Theoretical Computer Science 27 (1983) 333-354 333
North-Haoiland

RESULTS ON THE PROPOSITIONAL u-CALCULUS

Dexter KOZEN*
Mathematical Sciences Department, IBM Research Center. Yorktown Hcights, NY 10598. U.S. A.

Abstract. In this paper we define and study a propositional u-calculus Lu, which consists
essentially oi propositional modal logic with a least fixpoint operator. Ly is syntactically simpler
vet strictly more expressive than Propositional Dynamic Logic (PDL). For a restricted version
we give an ¢xponential-time decision procedure. small model preperty. and complete deductive
system, thercoy subsuming the corresponding results for PDL.

1. Introduction

The propositional u-calculus refers collectively to a class of programming logics
consisting of propositional model logic with a least fixpoint operator u. The u-
calculu- originated with Scott and De Bakker [22] and was developed by Hitchcock
and Park [7]. Park [17]. De Bakker and De Roever [2], De Roever [20] and others.
The system we consider here is very close to a system appearing in [1]. The results
of this volume, however, are mostly inspired by the work of Pratt [19], who defines
a propositional u-calculus Pu, shows that Pu subsumes PDL, and extends the
exponential-time decision procedure for PDL to Pu. It is not known, however,
whether Pu contains PDL strictly, and a deductive system is not given.

The usual proof rules for expressions involving least fixpoints do not readily apply
to Pratt’s Pu due to its formulation as a least root calculus rather than a least
fixpoint calculus. This formulation was chosen in order to capture the reverse
operator of PDL. Also, formulas of Pu are required to satisfy a rather strong
condition akin to syntactic continuity. This condition renders illegal several useful
formulas: e.g.. the formula uX.[b]X, which is the same as —4b in the notation of
Streett [21]), expresses the property that the program b has no infinite computations.
Pratt’s syntactic restriction allows the filtration-based decision procedure of [18] to
extend to Pu. wherecas no filtration-based decision procedure can work in the
presence of uX[a]X. as shown by Streett [21].

Here we propose weakening the syntactic continuity requirement and returning
to a least fixpoint formulation. The resulting system is called Lu. Although full Lu
is decidable, the best bound known is nonelementary [16). However, under a natural
syntactic restriction which is still somewhat weaker than full syntactic continuity,
better bounds can be obtained. For the syntactically restricted version, we show:

* These results were obtained during the author’s sabbatical at the University of Aarhus, Denmark.

0304-3975/83/83.00 :© 1983, Elsevier Scienc - " hers B.V. (North-Holland)

334 D. Kozen

(1) L., although syntactically simpler, is strictly more expressive than PDL. The
strict containment result follows from a result of Streett {21]. Ly can express several
natural PDL-ineffable formulas that are useful in program verification (see [4] for
examples).

(2) Lu is decidable in deterministic exponential time, and is in fact exponential-
time complete. This strengthens the corresponding result for PDL.

(3) There is a natural complete deductive system, involving the fixpoint induction
rule of Park [17].

Familiarity with PDL and the concept of least fixpoints is assumed (see [1. 20. 6]).

2. Definition of Ly and Lu+

Lu is essentially propositional modal logic with a least fixpoint operator u. Lu+
is an infinitary language containing Ly, obtained by augmenting Ly with the ability
to construct the a-fold composition of a monotone operator, where a is any ordinal.
Lu~+ is useful in transfinite inductive arguments.

2.1. Syntax

The primitive nonlogical symbols of Ly and Lu+ consist of propositional constants

PO ... including the constants 0, 1. propositional variables X, Y. and program
constants a. b, Formulas p.q.... of Lu+ arc defined inductively:

(2.1.1) X, (2.1.5) {a)p,

(2.1.2) P, (2.1.6) aX.pX, a an ordinal.

(2.1.3) pvy, (2.1.7) uX.pX.

(2.1.4) .

wherein (21,60 and (2.1.7) pX is positive in the variable X e, every free oceurrence
of X in pX occurs in the scope of an even number of negations . (The notions
of scope. bound and free occurrences of variables, closed formulas, ete. are the
same as in first-order predicate logic, where o X and aX are treated as quantifiers.)

Intuitively, aX.pX represents the e-fold composition of the operator AN pN
applicd to 0,

2.2 Semantics

A model is astructure M = (S,). where S isa set of states and I an interpretation
ol the proposttional constants and program constants as. respectively, subsets of §
and binary relations on S0 We require that 1) =0 and I(1) = 8.

Results on the propositional p-calculus 335

A valuation is a mapping assigning a subset of S to each variable. Formally, a
formula p is interpreted as an operator p*' from valuations to subsets of S. However,
since p' will be independent of the variables not occurring free in p. we will view
p*' as a function of its free variables. We will write p(X) to denote that all free
variables of p are among X = X,..... X,. and p*(A) to denote the value of p*
on any valuation that assigns A, to X,. 1<i<n. The operator p" is defined

inductively as follows:

(2.2.1) XMA)=A,, (224) pM(A)=S-p‘(A).

(2.2.2) PM(A)=1(P), (2.2.5) ((@)p)M(A)=(a*"p"(A)).
(2.2.3) (pv YA =pM(A)uqt(A).
where. in (2.2.5).

(@B ={s|3t1e B.(s. e I{a)}.

To define (2.1.6) and (2.1.7). let pX be a formula positive in X, and let X denote
the other free variables of pX. Thus pX = p(X. X). We assume by induction
hvpothesis that the operator p*' has already been defined. Because of the require-
ment that pX be positive in X. the operator p*' is monotone in the variable X with
respect to the subset relation.

(2.2.60) ON.pXM(Ar=0" =0,

(2.2.60) (a + DX PX M (A =pY(aXpX M (A)L AL

(2.2.6¢) SX.pX YA =U, BX.pX Y (A} S alimit ordinal,
(2270 uXpXMi)=U, BX.pX Y (A,

where. in (2.2.7). the union is over all ordinals B. Taking u > a for any ordinal «,
(2.2.6)a-c) and (2.2.7) can be combined into the single definition:

(2.2.8) aXpX VA =UJ, . pM(BX.pXM(A) A

where a s either an ordinal or u.
For fixed A since pM(X. A) is monotone in X. it follows that aX.pX Y (A) <
BN.pX Y (A) whenever a = 8. At some level . we must have
kXXM (A =k + DX pX Y A =u X pX (A

The least such « is called the closure ordinal of the operator AX.p' (X, A).
It follows from the Knaster-Tarski theorem that uwX.pX ' (A) is the <-least
fixpoint of the operator AX.pY (X, A). and that

(229 uXpXM (A =MUB|p*"(B. Ay=By=({B|p"(B.A)c B}.

If pis closed. then p*' is constant. In this case s is siid to satisfy » (notation:
Mos=pors=p)if sep'

336 D. Kozen
3. Notation and basic resuits

3.1. Defined operators, positive normal form

In addition to the primitive operators, we will use the usual defined Boolean
operators A, > and <, as well as the defined operators

[alp=—(a)—p, vX.pX = uXpX
The operator v is the greatest fixpoint operator. It follows from (2.2.9) that vX.pX
is the greatest fixpoint of the map AX.pX, i.e.,
(3.1.1) »X.pXY(A)=\{B|B=p" (B, A)}=\{B|B< p*(B. A)}
and
(3.1.2) ([a]lp)*(A)=[a™](p* (A))

by (2.2.5), where
[aY](B)={s|Vt (s, 1)e [(a)>tec B}=S~{a"")}(S— B).

It is casily proved that every Lu formula is equivalent to a formula over v, A,
p, v, ¢). [], and 71in which = is applied to primitive P only. Moreover. by renaming
bound variables (Proposition 5.7(i) below), we can assume that no variable is
quantified twice. Such a formula is said to be in positive normal form.

3.2, Closure

Let p, be a fixed closed formula in positive normal form. The following definitions
introduce the closure CL(p,) of p,. the analog of the Fischer-Ladner closure of
PDL [6]. For convenience, the closure is defined in terms of a mapping ¢ on
subformulas of p,.

Let o denote either w or v If X is a bound variable of p,. there is a unique -
or r-subformula o X.pX of p, in which X is quantified. We denote this subformula
by oX. X is called a w-variable if oX = uX.pX and a v-variable it oX = rX.pX.

Definition 3.2.1. Define p<gq if ¢ appears as a subformula of p, and p<gq if ¢
appears as a proper subformula of p. For p,<p define V,=Y,,.... Y. n=0 10
be the sequence of ab variables Y such that oY < p, taken in the order

oY, < e<aY, <,
For X=X,..... X a subsequence of Vi and §=q,.. ... g, asequence of formulas.
define

PLX/q1=plXo/q X0 /g 1] LXy /g0],

where pl.X/q] denotes the formula p with all free occurrences of X replaced by g.
Note that the order of substitution is from right to left.

Definition 3.2.2. If V, =X,....,. X,. let @V, denote the sequence X, aX,,.

Results on the propositional p-calculus 337

Define the map e on subformulas of p, by

e(p)=p[V,/aV,]
The closure of p, is the range of e:

CL(po) ={e(p)|po=<p}.

Note that e(p) is closed, since if X occurs free in p, then X < p. It is immediately
clear from the definition that CL(p,) is a finite set, and is in fact no larger than
| pul. the number of symbols of p,. The next proposition relates CL(p,) to the more
usual notion of closure, as found for exampie in [6].

Proposition 3.2.3. CL(p,) is the smallest set of closed formulas such that

(i) pye CL{py).
(ii) if "Pe CL(p,). then Pe CL(p,).

(iil) if pvqeCL(py). then pe CL(p,) and ¢ CL(p,),

(iv) if paqe CL(p,). then pe CL(p,) and g€ CL(p,).
(v) if (a)pe CL(p,). then pe CL(p,).

(vi) if [a]lpe CL(py),.ther pe CL(py).

(vil) if eX.pX € CL(p,). then p(aX.pX)e CL(py).

Proof. It immediately follows from Definition 3.2.2 that
(viii) etpy=p if pis closed.
(ix) e(pvg)=e(p)velq).
(xX) etpag)=e(plnelq),
(xi) e({a)p)=(ae(p).
(xit) e([alp)=[ale(p).
(xiii) e(X)=e(aX.p)=aX.Ap[V.x/0V.x],

where. in (xiii)., 0X = o X.p. Cases (i) and (ii) are immediate from (viii). For case
(iii), suppose pv ge CL(p,). Then pvq=e(p’vq') for some subformula p’v g’ of
po. By (ix). p=e(p’) and q=e(q’). therefore p, ge CL(p,). Cases (iv)-(vi) are
similar. For case (vii). suppose oX.pX € CL(p,). Formula oX.pX has exactly two
pre-images under e, namely X and oX =oX.p'X. Then p,<p'X, and

A p'X)=p' X[X/oX]|[V.x/oV =P aXp' X)) V,x/oV.x]=plaX.pX),
therefore pleX.pX)e CLipy). T

3.3. Active variables and aconjunctivity

Definition 3.3.1. Let p, be in positive normal form, p,<p. A variable Y of p, is
called active in p if oY < p and p[X/oX] contains a free occurrence of Y, where
X is the subsequence of V), consisting of those variables X for which oY < oX <p.

338 D. Kozen

The subsequence of V, consisting of the active variables of p is denoted A,. The
subsequence of A, consisting of the active u-variables (resp. v-variables) is denoted
Ap, (resp. Av,).

If X is free in p, then X is active in p, but not vice versa in general: e.g.. in
(3.32) uXvY(XrpZ(a)Y v[b]Z2)),
X is not free in (@) Y but is active in (a)Y, since
(@ Y[Z/aZ]Y/oY]=(a)wY(X rnuZ((a)Y v[b'Z))

contains a free occurrence of X. However, the relation ‘it active in’ is somewhat
like the transitive closure of the relation ‘is free in’, in the following sense.

Lemma 3.3.3. If Y is active in p, and X is active in oY, then X is ¢ctive in p.

Froof. Let X=X,.....X,. Y=Y,..... Y, m n=% be all variables such that
oX<oX, < - -<oX,<oY<oY < <aY,<p
Then Y is frec in p[Y/oY] and X is free in o Y[X/oX]. therefore X is free in

pLY /oYY /oY[X/e XX/ oX]=p[V/aY[Y/aY]X/aX] O

The problem of determining whether X is active in p can be reformulated as a
transitive closure problem, and any standard algorithm for computing the transitive
closure of a binary relation will be eflicient enough for our purposes.

Definitionz 3.3.4. Lc¢t p, be in positive normal form. p, 18 aconjunctive in the
p-variable X if. whenever p,<pagq, X is active in at most one of po g p, 18
aconjunctive if it is aconjunctive in every u-variable.

Example (3.3.2) above is not aconjunctive, because X A uZ (@)Y vb]Z) is a
subformula of (3.3.2), and the u-variable X is active in both X and pZ(a)Y v
(h]Z).

Aconjunctivity is a technical restriction that is used in the proof of Theorem
6.3.1. It is related to, albeit weaker than, syntactic continuity. It is difficult to give
the intuition behind the concept of aconjunctivity out of context: we therefore defer
further explanation until Section 6.

1

-~ . !
4. Expressiveness results

Ly subsumes PDL without the reverse operator, as noted by Pratt [19). The only
least fixpoints PDL can express are of the form (@*)p, which in Lu is expressed
puX.pv{a)X. Thus (a*)p is the least fixpoint of the monotone operator AX.p v (a)X.

Results on the propositio.al u-calculus 339

This operator is continuous in X, in the sense that
pv <a)(U Ai) =J(pv(a)A).

If any model M, if pX is continuous in X, then
uX.pXY = wX.pX",

i.c.. the inductive definition of uX.pX given in (2.2.7) above need not go beybﬁd w.

However, there are many non-continuous operators that are potentially useful
in program verification. An interesting example is provided by the operator AX.[a]X.
Its least fixpoint in any model M is

puX[alX" ={s|there are no infinite a-paths out of s} =-14da,

where d is the loop operator of Streett [21]. uX.[a]X is a well-formed formula of
Lp. even under the restriction of aconjunctivity, but is illegal in Pratt’s system. In
the model of Fig. 1, the operator AX.[a]X does not close at w, since the top state
satisfies (o + 1) X.[a]X but not wX[a]X. Thus AX[a]X is monotone but not
continuous.

There are many useful properties that can be expressed with non-continuous
operators. including liveness and fairness properties. The prototype liveness property

340 D. Kozen

‘along every a-path, p must eventually come true’ is expressed as uX.pv[a]X in
Lu. We refer the reader to [4] for further examples.

The question raised by Pratt about the strict expressiveness of Pu over PDL is
still open, but the following result of Streett shows that Lu, even restricted to
aconjunctive formulas, is strictly more expressive than PDL. The proof also reveals
why filtration techniques, which are used to obtain complexity and completeness
results for PDL, fail for Lu.

Proposition 4.1 ([21]). uX[alX is not equivalent to any PDL formula.

Proof. Suppose uX.[a]X = p in all models, where p is a formula of PDL. In the
mode! M of Fig. 1, sE=uX[alX, therefore s&=p. The proof of the small model
property of PDL [6] allows M to be collapsed to a finite model N by identifying
states that are indistinguishable by formulas of FL(p), the Fischer-Ladner closure
of p. If [¢] is the equivalence class of ¢ in the collapsed model, then N, [t]F q iff
M, t=q for any q € FL(p). In particular, [s]F p. But [s] cannot satisfy uX.[a]X.
since the collapsing must have created a loop, therefore there is an infinite a-path
out of [s]. [

The above proof assumes that uX.[a]X = p in all models and derives a contradic-
tion. However, it is possible to show that Lp is strictly more expressive than PDL
in the stronger sense that there is a model M and a formula g of Lu such that no
PDL formula p is equivalent to g on M.

Proposition 4.2 ([12]). In the model given by Fig. 2, the formula uX.[a} @)X defines
the even states, whereas all PDL formulas. even with test and reverse. define only
finite and cofinite sets.

o
[44 o

¢« « « o « o

Fig. 2.

Intuitively. PDL cannot simulate an unbounde . alternation of [a] and (ad.

Full Ly encodes APDL of Streett [21], since da = rX{a)X. Under the restriction
of aconjunctivity, Lu can be shown to encode well-structured APDL, which is
APDL with the * and v operators constrained to appear only in the context of the
deterministic program constructors

it pthenaelse h=p?:aw 1p?:b and whilepdoa=(p’ a)y*ip

Primitive programs need not be deterministic (see [&]).

Results on the propositional u-calculus 341

S. A deductive system

The deductive system is equational, as in [15], involving equations p=gq and
inequalities p < q. The latter can be considered as an abbreviation for pv g =q. The
logical axioms and rules are those of equational logic. including substitution of equals
for equals, provided the syntactic restrictions on u formulas are not violated. The
nonlogical axioms are the following:

(5.1) axioms for Boolean algebra,

(5.2) (X via)Y=(a)(XV Y),

(5.3) (X rlalY=s(a)XAY).

(5.4) (a)0=0,

(5.5) p(pX.pX)=<uX pX, uX.pX free for X in pX,
(5.6) pY < Y=2uXpX <Y, Y does not occur in pX.

A formula p is consistent if not —p=0. Axioms (5.1)—(5.4) are those of proposi-
tional modal logic. Axioms (5.5) and (5.6) say that uX.pX is the <-least object A
such that p(A)< A. Axiom (5.6) is the fixpoint induction rule of Park [17].
The following are some basic theorems of this system. The reader is referred to
[1.20] for the proofs. which are omitted here.
Proposition 5.7. (i) (Change of bound variable)
uX.pX =Y pY, XY free for Z in pZ,
(i) pX=¢9X = cXpX=soXgX,
(iii) (Monotonicity)
g=r = plq)sp(r. X positive in pX,
(v) ploX.pX) =aX.pX. ocX.pX free for X in pX.
(V) uXqg=gq. Xnolfrein q.

i) puXqgapXysq = pXpX=q. g free for X in pX.

Jroof of {vi)
(a) 2(uX.q ApX)< q (byassumption),
(b) plgarpXignapign X)) =q (by (a), (5.1) and (iii)),

(c) plgauXignplgn X =qgnplgnrpX(gnpigaX))
(by (b) and (5.1)),

(d) plgnpXignr pigr X)) <=uX.(qrp(gnr X)) (by(c)and (5.5)),

342 D. Kozen

(e) plgruX(gnrplgrXN)<qnrpX.(qrp(grX)) (by(b), (d)and (5.1)),
(f) uX.pX <qnruX(qgnap(gaX)) (by(e)and(5.6)),
(g) wX.pX=gq (by(f)and (5.1)). O

<

Implication (vi) of Proposition 5.7 is crucial in the proof of Theorem 6.3.1. We
will use it in its dual form: if g A uX.pX is consistent, then g A p(uX.1q A pX) is
consistent. This is the proof-theoretic analog of the following model-theoretic
intuition: If there is a state of the modei M satisfying g A uX.pX, then there must
be a least « such that there is a state of M satisfying g A aX.pX.

6. Complexity and deductive completeness

In this section we prove completeness of the deductive system of Section § and
give an exponential time decision procedure and small model property for Ly under
the restriction of aconjunctivity. Lu is decidable without this restriction [16]. but
is not known to be elementary. These results are proved simultaneously. using a
tableau method.

o.1. Construction of the tableau

Let p, be in positive normal form. In this section we construct a tableau T for
po. T is alabeled tree constructed inductively downward by applving the extension
rules described bele v, Certain edges of T will be labeled with primitive programs.,
others will be unlabeled. Each node s of T will be labeled with a set 17 of subformulas
of p.

Initially. T consists of a single node r, labeled { p.}. The tree is extended downward
by applving the following five extension rules to the leaves, in an order to be specitied
later.

6.1.1) r-rule. U pagel, create node ¢ with =l - {prghoip q} and
unlabeled edge s -t

(6.1.2) v-rule. 1f | vge I, create two new nodes 1w with 1= - {pvqh oipl.
.=t ={pvqgb {g} and unlabeled edges s -1, s - 1.

(6.1.3) c-rule. It oXopX < I create ¢ labeled To=¢1" - {oN.pNH{p\} and
unlabeled edge s ~ 1.

(6.1.4) X-rule. 1f X o ' andif oX = o X.pX. create tiabeled =0 (X o {p\}
and unlabeled edge s -1,

(6.1.5) ¢)-rule. Foreach (Wpe L. create tlabeled £, ={ptiqilblg < I} and edge
s =1 labeled b

w
S
w

Results on the propositional u-calculus

Note that the v-rule creates two new successors, the ()-rule creates a new
successor for each formula of the form (b)p, and all other rules create one new
successor. In the last case, the unique successor of s is denoted s+.

The construction process maintains several lists C of integer counters ¢, which
count applications of the X-rule to active variables of fermulas in I',. There is one
list C(s, p) for each pe I, and the lists are disjoint. If A,=X,,....,X,, then
C(s.p)=(c,....,c,), where ¢, counts applications of the X-rule to X,. The counter
¢, is associated with X; throughout its lifetime. We denote this correspondence by
X(c;) = X, In general, therec may be several counters at node s associated with the
same variable X, since X may be active in several formulas of I';, but these counters
will appear on different lists.

The integer value contained in ¢ at node s is denoted c(s). If X(c¢) is a u-variable,
¢ is called a u-counter, and c(s) will always fall in the interval 0< ¢(s)<2"™ If
Xi¢)isa r variable, ¢ is called a #-counter, and ¢(s) {0, 1}. A r-counter ¢ is used
only as a one-bit flag to determine how recently the o- or X-rule has been applied
o X(o)

If Cisalist.let Cu (resp. Cr) denote the sublist of C consisting of all w-counters
(resp. r-counters). The construction process also maintains a global list G consisting
of all existing p-counters. G(s) is a shuffie-merge of the lists Cu(s, p).pe I’ Thus
the order of the um-counters in G is consistent with their order on the lists Cpu.
Whereas the order of the counters ¢ on C 1s static and determined by the order <
on ¢ X (¢). the order on the global list G is dvnamic and depends on the construction
up to that point. G(s) imparts a priority to the u-counters existing at s, with the
leftmost of highest priority.

The lists and counters are maintained as follows. We start with a single list
Ctro.po) at the root, and C(r,. p,) = Glr,) =(). since p, has no active variables.
The lists and counters are updated at each application of an extension rule as
follows,

(6.1.6) When the o-rule is applied to o X.pX at node s, recall that I', | is obtained
from I by replacing o X pX with pX. If X is free in pX, then pX has a new active
variable that was not active in o X pX. namely X. A new counter ¢ is created with
N(e)=X and c(s+)=0, and we append ¢ to the right end of C(s, o X.pX) to get
C(s+,pX). If X is a p-variable, the new counter is also appended to the right end
of G, indicating lowest priority. If X is not free in pX. then we take C(s+, pX) =
Cts.aX.pX) and G(s+) = G(s). but by Proposition 5.7(v) we can assume w.Lo.g.
that this docs not happen.

(6.1.7) When the v-rule 1s applied to pv g at node s with successors f. u as in
(6.1.2), recall that the formula p replaces pv g in I and q replaces pvg in I, We
obtain C(t. p) (resp. C(u. q)) from C(s, pv q) be deleting all counters ¢ such that
X (c¢) is not active in p (resp. q). Any deleted u-counters also disappear from the
global lists Gtt) and G(u).

344 D. Kozen

(6.1.8) When the a-rule is applied to p A g at node s, then we obtain C(s+, p),
(resp. C{s+,q)) from C(s, p A q) by deleting all counters ¢ such that X(c) is not
active in p (resp. q). The global list G remains unchanged. It is here that the
condition of aconjunctivity is used: whereas a v-counter on C(s, p A q) may appear
on both C(s+,p) and C(s+,q), Cu(s,pnrq) cleanly splits into disjoint lists
Cu(s+, p) and Cu(s+t, q), since each u-variable active in p A g is active in exactly
one of p, q. If aconjunctivity were not satisfied, the u-counters on G would have
to be duplicated.

(6.1.9) When the X-rule is applied to a variable X at s, and oX = o X.pX, take
C(s+,pX)=C(s, X), and set c(s+)=c(s)+1, where c is the unique counter on
C(s+, pX)and C(s, X) such that X (¢) = X. Noze that ¢ appears rightmost on these
lists, since oY < oX for all variables Y active in X. If X is a u-variable, we reset
all w-counters of lower priority than ¢ to 0 (recall that d is of lower priority than
c if it appears to the right of ¢ on the global list G). We also reset to 0 any r-counter
appearing on any C(s+. p) to the right of some w-counter that is incremented or
reset to ().

(6.1.10) When the ()-rule is applied at s, then for any successor t. 1 is of the form
{p.qi.....q.}, where (b)p, [blg.eI'. Take C(t,p)=C(s,(b)p) and C(1.q)=
C(s.[blg). 1=i=<n. G(1) is obtained from G(s) by deleting all counters not
appearing on C(t, p) or some C(t,q,). All r-counters are reset to (.

(6.1.11) If pe I and the A-, v-, o-, or X-rule is applied at s to some g # p, and 1
is a successor of s, then pe I'. In this case we take C(t. p) = C(s, p) and leave all
counters on C (¢, p) intact.

(6.1.12) After updating the lists according to (6.1.6)-(6.1.11). C(&. p) may be
temporary ill-defined. For example. if p. p A g€ I', and the a-rule is applied to'j- a q.
then (6.1.8) defines C(s+,p) to be a sublist of C(s,paq). but (6.1.11) decfines
Cis+, p)=C(s. p). For another example, if (b)p,[b]p € I'; and the ()-rule isapplicd,
then. at the successor t corresponding to (b)p, (6.1.10) defines C(., p) = C(s. (b)p)
and C(1, p) = C(s,[b]p). Whenever such a conflict occurs, the list of higher pﬁority
is kept and the other is discarded, where the priority of a list is determined by the
position in G of its highest priority w-counter. If the lists contain no u-counters,
say C=(cp,.... ¢,) and C'=(c|..... ¢,). then we discard C' and set ¢ =
max{c.c,}. 1<i<n.

Whenever two lists C', C are in conflict and € is the one that is discarded, we
write ("= C and ¢'=»cfor ¢’ (7, ce C with X(¢)=X(c).

(6.1.13) Whenever a u-counter changes priority due to the deletion of a higher
priority u-counter, it is reset to 0. Whenever a u-counter ¢ € C is incremented or

reset to (0, end d is a v-counter appearing to the right of ¢ on C. then d is also
reset to (),

Results on the propositional wu-calculus 345

6.2. The algorithm

We now describe an alternating Turing machine algorithm to construct the tableau.
The algorithm starts with one process at the root r,. It then applies the extension
rules in a regular fashion, accepting or rejecting on certain conditions described
below. When visiting node s of T, a process has representation of I, written on its
tape. It also maintains all the lists of counters as described above. At applications
of the v-rule, it makes an existential branch, spawning two subprocesses, each taking
one of the successors. At applications of the ()-rule, it brauches universally,
spawning several processes, one for each successor.

At any node, the A-, v-, o- and X-rules are applied first. The X-rulz may only
be applied to a v-variable X e I', if ¢(s)=0, where ce C(s, X) and X(c)=X.

Whenever one of the following conditions obtains, the process takes the indicated
action.

(6.2.1) There exist P, 7Pe I'. Halt and reject.

(6.2.2) Some p-counter exceeds 2 ™. Halt and reject.

(6.2.3) The only rule that applies is the ()-rule (i.e., I'; contains only formulas of
the form P. 2P. (a)p. [a]p. or v-variables X whose counters are nonzero). and
neither of the previous conditions holds. Apply the ()-rule.

(6.2.4) No rule applies and none of the previous conditions hold. Halt and accept.

Let |G| denote the maximum length of G(s). Since G(s) is a shuffle of at most
| pol lists Cu (s, p) and each |Cu (s, p)| <| pl. |G| <|pu|". The above algorithm requires
at most | p,|" space, enough to encode I, and |G|<|p,|” counters, each containing
a nonnegative integer at most 2 ™. Despite the possibility of infinite computations,
this alternating algorithm can be simulated in deterministic exponential time [3].

The next lemma is used here to show that one of the conditions (6.2.1)-(6.2.4)
must obtain after u finite time. The lemma is used again in Section 6.3.

Definition 6.2.5. Let s=s,.1,,5..1.,..., 8, f, =1 be nodes along some path in T
such that s,., is an immediate successor of ¢, 1 < i< n. Letc=c,,....c, becounters
such that ¢, exists in the interval [s. 1] and ¢, = ¢, at t, (therefore ¢; no longer
exists at §,.,). Let a, be the number of times ¢, is incremented in the interval AR
and define

alc.s.y= Y a,.

—

I n

Lemma 6.2.6. If either (i) ¢ is a p-counter, or (ii) c is a v-counter and the {)-rule ix
not applied in the interval [s. t}, then

al(c s.t)<|p,|*2 ™ "

346 D. Kozen

Proof. (i) Let c. s, &, ¢ S, 1, 1 <1< n, be as in Definition 6.2.5. Note that X(c)=
X(¢;). 1<isn. Let pel’, such that ¢,e C(s.p), and let d, be the leftmost
w-counter on C(s;, p;). Using Lemma 3.3.3. it can be shown that d, exists throughout
the interval [s,, ,] leftmost on the same listas ¢, and dy~> - - > d,. Since the priority
of d, never decreases, and d,. , is of higher priority than d, the sequence d, > - - > d,
is no longer than |G|.

Let N =2 the maximum value of c. In the interval [s,], ¢’s priority can
increase at most |G| times. Between priority changes, whenever ¢, is reset to 0, a
counter of higher priority is incremented. Thus ¢; can be incremented or reset to
0 at most N'“' times before either ¢; or a higher priority counter exceeds N and
condition (6.2.2) obtains, causing the process to halt and reject. Thus ¢, can change
priority, be reset, or bc incremented at most |[G|N'“" times. This gives an upper
bound on the a; of Definition 6.2.5, thus

i

ale.s. 0= |GEN <|p) 2"

(i) If there exists a u-variable Y active in X(c¢), then for each i, there exists a
u-counter d, appearing leftmost on the same list as ¢, throughout the interval [s. ¢].
As above, the length of the sequence ¢, -+ - - > ¢, is at most |G|. Within the interval
[s,. 1,]. ¢; can be reset to 0 only if the ()-rule is applied (6.1.10) or some u-counter
to the left of ¢, is incremented or reset to 0 (6.1.13). The former does nov occur
by assumption. The latter occurs only if the rightmost w-counter to the left of ¢, is
incremented or reset to 0. By (i). this can happen at most [GIN ' times. from which
the bound follows.

If there does not exist a w-variable active in X(¢), then ¢ cannot be reset in the
interval [s.t]. since neither (6.1.10) nor (6.1.13) occurs. Thus ¢ or ¢ can be
incremented at most once in [, 1], since the X-rule is never appliea wien a counter
is nonzero, and therefore a(e, s,)< 1.

Lemma 6.2.7. One of conditions (6.2.1)=(6.2.4) must obtain after a finite time.

Proof. Suppose there were an infinite path in 7" with the v-, a-, - and X-rules
applied along that path without one of (6.2.1)-(6.2.4) cver obtaimng. Each rule
except the X-rule decreases the size of I as measured by the total number of
svmbols in formulas in I, therefore there must exist a variable .\ to which the
X-rule is applied infinitely often. Moreover, X can be chosen such that X i
-~ -minimal.

By Lemma 6.2.6, cach ¢ with X (¢) = X that exists along the path must disappear
after a finite time. This says that a new counter for X is created infinitely often
through application of the o-iule. But then there must be a Y with Y < ¢ X such
that the X-rule is applied to Y infinitely often along the path. contradicting the
< -minimality of X

Results on the propositional p-calculus 347

6.3. Proof of main theorem

The following theorem asserts the correctness of the algorithm and the complete-
ness of the deductive system of Section 5 simultaneously.

Theorem 6.3.1. The following are equivalent:
(i) pu is consistent,
(ii) the algorithm does not reject,
(iii) p, has a finite tree-like model of depth exponential in |p,|.

Proof of (i) - (ii). Suppose p, is consistent. First we construct a formula e'(s, p)
for each pe I, such that e'(s, p)< e(p). €'(s,p) is formed by conjoining certain
closed formulas rts, ¢), c€ Cu(s. p) (to be defined later) with certain subformulas

of e(p). as follows. Let V,=X=X,,...,X,. For X € Au,. c;e Cul(s, p) with
X(c)=X, and oX, =uX.gX. let q,=uX.(r(s.,)rgX,). For X,e V,— Apu,,. let
q, = 0X, Define

e'(s.p=p[X/q].

By Proposition 5.7iii). e'(s, p) < e(p).

Each r(s. ¢) consists of a conjunction of closed formulas, defined inductively down
the tree. If neither the o- nor the X-rule is applied at s. or if the o- or X-rule is
applied to a r-variable, let

(6.3.2) rit.cY=ris.¢)

for all successors t of s and counters ¢« G(t). If the o-rule is applied to uX.pX at
s. vielding a new counter ¢ on C(s+.pX) with X(¢) = X, define

(6.3.3) ris+.c)=true,
(6.3.4) ris+.dy=r(s.d). d<Cis+.pX),d#c

If the X-rule is applied to the p-variable X at s, and ce C(s+.,.X) with X(c)= X,
define

(6.3.5) nis+ dy=1true i disof jower priority than ¢,
(6.3.6) ris+.dr=ris.d) if disof higher priority than ¢,
16.3.7) ris+.c)=rts. c)a 1l
where
Al =les+.p)ipel.p# X}

The formula r(s+. ¢) in (6.3.7) is weli-defined, since (6.3.5) and (6.3.6) determine
ris+.d) for all d # ¢, and these determine ¢'(s+, p) for all pe I';, p# X, and hence
determine A..

348 D. Kozen

Note that r(s, ¢) consists of a conjunction of ¢(s) closed formulas (by convention,
A=1):

r(s,c)="17A40 A ATIAA

i
S Scesi-1?

where s, 0<i<c(s), is the most recent ancestor of s such that ¢ had value i.
Let

A;={e'(s,p)lpel}.

We now construct a set B of nodes of T containing the root r, such that

(6.3.8) if se B and the v-rule was applied at s, then at least one successor of s
is in B,

(6.3.9) for any other node se B, all successors of s are in B,

(6.3.10) for every se B, 4 is consistent.

The set B is constructed inductively down the tree. First set B:={r,}; 4, ={pi} is
consistent by assumption.

Suppose s € B and the v -rule is applied to p v q at s.and t. u are the two successors
of s. If pe I'; already, and C (s, p) is of higher priority than the sublist of C(s.pv q)
corresponding to the active variables of p, then the latter list is deleted in 16.1.12),
so that 4, < 4, Then 4, is consistent since 4, is, so we can extend B by taking
B:= B u{t}. Similarly, if g€ I, and C(s.q) is of higher priority. then we can take
B = B Jl{u}. If neither of the above cases holds. then

e'ts,pvqg)=e(t,p)veuq), Ad s ad, vad,

By Axiom (5.1). one of 4, 3, must be consistent, say A, Set B:= Bu{r}.

Sumilarly. at applications of the A-,{)- and o-rules. and applications of the X-rule
to v-variables, B can be ¢xtended to include all successors, since if J, is consistent,
then 4, is consistent for all successors .

At an application of the o-rule to a p-formula at s, a new r(s+. ¢) appears, but
it is irie at that point, and so does not affect the consistency of 4., . by Proposition
5.7C1i). At applications of the o- and X-rule to v-formulas. and applications of the
#-. v=and ()-rules, no r(s, ¢) changes.

[i cemains to show that 3, is consistent when the X-rule is applied to a p-variable
X at se B. It is here that we use Proposition 3.7(vi). Let oX =uX.pN and let
¢ COs, X)) with X=X (¢). If pX ¢ I already, and C(s. pX) is of higher priority
than C(s, X)), then 4, € 4, as above, and we are done. Oherwise, A0 is obtained
from 4, —{e'(s. X)} by replacing some r(s. d) with r(s+. d) = true. namely tor those
d of lower priority than ¢ at s. Thus

(631D Ad, =ad ae'(s. X).
Therefore. since 4, is consistent by hypothesis,

(0.3 12 ATe{e' (s, X =20 C{uXr(s, o) A p X}

Results on the propositional pu-calculus 349

is consistent. Using Proposition 5.7(vi) it follows that
(6.3.13) A, u{p'(uX.(r(s,c)AnA; Ap'X)}
is consistent. But (6.3.13) is equal to
A u{p'(uX.(r(s+.c)ap' X)} =4 uie'(s+,pX)}=4,.,

therefore the latter is consistent.

The above construction gives a subtrcc 8 satisfying conditions (6.3.8)-(6.3.10)
above. We show now that if 7 is any process in the computation tree of the above
alternating algorithm visiting node s of the tableau, and = is labeled 0 (reject),
then s¢ B.

A process 7 may halt and reject outright because of eicher (6.2.1) or (6.2.2). In
(6.2.1). there exist P, -7 Pe A, therefore 4, is inconsistent by (3.1), hence s¢ B by
(6.3.10). In (6.2.2) there must exist two ancestors u, v of s such that I',=1". and
the X-rule is applied to the u-variable X (c) at u and v, thereby incrementing ¢ at
1 and ¢, and c is not reset in the interval [«, ¢]. This also implies that the priority
of ¢ is unchanged between u and v. If de Glu) of higher priority than ¢. then
d e G(v) with the same priority. and d(it) =d(v). otherwise ¢ would have been
reset between w and v. Then r(u+.d)=r(v+,d). The set of counters of lower
priority than ¢ at v may differ from that at v. but r(u+.d)=r(v+,d’') = true for
any such d. d'. because these counters were reset to (). Then

(6.3.14) A =4,

Now Al appears in rlu+.c¢) and hence in rie.c). and e'(v, X)=
pX.r(e, o)A pX)e 4d,. therefore

(6.3.15) Ad, s r(e.o)s=Ad, =7ad,
by (5.1), Proposition 5.7(iii) and (6.3.14). On the other hand,
Ad, =ad) by (6.3.11).

Thus J, is inconsistent, and v ¢ B by (6.3.10). Since v is an ancestor of s, s¢ B.

If 7 is a universal branch, then one of the successors p of 7 must be labeled 0
in the algorithm, and p is visiting a successor 1 of s. By induction, t¢ B, therefore
s B by (6 3.9, If 7 is an existential branch, then both successors p, 7 of = must
be labeled 0 in the algorithm, and p, 7 are visiting successors £, u of s. By induction,
1. u¢ B. therefore s¢ B by (6.3.8). Proceeding back up to the root, if the initial
process m, were labeled 0, then r, B, a contradiction. Tnerefore the algorithm
does not reject.

Proof of (ii) - (iii). If the algorithm does not reject. prune all nodes of the tableau
T visited by processes of the algorithm labeled 0 (reject). Prune further so that
cach v-node s has exactly one successor s+. The tree 1™ so obtained satisfies (6.3.8)
and (6.3.9) above, and contains the root 7.

350 D. Kozen

We now define a model M = (S, I) from T'. Let S be the set of nodes of T’ such
that either the ()-rule was applied at s, or no rule was applicable at s (thus s is a
Jeaf). Each edge out of a node in S is labeled with a unique program constant, and
all other edges are unlabeled. For s T', let U(s) be the set of nodes of T consisting
of s and all ancestors on the path back up to, but not including, the most recent
ancestor in S; or back up to and including the root, if no ancestor of s is in S. Note
that if s€ S and s- u in T', then by Lemma 6.2.7 therc exists a unique node te S
such that ue U(1). For s,t€ S, let (s, t) € I{a) if there is an edge from s to a node
in U(t) labeled a. Let se I(P) if Pe T,

We construct a set of closed formulas O, of Lu+ for each se T, as follows. Let
pel, V,.=X=X,,....X,, oX,=0X,.pX. If X, € Ap, and ce C(s, p) with X;=
X(c), let

als, c}=sup alcs,t), ¢, = als,) X.pX,
o
where alc. s, t) is given as in Definition 6.2.5. If X, e V,— Au,. let ¢, =aX,. Let
g=4q...., g, and define

"ts,p)=plX/q). O.={e"(s.p)pel}, O,=0{0 |te U(s)}.

Define p' = p if p' is identical to p except that some « occurring in subformulas
aX.gX of p may be replaced by some B << . We show that, for all s¢ S,
(6.3.16) if prge @ thenp.ge O,
(6.3.17) of pvge O then cither pe @, or ge O,
H6.3.108) i {a)pe O then At S (s, e lla) and pe O,
163.19) if lalpe O then Ve S, (s.r)c l(a)=3 p’ = p such that p’ = O,
(6.3.20) if aX.pX € O, « an ordinal or u. then p(BX.pX) e O for some 8 < a.
(63211 1if v X pX < O, then plrX.pX)c 0,

Proof of (6.3.16). If prgec O, then Jrc U(s), I p'. g with pag=e"(Lp rqHc
O p rg' oL, and the a-rule applied to p'ag’ at «. Then p'. g’ I, and p=
ettt pH.g=e"(t+.q'), thus p,ge O], € O,

Proof of (6.3.17). The proof of (6.3.17) is similar to (6.3.16).

Proof of (6.3.18). If («w)prc O then (@)p < @ By the ()-rule, some a-successor u
of s has po @' and by Lemma 6.2.6 there is a unique descendant ¢ of w with 1< S
and we U, Then (s, 0 e I{a) and pe O,

Proof of (6.3.19). This proof is similar to that of (€.3.18). except that p’ = p appears
in O, instead of p. because if [a]p”e I', with [a]p = e"(s.[a]p”). then, by (6.1.5), p”
appears in /, for all a-successors 1 of s, and

als,c)=supatt.c) forany ce Cu(s.p),

Results on the propositional p-calculus 351

where the supremum is taken over all a-successors u of s. Some of these a(1, ¢)
may be strictly less than a(s. c). |

Proof of (6.3.20). Eithera=p orac w. If a=u and uX.pX € O, then 31 U(s).
3p’' X with

pX.pX =e"(tuX.p'X)=uX.p' X[X/4]c O,

where X =V, x. uX.p'X eI, and the o-rule applied to uX.p'X at r. Then
p'Xel, and
e'(1+.p X)=p' X[X. X/ alt+ . O)X.p' X]=p'latt+,) X.p' X)[X/§)
=pla(t+.c)X.pX)e O,, c O

where ce C(r+. p' X) with X = X(¢).
It a€wand aX.pX e O, then 31 Us), Ap’ X with

aX.pX =e"(t. X)= X[X. X/§. aX.p' X 1€ O..

where X =V, \ ,x. XeI'. the X-rule :s applied to X at . and @ = a(1. ¢) where
¢ C(, X) with X =X(c). Then p’X ¢ I, and

U+ . p’X)=p X[X. X/§ ait+.HXp' X]
=p alt+.c)X.p' X)) X/q]
=plalt+,.)X pX)e O, < O,

where ¢« Cr+, p'X) with X = X (c¢’). Either ¢ =c¢" or ¢- ¢, but in cither case,
alt.c)=a(t+,c’)+ 1. therefore (6.3.20) is satisfied.

Proof of (6.3.21). If rX.pXe O, then 3re U(s), Ip'X such that rX.pX =
e"(. vX.p'X) and the o-rule is applied to vX.p'X eI, or vX.pX =e¢"(1, X) and
X € I'. In the former case we proceed as in the proof of (6.3.16). In the latter case,
if ce C(r, X) with X(¢)= X, and ¢(1) # 0, then there must have been a most recent
time ¢’ at which the value of ¢ changed from 0 to 1. Then any u-counter d appearing
to the left of ¢ on C(1', X) exists at £, and the X-rule is not applied to X(d) in the
interval [+, t], nor is d reset, otherwise ¢ would have been reset. Then a(d, 1) =
atd, '), therefore vX.pX =¢"(1'. X). and the X-rule is applied to X at I',. As in
the proof of (6.3.20),

U P’ X)=parXpX)e O, O,
Now detine
q" ={seS|3q'=q.9' < O,}.
Note that if ¢’ = q. then ¢’ cq”. 1t G=4q,.....q. let 3°=q7,...,q,. We show

by induction on formula structure that, for any p(X)and g, _

N =)
{

(6.3.22) p(g)"<p(g”.

352 D. Kozen

By definition of M,
P°={s|PeO}=P",
—PY={s|Pe O,}cP" by (6.2.1) and (2.2.4),
X.(q)"=q7 =X (@G".
For the case pv g,
pva(@)®<p(@® g by(6.3.17)
< p™(@®)ug™(g®) by induction hypothesis
=(rvg)™(g®) by (2.2.3).
The case p aq is similar, using (6.3.16). For the case (a)p,
(a)p(§)” =(a™) p(§)?) by (6.3.18)

< ((I.\’l)(p.\l ('q(-))‘)
by induction hypothesis and the monotonicity of (a ‘')

=(a)p™(§?) by(2.2.5).
For the case [a]p.
[a]p((})”g[a"'](U p((i)'”) by (6.3.19)
Mmdq)r. pegy
c[a)(p(g)?) by monotonicity of [a']

- [(l AN }(I)‘\I {(7”))
by induction hypothesis and the monotonicity of [a ‘']

=lalp™(g”) by(3.1.2).
For the case aX.pX, where either a =u or e € w,
aX.pX(§)? < p(BX.pX(§).§)" forsome B < a. by (6.3.20)
< pY(BX.pX(§)°.q") by induction hypothesis on p

< pMBXpXMGDH. g™
by induction hypothesis on 8 and the monotonicity of p"

=(B+ DX pXY(G?) by (2.2.60)
< aX.pX MG,
since B+ 1= a. Finally, for the case v X pX.
rX.pX(§)7 < p(vX.pX(§).§)° by (6.3.21)

< pMrXpX(§°.¢7) by induction hypothesis.

Results on the propositioaal p-calculus 353

By (3.1.1), vX.pX*(g®) is the great=st fixpoint of the operator AX.p™(X, §”),
therefore

vX.pX(§)° < vX.pX M (G°).

This completes the proof of (6.3.22).
Taking p=p, in (6.3.22), we get r,e p§ < py', therefore M, ry=p,. A finite

tree-like model of the appropriate size can be obtained from M by the technique
in (8. 13].

Proof of (iii) —» (i). This asserts the soundness of the deductive system and is left
to the reader. O

Acknowledgment

I would like to thank Rivi Sherman and Joe Halpern for pointing out mistakes
in an earlier version [14], and Steve Bloom, Allen Emerson and Joe Halpern for
valuable suggestions.

References

[1] 1.W. De Bakker. Mathematical Theor of Program Correctness { Prentice-Hall. Englewood Cliffs, NJ.
1980,

{2} LW, De Bakker and W. De Roever. A caleulus for recursive program schemes, Proc. 1st Internat.
Coll. on Automara. Languages and Programming (North-Holland, Amsterdam. 1972) pp. 167-196.

2] A. Chandra. D. Kozen and L. Stockmeyer. Alternation, J. Assoc. Comput. Mach. 28 (1) (1981)
114-133.

[4] E.A. Emeison and E.M. Clarke, Characterizing correctness properties of parallel programs using
tixpoints. Proc. 7th Internat. Coll. on Automata. Languages and Programming. Lecture Notes in
Computer Science 85 (Springer, Berlin. 1980) pp. 169-181.

5] E.A. Emerson and E.M. Clarke, Design and synthesis of synchronization skeletons using branching-
time temporal logic. in: D. Kozen, ed.. Proc. Workshop on Logics of Programs. Lecture Notes in
Computer Science 131 (Springer. Berlin, 1982) pp. 52-71.

[6] M. Fischer and R. Ladner. Propositional dynamic logic of regular programs, J. Compu:. System
Scr 18 (2) (1979 194-211.

[7] P. Hitchcock and D.M.R. Park, Induction rules and termination proofs, Proc. Ist Internat. Collog.
on Automata. Languages and Programming (North-Holland, Amsterdam, 1973) pp. 225-251.

[8] J. Halpern and J. Reif, The propositional dynamic logic of deterministic, well-structured programs
textended abstract), Proc. 22nd IEEE Symp. on Foundations of Computer Science (1981) pp.
322-354.

(9] D. Kozen. A representation theorem for models of *-free PDL. Proc. 7th Internat. Collog. on
Automata, Languages. and Programming, Lecture Notes in Computer Science 85 (Springer, Berlin.
1980), pp. 352-362.

[10] D. Kozen, On the duality oi dynamic algebras and Kripke models. in: E. Engeler, ed.. Proc.
Workshop on Logic of Programs, Lecture Notes in Computer Science 125 (Springer. Berlin. 1979)
pp. 1-11.

[11] D. Kozen. On induction vs. *-continuity, in: D. Kozen, ed., Proc. Workshop on Log.cs of Programs
1981. Lecture Notes in Computer Science 131 (Springer, Berlin, 1982) pp. 167-176.

354 D. Kozen

[12] D. Kozen, On the expressiveness of p, Unpublished manuscript.

[13] D. Kozen, Small models for the propositional u-calculus. Unpublished manuscript.

[14] D. Kozen, Results on the propositional u-calculus, Proc. 9th Internat. Collog. on Automata.
Languages, and Programming (1982) pp. 348-359.

[15] D. Kozen and R. Parikh. An elementary proof of the completeness of PDL. Theoret. Comput. Sci.
14 (1981 113-118.

[16] D. Kozen and R. Parikh, A decision procedure for the propositional g -calculus, in: E.M. Clarke and
D. Kozen, eds.. Proc. Workshop on Logics of Programs 1983, Lecture Notes in Computer Science
(Springer, Berlin, 1983).

[17] D.M.R. Park, Fixpoint induction and proof of program semantics, in: B. Meltzer and E. Michie,
eds., Mach. Int. 5 (Edinburgh Univ. Press, 1970) pp. 59-78.

[18] V.R. Pratt, A nea: optimal method for reasoning about action, J. Comput. Systems Sci. 20 (1Y80)
231-254. :

[19] V.R. Pratt. A decidable u-calculus (Preliminary Rept.). Proc. 22nd IEEE Symp. on Foundations of
Computer Science {1981) pp. 421-427.

{20] W.P. De Roever, Recursive program schemes: Semantics and proof theory, Ph.D. Thesis. Free
University. Amsterdam, 1974.

[21] R. Streett. Propositional dynamic logic of looping and converse, Proc. 13th ACM Symp. on Theory
of Computing (1981) pp. 375-383.

{22} D.ScottandJ.W. De Bakker. A theory of programs, Unpublished manuscript. IBM, Vienna, 1969,

