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Abstract 

In this paper, under standard N ewton-K antorovich conditions, we establish 
the J( antorovich-type convergence theorem for Chebyshev method in Banach spaces. 
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l. Introductiou. 

In this study we are concerned with the problem of approximating a locally 
unique solutions x• of the equation 

(1) F(x) =O, 

in Banach space X, where F is a nonlinear operator defined on sorne convex subset 
D of X with values in a Banach space Y. Let xo E D and define the Chebyshev 
method for all n ~ O by 

(2) 

(3) 

Here F'(xn) and F"(xn) denote the first and second Frechet derivatives of 
F evaluated at x = Xn. Note that F'(xn) is a linear operator whereas F"(xn) 
is a bilinear operator for all n ~O [1], [2]. If the sequences {xn} defined by (2) 
and (3) converges to a limit x• E D,. then x• is a zero of equation (1). The 
convergence analysis for the Chebyshev method has been well stablished in C [3]. 
Our convergence analysis will be carried out in a Banach space setting. We will 
show that under standard Newton-Kantorovich assumptions [4-8] the Chebyshev 
method converges faster toa zero x• of equation (1) than Newton's method. 

2. Couvergeuce Aualysis. 

We will first need the following results: 

Lemma 2.1. Let F: De X----+ Y. Assume 

a) The nonlinear operator F is twice Frechet differentiable on the D. 

b) The iterates Xn generated by (2) and (3) be long in D and F'( xn)- 1 exist 
for all n ~ O. 
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Then the following approximation is true for all n ~ O : 

F(xn+d = 11 

F"(Yn + t(xn+1- Yn)](1- t)dt(xn+1- Yn) 2 

-~ 11 

F"(xn + t(yn- x,)](Yn- Xn)F'(xn)- 1 F"(xn)(Yn- x,) 2 

+ 11 

{F"(xn + t(y,- Xn)](1- t)- ~F"(xn)}dt(yn- Xn) 2
. 

Theorem 2.1. Let F : D C X ---+ Y, X and Y are real Banach spaces, and 
D is an open convex domain. Assume that F has 2nd order continuous Frechet 
Jerivatives on D and for given an initial value x0 E D that the following standard 
Newton-Kantorovich conditions are satisfied: 

(4) IIF"(x)ll :S M, iiF"(x)- F"(y)ii :S Nllx- Yii. 

(5) 

(6) M(1 + 
3
::2(3PI 2

::; I<, h = I<(3r¡::; 0.485, 

(7) U(x 0 , t•) C D, 

where U(x, r) = {x' E xl llx'- xii::; r}, aud 

(8) 
1 . 2 1 r¡ 

g(t) = ;¡R.t - {jt + {j, 

(9) 
• 1- v'f=2h 

t = h TJ, 

(10) 
•• 1 + v'f=2h 

t = h '1' 
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( 11) 
1- vT=2h 

(}- ------'--=== 
- 1 + v'1- 2h ' 

where t• is the smallest root of equation (8). Then the iteration generated by (2) 
anJ ( 3) is well JefineJ for all n > O and converges to zero x• E U ( x0 , t •) of equation 
(1). Moreover Xn, Yn E U( x0 , t• ), for all n 2: O. Furthermore the following error 
es ti mates are true for all 11 2: O. 

(12) 

where {tn}~=O and{sn}~=O are defined as 

(13) 

(14) 
1 y"(tn) 2 

ln+l = Sn- - -(-) (sn- tn) . 
2 g1 tn 

Proof. It suffices to show that the following items are true for all 11 by mathe­
matical induction. 

(!,.) : Xn E U(xo, tn) ; 

(IIIn): 

Yn E U(xo,sn); 

It is easy to check the case when 11 = O by the initial conditions. Now 
assume that the above statements are true for a fixed n 2: l. 



so 
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llxn+l- xoll ~ llxn+l- Ynll + IIYn- Xnll + llxn- xoll 

F'(xn+l)- F'(xo) = 11 

F"[xo + t(xn+i- xo)]dt(xn+i- Xo), 

IIF'(xn+l - F'(xo)ll ~ Mllxn+l - xoll 
~ K(tn+i - to) 

= Ktn+i 

< Kt* 

1- v'1- 2h 
=K r¡ 

h 

1- v"f=2h 
=K r¡ 

K {3r¡ 

1- v'1- 2h = K---'-:---
{3 

123 
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and by Banach lemma, F'(xn+I)- 1 exists and 

IIF'(xn+!)-
1

11 ~ 1 -IIF'(xo)_)lr~~~(~
1

~I+I)- F'(xo)ll 

< {3 
- 1- fJKIIxn+I- xoll 

1 = ...,..----------:-:-
~ - Kllxn+l - xoll 

< 1 
- ~ - K(tn+l - to) 

< 1 
- 1 ''t fj - ~\ n+l 

(IIIn+!) :By using the identity in the lemma 2.1, we can estímate F(xn+!) to 
obtain 

And so 

M' N 
M 2 2+6¡3 3 

~ 2llxn+l- Ynll + t _ Mllxn _ xoiiiiYn- Xnll 

f{ 2 K 2(sn- tn)3 

~ 2(tn+l- sn) + 2(!- f{tn) 

= g(tn+!) . 

IIYn+l- Xn+III = 11- F'(xn+I)- 1 IJIIF(xn+I)JI 

~ JJF'(xn+l)- 1 JIIIF(xn+I)JJ 

~ -g'(tn+¡)- 1g(tn+!) 
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11Yn+1- xoll :S 11Yn+1- Xnll + llxn+1- Ynll + I!Yn- Xnll + llxn- xoll 

(V,,+¡) : From (1), we have 

and then 

llxn+2- Yn+dl :S 11- iF'(xn+1)- 1IIIIF"(xn+diiiiYn+1- Xn+dl 2 

:S -ig'(tn+l)-1g"(tn+1)(sn+1- tn+1) 2 

Now we are ready to derive the error bound (12). Notice 

g(tn) = ~ (t*- tn)(t••- in), 

and 

g'(tn) =- /~ [(t*- tn) + w·- tn)]' 

it is simple calculus to show that 

t• -in = [ t•- ln-1 ]3 [(t• - ln-d + 2(t••- in_¡)] 
t••- in t••- ln-1 [2(t•- ln-d + (t••- ln-1)] 

N ow sin ce O :S /:.-_'¡""-_', ::; 1, we obtain 

t•-tn 2[t•-tn-1]J 
t•• - t ::; t•• - t ' n n-1 

the estimate (12) now follows from the equalities t• ( 1 + 9)r¡, and t•• 
~ t• + -

9 
. That completes the proof of the theorem. 

125 
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Remark. From hypotheses (5) and estímate 

¡ l ¡x"+t(y"-x") 

IIF'(xo)- 111 IIF'(x• + t(y•- x•))- F'(.ro)iidt ~ ¡J IIF"(z)lliidzll 
O xo 

~ (3M ¡1 

llx• + t(y• - x•) - .roiidt 

:S (3M ¡1 

((1- t)ii.r•- xoll + t(y•- xo)li]dt 

:S (3Mt• 

<l. 

Hence the linear operator J0
1 F'( x• + t(y• - x• ))dt is in vertible. Conse­

quently, if y• is a second of the equation ( 1) in U(x 0 , t•), it follows from the 
approxi.matiou 

¡1 

F'(x• + t(y•- x•))dt(y•- x•) = F(y•)- F(x•) =O. 

That x• = y•. Therefore under the hypotheses of the theorem the unique­
ness of the solution x• of equation (1) in U(x 0 , t•) has been established. 

3. Applications. 

In this section, we use the Theorem 2.1 to suggest sorne new approaches to 
the solution of quadratic integral equations of the forms: 

(15) x(s) = y(s) + ax(s) ¡1 

q(s, t)x(t)dt, 

in the space X= C(O, 1] of all continuous functions on the interval (0,1] with the 
norm 

(16) llxll = max lx(s)i. 
0~·~1 

Here we assume that a is a real number called the "albedo" for scattering 
and the kernal q(s, t) is a continuous function of two variables with O :S s, t :S 1 
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and satisfying 

(17) 0<q(s,t)<1, 0:Ss,t:S1, 

( 18) q( S 1 t) + q( t 1 S) = 11 0 :S S, t :S 1 . 

The function y(s) is given by a continuous function defined on [0,1), and 
x(s) is the unknown function sought in [0,1]. Equations of this type are related 
with the work of S. Chandrasokhar [1.2), and arise in the theories of radiative 
transfer, neutron transport and in the kinetic theory of gasses. There exists an 
extensive literature on equations like (15) under various assurnptions on the kernel 
q( s, t) and o: is a real or complex number. One can refer to the recent work in [1 ,2] 
and the references there. Here we dernonstrate that the theorern via the iterative 
procedures (2) and (3) provide existence results for (15). Moreover, the iterative 
procedures (2) and (3) converge faster than the solution of all the previous known 
ones. Furthermore, a better information on the location of the solution is given. 
Note that the cost is not higher than the corresponding one of previous methods. 
For simplicity, we shall assume that 

( 19) 
S 

q( S 1 t) = -- 1 0 :S S, t :S 1 . 
s+t 

Notice that q(s, t) satisfies ( 17) and ( 18) above. Let us now choose y(s) = 1 for 
all s in [0,1] and define the operator F on X = C[O, 1] by 

(20) 1
1 S 

F(x) = o:x(s) -x(t)dt- x(s) + 1. 
0 S+ t 

Note that every root of the equation F(x) = O satisfies the equation (15). Set 
x0 (s) = 1 and o: = 0.25, use the definition of the first and second Frechet 
derivatives of the operator F to obtain 

and 

1
1 S 

M= 2io:i max 1 -dti = (2/n 2) io:i = 0.34657359, 
o~•:5) 0 s+t 

N= O, K= M, ,BIIF'(l)- 1
11 = 1.53039421, 

t• = 0.28704852' () = 0.08239685 
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0.26339662 (0. 116526742)3n-l 

1- )2(0.116526742) 3
n 

for all n ~O, which shows that x• is unique in U(x 0 , t•). 
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