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RESULTS ON THE PROPOSITIONAL’p-CALCULUS 

Dexter KOZEN* 

Abstrack In this paper we define and study a propositional p-calculur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALp, which consists 

essentialI) ol propositional modal logic with a least fixpoint operator. Lp is syntactically simpler 

yet strictly nwc exprcsk~e than Propositional Dqnamic Logic (PDL). For a rtxtrictcd version 

\\L‘ give an cuponcntinl-time decision procedure. small model prcqwty. and complete deductive 

system. thcri,, wbuming the corresponding results for PDL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

The propositional p-calculus refers collectively to a class of programming lo&s 

consisting of propositional model logic with a least fixpoint operator p. The p- 

calculus originated with Scott and De Bakker [22] and was developed by Hitchcock 

and Park [7]. Park [ 171, De Bakker and De Roever [2], De Roever [20] and others. 

The system we consider here is very close to a system appearing in [l]. The results 

of this volume, however, are mostly inspired by the work of Pratt [ 191, who defines 

a propositional p-calculus Pp, shows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPp subsumes PDL, and extends the 

esponential-time decision procedure for PDL to Pp. It is not known, however. 

whether Pp contains PDL strictly, and a deductive system is not given. 

The usual proof rules for expressions involving least fixpoints do not readily apply 

to Pratt’s I$ due to its formulation as a least root calculus rather than a least 

fispoint calculus. This formulation was chosen in order to capture the reverse 

operator of PDL. Also, formulas of Pp are required to satisfy a rather strong 

condition akin to syntactic continuity. This condition renders illegal several useful 

formulas: e.g., the formula &Y[h]X, which is the same as 136 in the notation of 

Streett [21]. expresses the property that the program b has no infinite computations. 

Pr:ttt’s syntactic restriction allows the filtration-based decision procedure of [ 181 to 

cxtcnd to Pp. whereas no filtration-based decision procedure can work in the 

presence of pX.1 cl]X. as shown by Streett [2 11. 

Here we propose weakening the syntactic continuity requirement and returning 

to a least fixpoint formulation. The resulting system is called Lp. Although full Lp 

is decidable, the best bound known is nonelementary [Ml. However, under a natural 

syntactic restriction which is still somewhat weaker than full syntactic continuity, 

better bounds can be obtained. For the syntactically restricted version, we show: 

* j‘hcw results were o,btained during the author’s sabbatical at the University of Aarhus. Denmark. 
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( I ) LF, although syntactically simpler, is strictly more expressive than PDL. The 

strict containment result follows from a result of Streett [21]. I+ can express several 

natural PDL-ineffable formulas that are useful in program verification (see [4] for 

example::). 

(2) Lp is decidable in deterministic exponential time, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis in fact exponential- 

time complete. This strengthens the corresponding result for PDL. 

(3) There is a natural complete deductive system, involvin_g the fixpoint induction 

rule of Park [ 171. 

Familiarity with PDL and the concept of least fixpoints is assumed (see [ 1,2&t;]). 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADefinition of Lp and Lp+ 



A ~Artltio~r is a mapping assigning a subset of S to each variable. Formally, a 

formula p is interpreted as an operator p*” from valuations to subsets of S. However, 

since y” will be independent of the variab,les not occurring free in p. we will view 

v ” as a function of its free variables. We will write p(x) to denote that all free 

variables of p are among X = XI.. . . , X,,. and $‘(A) to denote the value of p”’ 

on any valuation that assigns A, to X,. 1 s is IL The operator p.” is defined 

inductively as follows: 

(?.?.I) a%‘,” (ii) = A,, (22.4) (lp)~"(A) - S-p(A). 

(22.2) P’(A) = I(P), (2.2.5) ((a)p)“(A) =(d’i( P.‘?m. 

(a”)(B) =(.a tc s. (s, fk I(N)}. 

To define (2.1 A) and (21.7). let @Y be a formula positive in X, and let .% denote 

the other free variables of pX. Thus pX = p( X. x ). We assume by induction 

hypothesis that the operator $’ has already been defined. Because of the require- 

mcnt that yS be positive in X. the operator p’j is monotone in the variable X with 

respect to the subset relation. 

k4iere. in ( 22.7). the union is otc‘r all ordinals /3. Taking p b (Y for any ordinal cx, 

( 2.2.W ii-c) and ( _._. 7 ’ 7) can be combined into the single definition: 

If p is closed. then I,” is constant. In this case s is sitid to sntisff ,v (notation: 
\l 
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3. Notation and basic results 

3. I. Defined operators, positive normal form 

In addition to the primitive operators, we will use the usual defined Boolean 

operators A, + and w, as well as the defined operators 

[alp = l(a)-lp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlJxpx=l~xlplx 

The operator Y is the greatest fixpoint operator. It follows from (2.23) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPX.PX 

is the greatest fixpoint of the map I\X.pX, i.e., 

(3.1.1) Yx.pX.Lf(A)=u{BI B=p’Zf(B,A))=U{qB~ P”‘(B.JN 

and 

(3.1.2) ([alp).“(A) =[a”‘l(pYA)) 

by (2.X), where 

[a”“](B) ={siVt, (s, t) E I(a) + t E ES).‘= S-(a.“)(S- R). 

It is easily proved that every f+ formula is equivalent to a formula over \I, A. 

p, v, ( >. [ 1, and 7 in which 1 is applied to primitive P only. Moreover. by renaming 

bound variables (Proposition 5.7(i) below), we can assume that no variable is 

quantified twice. Such a formula is said to be in positive normal form. 
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Define the map e on subformulas of p. by 

d p) = p[ V,I~V,l. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The closure of p. is the range of 4: 

Note that e( pl is closed, since if X occurs free in p, then crX 6 p. It is immediately 

clear from the definition that CL( p,,) is a finite set, and is in fact no larger than 

1 p,,I. the number of symbols of po. The next proposition relates CL( p(,) to the more 

usual notion of closure, as found for example in [6]. 

~oposition 3A3. CL( p,)) is the srnal!est zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of closed formulas slrch that 

(8 14, E CL( p,A 

(ii) if -=-PC CL( p,,). then P E CL( p,,). 

(iii) if p v q E CL( A,). therl p E CL( p,,) artd 4 E CL( p,,). 

(iv) (f p A 9 E CL( p,,). then p E CL( pJ and q E CL( p,,). 

W if (a)p E CL( p,,). then p E CL( p,,). 

(vi) if [a]pE CL( p,,)..theri PE CL( po), 

(vii) if crx’.pX E CL( p,,). then p( oX.pX) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACL( po). 

Proof. It immediately follows from Definition 3.2.2 that 

( viii) e( p) = p if p is closed. 

(is) c*( p L 9) = e(p) v e(q). 

(sb etpq) = e(p) A e(q), 

(xi1 e((a)p) = (aje( p). 

(xii) e([a]p) = [a]e( p). 

(xiii) e( ,Y) = e( rrX.p) = aX.( p[ V,,,J~~V,,& 

where. in (xiii). crX = ~r,Y.p. Cases (i) and (ii) are immediate from (viii). For case 

(iii), suppose p v 9 E CL( p,,). Then p v 4 = e( p’ v 9’) for some subformula p’ V 9’ of 

P,~. By (ix), p -” e( p’) and 9 = e(y’). therefore p, 9 E CL( p,,). Cases (iv)-(vi) are 

simil;lr. For case (vii). suppose uX.~X E CL( p,,). Formula aX.pX has exactly two 

prc-images under e, namely X and UX = f~X.p’x. Then /A, d p’X, and 

3.3. A&e cariahles and acortjwcticity 

Definition 3.3.1. L_.et p,, be in positive normal form, p. < p. A variable Y of JJ(, is 

called active in p if uY < p and p[x/~x] contains a free occurrence of Y, where 

.y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the  subsequence of I;, consisting of those variables X for which aY < O-X < p. 
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The subsequence of V,, consisting of the active variables of p is denoted A,,. The 

subsequence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, consisting of the active p-variables (resp. v-variables) is denoted 

AP!, (resp. AQ. 

If X is free in p, then X is active in p, but not vice versa in general; e.g.. in 

(XV) #uX.vY*(X A /..LZ.((a) Y v [b]Z)), 

X is not free in (~1) Y but is active in (a) Y, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Y[Z/,rZ][ Y/d’] = (a)vY.( X A pZ.((aj Y v [WZ)) 

contains a free occurrence of X. However, the relation ‘i$ active in’ is somewhut 

like the transitive closure of the rclntion ‘is free in’, in the following sense. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma 3.3.3. If Y is active irt p, aid X is active itt cry, tttot X is wtice irt p. 

Aconjunctiviry is iI technical restriction that is used in the proof of Thwrtm 

6.3. I. It is related to, albeit weaker thi\n, syntactic continuity. It is ditticult to giw 

the intuition behind the concept of aconjunctivity wt of contest: WI‘ therefore defer 

further ~sl>lani~ti(,n until Swtion h. 

1 

4. 15pressiveness results’ 

J!_P sub9mics PDL without the reverse operatoi , a:\ nottxl by Pratt [ 191. ‘The only 

least fixpoints PDL can kxpress are of the form (a”$, which in I+ is expressed 

,~A’./I v (n )X. Thus (a*?/~ is the Ieast fixpoint of the monotone operator AX.p v (ah%‘. 
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This operator is continuous in X, in the sense that 
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pvW UA, 
( ) 

=U(pvWA,). 
I I 

If any model M, if pX is continuous in X. then 

#LX.pX “I = wxpx~“. 
. - 

i.e.. the inductive definition of pX.pX given in (2.2.7) above need not go beyond W. 

However, there are many non-continuous operators that are potentially useful 

in program verification. An interesting example is provided by the operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAX.[a]X. 

Its least fixpoint in any model M is 

pX.[ n]X,” = {sl there are no infinite a-paths out of s} = 140, 

where J is the loop operator of Streett [Z I]. pX.[a]X is a well-formed formula of 

1,~. even under the restriction of aconjunctivity, but is illegal in Pratt’s system. In 

the model of Fig. 1, the operator hX.[ a]X does not close at w, since the top state 

satisfies (w + 1 X[a]X but not wX.[a]X. Thus AX.[a]X is monotone but not 

continuous. 

There are many useful properties that can be expressed with non-continuous 

operators. including livenesc and fairness properties. The prototype liverless property 

. . . 

. 
l 

. 

Fig. I. 
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‘along every a-path, p must eventually come true’ is expressed as &Kp v [u]X in 

Lp. We refer the reader to [4] for further examples. 

The question raised by Pratt about the strict expressiveness of Pp over PDL is 

still open, but the following result of Streett shows that Lp, even restricted to 

aconjunctive formulas, is strictly more expressive than PDL. The proof also reveals 

why filtration techniques, which are used to obtain complexity and completeness 

results for PDL, fail for Lp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proposition 4.1 ([213). r,cX.[a]X is root equivalent to arly PDL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAformltla. 

Proof. Suppose pX.[a]X = p in all models, where p is a formula of PDL. In the 

mode! M of Fig. 1, s t= pX.[a]X, therefore sk= p. The proof of the small model 

property of PDL [6] allows hl to be collapsed to a finite model N by identifying 

states that are indistinguishable by formulas of FL(p), the Fischer-La&w closure 

of p. If [I] is the equivalence class of t in the collapsed model, then IV, [@= q itf 

M, tt= q for any q E FL( p). Tn particular, [s]k p. But [s] cannot satisfy r,tX.[a]X. 

since the collapsing must have created a loop, therefore there is an infinite n-path 

out of [s]. cl 

The above proof assumes that pX.[a]X = p in all models and derives ;\ contradic- 

tion. However, it is possible to show that Lp is strictly more expressive thaII PDL. 

in the stronger sense that there is a model hl and a fornwla y of Lp such that no 

PDL fwnula /I is equivalent to q 011 M. 

Intuitivei~. I’1X cxmM simulate itn unhwrnck. AmNion 0f [ tf ] wlrf (d. 

Full tp encodes APDL of Streett [Xl. since A? = rX(aX LJnder the restriction 

of aconjunctivity, I+ can be shown to encode well-structured JPLX, which is 

NW1 with the * and LJ qxwtors constrained to ;\ppt%r onlv in the contt’st of thC 

deter!?Iiili\tic progmrn constructors 

Primitive programs need not be deterministic (see [S]). 
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5. A deductive system 

The deductive system is equational, as in [ 151, involving equations p = 4 and 

inequalities p d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlatter can bc considered as an abbreviation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp v (I =q. The 

logical axioms and rules are those of equational logic. including substitution of equals 

for equals, provided the syntactic restrictions on p formulas are not violated. The 

nonlogical axioms ;dre the follawing: 

(5.1) axioms for Boolean algebra. 

(5.3) (tl)X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh[Q]Y=+2)(XA Y). 

(S.4 (a)O=O. 

(56) pl” d Y +LX.p*Y s Y, Y does not occur in pX. 

A formula p is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc o rtsistarlt if not bp = 0. Axioms (5.1)-t 5.4) are those of proposi- 

tional modal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlqic. Axioms (525) and (5.6) say that pX.pX is the s-least objet t A 

such that p(A F A. Axiom (5.6) is the fixpoint induction rule of Park [ 171. 

The following arc some basic theorems of :hi(; system. The reader is referred to 

[ 1.201 for the proofs. which tire omitted here. 

Proposition 5.7. (il ( Clumge  o f borrnd ctlrinble I 

( iii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( !Uonotoni~iry) 

Proof of hi) 

(b,) p(9A p.WqA p(4A Iy))) “-4 (by (a), (5.1) and (iii)), 

(C-1 j’(qA/lx.(qA pt:qA ,~)))~9Ap(4At_Lx.(qAp(qAx))) 

(by w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand (5.1 )), 

(d) p(q~c~X.(q~ p(q~ X))W~X.(~A~(~AX)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(by W and (5.%), 
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(e) p(q A pX.(q A p(q A x))) s q A /Lx.(q A p(q A X)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(by (bh ku and (S-1 ))T 

(f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~X.PX~LjA~X.(q Ap (q AX)) (b y(e )a nd (,5.6)), 

k) px.pXs q (by (f) and (5.1 I). Cl 

Implication (vi) of Proposition 5.7 is crucial in the proof of Theorem 6.3.1. We 

will use it in its Aal form: if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq A j.kX.pX is consistent, then q pI p(pX.19 A /IX) is 

consistent. This is the proof-theoretic analog of the following 

intuition: If there is a state of the modei M satisfying q A pX.pX 

be a least u such that there is a state of A4 satisfying q A aX.pX. 

model-theoretic 

then there must 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComplexity and deductive completeness 

In this section we prove completeness of the deductive system of Section 5 and 

Ave an exponential time decision procedure and small model property for Lp under F 
!hc restriction of aconjunctivity. Lp is decidable without this restriction [I (I]. but 

is not knowr? to be elementary. These results are proved sin~ultaneously. using a 

tahlcau method. 



Note that the v-rule creates two new successors, the ( )-rule creates a new 

successor for each formula of the form (b)p, and all other rules create one new 

successor. In the last case, the unique successor of s is denoted s +. 

The construction process maintains several lists C of integer counters c, which 

count applications of the X-rule to active variables of formulas in I:,. There is one 

list C(S, p) for each p E I’,. and the lists are disjoint. If A, = XI, . . . . , X,1, then 

C(s.p)=(c I...., c,,), where c, counts applications of the X-rule to X,. The counter 

c, is associated with X, throughout its lifetime. We denote this correspondence by 

X( ci) = X,. In general, there may be several counters at node s associated with the 

same variable X, since X may be active in sever-al formulas of 1;. but these counters 

will appear on different lists. 

The integer value contained in c at node s is denoted c(s). If X( c’) is a p-variable, 

c is called a p-colrtrter, and c(s) will always fall in the interval 05 C(S) s P’. If 

d# ( d is a P variable. c is called a wwrrnter, and C( 3 1 c {0, 1). A rj-counter L’ is used 

only as a one-bit flag to determine how recently the UT- or X-rule has been applied 

:3 X( c-1. 

If C is a list. let C’p (resp. Crp) denote the sublist of C consisting of all p-counters 

( resp. I)-counters). The construction process also maintains a global list G consisting 

of all existing p-counters. G( s) is a shuffle-merge of the lists C’p ( s, p,). I, E I *,. Thus 

the order of the p-collnters in G is consistent with their order on the lists C-p. 

Whereas the order of the counters c on C is static and determined by the ordtx -C 

on ~33 (9. the order on the global list G is dynamic and depends on the construction 

up to that point. G(S) imparts a priority to the y-counters existing at s, with the 

lt’ftmost of highest priority. 

The list\ and counters are maintained as follows. We htarf with a single list 

C( r,,. /I,,) at the root. and 0 r,,. p,,) = G( r,,) = ( ). since /I,, has no active variables. 

The lihts and counters are updated at eich application of an extension rule as 

idh~ \. 

(6.1.6) When the (r-rule is applied to cr.K.yX ;rt node s, recall that I’, f is obtained 

from /‘, by replacing MX.I~)X with pX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf Y is free in PX. then pX has a new active 

variable that was not active in CLR’.IJX, namely X. A new counter c is created with 

S( (9 = S and C( s + ) = 0. and bve appencr c to the right end of CO, t%pX) to get 

C( s + . pY 1. If X is ;t p-variahlc, the new counter IS also appended to the right end 

oi G, indicating lowest priority. If X is not fret in r,X, then we take c‘( s +, /iYj = 

( ‘( s. trS.p.Y b and G( s + J = G( s). hut by Proposition 5,7(v) we can assume w.l.0.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I llilt  this dots not liappcn. 

(6.1.7) When the v-rule IS applied to p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv q at no& s with successors f. 11 as in 

(ti. 1.2). recall that the formula p replaces p v q in 1; and q replaces p v q in I’,,. We 

obtain C( ~1’) (resp. C( 11. q)) from C‘( s, p v q) he deleting all counters c such that 

SC (9 is not active in I, (resp. 4). Any deleted p-counters also disappear from tht: 

global lists G! t ) and G( II ). 
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(fi.1.8) When the A-rule is applied to p A 4 at node S, then we obtain C( s +, p), 

(resp. C(S+, 4)) from C(s, p A 4) by deleting all counters c such that X(c) is not 

zrctive in p (resp. 4). The global list G remains unchanged. It is here that the 

condition of aconjunctivity is used: whereas a v-counter on C(s, p A 4) may appear 

on both C(S+, p) and c( s+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq), Cj.ds, p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA q ) cleanly splits into disjoint lists 

@(s-+-, p) and cp( St, q), since each p-variable active in p A q  is active in exactly 

one of p, q. If aconjunctivity were not satisfied, the p-counters on G would h;!ve 

to be duplicated. 

(6.1.9) When the X-rule is applied to a variable X at s, and UX = uX*pX, take 

C(s+, pX) = C(s, X), and set c(s+) = c(s)+ 1, wherb c is the unique counter on 

C(s+,pXjandC(s,XjsuchthatX(cj = X. Nore that c appears rightmost on these 

lists, since aY 6 CTX for all variables Y active in X. If X is a p-variable, we reset 

all p-counters of lower priority than c to 0 (recall that d is of lower priority than 

c if it appears to the right of c on the global list Gj. We also reset to 0 any z’-counter 

appearing on any C( s+ _ p) to the right of some p-counter that is incremented or 

reset to 0. 

(6.1.10) When the ( )-rule is applied at s, then for any successor 1. I’, is of the form 

{P*417*-4J,J7 where (b)p, [h]q, E IT,. Take C(t, p) = C(s, (b)p) and C’(r.q,j = 

i’(s.[h]q,), 15 is n. G(t) is obtained from G(s) by deleting ail counters not 

appearing on C( t, p) or some C( 1.4,). All P-( ounters are reset to 0. 

(b.l.11) If p E I’, and the A-, v-. O-. or X-rule is applied at s to some (I f p, and t 

is a successor of s, then p E 1:. In this case we take C( t, p) = C(s, 11) and leave all 

counters on C( t, p) intact. 

(6.1.12) .\fter updating the lists according to (6.1 .(i)-(0.1.1 1). C(L p) may be 

temporary ill-defined. For example. if p. p A cJ E Z’,, and the ~-rule is applied to./. A q. 

then (61.8) defines C( s+, y) to be a sublist of C(s, p A 9). but t6.1.11) dt+ines 

(‘i S+ , p) = C( s, p). For another example, if (b)p, [ h]p E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf‘, ad the ( )-rule is apphcd. 

then. at the successor t corresponding to (h)p, (6.1. IO) defines C(:, p) = C( s.,(h)pj 

and C( 1, p) = Us, [h]p). Whenever such a conflict occurs, the list of higher priority 

is kept and the other is discarded, where the priority of a list is determined by the 

pflsition in G of its highest priority p-counter. If the lists contain no p-counters. 

say c’=(c,.. . . A,,) and C’=(c;.. . . . _ c:, ), then we discard C’ and set c, := 

max{c,, c:}, 1 s i 5 II. 

(6.1.13) Wh enel:t’r a ,u-counter changes priority due to the deletion of a higher 

priority p-counter, it is reset to 0. Whenever a p-counter c E: C is incremented or 

reset to 0, 2nd d is a I’-counter appearing to the right of c on C. then n is also 

rc\ct to 0. 
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6.2. The algorithm 

We now describe an alternating Turing machine algorithm to construct the tableau. 

The algorithm starts with one process at the root to. It then applies the extension 

rules in a regular fashion, accepting or rejecting on certain conditions described 

below. When visiting node s of T, a process has representation of I:, written on its 

tape. It also maintains all the lists of counters as described above. At applications 

of the v-rule, it makes an existential branch, spawning two subprocesses, each taking 

one of the successors. At applications of the ( )-rule, it branches universally, 

spawning several processes, one for each successor. 

At any node, the A-, v-, U- and X-rules are applied first. The X-r& may only 

be applied to a v-variable X E I: if C(S) = 0, where c E C( S, X) and X(c) = X. 

Whenever one of the following conditions obtains, the process takes the indicated 

action. 

(6.2.1) There exist P. if c I’ ,. Halt and reject. 

(6.2.2) Some p-counter exceeds 2 “Y Halt and reject. 

(6.2.3) The only rule that applies is the ( )-rule (i.e., I:\ contains only formulas of 

the form f. 1P. (a)~. [alp, or v-variables X whose counters are nonzero). and 

neither of the previous conditions holds. Apply the ( }-rule. 

(6.2.4) No rule applies and none of the previous conditions hold. Halt and accept. 

Let iC;/ denote the maximum length of G(S). Since G(s) is a shuffle of at most 

i p,,j lists CCL ( S, p) and each IC’p( s, p)I e 1 pal, Ic;l s 1 p,,I’. The above algorithm requires 

at most Ip,,I ’ space, enough to encode I’, and lG1 s lp,,l’ counters, each containing 

a nonnegative integer at most 2 I:,. Despite the possibility of infinite computations, 

this alternating algorithm can be simulated in deterministic exponential time 131. 

The next lemma is used here to show that one of the conditions 16.2.1 k-52.4) 

must obtain after ;i finite time. The lemma is used again in Section 6.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 6.2.5. Let s = sI1 t,, sl, t,, . . . , s,,, t,, = t be nodes along some path in T 

such that s, + I is an immediate successor of t,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 s i < n. Let c = cl,. . . , c,, be counters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

suc h tha t c , c’xists in the interval [s,, l,] and C, --+ c,+ I at 1, (therefore C, no longer 

exists at s, + I ). Let a, be the number of times C, is incremented in the interval isi, t,]- 

and define 

Lemma 6.2.6. If either (i 1 c is cc p-corrnter, or ( ii) c is u v-counter and he ( )-de b 

wt applied irl the iWerca1 [s. t]. then 

a( c. s, t) 6 1 p,,l’2 Plt I. 



PrOOf. ( i) Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. S, r, Cj, Siy t,, 1 N ( I s rz, be as in Definition 6.25 Note that X(c) = 

X(q), 15 is n. Let pIEI’,, such that c, E C(s,, p,), and let d, be the leftmost 

p-counter on C( s,, pi). Using Lemlna 3.3.3, it can be shown that c!, exists throughout 

the interval [s,, r,] leftmost on the same list as c,, and d, + l . 9 + d,,. Since the priority 

of d; never decreases, and ni+, is of higher priority than d,, the sequence n, + l * l + d,, 

is no longer than IGl. 

Let W = 2’4J, the maximum value of c,. In the interval [s,, I,], c,‘s priority can 

increase at most /GJ times. Between priority changes, whenever C, is re>et to 0, a 

counter of higher priority is incremented. Thus c, can be incremented or reset to 

0 dt most IV” times before either ci or a higher priority counter exceeds N and 

condition (6.22) obtains, causing the process to halt and reject. Thus c, can change 

priority, be reset, or bc incremented at most IGlhT1C” times. This gives an upper 

hund on the n, of Definition 6.25, thus 

(ii) If there exists a p-variable )’ active in .X(C), then for each i, there exist> a 

p-countt’r d, appearing leftmost on the same list as C, throughout the inter-v:.11 [A,. r,]. 

A\ ;ibt)vc, the length of the sequence cl -+ l - 9 -+ c,, is at most lG1. Within the interval 

Is,. I,], c, can bc reset to 0 onlv if the ( )-rule is applied (t~.l. 10) or some ~-counter _ 

to the left of c’, is incremented or reset PO 0 (6.1.13. The former does no\ occur 

hy awmiptic~n. The Iattcr occur> only if the ri&tnwst p-counter to the left of C, k 

increment4 or reset to 0. By (i), this can happen at most [GIN (’ times. from \\hich 

the hound follows. 
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The following theorem asserts the correctness of the algorithm and the complete- 

ness of the deductive system of Section 5 simultaneously. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 6.3.1. 7%~  followiltg are eqrriucrlent : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(i) p. is consisterzt, 
_ _ _ ._ -- 

(ii) tk afgoritht does riot reject, 

(iii) p,, lrtls a fir&e tree-like model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdepth eqmentid in 1 p$. 

Proof of (i)+(ii). Suppose p,, is consistent. First we construct a formula e’( s. p) 

for each pc 1; such that e’( s, p) s t( p). e’( s, p) is formed by conjoining certain 

c lose d formulns rl s, ~9. c E Cp( s. p) (to be defined later) with certain subformulas 

of C( p). a s fo llow. Let V,, = X = X,, . . . , X,,. For X, E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApI,. c, E Cp( s, p) with 

A ( c; ) = X, and uX, = pX,.$X,. let q, = pX,.( r( s, ( ,) A qX,). For X, E V,, - Ap,,, let 

% = mYI. Define 

By Proposition 5.7(iiiL e’(s, p) s e( p). 

Each r( s, c*) consists of a conjunction of closed formulas, defined inductively doa!n 

the tree. If neither the U- nor the X-rule is applied at s. or if the P or X-rule is 

applied to a it-variatk let 

for a11 suc c t‘ssors t of s and counters (* c G(t). 11 the cr-rule is applied to +Y.p.Y at 

s. yielding a ne\v ccxnter c on C‘( s+. pX) with S( I‘) = A’, define 

(h.Z..~, r(s+. c-1 = true. 

VLZ.4 r(s-+-. d, = r(.s. d,. dc C’(s+. px,, 11 # c. 

If the S-rule is applied to the ~-variable X at s, and CE Us+. X) with X(0 =X, 

define 

\\ hert! 

The f~~rmula r(s+. c) in (6.3.7) is weli-defined, since (6.33 and (63.6) determine 

r( s+. d) for all d f C. :nrd these determine u’( s+, p) for all p E I’,, p # X, and hence 

determine .J :. 
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Note that r( S, c) consists of a conjunction of c(s) closed formulas (by convention, 

At? = 1): 

where si, 0 s i < c(s), is the most recent ancestor of s such that c had value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. 

Let 

We now construct a set B of nodes of 7’ containing the root rcl such that 

(63.8) if s E B and the v-rule was applied at s, then at least one successor of s 

is in B, 

(6.3.9) for any other node s E B, all successors of s are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin R. 

(6.3.10) for every s E B, &, is consistent. 

The set B is constructed inductively down the tree. First set B := (r,,}; Jr,, ={ /I,,} is 

consistent by assumption. 

Suppose s E B and the v -rule is applied to ~7 v 9 at s. and t, 14 are the two successors 

of S. If p E I’$ already, and C(s, ~1) is of higher priority than the sublist of C(s, p v 9) 

corresponding to the active variables of p, then the latter list is deleted in t 6. I. 13. 

so that 3, c J,. Then J[ is consistent since J3 is, so we can extend B by taking 

B := B u {I}. Similarly, if 9 E I ‘, and C( s, 9) is of higher priority. then wc‘ c:m take 

I3 :- B u (II}. if neither of the above casts ho&, then 
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is consistent. Using Proposition 5.7(vi) it follows that 

is consistent. But (63.13) is equal to 

therefore the latter is consistent. 

The above construction gives a subtrcc B satisfying conditions (6.3.8)-(6310) 

above. We show now that if T is any process in the computation tree of the above 

alternating algorithm visiting node s of the tableau, and r is labeled 0 (reject), 

then se B. 

A process z may halt and reject outright because of either (62.1) or (6.22). In 

(62.1 b. there exist f, --I PE J,. therefore J;l, is inconsistent by (5.1), hence s sf B by 

(6.3.10). In (6.22) there must exist two ancestors II, c of s such that I;, = I-,. and 

the X-rule is applied to the g-variable X(c) at LI and C, thereby incrementing c at 

14 and c. and c is not reset in the interlal [II. c]. This also implies that the priority 

of c is unchanged between II and t‘. If n E Gc u) of higher priority than c. then 

d F G( C) with the same priority. and cl( ti) = d(cL otherwise c would have been 

reset bet\\een 11 and c Then r( u+, d, = r( t,+, d). The set of counters of lower 

priority than c at rf may differ from that at L‘, but r( U+ . d) = r( c+ , d’) = frlrv for 

any such r!, &. because these counters were reset to 0. Then 

(6.2.14 .A: = J:,. 

Now iA A;:, appears in r( If+. d and hence in r( t‘. ~1, and c’( L:, 33 = 

+Y.( r( L’. c ) A pX ) E J,. therefore 

by (S.1). Proposition 5.7( iii) and (6.3.1-I). On the other hand, 

AJ, s A& by (62.1 I). 

Thus J, is inconsistent, and L’ E! B by (6.3. IO). Since t/‘ is an ancestor of S. s & B. 

If r is :I universal branch, then one of the successors p of 7~ must be labeled 0 

in the algorithm, and /, is visiting a successor 1 of s. By induction, t B B, therefore 

s rZ H by (6 3.9). If 7~ is an existential branch, then both successors p, 7 of 7r must 

be ktbeled 0 in the algorithm. and ~1, T are visiting successors t, u of s. By induction, 

1. II z 8. therefore s r~ B by (6.3.8). Proceeding back up to the root, if the initial 

process 77,, wrc labeled 0, then r,,& H, a contradiction. Tileref.)re the algorithm 

does not reject. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof of (ii)+ (iii). If the algorithm does not reject. prune A1 rwdes of the tablerru 

T visited by processes of the algorithm labeled 0 (reject). Prune further so th:tt 

each v-node s has exactly one successor s+ . The tree i” so obtained satisfies (6X41 

and (63.9) above, and contains the root ro. 



We now define a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = (S, I) from T’. Let S be the set of nodes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT’ such 

that either the ( )-rule was applied at s, or no rule was applicable at s (thus s is a 

leaf). Each edge out of a node in S is labeled with a unique program constant. and 

all other edges are unlabeled. For s e T’, let U(s) be the set of nodes of T’ consisting 

of 3 and all ancestors on the path back up to, but not including, the most recent 

ancestor in S; or back up to and including the root, if no ancestor of s is in S. Note 

that if s E: S and s -+ 11 in T’, then by Lemma 6.2.7 them exists a unique node I E S 

such that u E: U(t). For s, t E S, let (s, t) E I(a) if there is an edge from s to a node 

in U(t) labeled n. Let s E I(P) if PE I’,. 

We construct a set of closed formulas 0, of f++ for each s E T’, as follows. Let 

p E I’,, vr, = x = x,, . . . , x,,, ux, = c~x,.p,X,. If X, E Ap,, and CE C( s. p) with X, = 

X(c). let 

N ( s, c’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) = sup cy ( c, s, t ), 
1. I’ 

where 4 cm, s, t) is given as in Definition tx2.5. if X, E I’,, - Ap,,. Ict y, = VAT,. Let 

q=y,.... , q1 and define 

e”( s, p) = p[k/g], 69: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e”( s. p) p E: I‘,}, ~,=U{(‘,:~tE U(s)). 
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where the supremum is tab over all cI-successors 11 of s. Some of these a( t, L’) 

may be strictly less than cu( s. c). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof of (6.3.20). Either a ==p or (Y E w. If cy =p and pX.px~ O,, then 3 to J_&), 

3p’X with 

pXpX = e”( f, j.dtp’X) = $Kp’X[X/4] E S:, 

where 8 = VI,.\ ,,‘.\. ,uX.p’.X E f’,. and the a-rule applied to pX.p’X at t. Then 

p’X E I;, and 

e”(r+.p’X)=p’x[r7,x/~. a(?+, c)X.p’X]=p’(ff(t+, c)X.p’X)[X/@] 

where CC C(r+,p’A’) with X=X(c). 

If it c w and tr.Y./& c 0,. then 3 t c Il( s), 3p’X with 

cY,Y.pX = CJ”( f. X 1 = X[k. X/Q. (YX.p’X] E (9;. 

where k = t,‘,,., I,* \ , X E I;. the X-rule ;s applied to X at t. and cy = a( t, c) where 

;* +-_ C*( t, X) with X = X(c). Then p’X E 1; + and 

C”‘( 1+. p’X) = fX[X. x/q. CYI t+ . c*‘,X.p’X] 

= I;‘< a( 1+, d)X.p’X ,[X/qJ 

\\,hcrc (*‘t C“( l+, p’.Y) with ,Y - X(c’). Either c = c*’ or c*+ c’, but in either case, 

It ( 1. d = o ( t+ , C-’ I+ 1. therefore (h.3.20) is satisfied. 

Proof of (63.21). If PX.~X E 6),, then 3 ZE U(s), 3p’X wch that PX.~X = 

&‘( t. vX.p’.Y 1 and the a-rule is applied to JJX.~‘X c I-,, or zA’.yX = e”( t, X) and 

.Y t: 1;. In the former case we proceed as in the proof of (63.16). In the latter case, 

if t*c C‘(t. ,W with X(c) = .Y, and c( t ) # 0, then there must have been a most recent 

time t’ at which the value of c chznged from 0 to 1. Then any p-counter n appearing 

tk~ :hc left of c on C( t’. X) exists at f, and the X-rule is not applied to X(d) in the 

intc’rval [I’-+, t], nor is L/ reset, otherwise c’ would have ken reset. Then ci zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d. f) := 

II (4 1’). thtwfore iNpX = e”( t’, XL and the X-rule is applied to X at I-i,. As in 

the proof of (6,K!O), 

q’-‘=I”ES~3q’qlwjE @\}. 

Note that if q’ L (I, then q’” c q”. If cf = qL, . . . , qt. let $’ = qy, . . . f &. We sbv 

ty induction on formula structure that, for any p(x) and q, _ 

(6 3 “1 p(q)(‘)2 p’?q?. .- .__ 
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By definition of M, 

P = {s 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPE 0,) = Py 

TP’”  ={s(lPe @,JE 1P”  by (6.2.1) and (2.2.4), 

x,(q)” = ql” = x;“’ (q”). 

For the case p v y, 

p v q(4)” c p(@” w q(q)” by (6.3.17) 

c p”‘($‘) u q*” (Q”, by induction hypothesis 

I= (.e v qY”($-) by (2.2.3). 

The case p A q is similar, using (6.3.16). For the case (a)~, 

(,n)p(@‘-‘c (c?)( p(q)“) by (6.3.18) 

5; (~~~“)(p”($-‘)j 

by induction hypothesis and the monotonicity of (a ‘j> 

== (n}p*“(c’i’-‘) by (2.2.5). 

For the case [n Jp_ 
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By (3.1.1), vX.pX.“(tf”) is the greatest fixpoint of the operator hX.pbf(X, $‘), 

therefore 

vx.px(q)H E vX.pX”(f). 

This completes the proof of (6.3.22). 

Taking p = p. in (6.3.22), we get r. E pc 5 pt’, therefore M, r& po. A finite 

tree-like model of the appropriate size can be obtained from M by the technique 

in [8. 131. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof of (iii)+(i). This asserts the boundness of the deductive system and is left 

to the reader. cl 
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