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Abstract: This paper shows the results of a sensing system for an autonomous mobile robot. The 
sensing system is based on the paraconsistent neural network. The type of artificial neural 
network used in this work is based on the paraconsistent evidential logic (Eτ). The objective of 
the sensing system is to inform the other robot components the obstacle position. The reached 
results have been satisfactory. 
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1 Introduction 

This paper describes the architecture of an autonomous mobile 
robot which is able to achieve a set point in an environment 
divided into coordinates (Torres, 2010). In this work, an 
autonomous mobile robot is considered as a system divided 
into three other subsystems: planning subsystem, sensing 
subsystem and mechanical subsystem. The planning subsystem 
is responsible for generating the sequence of movements the 
robot must perform to achieve a set point. The sensing 
subsystem has the objective of informing the planning 
subsystem the position of obstacles; and the mechanical 
subsystem is the robot itself, it means the mobile mechanical 
platform which carries all devices from the other subsystems. 
This platform must also perform the sequence of movements 
borne by the planning subsystem. 

The planning subsystem and the sensing subsystem have 
already been implemented, but the mechanical subsystem 
has not been implemented yet. The sensing subsystem uses 
the paraconsistent artificial neural network (Da Silva Filho 
et al., 2008, 2010). This type of artificial neural network is 
based on the paraconsistent evidential logic (Eτ). We 
describe some concepts about Eτ in the next section. 

This paper focuses on the sensing system of the robot 
(Torres et al., 2010). 

2 Paraconsistent evidential logic 

The Eτ (Abe, 1992) is a type of paraconsistent logic in 
which there may be a favourable evidence degree (μ) and a 
contrary evidence degree (λ) in each analysed sentence. 

The μ is a value between 0 and 1 that represents the 
favourable evidence in which the sentence is true. 

The λ is a value between 0 and 1 that represents the 
contrary evidence in which the sentence is true. 

Through the favourable and contrary degrees, it is 
possible to represent the four extreme logic states as shown 
in Figure 1. 

The four extreme logic states are: 

• true (V) 

• false (F) 

• paracomplete (⊥) 

• inconsistent (T). 

Da Silva Filho (1999) proposed the paranalyser algorithm. 
By this algorithm, it is also possible to represent the non-
extreme logic state. Figure 2 shows this. 

Figure 1 Extreme logic states 

λ

(0,1) = F

(0,0) = ⊥ V = (1,0) μ

T = (1,1)

 

The eight non-extreme logic states are: 

• quasi-true tending to inconsistent – QV→T 

• quasi-true tending to paracomplete – QV→⊥ 

• quasi-false tending to inconsistent – QF→T 

• quasi-false tending to paracomplete – QF→⊥ 

• quasi-inconsistent tending to true – QT→V 

• quasi-inconsistent tending to false – QT→F 

• quasi-paracomplete tending to true – Q⊥→V 

• quasi-paracomplete tending to false – Q⊥→F. 

Figure 2 Non-extreme logic states 

 

The uncertainty degree is given as Gun(μ, λ) = μ + λ − 1 and 
the certainty degree is given as Gc(μ, λ) = μ − λ (0 ≤ μ,  
λ ≤ 1) 
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Some additional control values are: 

• Vcic = maximum value of uncertainty control 

• Vcve = maximum value of certainty control 

• Vcpa = minimum value of uncertainty control 

• Vcfa = minimum value of certainty control. 

In the next section, we describe the proposed sensing 
system. 

3 Sensing system 

The sensing system is a set of electronic components and 
software responsible for analysing the environment around 
the robot and detecting the obstacle positions. After that, it 
must inform the other components of the robot the position 
of the obstacles. 

The sensing system may get information from any type of 
sensor. It is shown in this paper that a sensing system is able to 
deal with information from just one ultrasonic sensor. But, if 
there is more than one sensor in the robot, it is possible to build 
a sensing system similar to the one shown here for each sensor. 

Elfes (1989) presented a method of robot perception and 
world’s modelling that uses a probabilistic tessellated 
representation of spatial information called the Occupancy 
Grid. A similar method is proposed here, but instead of using 
probabilistic representation, the paraconsistent evidential logic 
(Eτ) is used. 

The proposed sensing system aims to generate a 
favourable evidence degree in each environment position. 
The favourable evidence degree is related to the sentence: 
there is obstacle in the analysed position. 

The sensing system is divided into two parts. The first 
part is responsible for receiving the data from the sensors 
and sending information to the second part of the system. 
And the second part is the paraconsistent artificial neural 
network itself. Figure 3 shows this idea. 

Figure 3 Representation of the sensing system 

 

The proposed sensing system is prepared to receive data 
from ultrasonic sensors. The robot sensors are on the 
mechanical subsystem. So, this subsystem must treat the 
data generated by the sensors and send information to  
the first part of the sensing subsystem. The data the 
mechanical subsystem must send to the first part of the 
sensing subsystem are: D, α, Xa and Ya. 
1 The distance between the sensor and the obstacle (D). 
2 The angle between the horizontal axis of the environment 

and the direction to the front of the sensor (α). Figure 4 
shows the angle α. 

3 The coordinate where the robot is (Xa,Ya). 

In the first part of the sensing subsystem, there are also 
some configuration parameters. They are: 
1 Figure 5 shows the distance between the environment 

coordinates (a).  
2 Figure 6 shows the angle of the ultrasonic sensor 

conical field of view (β).  
3 The number of positions on the arch BC, shown in 

Figure 6, considered by the system (n). 

4 The maximum distance measured by the sensor which 
the system considers (Dmax). 

5 The minimum distance measured by the sensor which 
the system considers (Dmin). 

Figure 4 Angle α 

 

Figure 5 Distance between coordinates 

 

Figure 6 Ultrasonic sensor conical field of view (β) 

 

The first part of the sensing system generates three favourable 
evidence degrees, μ1, μ2 and μ3. 

The favourable evidence degree μ1 is related to the 
distance between the sensor and the obstacle. The nearer the 
obstacle is to the sensor, the bigger the μ1 value is. 



 Results of a sensing system for an autonomous mobile robot 111 

The favourable evidence degree μ2 is related to the 
coordinate position on the arch BC shown in Figure 6. The 
nearer the analysed coordinate is to the point A, the bigger 
is the μ2 value. And the nearer the analysed coordinate is to 
the points B and C, the smaller is the μ2 value. The 
inspiration of this idea comes from Boreinstein’s (1991) 
study which says that the probability of the obstacle near to 
the point A is high. And this probability decreases as we 
analyse the region near to the points B and C. 

Eventually, the favourable evidence degree μ3 is the 
previous value of the coordinate of favourable evidence degree. 

4 Paraconsistent artificial neural network 

The sensing subsystem neural network of the robot is composed 
of two types of cells: Analytic Paraconsistent Artificial Neural 
Cell (CNAPa) and Passage Paraconsistent Artificial Neural 
Cell (CNAPpa). Below, the cells are described. 

4.1 Analytic paraconsistent artificial neural cell 
This cell has two inputs (µRA and μRB) and two outputs (S1 and 
S2). Also there are two configuration parameter inputs (Ftct and 
Ftc). Figure 7 shows the graphic representation of this cell. 

Figure 7 Graphic representation of the analytic paraconsistent 
artificial neural cell 

CNAPa

Ftct Ftc 

μRA 

μRB 

S1 

S2 
 

The input evidence degrees are: 

μRA, such as 0 ≤ μRA ≤ 1 

μRB, such as 0 ≤ μRB ≤ 1 

There are also two control values: 

Contradiction tolerance factor (Ftct), such as 0 ≤ Ftct ≤ 1 

Certainty tolerance factor (Ftc), such as 0 ≤ Ftc ≤ 1 

The CNAPa has two outputs. The output 1 (S1) is the 
resultant evidence degree (μE). 

μE, such as 0 ≤ μE ≤ 1 

The output 2 (S2) is the resultant evidence interval (φE). 

φE, such as 0 ≤ φE ≤ 1 

The CNAPa calculates the maximum value of certainty (Vcve), 
the minimum value of certainty control (Vcfa), the maximum 
value of uncertainty control (Vcic) and the minimum value of 
uncertainty control (Vcpa) by the following equations: 
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The μE is determined in the following equation: 
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As Gc = μ − λ, we can say that: 

E
1
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=  (6) 

It is called as certainty interval (φ), the certainty degree interval 
that can be modified without changing the uncertainty degree 
value. This value is determined in the below equation: 

φ = 1 − |Gct| (7) 

4.2 Passage paraconsistent artificial neural cell 

The CNAPpa has one input (µ), one output (S1) and one 
parameter control input (Ftc). Figure 8 shows the graphic 
representation of CNAPpa. 

Figure 8 Graphic representation of the passage paraconsistent 
artificial neural cell 
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The input is µ. 

µ, such as 0 ≤ μ ≤ 1 

The value of the output S1 is the same as the input μ. But 
the output value may be limited through the parameter 
control input Ftc. 

The CNAPpa calculates the maximum value of certainty 
(Vcve) and the minimum value of certainty control (Vcfa) by 
the following equations: 
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It also determines the μE by the following equations: 

E
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=  

λ = 1 – μ (8) 

The output S1 assumes the same value as in the input μ 
when the following situation is true: 

[(Vcve ≤ μE) or (μE ≤ Vcfa)] 

Otherwise, S1 is 0.5. 
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4.3 Paraconsistent artificial neural architecture 

In Figure 9, it is possible to see the chosen paraconsistent 
neural network architecture for the sensing subsystem. 

Figure 9 The chosen paraconsistent neural network architecture 
for the sensing system 

 

5 Reached results 

The sensing system has been tested by simulating its inputs and 
analysing the database generated. The database stores the 
favourable evidence degree in each environment position 
analysed. The result of three tests is shown here. The information 
from one ultrasonic sensor was considered as the sensing system 
inputs. 

5.1 First test 
The configuration parameters of this test were as follows. The 
distance between the environment coordinates (a) is 10. The 
angle of the ultrasonic sensor conical field of view (β) is 30. 
The number of positions on the arch of the sensor conical field 
of view considered by the system (n) is 10. The maximum 
distance measured by the sensor which the system considers 
(Dmax) is 800. The minimum distance measured by the sensor 
which the system considers (Dmin) is 8. 

The mechanical subsystem treats the data from the 
sensors and generates the sensing subsystem inputs. It was 
needed to simulate the sensing subsystem inputs because the 
mechanical subsystem has not been implemented yet. 

Thus, the simulated sensing subsystem data were the ones 
described as follows. The distance between the sensor and the 
obstacle (D) is 200. The angle between the horizontal axis of 
the environment and the direction to the front of the sensor  
(α) is 30. The coordinate where the robot (Xa,Ya) is(0,0). 

We simulated the first measuring of the sensor, when µ3 
was initially 0. 

Figure 10 shows the representation of the coordinates in 
which the sensing system is considered to have obstacles in. 
Summarising, Figure 10 is a graphical representation of the 
database generated by the sensing subsystem.  

 
 

Figure 10 The graphical representation of the database generated 
by the first test of the sensing subsystem 

 

5.2 Second test 
The configuration parameters of this test were the same as the ones 
from the first test. The simulated sensing subsystem data were 
the ones described as follows. The distance between the sensor 
and the obstacle (D) is 400. The angle between the horizontal 
axis of the environment and the direction to the front of the 
sensor (α) is 45. The coordinate where the robot (Xa,Ya) is (0,0). 

We simulated the first measuring of the sensor, when, µ3 
was initially 0. Figure 11 shows the graphical representation 
of the database generated by the sensing subsystem. 

Figure 11 The graphical representation of the database generated 
by the second test of the sensing subsystem 
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The analysed coordinates and their favourable evidence 
degree for first test are shown in Table 1. 

Table 1 Results of the first test 

Coordinate µ 
A (18,10) 0.438 
B (17,11) 0.413 
C (17,12) 0.388 
D (16,13) 0.363 
E (15,14) 0.338 
F (15,15) 0.313 
G (14,15) 0.288 
H (13,16) 0.263 
I (12,17) 0.238 
J (11,17) 0.213 
K (10,18) 0.188 
L (18,10) 0.413 
M (19,9) 0.388 
N (19,8) 0.363 
O (20,7) 0.338 
P (20,6) 0.313 
Q (20,5) 0.288 
R (20,4) 0.263 
S (20,3) 0.238 
T (20,2) 0.213 
U (20,0) 0.188 

The analysed coordinates and their favourable evidence 
degree for second test are shown in Table 2. 

Table 2 Results of the second test 

Coordinate µ 
A (29,29) 0.375 
B (27,30) 0.35 
C (26,32) 0.325 
D (24,33) 0.3 
E (22,34) 0.275 
F (20,35) 0.25 
G (19,36) 0.225 
H (17,37) 0.2 
I (15,38) 0.175 
J (13,39) 0.15 
K (11,39) 0.125 
L (30,27) 0.35 
M (32,26) 0.325 
N (33,24) 0.3 
O (34,22) 0.275 
P (35,20) 0.25 
Q (36,19) 0.225 
R (37,17) 0.2 
S (38,15) 0.175 
T (39,13) 0.15 
U (39,11) 0.125 

5.3 Third test 

The configuration parameters and the sensing subsystem 
data were the same as the ones from the second test; then 
the analysed coordinates were the same as the second test. 
The third test has been done just after the second; therefore, 
their favourable evidence degrees were different from the 
second test because µ3 was the favourable evidence degree 
generated by the second test. 

The analysed coordinates and their favourable evidence 
degree are shown in Table 3. 

If it is considered the sequence of positions from K to U 
as an arch in the three tests, it is perceived that the µ 
decreases as the coordinate is farther distant from the centre 
of the arch. It means that the system is working as desired. 

Table 3 Results of the third test 

Coordinate µ 

A (29,29) 0.565 

B (27,30) 0.525 

C (26,32) 0.49 

D (24,33) 0.45 

E (22,34) 0.415 

F (20,35) 0.375 

G (19,36) 0.34 

H (17,37) 0.3 

I (15,38) 0.265 

J (13,39) 0.225 

K (11,39) 0.19 

L (30,27) 0.525 

M (32,26) 0.49 

N (33,24) 0.45 

O (34,22) 0.415 

P (35,20) 0.375 

Q (36,19) 0.34 

R (37,17) 0.3 

S (38,15) 0.265 

T (39,13) 0.225 

U (39,11) 0.19 

6 Conclusions 

This paper presents a proposal of an autonomous mobile robot 
composed of three modules: sensing subsystem, planning 
subsystem and mechanical subsystem. The mechanical 
subsystem has not been implemented yet. The sensing 
subsystem is emphasised here. 

The aim of the sensing subsystem is to inform the planning 
subsystem the positions in which they may have obstacles in. It 
considers the environment divided into coordinates. The  
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sensing subsystem is based on the paraconsistent artificial 
neural network. The sensing subsystem neural network is 
composed of two types of cells: CNAPa and CNAPpa. 

The output of the sensing subsystem is the favourable 
evidence degree related to the sentence: there is obstacle in 
the position. In fact, the sensing subsystem generates a 
database with the favourable evidence degree for each 
analysed coordinate. 

Some tests were made with the sensing subsystem.  
The reached results were satisfactory. The next step is the 
implementation of the mechanical subsystem and the 
connection of the three subsystems. 
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