology and determine
the best uses of forecasts to inform public health deci-
sion making.
This forecasting challenge was useful to CDC in many

ways. First, it promoted the development of forecasting
models using data readily available through existing sur-
veillance and digital data (e.g. Google Flu Trends) plat-
forms. Second, it encouraged the connection between
forecasters, subject matter experts, and public health
decision-makers. During the challenge, forecasters
needed support understanding the nuances of CDC’s
surveillance data while public health decision makers
needed support understanding the different digital data
sources and forecasting techniques. This challenge also
incorporated forecasting milestones that would be most

Table 3 Median forecasted start week, peak week, peak percentage, and duration of the 2013–14 influenza season, by forecast date,
United States (n = 13)

Date of forecast
(Week of ILINet data availabilitya,b)

Median forecasted
start weekb

Median forecasted
peak weekb

Median forecasted
peak percentage

Median forecasted duration
of influenza season

12/2/2013 (WK. 46) 50 5 3.5 13

12/19/2013 (WK. 49) 49 3 4.5 14

1/2/2014 (WK. 51) 48 3 4.5 15

1/16/2014 (WK.1) 48 2 4.9 14

1/30/2014 (WK. 3) 48 52 4.6 14

2/13/2014 (WK. 5) 48 52 4.6 13

2/27/2014 (WK. 7) 48 52 4.6 13

3/13/2014 (WK. 9) 48 52 4.6 14

3/27/2014 (WK. 11) 48 52 4.6 14

Legend: Forecasts presented here are from the 9 teams that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge
aILINet data are based on a reporting week that starts on Sunday and ends on Saturday of each week, and data are reported out through the FluView surveillance
report the following Friday. Therefore, the most current ILINet data can lag the calendar date by 1–2 weeks
bWeeks are given in Morbidity and Mortality Weekly Report surveillance weeks. For calendar start and end dates of each week, please
see http://wwwn.cdc.gov/nndss/script/downloads.aspx

Table 2 Forecasting targets for the 2013–2014 influenza season as calculated from the U.S. Outpatient Influenza-like Illness
Surveillance Network (ILINet), United States

Start weeka Peak weeka Peak percentage Duration of influenza season

United States 48 52 4.6 14

Legend: The start of the season was defined as the first surveillance week in ILINet where the number of visits for ILI divided by the total number of patient visits
(the ILINet percentage) was above the national baseline value of 2.0 % and remained there for at least two additional weeks. The peak week of the season was
defined as the surveillance week that the ILINet percentage was the highest during the 2013–14 influenza season. The ILINet percent peak was defined as the
highest numeric value that the ILINet percentage reached in the United States during the 2013–14 influenza season. The duration was defined as the number of
weeks that the ILINet percentage remained above the national baseline.
aWeeks are given in Morbidity and Mortality Weekly Report surveillance weeks. For calendar start and end dates of each week, please
see http://wwwn.cdc.gov/nndss/script/downloads.aspx
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Fig. 1 Forecasted start week of the 2013–2014 influenza season, by forecast date, United States (n = 13). Forecasts presented here are from teams
that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge. The start of the season was defined as the first
surveillance week in ILINet where the number of visits for ILI divided by the total number of patient visits (the ILINet percentage) was above the
national baseline value of 2.0 % and remained there for at least two additional weeks

Fig. 2 Forecasted peak week of the 2013–2014 influenza season, by forecast date, United States (n = 13). Forecasts presented here are from
teams that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge. The peak week of the season was defined as the
surveillance week that the ILINet percentage was the highest during the 2013–14 influenza season
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useful to public health decision makers in planning for
influenza prevention and control activities, including the
start week of the influenza season. This milestone was
rarely included in previous efforts to forecast influenza
but could inform public health action, including the de-
velopment of tailored recommendations to the public

about vaccination timing and to physicians about influ-
enza antiviral treatment [6, 7].
The results from the challenge indicated that no team

was entirely accurate at forecasting all of the influenza
season milestones. Public health actions informed by
forecasts that later prove to be inaccurate can have

Fig. 3 Forecasted peak ILINet percent of the 2013–2014 influenza season, by forecast date, United States (n = 13). Forecasts presented here are
from teams that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge. The ILINet percent peak was defined as the
highest numeric value that the ILINet percentage reached in the United States during the 2013–14 influenza season

Fig. 4 Forecasted duration of the 2013–2014 influenza season, by forecast date, United States (n = 13). Forecasts presented here are from teams
that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge. The duration was defined as the number of weeks that
the ILINet percentage remained above the national baseline
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negative consequences, including the loss of credibility,
wasted and misdirected resources, and, in the worst
case, increases in morbidity or mortality. There are at
least two possible reasons for the lack of accuracy; the
first is the use of digital data. Multiple published scien-
tific studies show that digital surveillance data, such as
Twitter, Wikipedia search queries, and Google Flu
Trends data, have correlation with influenza activity as
measured by existing traditional influenza surveillance
programs and have been used successfully to track vac-
cine sentiment and monitor disease outbreaks [11–26],
often in a timelier manner than traditional infectious
disease surveillance data. However, not all digital data
are equally accurate, and the algorithms and methodolo-
gies underpinning these data require constant upkeep to
maintain their accuracy [27]. Several contestants in this
challenge utilized Google Flu Trends to inform their
forecasts, which has been shown to have overestimated
influenza activity in recent seasons [28, 29]. Influenza
forecasting models informed by digital data are subject
to the biases and errors of their underlying source data,
and few contestants in this study utilized more than one
digital data set, which could make influenza forecasts
more robust to data biases.
The second reason that forecasts may not have been

accurate relates to the model methodologies and specifi-
cations themselves. While substantial work has advanced
the field of infectious disease forecasting, it is still in the
early years of development. Recent reviews of influenza
forecasting found the use of a variety of statistical and

infectious disease modeling approaches, including time
series models, SEIR models, and agent-based models [6,
7]. While the advantages and limitations of these ap-
proaches have been described, the impact on the relative
accuracies of these approaches are unknown, and opti-
mal forecasting methods are still under study [7]. The
results of this contest, while helpful to gauge the general
accuracy of influenza forecasting, cannot be used to rec-
ommend the best forecasting methodology because par-
ticipants in this contest used different data sources and
methodological approaches to make their forecasts.
Forecasts could have been improved by the use of more
precise digital data, better forecasting methodology, or
both. Additionally, the challenge ran for only one influ-
enza season. Because of the unpredictable timing and in-
tensity of influenza seasons in the United States,
assessments of forecasting methods and accuracy will re-
quire a review over multiple influenza seasons to ensure
consistency in performance.
This challenge identified a number of barriers limiting

forecasting model development and application, adop-
tion by decision-makers, and the eventual public health
impact of forecasts. First, interaction between model de-
velopers and public health decision-makers has been
limited, leading to difficulties in identifying and specify-
ing relevant prediction targets that would best inform
decision-making. Second, data for making and evaluating
predictions are often difficult to share, obtain, and inter-
pret. Third, no common standards exist for evaluating
models, either against each other or against metrics

Table 4 Forecasts within 1 week or percent of the start week, peak week, peak percentage, and duration of the 2013–14 influenza
season, by forecast date, United States (n = 13)

Date of forecast (Week of ILINet data availabilitya,b) Start week Peak week Peak percentage Duration of influenza season

12/2/2013 (WK. 46) 3 (23 %) 1 (8 %) 3 (23 %) 4 (31 %)

12/19/2013 (WK. 49) 6 (46 %) 2 (15 %) 6 (46 %) 6 (46 %)

1/2/2014 (WK. 51) 12 (92 %)c 2 (15 %) 5 (38 %) 7 (54 %)

1/16/2014 (WK.1) 12 (92 %) 6 (46 %) 10 (77 %) 6 (46 %)

1/30/2014 (WK. 3) 11 (85 %) 11 (85 %) 11 (85 %) 6 (46 %)

2/13/2014 (WK. 5) 11 (85 %) 10 (77 %) 12 (92 %) 6 (46 %)

2/27/2014 (WK. 7) 11 (85 %) 11 (85 %) 13 (100 %) 5 (38 %)

3/13/2014 (WK. 9) 11 (85 %) 11 (85 %) 13 (100 %) 9 (69 %)

3/27/2014 (WK. 11) 10 (77 %) 12 (92 %) 13 (100 %) 10 (77 %)

Legend: Forecasts presented here are from the 9 teams that successfully completed the CDC Predict the 2013–2014 Influenza Season Challenge. The start of the
season was defined as the first surveillance week in ILINet where the number of visits for ILI divided by the total number of patient visits (the ILINet percentage)
was above the national baseline value of 2.0 % and remained there for at least two additional weeks. The peak week of the season was defined as the
surveillance week that the ILINet percentage was the highest during the 2013–14 influenza season. The ILINet percent peak was defined as the highest numeric
value that the ILINet percentage reached in the United States during the 2013–14 influenza season. The duration was defined as the number of weeks that the
ILINet percentage remained above the national baseline
aILINet data are based on a reporting week that starts on Sunday and ends on Saturday of each week, and data are reported out through the FluView surveillance
report the following Friday. Therefore, the most current ILINet data can lag the calendar date by 1–2 weeks
bWeeks are given in Morbidity and Mortality Weekly Report surveillance weeks. For calendar start and end dates of each week, please
see http://wwwn.cdc.gov/nndss/script/downloads.aspx
cLast forecast received before milestone observed in ILINet

Biggerstaff et al. BMC Infectious Diseases  (2016) 16:357 Page 7 of 10

http://wwwn.cdc.gov/nndss/script/downloads.aspx


relevant to decision-makers, making it difficult to evalu-
ate the accuracy and reliability of forecasts. Lastly, the
presentation of the forecast confidence varied between
teams, making comparison and interpretation by deci-
sion makers difficult. CDC and challenge contestants
continue to work together through collaborative chal-
lenges to forecast the 2014–15 and 2015–16 influenza
seasons in order to improve data availability and inter-
pretation, develop standardized metrics to assess fore-
cast accuracy and standardized ways to communicate
forecasts and their uncertainty, and identify the types of
decisions best aided by forecasts [30]. The identified im-
provements will not only increase the utility of forecasts
for public health decision making in influenza but will
be relevant to the forecasting of other infectious dis-
eases, which face similar challenges. The best practices
and lessons learned from influenza have already been
shared with other government-run infectious disease
forecasting challenges [31, 32].
The Predict the Influenza Season Challenge represents

a successful utilization of the COMPETES Act, which
authorized U.S. government agencies to host challenges
to improve government and encourage innovation [33].
By hosting this challenge, CDC was able to receive and
evaluate influenza season forecasts from 9 teams based
on a variety of digital data sources and methodologies
[34–38]. These forecasts were submitted by teams that
were affiliated with a diverse set of organizations includ-
ing universities and private industry, and some of the
teams had never produced an influenza forecast before
participation in the challenge. The high number of fore-
casts received through this challenge is in contrast to
the number of forecasts that would have been received if
a more traditional method of outside engagement avail-
able at CDC was utilized (e.g., traditional contracts or
grants). The challenge mechanism allowed CDC to
establish the overall goal of accurately forecasting influ-
enza season milestones without specifying the forecast-
ing methodologies and allowed CDC to evaluate
forecasts for accuracy and quality prior to awarding of
the challenge prize.

Conclusions
CDC currently monitors influenza activity each year
using routine influenza surveillance systems that do not
forecast influenza activity [3]. To help promote the con-
tinued advancement of influenza forecasting, CDC held
the first nationally coordinated challenge to forecast the
influenza season in the United States. Nine teams repre-
senting academia, private industry, and public health
made forecasts about the start, the duration, and the in-
tensity of the 2013–14 influenza season using a variety
of digital data sources and methods. While no team ac-
curately forecasted all influenza season milestones, the

results of this challenge indicate that reasonably accurate
forecasts can be made in the short term. Further work
to refine and adapt forecasting methodology and identify
the best uses of forecasts for public health decision mak-
ing is required before the results of influenza forecasting
can be used by policy makers and the public to inform
the selection and implementation of prevention and
control measures. Nevertheless, forecasting holds much
promise for seasonal influenza prevention and control
and pandemic preparedness.

Additional file

Additional file 1: Median predicted start week, peak week, peak %
ILINet, and duration of season for the 10 HHS Regions, and national-level
forecasts that were within 1 week or 1 percent of the start week, peak
week, peak % ILINet, and duration of season, CDC’s Predict the 2013–
2014 Influenza Season Challenge. Tables S1-10 contains the median sub-
mitted milestone forecasts and the milestones as calculated from ILINet
for the 10 HHS regions (Tables S1–S10). Tables S11–14 contain the
national-level accuracy results for the 13 predictions received by each
milestone. (DOCX 47 kb)
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