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Abstract: In the present paper, we aimed to discuss certain coefficient-related problems for the inverse
functions associated with a bounded turning functions class subordinated with the exponential
function. We calculated the bounds of some initial coefficients, the Fekete–Szegö-type inequality, and
the estimation of Hankel determinants of second and third order. All of these bounds were proven to
be sharp.
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1. Introduction and Definitions

Let A and S be represented here as the classes of normalized analytic and univalent
functions, respectively. These classes are defined in the form of

A =:
{

f ∈ H(D) : f (0) = f ′(0)− 1 = 0, z ∈ D
}

(1)

and
S =: { f ∈ A : f is univalent in D}, (2)

whereH(D) stands for the set of analytic or holomorphic functions in the region

D = {z : z ∈ C and |z| < 1}. (3)

If f ∈ A, then it can be expressed in the series expansion of the form

f (z) = z +
∞

∑
l=2

alzl , (z ∈ D). (4)

In 1985, De Branges [1] solved the renowned Bieberbach conjecture by establishing
that, if f ∈ S , then |an| ≤ n for n ≥ 2, where the equality holds if f is a Köebe function or
its rotation, where the Köebe function is given by

K(z) =
z

(1− z)2 = z +
∞

∑
n=2

nzn. (5)
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Before the Bieberbach conjecture was settled, many interesting subclasses of S linked
to different image domains were studied by different scholars. The most fundamental
subfamilies are the starlike S∗ and convex K functions, which are defined as

S∗ = :
{

f ∈ A : < z f ′(z)
f (z)

> 0, (z ∈ D)
}

,

K = :

{
f ∈ A : < (z f ′(z))′

f ′(z)
> 0, (z ∈ D)

}
.

A function f ∈ A is said to be in the class S∗(α) of starlike functions of order α,
0 ≤ α < 1, if, for z ∈ D,

< z f ′(z)
f (z)

> α. (6)

It is known that S∗(α) ⊆ S∗(0) ≡ S∗ for 0 ≤ α < 1. Let SS∗(β) denote the class of strongly
starlike functions of order β, 0 < β ≤ 1,

SS∗(β) =:
{

f ∈ A :
∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣ < βπ

2
, (z ∈ D)

}
. (7)

Using subordination, Ma and Minda [2] introduced the class S∗(φ) given by

S∗(φ) =
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z), (z ∈ D)

}
, (8)

where φ is a regular function with a positive real part, φ(0) = 1 and φ′(0) > 0. In addition,
the function φ maps D onto a star-shaped region with respect to φ(0) = 1, and is symmetric
with the real axis.

Another interesting subclass of univalent functions is the close-to-convex function KC,
which satisfies the condition

< z f ′(z)
g(z)

> 0, (z ∈ D), (9)

where g is a starlike function.
If we choose g(z) = z, then we obtain the subclass BT of bounded turning functions

defined by
BT =:

{
f ∈ A : < f ′(z) > 0, (z ∈ D)

}
. (10)

For each univalent functions f defined in D, the famous 1/4-theorem of Köebe ensures
that its inverse f−1 exists at least on a disc of radius 1/4 with the Taylor’s series of the form
representation

f−1(w) := w +
∞

∑
n=2

Bnwn, (|w| < 1/4). (11)

Utilizing the representation f
(

f−1(w)
)
= w, we obtain

B2 = −a2, (12)

B3 = −a3 + 2a2
2, (13)

B4 = −a4 + 5a2a3 − 5a3
2, (14)

B5 = −a5 + 6a2a4 − 21a2
2a3 + 3a2

3 + 14a4
2. (15)

In recent years, researchers have shown a great deal of interest in understanding
the geometric behavior of the inverse function. For example, Krzyz et al. [3] determined
the upper bounds of the initial coefficient contained in the inverse function f−1 when
f ∈ S∗(α) with 0 ≤ α < 1. These findings were improved later by Kapoor and Mishra
in [4]. In addition, for the class SS∗(ξ) (0 < ξ ≤ 1) of a strongly starlike function, Ali [5]
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investigated the sharp bounds of the first four initial coefficients along with the sharp
estimate of the Fekete–Szegö coefficient functional of the inverse function. For more
contributions in this direction, see Juneja and Rajasekaran [6], Libera et al. [7], Ponnusamy
et al. [8], Silverman [9], and Sim and Thomas [10].

The Hankel determinant Λq,n( f ), for q, n ∈ N = {1, 2, . . .}, containing coefficients of
the function f ∈ S

Λq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣, (16)

was examined by Pommerenke [11,12]. By varying the parameters q and n, we obtained
the determinants listed as

Λ2,1( f ) = a3 − a2
2, (17)

Λ2,2( f ) = a2a4 − a2
3, (18)

Λ3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5. (19)

They are referred to as first, second, and third Hankel determinants, respectively.
Recently, the problems of finding the Hankel determinants sharp bounds for a certain

class of complex valued functions have attracted the interest of many specialists. For
instance, Janteng et al. [13,14] estimated the sharp bounds of |Λ2,2( f )| for the families of K,
S∗, and BT . The exact bound of the second Hankel determinant for the collection S∗(φ)
of starlike functions was found in [15], and further studied in [16]. This problem was also
investigated for different families of bi-univalent functions in [17–19].

The task of obtaining the sharp bounds of |Λ3,1( f )| is much more difficult than cal-
culating the bounds of |Λ2,2( f )|. In [20], Babalola studied the third Hankel determinant
for the K, S∗ and BT families. Many scholars [21–27] calculated the upper bounds of of
|Λ3,1( f )| for various subclasses of univalent functions. For the sharp bounds of the third
Hankel determinant, Kowalczyk et al. [28] and Lecko et al. [29], in 2018, obtained that

|Λ3,1( f )| ≤
{ 4

135 , f ∈ K,
1
9 , f ∈ S∗

(
1
2

)
.

(20)

Recently, more results have been found in this direction. For details, see [30–34].
The exponential function ϕ(z) = ez has a positive real part in D,

ϕ(D) = {w ∈ C : | log w| < 1} is symmetric with respect to the real axis and starlike
with respect to 1, and ϕ′(0) > 0. Using the exponential function, Mendiratta et al. [35]
introduced a subclass of starlike function defined by

S∗exp :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ez, z ∈ D

}
. (21)

This class was later studied in [36] and generalized by Srivastava et al. [37], in which, the
authors determined the upper bound of the Hankel determinant.

Motivated by the above works, we introduced a class of bounded turning functions
BT exp defined as

BT exp =:
{

f ∈ A : f ′(z) ≺ ez (z ∈ D)
}

. (22)

The goal of this paper is to compute the sharp bounds of some initial coefficient re-
sults, Fekete–Szegö-type problems, and Hankel determinants for the inverse functions of
this class.
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2. A Set of Lemmas

Before stating the results that are applied in the main contributions, we defined the
class P in terms of a set-builder notation:

P =

{
q ∈ A : q(z) ≺ 1 + z

1− z
, (z ∈ D)

}
, (23)

where the function q has a series expansion of the form

q(z) = 1 +
∞

∑
n=1

cnzn, (z ∈ D). (24)

To prove our main results, we need the following Lemmas.

Lemma 1 (see [38]). Let q ∈ P be given by (24). Then, for some ρ, σ, x ∈ D, we have

2c2 = c2
1 + x

(
4− c2

1

)
, (25)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
σ, (26)

8c4 = c4
1 + (4− c2

1)x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4(4− c2

1)(1− |x|
2)[

c1(x− 1)σ + xσ2 − (1− |σ|2)ρ
]
. (27)

Lemma 2 (see [39]). If q ∈ P , and is given by (24), then, for all λ ∈ R and n, k ∈ N,

|cn+k − λcnck| ≤ 2 max(1, |2λ− 1|), (28)

|cn| ≤ 2, n ≥ 1, (29)

Lemma 3. Let

τ(c, x) =
(

4− c2
)
(1 + c)x2 +

(
c3 + 20c2 + 12c− 64

)
x +

1
2

c3 − 19c2 + 60. (30)

Then, τ(c, x) > 0 for all (c, x) ∈ [0, 2)×
(

4
5 , 1
)

.

Proof. It is not difficult to observe that

τ(c, x) ≥
(

4− c2
)

x2 +
(

20c2 + 12c− 64
)

x− 19c2 + 60

=
(
−x2 + 20x− 19

)
c2 + 12xc + 4x2 − 64x + 60 := υ(c, x).

Since 4
5 < x < 1, we have −x2 + 20x− 19 > −4 and 4x2 − 64x + 60 > 0. Using x > 4

5 , it
follows that

υ(c, x) > −4c2 +
48
5

c = −4c(c− 12
5
) > 0.

This completes the proof of Lemma 3.

Lemma 4. Suppose that

F(c, x) =
(

4− c2
)(

1− x2
)[

c2 + 4x
(

4− c2
)]

. (31)

Then F(c, x) < 25 for all (c, x) ∈ [0, 2)×
[
0, 4

5

]
.
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Proof. Let c2 = s. It is clear that s ∈ [0, 4) and

F(c, x) = (4− s)
(

1− x2
)
[s + 4x(4− s)]

=
(

1− x2
)[

(−1 + 4x)s2 + 4(1− 8x)s + 64x
]
.

If x ≤ 1
8 , we have −1 + 4x ≤ 0 and 1− 8x ≥ 0. Using 1− x2 ≤ 1 and (−1 + 4x)s2 ≤ 0, it

follows that

F(c, x) ≤ 4(1− 8x)s + 64x ≤ 16(1− 8x) + 64x = 16− 64x ≤ 16. (32)

If 1
8 < x ≤ 1

4 , we can observe that −1 + 4x ≤ 0 and 1− 8x ≤ 0. Thus, it is easily obtained
that

F(c, x) ≤
(

1− x2
)
(64x) ≤ 64x ≤ 16. (33)

If 1
4 < x ≤ 4

5 , we note that −1 + 4x ≥ 0 and 1− 8x ≤ 0. Define

v(s, x) = (−1 + 4x)s2 + 4(1− 8x)s + 64x. (34)

As
∂v

∂s
= 2(−1 + 4x)s + 4(1− 8x) ≤ 8(−1 + 4x) + 4(1− 8x) = −4 < 0,

we obtain v(s, x) ≤ v(0, x). Then,

F(c, x) ≤ 64x
(

1− x2
)

:= h(x). (35)

A basic calculation shows that h(x) achieves its maximum value of approximately 24.63361
at x ≈ 0.5773503. Therefore, we conclude that F(c, x) < 25 for all (c, x) ∈ [0, 2)×

[
0, 4

5

]
.

The proof of Lemma 4 is thus completed.

3. Coefficient Bounds for the Family BT exp

We began this part by determining the first two initial coefficients bounds for the
inverse function of the function class BT exp.

Theorem 1. Let f ∈ BT exp be represented by (4). Then,

|B2| ≤
1
2

, & |B3| ≤
1
3

. (36)

These bounds are sharp and can be obtained from the following extremal function given by

f1(z) =
z∫

0

etdt = z +
1
2

z2 +
1
6

z3 + · · · . (37)

Proof. From the definition of the class BT exp along with the subordination principal, there
exists a Schwarz function ω such that

f ′(z) = eω(z), (z ∈ D). (38)

When writing the Schwarz function ω in terms of p ∈ P , we have

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + · · · . (39)
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Or equivalently,

ω(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (40)

Using (4), we easily obtain

f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (41)

By simplification and using the series expansion of ω(z), we can observe that

eω(z) = 1 +
1
2

c1z +
(

1
2

c2 −
1
8

c2
1

)
z2 +

(
1
2

c3 +
1
48

c3
1 −

1
4

c1c2

)
z3

+

(
1
2

c4 −
1
8

c2
2 +

1
384

c4
1 +

1
16

c2
1c2 −

1
4

c1c3

)
z4 + · · · . (42)

Comparing (41) and (42), we may obtain

a2 =
1
4

c1, (43)

a3 =
1
3

(
1
2

c2 −
1
8

c2
1

)
, (44)

a4 =
1
4

(
1
2

c3 +
1

48
c3

1 −
1
4

c1c2

)
, (45)

a5 =
1
5

(
1
2

c4 −
1
8

c2
2 +

1
384

c4
1 +

1
16

c2
1c2 −

1
4

c1c3

)
. (46)

For B2, putting (43) in (12) and then using (29), we easily obtain

|B2| ≤
1
2

. (47)

For B3, putting (43) and (44) in (13), it follows that

|B3| =
1
6

∣∣∣c2 − c2
1

∣∣∣. (48)

Then, by using (28), we achieve the required bound given by

|B3| ≤
1
3

. (49)

Now, we study the Fekete–Szegö-type problem for f−1 of the function f ∈ BT exp.

Theorem 2. Let f ∈ BT exp be given by (4). Then, for γ ∈ R,∣∣∣B3 − γB2
2

∣∣∣ ≤ max{1
3

,
1
3

∣∣∣∣1− 3
4

γ

∣∣∣∣}. (50)

This inequality is sharp.

Proof. From (12), (13), (43), and (44), we obtain∣∣∣B3 − γB2
2

∣∣∣ = 1
6

∣∣∣∣(c2 −
(

1− 3
8

γ

)
c2

1

)∣∣∣∣. (51)
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An application of (28) leads to∣∣∣B3 − γB2
2

∣∣∣ ≤ max{1
3

,
1
3

∣∣∣∣1− 3
4

γ

∣∣∣∣}, (52)

and the required result follows.

Putting γ = 1, we establish the below inequality.

Corollary 1. If f ∈ BT exp and has the series expansion (4), then∣∣∣B3 − B2
2

∣∣∣ ≤ 1
3

. (53)

The equality can be obtained from f defined by

f2(z) =
z∫

0

et2
dt = z +

1
3

z3 +
1

10
z5 + · · · . (54)

Now, we investigate bounds of
∣∣Λ2,2

(
f−1)∣∣ for the class BT exp.

Theorem 3. Let f ∈ BT exp be specified by (4). Then,∣∣∣Λ2,2

(
f−1
)∣∣∣ ≤ 1

9
. (55)

The equality can be obtained from (54).

Proof. The determinant Λ2,2
(

f−1) can be reconfigured as

Λ2,2

(
f−1
)
= B2B4 − B2

3 = a4
2 − a2

2a3 + a2a4 − a2
3. (56)

From (43), (44), and (45), we have∣∣∣Λ2,2

(
f−1
)∣∣∣ = 1

1152

∣∣∣7c4
1 − 14c2

1c2 + 36c1c3 − 32c2
2

∣∣∣. (57)

Using (25) and (26) to express c2 and c3 in terms of c1, and noticing that we can put c1 = c,
with 0 ≤ c ≤ 2 without affecting generality, we obtain∣∣∣Λ2,2

(
f−1
)∣∣∣ =

1
1152

∣∣∣c4 − 9c2x2
(

4− c2
)
− 5c2x

(
4− c2

)
+18c

(
4− c2

)(
1− |x|2

)
σ− 8x2

(
4− c2

)2
∣∣∣∣.

Applying the triangle inequality and invoking |σ| ≤ 1, |x| = b ≤ 1, it follows that∣∣∣Λ2,2

(
f−1
)∣∣∣ ≤ 1

1152

{
c4 + 9c2b2

(
4− c2

)
+ 5c2b

(
4− c2

)
+ 18c

(
4− c2

)
(

1− b2
)
+ 8b2

(
4− c2

)2
}

:= φ(c, b).

Differentiating about the parameter b, we have

∂φ

∂b
=

1
1152

[(
2c2 − 36c + 64

)(
4− c2

)
b + 5c2

(
4− c2

)]
. (58)

It is an easy task to illustrate that ∂φ
∂b ≥ 0 for b ∈ [0, 1], that is, φ(c, b) ≤ φ(c, 1). Thus,
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∣∣∣Λ2,2

(
f−1
)∣∣∣ ≤ 1

1152

[
c4 + 14c2

(
4− c2

)
+ 8
(

4− c2
)2
]

:= ζ(c). (59)

Since ζ ′(c) < 0, we have ζ(c) ≤ ζ(0). Therefore, we obtain that∣∣∣Λ2,2

(
f−1
)∣∣∣ ≤ 1

1152
· 128 =

1
9

. (60)

The equality is accomplished from (54).

4. Third Hankel Determinant for the Class BT exp

We can now study the determinant Λ3,1
(

f−1) for f ∈ BT exp.

Theorem 4. If f ∈ BT exp with the series expansion (4), then∣∣∣Λ3,1

(
f−1
)∣∣∣ ≤ 1

16
. (61)

The inequality is sharp.

Proof. From the definition, we can observe that the determinant (19) is described as

sΛ3,1

(
f−1
)

= 2B2B3B4 − B3
3 − B2

4 + B3B5 − B2
2B5.

= a6
2 − 3a4

2a3 + 3a2
2a3

3 − a2
2a5 + 2a2a3a4 − 2a3

3 + a3a5 − a2
4.

In virtue of (43), (44), (45), and (46), along with c1 = c ∈ [0, 2], we obtain

Λ3,1

(
f−1
)

=
1

11520

(
35
3

c6 − 59c4c2 + 15c3c3 + 89c2c2
2 − 120c2c4

+204cc2c3 −
464

3
c3

2 + 192c2c4 − 180c2
3

)
. (62)

To simplify the computation, we take t = 4− c2 in (25), (26), and (27). Using (25), (26),
and (27), along with straightforward algebraic computations, we have

Λ3,1

(
f−1
)

=
1

11520

{
1

12
c6 + 48t2x3 − 58

3
t3x3 − 12c2tx2 − 3c4tx3 +

9
4

c4tx2

−c4tx +
3
4

c2t2x4 − 33
2

c2t2x3 − 45t2
(

1− |x|2
)2

σ2

+
3
2

c3t
(

1− |x|2
)

σ + 12c3tx
(

1− |x|2
)

σ + 12c2tx
(

1− |x|2
)

σ2

−12c2t
(

1− |x|2
)(

1− |σ|2
)

ρ− 3ct2x2
(

1− |x|2
)

σ

−48t2|x|2
(

1− |x|2
)

σ2 + 12ct2x
(

1− |x|2
)

σ

+48t2x
(

1− |x|2
)(

1− |σ|2
)

ρ
}

.

As t = 4− c2, it is noted that

Λ3,1

(
f−1
)
=

1
11520

(
v1(c, x) + v2(c, x)σ + v3(c, x)σ2 + Ψ(c, x, σ)ρ

)
, (63)

where x, σ, ρ ∈ D, and
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v1(c, x) =
1
12

c6 +
(

4− c2
)[(

4− c2
)(
−88

3
x3 +

17
6

c2x3 +
3
4

c2x4

+
25
4

c2x2
)
− 12c2x2 − 3c4x3 +

9
4

c4x2 − c4x
]

,

v2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(

9cx− 3cx2
)
+ 12c3x +

3
2

c3
]

,

v3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−3|x|2 − 45

)
+ 12c2x

]
,

Ψ(c, x, σ) =
(

4− c2
)(

1− |x|2
)(

1− |σ|2
)[
−12c2 + 48x

(
4− c2

)]
.

By setting |x| = x, |σ| = y and utilizing the assumption |ρ| ≤ 1, we obtain∣∣∣Λ3,1

(
f−1
)∣∣∣ ≤ 1

11520

(
|v1(c, x)|+ |v2(c, x)|y + |v3(c, x)|y2 + |Ψ(c, x, σ)|

)
.

≤ 1
11520

Q(c, x, y), (64)

where
Q(c, x, y) = q1(c, x) + q2(c, x)y + q3(c, x)y2 + q4(c, x)

(
1− y2

)
, (65)

with

q1(c, x) =
1

12
c6 +

(
4− c2

)[(
4− c2

)(88
3

x3 +
17
6

c2x3 +
3
4

c2x4

+
25
4

c2x2
)
+ 12c2x2 + 3c4x3 +

9
4

c4x2 + c4x
]

q2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

9cx + 3cx2
)
+ 12c3x +

3
2

c3
]

,

q3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

3x2 + 45
)
+ 12c2x

]
,

q4(c, x) =
(

4− c2
)(

1− x2
)[

12c2 + 48x
(

4− c2
)]

.

Now, for finding the upper bound of
∣∣Λ3,1

(
f−1)∣∣, we have to maximize Q(c, x, y) in

the closed cuboid Ω : [0, 2]× [0, 1]× [0, 1]. By noting that

Q(0, 0, 1) = 720, (66)

we know
max

(c,x,y)∈Ω
{Q(c, x, y)} ≥ 720. (67)

In the following, we aim to prove that

max
(c,x,y)∈Ω

{Q(c, x, y)} = 720. (68)

It is easy to calculate that

Q(2, x, y) ≡ 16
3

< 720, x, y ∈ [0, 1]. (69)

If we put x = 1, then Q(c, x, y) becomes

ς(c) =
1
3

(
11c6 − 109c4 − 88c2 + 1408

)
. (70)
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Then, differentiating ς(c) with respect to c, we have

∂ς

∂c
= 22c5 − 436

3
c3 − 176

3
c. (71)

Solving ∂ς
∂c = 0 for c ∈ [0, 2], we obtain c = 0. Thus, ς obtains a maximum valve at c = 0,

which is 1408
3 < 720. Hence, the global maximum value of Q is impossible to achieve on the

face c = 2 and x = 1 of Ω. Thus, we assume that c ∈ [0, 2) and x ∈ [0, 1) in the following
discussions.

We first show that the global maxima of Q can only be obtained on the face y = 1 of Ω.
Let (c, x, y) ∈ [0, 2)× [0, 1)× (0, 1). By differentiating partially (65) about y, we have

∂Q
∂y

=
3
2

(
4− c2

)
(1− x2)

{
4
[(

4− c2
)
(x− 15) + 4c2

]
(x− 1)y

+c
[
2x
(

4− c2
)
(3 + x) + c2(8x + 1)

]}
.

By setting ∂Q
∂y = 0, we obtain

y =
c
[
2x
(
4− c2)(3 + x) + c2(8x + 1)

]
4(x− 1)[(4− c2)(15− x)− 4c2]

= y0. (72)

If y0 is a critical point within Ω, then y0 ∈ (0, 1), which is only achievable if

c3(8x + 1) + 2cx
(

4− c2
)
(3 + x) + 4(1− x)

(
4− c2

)
(15− x) < 16c2(1− x), (73)

and

c2 >
4(15− x)

19− x
. (74)

Now, we must find solutions that meet both inequality (73) and (74) for critical points
to exist.

Let q(x) = 4(15−x)
19−x . Then, q′(x) < 0 in (0, 1). Thus, q(x) is decreasing over (0, 1).

Hence, c2 > 28
9 . Thus, if there exists a critical point (c0, x0, y0) satisfying y0 ∈ (0, 1), we can

observe that 2
√

7
3 < c0 < 2 and 0 < x0 < 1. Then, we find that

q1(c0, x0) ≤ q1(c0, 1) := ϑ1(c0) (75)

and

q2(c0, x0) ≤
(

4− c2
0

)[
12c0

(
4− c2

0

)
+ 12c3

0 +
3
2

c3
0

]
:= ϑ2(c0),

q3(c0, x0) ≤
(

4− c2
0

)[
48
(

4− c2
0

)
+ 12c2

0

]
:= ϑ3(c0),

q4(c0, x0) ≤
(

4− c2
0

)[
12c2

0 + 48
(

4− c2
0

)]
:= ϑ4(c0).

Thus, it yields

Q(c0, x0, y0) ≤ ϑ1(c0) + ϑ2(c0)y + ϑ3(c0)y2 + ϑ4(c0)
(

1− y2
)

. (76)

As it is observed that ϑ3(c0) ≡ ϑ4(c0), the above inequality leads to

Q(c0, x0, y0) ≤ ϑ1(c0) + ϑ4(c0) + ϑ2(c0)y. (77)

Since ϑ2(c0) ≥ 0, we obtain

Q(c0, x0, y0) ≤ ϑ1(c0) + ϑ4(c0) + ϑ2(c0) := κ(c0). (78)
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A basic calculation gives that

κ(c0) =
1

12
c6

0 +
(

4− c2
0

)2
(

59
6

c2
0 + 12c0 +

232
3

)
+(4− c0)

(
25
4

c4
0 +

27
2

c3
0 + 24c0

)
. (79)

Using c0 < 2, we have

κ(c0) ≤
1
12
· 26 +

422
3

(
4− c2

0

)2
+ 256(4− c0). (80)

Now it is easy to calculate that κ(c0) has an upper bound of approximately 386.6996 with
the equality achieved at c0 ≈ 1.763834. Thus, in this situation, all critical points of Q(c, x, y)
in [0, 2)× [0, 1)× (0, 1) achieve their values at most at 386.6996. In virtue of the global
maxima of Q being only possible to be obtained in critical points or at the boundary of Ω,
we conclude that, for Q, it cannot gain its global optimal maximum value on any points of
Ω with y ∈ (0, 1).

Making y = 0, Q(c, x, 0) := Γ(c, x) reduces to

Γ(c, x) = q1(c, x) + q4(c, x). (81)

Let ∆(c, x) := Q(c, x, 1). It is easy to observe that

∆ = q1(c, x) + q2(c, x) + q3(c, x). (82)

Thus, we have

∆(c, x)− Γ(c, x) = q2(c, x) + q3(c, x)− q4(c, x)

= 3
(

4− c2
)(

1− x2
)

κ(c, x),

where

κ(c, x) =
(

4− c2
)
(1 + c)x2 +

(
c3 + 20c2 + 12c− 64

)
x +

1
2

c3 − 19c2 + 60. (83)

For x > 4
5 , when using Lemma 3, it yields to ∆(c, x) > Γ(c, x) for all (c, x) ∈ [0, 2)×

(
4
5 , 1
)

.

Hence, Q cannot achieve the global maxima with y = 0 and (c, x) ∈ [0, 2)×
(

4
5 , 1
)

. For

x ≤ 4
5 , it is easy to find that

q1(c, x) ≤ q1

(
c,

4
5

)
:= χ1(c). (84)

From Lemma 4, it is seen that

q4(c, x) ≤ 12v(c, x) < 300. (85)

Then, we obtain
k4(c, x) ≤ χ1(c) + 300 := µ(c). (86)

It is not hard to calculate that µ(c) attains its maxima of approximately 540.3760 at
c ≈ 0.2398224. This implies that it is impossible for Q to gain its global maximum value
with y = 0 and (c, x) ∈ [0, 2)×

(
0, 4

5

]
. Thus, we conclude that Q(c, x, 0) has no global

optimal solution in [0, 2)× [0, 1). Therefore, we only need to discuss Q on the face y = 1 of
Ω to find the global optimal value.
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For y = 1, a basic calculation shows that Q(c, x, 1) = ∆(c, x) has the form of

∆(c, x) =
1

12
c6 +

(
4− c2

)2
[

3
4

(
c2 − 4c− 4

)
x4 +

1
6

(
17c2 − 54c + 176

)
x3

+
1
4

(
25c2 + 12c− 168

)
x2 + 9cx + 45

]
+
(

4− c2
)[

3
(

c2 − 4c− 4
)

c2x3 +
3
4

(
3c2 − 2c + 16

)
c2x2

+
(

c2 + 12c + 12
)

c2x +
3
2

c3
]

.

By observing that c2 − 4c− 4 ≤ 0, we have

∆(c, x) ≤ 1
12

c6 +
(

4− c2
)2
[

1
6

(
17c2 − 54c + 176

)
x3

+
1
4

(
25c2 + 12c− 168

)
x2 + 9cx + 45

]
+
(

4− c2
)[3

4

(
3c2 − 2c + 16

)
c2x2 +

(
c2 + 12c + 12

)
c2x +

3
2

c3
]

.

Using 17c2 − 54c + 176 ≥ 0, 3c2 − 2c + 16 ≥ 0 and 0 < x < 1, it further leads to

∆(c, x) ≤ 1
12

c6 +
(

4− c2
)2
[

1
6

(
17c2 − 54c + 176

)
x2

+
1
4

(
25c2 + 12c− 168

)
x2 + 9cx + 45

]
+
(

4− c2
)[3

4

(
3c2 − 2c + 16

)
c2 +

(
c2 + 12c + 12

)
c2 +

3
2

c3
]

=
1
12

c6 +
(

4− c2
)2
[

1
12

(
109c2 − 72c− 152

)
x2 + 9cx + 45

]
+

3
4

(
4− c2

)(
c4 + 16c3 + 32c2

)
≤ 1

12
c6 +

(
4− c2

)2
[

1
12

(
109c2 − 152

)
x2 + 9cx + 45

]
+

3
4

(
4− c2

)(
c4 + 16c3 + 32c2

)
:= Ξ(c, x).

Define
Θ(c, x) =

1
12

(
109c2 − 152

)
x2 + 9cx + 45. (87)

If c ≥
√

152
109 , it is clear that Θ(c, x) ≤ Θ(c, 1). For c <

√
152
109 , we obviously have

1
12
(
109c2 − 152

)
< 0. Taking Θ(c, x) as a polynomial on x, it can be observed that the

symmetric axis

x0 =
54c

152− 109c2 . (88)

Let c0 be the only root of the equation 109c2 + 54c − 152 = 0. It is known that
c0 = −27+

√
17297

109 ≈ 0.9588813. For c > c0, it is noted that x0 > 1. Thus, we obtain
R(c, x) ≤ R(c, 1). Thus, we can observe that

Θ(c, x) ≤ Θ(c, 1), c ∈ (c0, 2). (89)

This leads to
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Ξ(c, x) ≤ 1
12

c6 +
(

4− c2
)2

R(c, 1) +
3
4

(
4− c2

)(
c4 + 16c3 + 32c2

)
:= η1(c), (90)

where c ∈ (
√

c0, 2). It is calculated that η1(c) has a maxima of approximately 570.5751 on
c = c0. Now, we consider c < c0. In this case, we can observe that x0 < 1. Then, we have

Θ(c, x) ≤ 45 +
243c2

152− 109c2 ≤ 45 +
243c2

152− 109
= 45 +

243
43

c2 ≤ 45 + 6c2. (91)

Hence, we obtain

Ξ(c, x) ≤ 1
12

c6 + 3
(

4− c2
)2(

15 + 2c2
)
+

3
4

(
4− c2

)(
c4 + 16c3 + 32c2

)
:= η2(c), (92)

where c ∈ (0, c0). This is a simple exercise to show that η2(c) attains its maximum value of
720 at c = 0.

Consequently, from all of the preceding situations, we established that

Q(c, x, y) ≤ 720 on [0, 2]× [0, 1]× [0.1]. (93)

Hence, from (64), we have∣∣∣Λ3,1

(
f−1
)∣∣∣ ≤ 1

11520
Q(c, x, y) ≤ 1

11520
· 720 =

1
16

. (94)

Thus, the proof is completed. The extremal function for this sharp result is given by

f3(z) =
z∫

0

et3
dt = z +

1
4

z4 +
1

14
z7 + · · · . (95)

5. Conclusions

Although there is a large amount of literature on the Hankel determinants in the
field of geometric function theory, it is still difficult to calculate the sharp bound on the
third Hankel determinant. In the current article, we considered a family of bounded
turning functions BT exp connected with the exponential function. For the inverse of the
functions in this class, we obtained some sharp results on the coefficient-related problems.
In particular, by transforming the third Hankel determinant to a real function with three
variables defined on a cubioid, we found the exact bound of the third Hankel determinant
with the inverse coefficient as the entry. This helps us to understand more geometric
properties of this function class. By improving the present methods, we may be able to
obtain more outcomes on the known various subclasses of univalent functions.
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