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Results of Calculations of Atomic Wave Functions. L.—Survey, and
Self-consistent Fields for Cl- and Cu*.

By D. R. Hartreg, F.R.S., Department of Mathematics, Manchester
University.

(Received May 1, 1933.)

1. Introduction.

An approximation to the structure of a many-electron atom can be obtained
by considering each electron to be a stationary state in the field of the nucleus
and the Schrodinger charge distribution of the other electrons, and rather
more than five years ago I gave a method of working out atomic structures
based on this idea, and called the field of the nucleus and distribution of
charge so obtained the “ self-consistent field.”*

The method of working out the self-consistent field for any particular atom
involves essentially (@) the estimation of the contributions to the field from the
various electron groups constituting the atom in question ; (b) the solution of
the radial wave equation for an electron in the field of the nucleus and other
electrons, this solution being carried out for each of the wave functions sup-
posed occupied by electrons in the atomic state considered; and (¢) the
calculation of the contribution to the field from the Schrédinger charge dis-
tribution of an electron group with each radial wave function. The estimates
of the contributions to the field have to be adjusted by trial until the agreement
between the contributions finally calculated and those estimated is considered
satisfactory.

In the paper in which the method was first suggested, some results were
also given, and since then, results for a number of atoms have been worked
out by myself and others, and some of these have been published. But the
results published have usually been results for the whole atom, such as the
total charge distribution or field ; detailed results such as individual wave
functions, and contributions to the field from the different electron groups
have not been given except for O, O*, 0" ¥, O+ and Si*4.f These individual
wave functions and contributions to the field, however, are often the quantities

* Hartree, * Proc. Camb. Phil. Soc.,” vol. 24, pp. 89, 111 (1928).

+ Oxygen : Hartree and Black, ¢ Proc. Roy. Soc.,” vol. 139, p. 311 (1933). Silicon
McDougall, * Proe. Roy. Soc.,” vol, 138, p. 550 (1932).
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required in applications. A considerable amount of information of this kind
is available, and has been supplied privately to anyone who knew of its existence
and asked for it, but for some time it has seemed desirable to publish it so as
to make it more widely available.

There were, however, some objections to publishing it as it stood. As
experience of working out atomic structures has increased, several improve-
ments have been made in numerical technique, and also the standard of what
is considered a “ satisfactory ” agreement between estimated and calculated
cjgoxlt:ribut:ions to the field has gone up considerably. A good deal of the available
Thformation was based on old work in which neither the degree of agreement
(ﬁptwem estimated and calculated fields, nor the numerical accuracy to which

e work was carried out, now seem adequate. It seemed desirable therefore
o carry out a revision of the work, using the improved methods and working
% a higher numerical accuracy (principally in order to lessen the effect of
gbssible cumulative integration errors), and also aiming at a higher standard
gf agreement between estimated and calculated contributions to the field,
Hefore publishing the detailed results. That such revision is desirable is
éhown by appreciable differences in some cases.between the revised and earlier
Sesults.

-g The method of carrying out the numerical work is now fairly well standard-

&ed, and the revision of the calculations is largely a matter of expert computing.

grant was made by the Government Grants Committee of the Royal Society

For the purpose of employing the professional assistance of expert computers

§1 connection with this work, and I wish to acknowledge my thanks to the

'gommittee for its assistance, to Miss D. 8. Greene,* for undertaking the

Zrrangements for getting the work done, and to Dr. L. J. Comrie and Mr.

®). 8. Sadler who actually did the calculations, for the very satisfactory way

ghey have carried out the computing work which is of rather unusual and not

'dltogether straightforward kind.

; With this assistance available, the work of improving the earlier results of
any particular atom is being carried out as follows. From the earlier work, I
make revised estimates of the contributions to the field from the various
electron groups, and the computing work carried out professionally is concerned
with the calculation of wave functions in the field so constructed, regarded as
given, and of charge distributions from these wave functions. For reference
I will call these calculations the ““standard calculations.” Unless estimates of

* Director, Calculating and Statistical Service, Victoria House, Vernon Place,
London, W.C.1.
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the contributions to the field have been unusually fortunate, the results of
these standard calculations are not yet near enough to the self-consistent field
to be quite satisfactory, but they should be near enough for the effect of any
variation of the estimates to be treated as a first order variation from the
results of the standard calculations.

A further revision of the estimates is made if necessary and the variations
in the wave functions, ete., due to the variations in the estimates from those
used in the standard calculations, are caleulated, and the variations of wave
functions, ete.. added to the results of the standard calculations ; the variations
are so small that this variation calculation is very much shorter and easier
than the main calculation. If necessary, further revisions of the estimates are
made and corresponding variations from the results of the standard calculations
are worked out, until a satisfactory approximation to the self-consistent field
is obtained. For the atoms for which results are given here, I have myself
been responsible for carrying out these final stages of the work.

This paper presents the results of this work for two atoms, C1~ and Cu';
the earlier work for both of these atoms was done by myself, and some results
for C1~ were published in my first paper. Some results of the earlier work on
Cu™ have been published by Slater in connection with his approximations to
the wave functions by analytical formule.* Other atoms for which such work
is in progress are Al™3, K, Rb*, Cs™.

The results for Cu™ here given are interesting, as they are the first which
have been obtained for an atom with an outer shell of 18 electrons ; the other
atoms for which caleulations have so far been carried out are atoms for which
the outer shell is a complete or incomplete 8-shell. Comparison of the results
for Cu™ and the alkali metal ions may throw light on the characteristic difference
of properties of the two sub-groups of the first column of the periodie table.

Since the method of obtaining approximate wave functions for a many-
electron atom by means of the * self-consistent field * was suggested, a better
approximation has been indicated independently by Slaterf and Focki, and
the equations obtained by the latter ; but the numerical application of Fock’s
approximation involves difficult problems of numerical technique for any but
the lightest atoms, and as far as I know, no case has yet been worked out
quantitatively. Slater and Fock have shown that the approximation made in
the  self-consistent field >’ method is the best for its simplicity that could be

* Slater, ‘ Phys. Rev.,” vol. 42, p. 33 (1932).

T “ Phys. Rev.,” vol. 35, p. 210 (1929).
1 ¢ Z. Physik,” vol. 61, p. 126 (1930).
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obtained ; also it is probable that in the solution of Fock’s equations for any
atom the first step would be the approximate solution of the equations of the
self-consistent field, so that as well as being the best results at present available,
the results, of which those presented here form a part, are also steps on the
way to better approximations.

§ 2. Summary of Notation and Nomenclalure.

All gquantities are supposed measured in natural atomic units, that is units
&uch that the measures of the mass of the electron, of the magnitude of the
%mrge on the electron, and of 4/2x, are all 1 ; the unit of length is

h2/Amme? = 0-532 A.U.

022

04 Au

g If, in spherical polar co-ordinates with origin at the nucleus, the wave
Fynction of a single electron in a central field of potential v is written
=

S
el P(r) o

=) ‘ 5 = — : g 1
: Y 6, )= 5,6, p) (1)
ghere 8, i1s a spherical harmonic of degree [, P (r) is called the radial wave func-
Bon, and satisfies the equation®

g @PJdr2 + [20 — e — I (1 + 1)/2] P = 0, 2)
<

&

ere ¢ is the negative energy parameter reckoned with the ionization energy
E the hydrogen atom as unit, so that if v is the corresponding wave number,
£= v/R. It is sometimes convenient to write the quantum numbers n, [ of
the wave function of which P (r)/r is the radial part as suffixes [viz., P, ; (7)],
& alternatively in the form P (ul|r); and for specifying the value of [ it is
@st to adopt the usual conventional letter according to the scheme

s T e A R
forl =0 1 2 3 4 5

T
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If P (r) is normalized so that r, P?dr =1, then P*dr is the charge lying

0
in a spherical shell between radii » and » + dr, on Schrédinger’s interpretation
of the wave function, and P2 may conveniently be called the ** radial density ”
of the charge distribution of the electron concerned ; if P is not normalized

the radial density is P2 / f " Paar.
0

* Cf. Hartree, loc. cit.
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If we write*

Zo (nd, il ) = j " [P (nl] 2 dr / r’ [P (ud| r) dr, 3)
0 JO

then Zy(nl, nl|r) is the total charge lying inside radius 7, for an electron in an
(n, 1) wave function. If the field of the atom is considered to be spherically
symmetrical, and Z is the * effective nuclear charge ™ at radius 7, defined so
that the field} at radius 7 is Z /%, then for an atom of nuclear charge N

Z=N-—XZy(nl, nl|r)

the sum being over all occupied wave functions. There may be a number of
wave functions with the same values of (nl) ; if there are N, wave functions}
with given values of n and [, then

Z =N — 3.NuZo (nl, nl| 7) (4)

the sum being now over all values of n and 1 ; if the (nl) group is complete,
Nu=2 (21 4+ 1).
If C is the total charge on the atom,

C=N-— Enanb
50 (4) can be written alternatively
Z=C+Z,N,[1—Z,(nl nl|r)]. (5)

For an electron occupying an (nl) wave function, [1 — Z, (nl, nl|7)]is the
charge lying outside radius 7, and tends to 0 for large r; [1 — Z, (nl, nl|7)]
may be described as the contribution to Z at radius » from an electron occupying
an (nl) wave function, and unit charge on the nucleus ; it is in terms of these
contributions to Z that work on the self-consistent field is usually done, and
the extent of the agreement between estimated and caleulated contributions
expressed. A

* This notation is unnecessarily elaborate for consideration of the self-consistent field
alone, but is used for consistency with the notation which is necessary in some applications
of the results (see Hartree and Black, loc. cit.), and which is also convenient for the extension
to Fock’s equations.

+ It is important to remember that when Z varies with r, the potential at radius r is
not even approximately Z/r, in general.

t If the (nl) group is not complete, its contribution to the field is not spherically sym-
metrical and for the purpose of the self-consistent field we take a spherical average. Slater
has shown that the approximation involved in taking this average is of the same order a8
that involved in omitting the interchange terms which form the difference between Fock’s
equations and the equations of the self-consistent field.
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In the results of which this paper gives a first instalment, the agreement
will be considered ° satisfactory ”” if the difference between the estimated
and calculated contributions N, [1 — Z, (nl, nl|7)] to Z from each whole
group does not exceed 0-02 at any radius, and the difference between the sums
of the contributions for the whole atom does not exceed 0-03 at any radius,
and probably the actual results presented will usually be well within these
limits.

For the standard calculations and subsequent work based on them, the
gcontributions to Z have been estimated to 0-005, and the calculated values
Thave been calculated to three decimals, the last not always certain to 1 or 2.
?I,For all but the outermost groups, it has been quite practicable to estimate the
écontributions to Z so that the difference between estimated and calculated
Jvalues is nowhere greater than 0-005, and for the outermost group it has been
Spossible to attain a maximum difference of 0-01 or only slightly over. The
Bltoms for which results are given here are the two most troublesome of all for
sowhich calculations have been carried out, on account in each case of the
';:sensitiveness of the outer groups to the estimated contributions to the field,
and the order of agreement of estimated and calculated contributions to Z,
nd so of approximation to the self-consistent field, attained for them should’
-2always be attainable for others with less trouble.

The contributions to Z may be called ** stable,” in the sense that if the esti-
gmated contributions from any group is increased over a range of r, the effect
Sof this is to decrease the caleulated contribution from this group (and from
éothers also) ; for an increase of Z means that the attractive field on an electron
towards the nucleus is increased, the wave functions of electrons in the field
S become more compact, and the proportion of the electron distribution lying
Qinside any given radius is increased ; that is Z, for that group is increased,
gand 1 — Z, is decreased ; and 1— Z; occurs with a positive sign in (S).

)g)ubhs ing.o

alsociet

m h

S
‘e For all but the groups of the outermost shell, it is usually if not always the
8 case that the change in the calculated contributions is smaller than the change

in the estimated contributions. If this were so for all groups, an iterative
process, taking the calculated contributions from one approximation as the
estimates for the next, would give a series of calculations with results converging
to those for the self-consistent field ; though this process would be unnecessarily
lengthy, as with experience it is usually possible to make revised estimates better
than those obtained by simply taking the calculated contributions of the previous
approximation. But for the groups of the outer shell, and particularly the
most loosely bound group, there sometimes occurs a phenomena which may be
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termed over-stability, in which a change of estimated contribution to Z causes
a change in the calculated contribution larger than a change in the estimate.
When a group is over-stable in this sense, an iterative process would not con-
verge, but, for small variations, would oscilllate and diverge, and it is then
quite necessary to choose, as revised estimates of contributions to Z, values
better than the calculated contributions of the previous approximation ; it
is also unusually difficult to make satisfactory estimates and adjustments to
them, so the process of approximation to the self-consistent field is most
troublesome in such cases.

A numerieal example of over-stability is given in the discussion of the
results for Cu™ in § 4.

§ 3. Description and Explanation of the Tables.

It is proposed to give the following results for each atom for which calculations
on these lines are carried out :—

(@) A table of the radial wave functions P(nl|r), not normalized, and also
P/r*1 for small 7.

(b) A subsidiary table giving for each wave function the value of the energy
parameter ¢ in the radial wave equation (2), and the value of the

o
normalizing integrals j P2 dr.
0

(c) A table of the contributions 2 (21 - 1) [1 — Z, (nl, nl|7)] to Z at radius r.
[The atoms for which calculations are at present in progress all consist
of complete groups so that N, = 2 (2 + 1).]

(@) and (b).—The radial wave functions are tabulated unnormalized for
several reasons.

In applications of the results, integrals of the form jm P (x|7r)F (r) P(B]|7)dr,
0

with normalized wave functions, often occur; but in evaluating them it is
at least as easy to use unnormalized wave functions and divide by

[ r P2 (| ) dr | D” P2 (8]7) dr]‘

at the end, as to use normalized wave functions throughout. The values of

. . . (f® - - - -
the normalization integrals J P2 dr are given in the subsidiary table.

0
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Also as r = 0, P/r'"1 tends to a finite and non-zero value, and for numerical
reasons it is convenient in the integration of the wave equation to keep this
limit the same for different wave functions with the same /. When this is
done, these different wave functions are nearly the same for » small, and
advantage can often be taken of this in applications ; this advantage is lost
when normalized wave functions are used.

Also in dividing each calculated value of P by the square root of the normal-
izing integral, and rounding off to the number of places retained in the table,

Ahere is some loss of accuracy and the resulting rounded-oft values may not be

S:.éuite normalized.

E:D It has therefore seemed best to tabulate actual calculated values of P in

<host cases. In almost all cases the tabulated values are rounded off from the

Salues obtained on the calculation sheets, on which usually one, and occasionally

§W0, more significant figures appear than in the tables; so that it is hoped

%&lat the divergence from the correct solution of the equations with the field

getually used in the final calculations is generally not more than 1 in the last

Bgure tabulated. The field actually used was not of course exactly the self-

%onsistent field, and it is rather difficult to estimate the variation in the calcu-

ﬁ;ted values which would result from replacing the actual field used by the

gelf -consistent field, but in the results here given this variation would probably

%ot be more than 1 or 2, in the last figure tabulated, for a wave function of an

ganer group, and might be rather more for a wave function of one of the outer

%roups (especially for (3p) in C1™ and (3d) in Cu™) but should not usually be

Sore than 5.

'S The calculations generally provide values of P at about twice as many values

Of 7 as those shown in the table, the intervals used in the numerical integration

Deing usually half those used in the tabulation ; the tables here given should

¢ adequate for all ordinary applications, but the intermediate values of P
g‘an be supplied as required.

5 For some applications, P may be required for small  to greater accuracy,
or at smaller intervals of #, than it is given in the main table ; for such purpose
it is best to work in terms of P/r'*1, as this is finite and non-zero at r = 0,
and is nearly linear in 7 for » small, and so is easy to interpolate ; and a small
table of this function for small r is given at the head of the main table.

A table is also given of the energy parameters ¢ for the different wave
functions. Fach of these is formally the negative energy of an electron in a
wave function in the field of the nucles and the rest of the atom, or the energy
required to remove this electron from the corresponding wave function to rest
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at infinity, the rest of the atom being considered as providing a static field ;
this is not the same as the X-ray ionization energy of the atom, for the rest of
the atom is not a static field but an electronic system whose configuration and
energy changes when one electron is removed. But empirically there is a
close quantitative correspondence between these ¢'s and the X-ray ionization
energies, which has not been fully explained as far as I am aware.

(¢) For each atom the contributions to Z are tabulated, partly because they
will be useful as a starting-point for a better approximation to the self-consistent
field if one is ever required, and also for the first steps in the solution of Fock’s
equations,® but more particularly because they are probably the most useful
quantities in terms of which to carry out the interpolation between different
atoms. Slater has suggested a method of interpolation of wave functions
based on the approximate representation of the wave functions by analytical
formule, and interpolation of the constants in these formule, but hardly
enough atoms have been yet worked out to provide enough values of the
constants between which to interpolate accurately ; the change of atomic
structure with atomic number is rather irregular (¢f. the occurrence of ** tran-
sition groups ') so that the relations between the atomic number and the
constants defining a wave function would not be expected to be very easy
functions to interpolate accurately., If fairly accurate wave functions are
required, it seems best at present not to try to interpolate the wave functions
themselves, but to interpolate the contributions to Z, which are probably much
less sensitive to details of atomic structure, and calculate wave functions in
the field so constructed. This must in any case be the process in beginning
the calculation of the self-consistent field for a new atom, and it is mainly
for this purpose that the contributions to Z are tabulated.

The contribution from each (nl) group is tabulated, not the contribution
from one electron, as these contributions from each whole group are the
quantities usually required. Three decimals are given, as although only two
decimals and sometimes a 5 in the third place were used in the estimates,
the variations of the calculated values with the variations in the estimates
show that the third decimal in the calculated values is probably within 2 or 3

* The functions oceurring in Fock’s equations, corresponding to the P’s in the equations
of the self-consistent field, are orthogonal functions, which the solutions of the self-con-
sistent field equations are not ; but the changes in contributions to Z due to making the
P's orthogonal are probably smaller than those due to the resonance terms in Fock’s
equations, and as a first step the Z; (a«|r) functions which oceur in Fock’s equations can
be taken as those of the self-consistent field.
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of its value for the self-consistent field in most cases, and almost certainly for
the inner groups; so that the third decimal is of some value, although not
certain to a unit.

§ 4. Resulls for C1™.

The maximum difference between estimated and calculated contributions
to Z from any group, for the standard calculations, was 0-03 ; revised estimates,
Sere made for all groups on the basis of the results of the standard calculations,
Shnd a second set of revised estimates was made for the (3p)® group only, and
f:zvas used for the calculations giving the results tabulated. The maximum
Flifference between estimated and calculated contributions to Z for the field
Sused to give these results is less than 0-01 for each group, and the difference
ghetween estimated and calculated Z for the whole atom is also nowhere larger
Bthan 0-01; for the earlier calculations of which some results were given in
cogxy first paper, the maximum difference in the total Z was 0-08.
The wave function for the outermost (nl) group of a negative ion is very
pensitive to the estimated field. Analytically this arises from the smallness
cof the energy parameter < for such a wave function ; it is related to the looseness
.oof binding of this electron, although, as already emphasized, £ cannot be taken
8directly as a measure of the ionization energy. For large », the behaviour of
§l;he wave function is chiefly determined by the value of £ ; when the estimated
tﬁeld is changed, then e for each wave function is changed and if = is small, a
gmall change in = may be a considerable proportional change and so affect
Zconsiderably the behaviour of the wave function for large ». The (3p)® group
in fact over-stable in the sense explained at the end of § 2, and it is satisfactory
.cthat such a good agreement between estimated and calculated contributions
'Owas reached at the second revision of the estimates used in the standard
calculatmns

shin

typu

c

2

o) Table I.—Cl~ Wave Functions.

Tables of P/r' ™ for small 7.
T, (1s). (2s). (2p). } (2s). ! (3p).
| |

0-000 100 100 400 ’ 100 400
0-005 91-86 91-79 383-4 ! 91-79 383-4
0-010 8438 84-14 367-6 8412 3675
0-015 77-52 77-01 3525 76:97 |  352-2
0-020 71-23 70-36 3382 70+30 337-6
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Table of P.

. (1s). (2s). (2p). (33). (3p).
0-000 0-000 0-000 0000 0-000 0-000
0-005 0-459 0-459 0-010 0-459 0-010
0-010 0-844 0-841 0-037 0-841 0-037
0-015 1-163 1-155 0-079 1-155 0-079
0-020 1-425 1-407 0-135 1-406 0-135
0-03 1-805 1-752 0-280 1-749 0280
0-04 2-034 1-921 0460 1-913 0-458
005 2-150 1-951 0-664 1-937 0661
0:06 2-183 1-872 0-884 1-850 (-878
0-07 2.156 1-709 1:113 1-678 1:105
0-08 2-087 1-483 1-346 1-441 1-335
009 1-989 1-210 1:579 1-158 1-563
0-10 1-873 0-906 1-808 0-842 1-785
0-12 1-616 0-241 2-244 0-157 2-203
0-14 1-357 —0-442 2-639 —{-542 2:572
016 1-117 —1-102 2-984 —1:208 2884
0-18 0-905 —1-710 3276 —1-812 3-133
0-20 0-725 —2-252 3:516 —2-336 3-320
0-22 0-576 —2-722 3-704 —2-771 3-446
0-24 0-455 =3.117 3845 —3-115 3-514
0-26 0-357 —3-439 3-942 —3-368 3-528
0-28 0-278 —3:693 4:001 —3-537 3:494
0-30 0-216 — 3884 4-026 —3-625 3-416
0-356 0-113 —4-130 3-068 —3-543 3-058
0-40 0-068 —4-122 3-786 —3-116 2-523
0-45 0-030 —3-944 3528 —2-447 1-868
0-50 0-015 —3-662 3-228 —1-622 1-137
0-56 0-008 —3-326 2-912 —0-711 0-367
0-60 0-004 —2-969 2508 +0-231 —0-414
0-7 0-001 —2-276 2-014 2065 —1-928
05 — 1681 1519 3673 —3-206
0-9 —1-209 1-123 4-966 —4:460
10 —0852 0-817 5-924 —5°:403
1-1 —0+591 0587 6571 —6-133
1-2 —0-405 0-418 6946 —6-669
1-4 —0-186 0-207 7-076 —7-266
1:6 —0-079 0-101 6-674 —7-403
1-8 —0-035 0-048 - 6-006 —7-251
2:0 —0:015 0-023 5244 —6-932
2.2 —0-006 0-011 4-488 —6-529
2-4 —0-002 0-005 3-788 —6-089
2:6 —0-001 0-002 3-167 —5-646
2.8 0-001 2-628 —5-213
3.0 2170 —4-803
3-2 1-785 —4-419
34 | -464 —4-061
36 1-198 —3-733
3-8 0-979 —3-431
40 0-799 —3-154
4-5 0-479 —2-:562
50 0-286 —2-089
55 0-171 —1-710
6:0 -102 —1:403
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Table I—(continued).
. (1s). (28). (2p). (28). (3p).
7 0036 —0-954
8 0-013 —0-654
9 0-0044 —0-451
10 0-001, —0-313
12 —0-152
14 —0-075
16 —0-087
8 18 —0-019
N 20 —0-009
2 99 —0-004
%024 —0-002
26 —0-001
<
= =
8 €. j: P2dr. PR f: P2dr.
2 |
8- —
8
op (19) 209-0 0-5346 (3s) 1-079 67-89
g (29) 18-35 7-252 (3p) 0-114 119-90
= (2p) 14-37 7-232
)
2.
% Table 1I,—CI~ Contributions to Z.
g Table of 2 (21 + 1)[1 — Z, (nl, nl|7)].
[958
=
g. T (1s). (28). (2p). (34). (3p).
S
=
&, 0-000 2000 2000 6-000 2:000 6-000
2 0-005 1999 2000 6-000 2-000 6-000
<= 0-010 1-990 1-999 6-000 2000 6-000
g 0015 1-971 1-998 6-000 2-000 6000
é 0-020 1-940 1-996 6-000 1-999 6000
S 003 1-840 1-988 5-999 1-999 6-000
g 004 1-700 1-9749 5-998 1-998 6-000
S 0-05 1:535 1-969 5-995 1-997 6000
= 006 1-358 1-958 5-990 1-996 5-999
2 007 1-181 1-949 5-082 1995 5999
5 0-08 1:013 1-942 5960 1-994 5-998
0-10 0-717 1-934 5928 1-998 5-995
0-12 0-488 1-932 5850 1-992 5-991
0-14 0-323 1-931 5-760 1-992 5-985
0-16 0-208 1:927 5-628 1-992 5978
0-18 0-132 1:016 5-464 1-991 5-969
0-20 0082 1804 5273 1:988 5-959
0-22 0-051 1-859 5056 1-984 5-048
0-24 0-031 1-812 4-820 1-979 5935
026 0-018 1-753 4568 1-973 5-923
0-28 0-010 1-682 4-305 1-966 5-910
030 0-006 1-603 4037 1-958 5899
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Table II-—(continued).

' |
r. (18). (2s). | (2p). (33). (3p).

0:35 | 0-002 1-379 3-370 1-939 5-873

0-40 1-142 2-743 1-922 5-853

0-45 0-917 2-187 1-911 5-840

0-50 0-716 1712 1-905 5-835

0-55 0:548 | 1-321 1-903 5-833
~ 0-60 0411 | 1-005 1-902 5-833
(a\]
= 0-7 0-221 0-564 1-808 5-825
: 0-8 0-114 0-305 1-872 5-791
= 0-9 0056 0-161 1-816 5-713
BD 1-0 ‘ 0-027 0-083 1-728 5591
<:t$ 1-1 0-013 0-042 1-612 5-423
s 1-2 0-006 0-021 1-476 5-217
Cé 1-4 E 0-001 0-004 1-182 4-725
S 16 ‘ 0-001 0-900 4-180
= 1-8 ; 0-662 3-641
5 2:0 ; 0-476 3:137
20 2.2 0-336 2682
= 2.4 0236 2.284
2 2-6 0-164 1-940
= 2.8 0-114 1-644
=) 3-0 0-080 1-394
£
s 3.2 0-058 1-181
‘5 3-4 0-042 1-002
e} 3-6 0-032 0-850
= 3-8 ‘ 0-025 0-721
= 4-0 1 0-019 0-613
S 45 | 0-006 0409
PN 5-0 0-002 0-275
& 56 | 0-001 0-185
= 6-0 \ 0-125
g ; | 0-057
= 8 0-024
- 9 0-010
,.g 10 0-003
3 11 , 0-001
L 4
=]
2
)
a

§ 5. Results for Cu*.

For Cu* the (3d) wave function is very sensitive to the estimated field, the
reason being rather different from the case of the (3p) wave function of CI™.
Here the value of ¢ is not inconveniently small, but there is a considerable
range over which the attractive field is only slightly larger than the centrifugal
field (whose potential energy is represented by the term I(l - 1)/#* in the
radial wave equation (2) ) so that a small change in the attractive field makes
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a large proportional change in the resultant field and so in the wave function.
Analytically, in the wave equation

P’ [20—e—1(+1)/PP=

the coefficient of P remains small over a considerable range.

This feature is closely related to the position of Cu in the periodic table. The
occurrence of the ** transition group ” of elements to Sc to Ni in the periodic
table is associated with the transition of the (3d) wave function from that of

Spotassium, where it is nearly hydrogen-like and is an excited state of the series
Qblectron, to the much more compact (3d) wave function, forming part of the
%ore, of the copper atom. This transition, which is just completed in copper,
s due, roughly speaking, to the variation with atomic number of the range
Shver which the attractive force exerted on an electron by the rest of the atom is
%reater than the centrifugal force on an electron with angular momentum
@peclﬁed by 1 =2; for potassium the centrifugal force is greatest except at
ajhstances well outside the atom ; for copper the atomic field is enough, but
&mt much more than just enough, to hold an electron with [ = 2 in the core
Q.gamst the centrifugal force.

=)

« +0l = ‘ s

o }
Ty
SR .
@S N | a2 =
S02 \ ' e ’
:5 \\ ,,,,,
32 -0l ——C — aat
o -
UE SSaall e

5 =

=02

G. 1.—To illustrate overstability of (3d)!% group. Full-line curve shows change of
estimated contribution to Z; -—--broken curve shows consequent change of
calculated contribution to Z.

This sensitiveness of the (3d) wave function, and the comparatively large
umber of electrons with this radial wave function, makes the (34)1° group
riously over-stable in the sense defined at the end of §2. Fig. 1 shows
quantitatively an example ; the full curve shows a variation made in the
estimated contribution to Z from the (3d)!® group, and the broken curve the
consequent variation in the calculated contribution, which can be seen at once
to be considerably greater than the variation in the estimated contribution.

This pronounced overstability of the (3d) group makes the process of
approximation to the self-consistent field very troublesome ; altogether, nine
steps of approximation were made in order to obtain the results here given ;
most of these steps were mainly concerned with revision of the estimated
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contribution from the (3d)° group. In the final approximation, for which the
results are tabulated, the differences between estimated and calculated con-
tributions to Z from each group are less than 0-01 throughout ; the (3d) wave
function, and contribution of the (3d) group to Z, are the best that can be
obtained without doing the calculation throughout with an accuracy corre-
sponding to three full decimals in the estimated contributions to Z.

Observed values of v/R for the X-ray levels are given in the same table as
the values of the energy parameter ¢ of the central field wave functions;
although the values of ¢ cannot be regarded as calculated values of the X-ray
levels, as already mentioned, they agree very closely with the observed values
for the X-ray levels ; a similar close agreement was also found for Rb*.*

Tahble III.—Cu ™ Wave Functions.
Table of P/r'*! for small r.

r. (1s). (25). ‘ (2p). (8s). (3p). (3d).
0-000 100-0 100-0 ‘ 1000 100 1000 1000
0005 86-51 86-31 930 86-29 930 953
0-010 74-87 7412 ‘ 866 74-04 866 909
0-015 G480 G3-29 807 63-12 806 868
0-020 36-60 53-65 | 752 53-38 750 828

Table of P.
|
r. (12), (2). l (2p). (3s3). , (3p). (3d).
‘ . |

0000 0000 0000 0000 ! 0-000 0-000 0000
0-005 0-433 0-432 0-023 0-431 | 0-023 0000
0010 (0-749 0-741 0087 -740 0-087 0-001
0-015 0-972 0-948 0182 0-947 0-181 0-003
0-020 1-122 1-073 0-301 1-068 0300 0-007
0025 1:215 1-127 | 0-438 1-118 0-436 0-012
0-03 1-263 11256 | 0589 1-110 0585 0-020
0035 1-276 1-077 0748 1-055 0-742 0-031
0-04 1-264 0-992 0-912 0-963 0-902 0044
0-06 1-187 0742 1-243 0-697 1-223 0-079
006 1-071 0:427 1-5656 0365 1-527 0-126
0-07 0940 0-081 1-864 0-004 1-800 0-184
0-08 0-809 —0-270 2-132 —0-357 2-034 0-253
0-09 0-686 —0-609 2-367 —0+700 2:226 0-332
0-10 0-574 —0-925 2:566 | —1:013 2-369 0-420
0-12 0-392 —1-462 2866 —1-513 2-518 0-621
0-14 0-261 —1-868 3-013 —1-830 2-495 0-847
016 0-170 —2:119 3063 —1-968 2326 1-091
0-18 0-110 —2-263 3-027 —1-946 2-038 1-346
0-20 0-070 —2-311 2-925 —1+793 1-6569 1-605

* Hartree, loc. cil.
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Table ITI—(continued).

r (1s). (23). (2p). (39). (3p)- (34).
0-22 0-044 —2-286 2-779 —1-536 1-216 1-863
0-24 0-027 —2-206 2602 —1-202 0-731 2:117
0-26 0-017 —2-089 2-409 —0-817 0-223 2362
0-28 0-010 —1-948 2208 —0-400 —0-290 2595
0-30 0-006 —1-795 2:007 4-0-030 —0-797 2815
0-35 0002 —1-400 1-534 +1-079 —1-974 3-206

040 —1:044 1:136 1-988 —2-953 3-671
So-45 —0-754 0-821 2694 —3-701 3944
Q050 —0-533 0-583 3190 —4222 4-126
2055 —0-369 0-408 3-494 —4-545 4-231
2,060 —0-253 0-282 3-637 —4-702 4-276
20-7 —0-115 0-132 3-578 —4-654 4-236
<08 —0-051 0-061 3247 —4-314 4-089
S0-9 —0-022 0-028 2804 —3-839 3-888
140 —0-009 0-012 2-349 —3-328 3666
°r —0-004 0-0054 1-925 —2-834 3-439
gnl -2 —0-002 0-002; 1-553 —2.382 3217
813 —0-001 0-001 1-238 —1-984 3:004
%bl-tt 0-978 —1-640 2-803
<16 0599 —1-103 2437
=18 0-359 —0-731 2:117
520 0-213 —0-479 1-838
822 0-125 —0-311 1-594
224 0-073 —0-201 1-381
Q2.6 0-042 —0-129 1-196
928 0-024 —0-083 1-034
230 0-014 —0-053 0-892
<
232 0-008 —0-034 0-769
34 0-004 —0-021 0-662
36 0-002 —0-014 0-568
£a3-8 0-001 —0-009 0-487
40 —0-005 0-417
E45 —0-001 0-281
£ 50 0-188
iy 2-5 0-124
360 0-081
<
o1 0-034
a8 0-014
%13 0-006
0-002
A 0-001"
12
v/R vIR
€. obs. X-ray I: Pedr. €. obs. X-ray J:T P2dr
term. term.
(1) 658-0 661-6 0-10589 | (3¢) 8968 89 7-905
(28) 78-45 81-0 1-1568 (3p) 6078 5.7 14-913
(2p) 69-86 68-9 20621 (3d) 1-195 0-4 21-296
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Table IV.—Cu*t Contributions to Z.
Table of 2 (20 + 1) [1 — Z, (nl, nl|r)].

. ()2, (29)2. 2p)°. (3s)2. (3p)°. (3ayse,
0-000 2-000 2-000 6-000 2-000 6-000 10-000
0-005 1-993 1-999 6-000 2:000 6-000 10-000
0-010 1-958 1-996 6-000 1-999 6-000 10-000
0-015 1-887 1-990 6-000 1-998 6-000 10-000
0-020 1-782 1-981 5-999 1-997 6-000 10-000
0-025 1-652 1-970 5-997 1-996 6-000 10-000
0-030 1-506 1-959 5993 1-994 5-999 10000
0-035 1-354 1-949 5-987 1-992 5-998 10000
0-040 1-201 1-940 5-977 1-991 5997 10-000
0-05 0-915 1-926 5-942 1-990 5-992 10-000
0-06 0-674 1-920 5-884 1-989 5-984 10-000
0-07 0-482 1-919 5798 1-989 5-973 10-000
0-08 0-338 1-918 5681 1-989 5-958 10-000
0-09 0-232 1-915 5-533 1-988 5940 10-000
0-10 0-157 1-904 5+355 1-986 5-919 9-999
0-12 0-069 1-854 4-923 1-977 5-870 9-996
0-14 0-029 1-757 4-418 1-963 5-819 9-991
0-16 0-012 1:618 3-878 1-945 5-772 9-982
0-18 1-451 3-336 1:925 5733 9-968
0-20 1-268 2-819 1-907 5-705 9-047
0-22 1-085 2-345 1-893 5-688 9-919
0-24 0-910 1-922 1-883 5-680 9-882
0-26 0-750 1-558 1-878 5-678 9-835
0-28 0-609 1-248 1-876 5-678 9-776
0-30 0-487 0-990 1-876 5-675 9-708
0-35 0-266 0-534 1-871 5-633 9-487
040 0-137 0-277 1-839 5-507 9-200
0-45 0-068 0-138 1-768 5-282 8-858
0-50 0-032 0-067 1-657 4-963 8-474
0-56 0-015 0-032 1-514 4:573 8-062
0-60 0-007 0-0156 1-353 4-141 7-637
0-7 0-001 0-002 1-018 3.249 6-781
0-8 0-721 2.433 5-965
09 0-488 1:762 5217
1-0 0-320 1-243 4547
1-1 0-204 0-861 3-953
1-2 0-128 0-587 3-433
1-3 0-079 0-396 2-980
1-4 0-047 0-2656 2-584
1:6 0-016 0-115 1-939
1-8 0-005 0-048 1-454
2-0 0001 0-019 1-087
2.2 0-006 0-811
2-4 0-002 0-604
2:6 (-448
2-8 0:330
3:0 0-243
3.9 0-179
-4 0-130
3.6 0-095
3-8 0-068
4-0 0-0560
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Table IV—(continued).

T (1s)% (28) (2p)®. (3¢)*. (3p)%. (3d)0,
4-5 0-022
50 0-008
5:5 0-003
6-0 0:001

It is interesting to compare the distribution of charge for Cu™®, with an outer
shell of 18 electrons, with that for inert-gas-like ions which have outer shells of
58 electrons ; and for this purpose the total charge density for Cu® and con-
Ztributions to it from the groups of the outer shellt are shown as functions of r
Sin fig. 2, and corresponding diagrams for K+ and Rb* are shown in figs. 3 and
o4 respectively.{
°° The Cu* ion is more compact than K* or Rb* ; although the outer shell of
mCu* consists of 18 electrons while those of K* and Rb™ consist of 8, the charge
adensn:y in Cu* is smaller than in K* or Rb* outside a radius of about 1-2
=atomic units ; and it is necessary to pass right inside the outer shell of K* or
b* to the next inner shell before coming to a region of charge density as
.Lhigh as that in the outermost shell of Cu®. This agrees with the much smaller
observed packing radius for a Cu®™ or Cu®* ion than of a K* or Rb* ion in
rystals (the effect of a second ionization of the copper atom would be to
Scontract the ““ tail ” of the (3d) wave function for large », but it would not
égreatly alter the distribution).

'S It should be pointed out here that the total volume density, which is 1 /472
Otimes the radial density, increases steadily as » decreases, and does not show
Sthe maxima and minima shown by the radial density curve.

Another interesting comparison between Cu and the alkali metal atoms is
that of the series electron wave function and its relation to the interatomic
distance in metals. This comparison will be given here although it depends
on some results not given in this paper. Slater’s theory of cohesion in metals§
suggests that the interatomic distance in the crystal of a metallic element
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T To avoid crowding the diagram, the contributions from the individual groups of the
inner shell are not shown ; the point of interest in the comparison is the structure of the
outer shell,

{ These diagrams are based on results of old work, but the alteration in the results due
to revision based on the standard calculations is not likely to be appreciable on the scale
of these diagrams,

§ Slater, * Phys. Rev.,’ vol, 35,p. 509 (1930).
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Fies. 2, 8, 4.—Charge distributions in Cu+, K+, Rb+, Radial charge density in electrons
per atomic unit shown as function of radius in atomic units. The full-line eurve
shows total charge density for the whole atom, the broken curves show the con-
tributions to the total charge density from the groups of the outer shell
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may be given approximately by the condition that the unperturbed series
electron wave functions of the two atoms overlap so that their maxima nearly
coincide.
If P is the radial function for the series electron, then the wave function itself
is P/r (the normal state of the series electron being an s state) ; in Table V
the approximate radii of the main maxima of P? and of (P/r)? for the normal
series electron wave function are given ; and also the ohserved atomic packing
o radius (defined as half the interatomic distance) and its ratio to the radii
S of the maxima of the caleulated wave functions.

Table V.
Radius of | Radius of | Pasking W

v Crystal structure 7 Ty ra

Atom. max. P,2 | max.(P/r)? ey radius* = P

Ty Ty Tor 1 | 2
Baiiis 06 2-01 Body centred cubic 2-309 0-87 1-15
LY e e 2-84 2-18 7 2-43 0-86 1:11g
e R S 3-21 2:53 o 2-62 0-81 1-04
) RS 1-51 1-04 Face centred cubic 1-275 0-84, 1-23

(All lengths in A.)
* Taken from Neuberger, * Z. Krystallog.,” vol. 80, p. 103 (1931).

The results show a relation between series electron wave functions and inter-
atomic distance of the kind suggested by Slater ; the atomic radius in all cases
lies between the radii at which P and P/r have their maxima, and, except for
Cs, about half way between ; and the variation of either ratio is considerably
less than the variation of the packing radius.

§ 6. Sunmmary.

Approximate wave functions for a number of atoms have been calculated
by the method of the self-consistent field, but of the available results few have
been published in detail. These results for a number of atoms are being
revised, and the approximation improved, with a view to’ publication so as to
make them more generally accessible ; this paper presents the results for C1~
and Cu*. The results for copper are compared with those for the other alkali
metals and characteristic differences noted ; and the relation between the
interatomic distance in metals and the wave function of the series electron is
pointed out.
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