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Abstract

Generalized Bott manifolds (over C and R) have been defined by Choi, Masuda and Suh in [4].

In this article we extend the results of [7] on the topology of real Bott manifolds to generalized

real Bott manifolds. We give a presentation of the fundamental group, prove that it is solvable

and give a characterization for it to be abelian. We further prove that these manifolds are

aspherical only in the case of real Bott manifolds and compute the higher homotopy groups.

Furthermore, using the presentation of the cohomology ring with Z2-coefficients, we derive a

combinatorial characterization for orientablity and spin structure.

1. Introduction

1. Introduction
A generalized Bott tower has been defined by Choi, Masuda and Suh in [5, 4] as a se-

quence of projective bundles

(1.1) Bk

pk

−→ Bk−1

pk−1

−−−→ · · ·
p2

−−→ B1

p1

−−→ B0 = { a point }

where Bi for i = 1, · · · , k is the projectivization of the Whitney sum of ni + 1 F-line bundles

over Bi−1, (F = C or R). This generalizes the construction of Bott towers by Grossberg and

Karshon [10] in the case when F = C and ni = 1 for every i. The ith stage Bi of the tower can

be alternately realized as a quasitoric manifold (when F = C) or a small cover (when F = R)

over
∏k

i=1 ∆
ni where ∆ni is the ni-simplex. We call each Bi a generalized Bott manifold (over

F). In the case when ni = 1 for every i we call each Bi a Bott manifold.

In [5], Choi, Masuda and Suh study these manifolds from the viewpoint of the cohomo-

logical rigidity problem for toric manifolds. Also in [4, Theorem 6.4], they characterize

generalized Bott manifolds among the quasitoric manifolds over a product of simplices, as

those which admit an invariant almost complex structure under the action of (S 1)n where

n =
∑k

i=1 ni. Moreover, in [4, Section 7] they describe the cohomology ring of any quasitoric

manifold over a product of simplices and in [4, Section 8] they give a sufficient condition

in terms of the cohomology ring for quasitoric manifolds over a product of simplices to be

diffeomorphic to a generalized Bott manifold.

In this article our main objects of study are Bk (when F = R) which we call the generalized

real Bott manifolds. We begin Section 2 with the definition of a small cover [6] over a

product of simplices paralleling that of a quasitoric manifold as in [4]. It follows from [14,

Section 4.1 and 4.2] that every generalized real Bott manifold is a small cover over a product

of simplices. In Proposition 2.7 we prove the converse, that any small cover over a product
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of simplices is a generalized real Bott manifold which is the small cover analogue of [4,

Proposition 6.2].

In Section 3 we study the fundamental group of Bk. More precisely, in Theorem 3.2, we

give a presentation of π1(Bk) which generalizes the description of the fundamental group

of a real Bott manifold as given in [13, Lemma 3.2], [16, Lemma 3.2] and [7, Theorem

2.1]. We further derive a characterization of the generalized real Bott manifolds which have

abelian fundamental group. Furthermore, we show that Bk is aspherical if and only if it is

a real Bott manifold. We study further group theoretic properties of π1(Bk) in Propositions

3.8 and 3.10.

We begin Section 4 by recalling the description of the cohomology ring with Z2-

coefficients of the generalized real Bott manifolds. More precisely, in Proposition 4.1, we

give a presentation with generators and relations of H∗(Bk;Z2). Further, we give a combina-

torial criterion for Bk to be orientable in Theorem 4.5 and for Bk to be spin in Theorem 4.7,

by deriving closed formulae for the first and second Stiefel-Whitney classes of Bk (see The-

orem 4.2, Corollary 4.3 and Corollary 4.4). These generalize the orientablity criterion given

by Kamishima and Masuda for real Bott manifolds in [13, Lemma 2.2] and the criterion for

spin structure for real Bott manifolds given by Gaşior in [9] and the authors of the present

paper in [8].

2. Small cover over a product of simplices

2. Small cover over a product of simplices
In this section we define small cover over a product of simplices and recall some prelim-

inary results.

Let ∆ni be the standard ni-simplex for 1 ≤ i ≤ k and let P =
∏k

i=1 ∆
ni . Then P is a simple

polytope of dimension n =
∑k

i=1 ni.

We know that an m-simplex has m + 1 facets. Let f i
li

for 0 ≤ li ≤ ni denote the facets of

∆ni for 1 ≤ i ≤ k. Then the facets of P are as follows :

(2.1) F i
li
= ∆n1 × · · · × ∆ni−1 × f i

li
× ∆ni+1 × · · · × ∆nk

for 0 ≤ li ≤ ni and 1 ≤ i ≤ k. Let  = {F i
li

: 1 ≤ i ≤ k , 0 ≤ li ≤ ni}

R 2.1. Note that F i
li
∩F i

l′
i

= ∆n1 ×· · ·× ( f i
li
∩ f i

l′
i

)×· · ·×∆nk . If ni ≥ 2 then f i
li
∩ f i

l′
i

� ∅

for 0 ≤ li, l
′
i
≤ ni. If ni = 1, f i

li
∩ f i

l′
i

� ∅ if and only if li = l′
i
. Also for i � j, we have

F i
li
∩ F

j

l′
j

= ∆n1 × · · · × f i
li
× · · · × f

j

l′
j

× · · · × ∆nk .

Thus, F i
li
∩ F

j

l′
j

= ∅ if and only if i = j, ni = 1 and li � l′
i
.

Similarly, we know that an m-simplex has m+ 1 vertices. Let vi
li

for 0 ≤ li ≤ ni denote the

vertices of ∆ni for 1 ≤ i ≤ k. Then the vertex set of P is as follows :

(2.2)  = {vl1···lk = v
1
l1
× · · · × vklk : 0 ≤ li ≤ ni , 1 ≤ i ≤ k}

We shall assume that vi
li

is the vertex of ∆ni opposite the facet f i
li
. Then it is easy to see

that vl1··· ,lk is the vertex at which the facets in  − {F1
l1
, · · · , Fk

lk
} intersect.
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D 2.2. Let λ :  → Zn
2

be defined as follows,

λ(F1
1) = e1, · · · , λ(F

1
n1

) = en1
, · · · , λ(Fk

nk
) = en.

λ(F1
0) = a1 , λ(F

2
0) = a2, · · · , λ(F

k
0) = ak.

(2.3)

where ei = (0, · · · , 1, · · · , 0) (with 1 in the ith position) for 1 ≤ i ≤ n and ai = (a1
i
, · · · , ak

i
) ∈

Z
n
2
, for 1 ≤ i ≤ k and each a

j

i
= (a

j

i,1
, a

j

i,2
, · · · , a

j

i,n j
) ∈ Z

n j

2
. We assume that whenever a set

of facets of P intersect along a face their images under λ form a part of a basis of Zn
2
. The

small cover over P associated to the characteristic function λ is defined as M(λ) = Zn
2
×P/ ∼

where (t, p) ∼ (t′, p′) if and only if p = p′ and t · (t′)−1 ∈ GF(p) . Here F(p) is the unique face

of P which contains p in its relative interior and GF(p) is the rank-l subgroup of Zn
2

spanned

by the images under λ of the l facets of P that intersect at F(p) (see [6, Section 1.5]).

The function λ determines the following k × n matrix A, which can be viewed as a k × k

vector matrix

(2.4) A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1
1,1
· · · a1

1,n1
· · · ak

1,1
· · · ak

1,nk

...
...

...
...

a1
k,1
· · · a1

k,n1
· · · ak

k,1
· · · ak

k,nk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1
1
· · · ak

1
...
. . .

...

a1
k
· · · ak

k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Thus M(λ) can also be thought of a small cover associated to the matrix A and we some-

times denote it by M(A).

R 2.3. Quotient construction. A small cover over a simple convex polytope P of

dimension n with m facets can be realized as the quotient of the moment-angle manifold of

the polytope by certain free action of the compact real torus of dimension m − n. It can be

seen that for the polytope P =
∏k

i=1 ∆
ni the moment-angle manifold is X =

∏k
i=1 S ni (see [6,

Section 1.10 and 4.1]). In particular, it follows that M(A) is the quotient of X by the action

of G = Zk
2

given by

(g1, · · · , gk) ·
(

(x1
0, · · · , x

1
n1

), · · · , (xk
0, · · · , x

k
nk

)
)

=
(

(g1 · x
1
0, (g

a1
1,1

1
· · · g

a1
k,1

k
) · x1

1, · · · , (g
a1

1,n1

1
· · · g

a1
k,n1

k
) · x1

n1
), · · · ,

(gk · x
k
0, (g

ak
1,1

1
· · · g

ak
k,1

k
) · xk

1, · · · , (g
ak

1,nk

1
· · · g

ak
k,nk

k
) · xk

nk
)
)

(2.5)

where (g1, · · · , gk) ∈ G and (xi
0
, · · · , xi

ni
) ∈ S ni for i = 1, · · · k (the proof is analogous to [4,

Proposition 4.3]).

For 1 ≤ j1 ≤ n1 , · · · , 1 ≤ jk ≤ nk let A j1··· jk be the following k × k submatrix of A :

(2.6) A j1··· jk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1
1, j1

· · · ak
1, jk

...
...

a1
k, j1

· · · ak
k, jk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The following Proposition is the Z2 analogue of [4, Lemma 3.2].

Proposition 2.4. Let A be a matrix of the form (2.4) that is associated to the characteristic

function λ of a small cover over P. The following two properties are equivalent,
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(1) The submatrices A j1··· jk for 1 ≤ j1 ≤ n1 , · · · , 1 ≤ jk ≤ nk have the property that all

their principal minors are 1.

(2) If any n facets of P intersect at a vertex then the image of the corresponding facets

under λ forms a basis of Zn
2
.

Proof. Let δ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
i1
i1, ji1

· · · a
ir
i1, jir

...
...

a
i1
ir , ji1

· · · a
ir
ir , jir

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

be a principal minor of A j1··· jk . Let I be the n×n identity

matrix. Let us identify the columns of I with λ(F1
1
), · · · , λ(F1

n1
), · · · , λ(Fk

1
), · · · , λ(Fk

nk
) in

that order. Let A′ be the matrix obtained from I by replacing the columns corresponding to

λ(F
i1
ji1

), · · · , λ(F
ir
jir

) by the i th
1

, · · · , i th
r rows of the matrix A in (2.4). It is easy to see that

δ = det A′. Now each column of A′ is the image of some facet of P under λ and these

facets intersect at the vertex vJ where J = 0 · · · 0 ji1 0 · · · 0 ji2 0 · · · 0 jir 0 · · · 0. Further, we

know that det A′ ≡ 1 mod 2 if and only if the columns of A′ form a basis of Zn
2
. Hence the

proposition. �

Proposition 2.5. Let A be a k×k vector matrix as in (2.4) associated to the characteristic

function of a small cover over a product of simplices . Then A is conjugate by a permutation

matrix to a unipotent upper triangular vector matrix of the following form :

(2.7)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 b2
1

b3
1
· · · bk

1

0 1 b3
2
· · · bk

2
...

...

0 · · · · · · 1 bk
k−1

0 · · · · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 0 = (0, · · · , 0), 1 = (1, · · · , 1) of appropriate sizes and b
j

i
= (b

j

i,1
, · · · , b

j

i,n j
) ∈ Z

n j

2
.

Here multiplication of matrix entries is scalar multiplication and addition is vector addition.

Proof. Since the entries of A are all from Z2 it follows from Proposition 2.4 that all the

principal minors of the submatrices A j1··· jk for 1 ≤ j1 ≤ n1 , · · · , 1 ≤ jk ≤ nk are 1. The

result then follows from [4, Lemma 5.1]. �

R 2.6. Note that we can view P as
∏k

i=1 ∆
nσ(i) where σ ∈ S k. Then we obtain a

matrix Ã = EσAE−1
σ where Eσ is the permutation matrix corresponding to σ. It is easy to

see that the small covers associated to A and Ã are equivariantly diffeomorphic (the proof

is similar to that of [3, Proposition 5.1] also see [4, Section 5]). In view of this fact and

Proposition 2.5 we will henceforth assume that the matrix A has the form (2.7).

Proposition 2.7. Every small cover over a product of simplices is a generalized real Bott

manifold.

Proof. The proof is the small cover analogue of the proof of [4, Proposition 6.2]. Let M(A)

be the small cover over
∏k

i=1 ∆
ni associated to the matrix A. We may assume by Proposition

2.5 that A is of the form (2.7). Let X j =
∏ j

i=1
S ni , which is the moment-angle manifold of

∏ j

i=1
∆ni for j = 1, · · · , k. The group Gk = Z

k
2

acts on Xk as in (2.5) and Xk/Gk = M(A). Let
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B j = X j/Gk where Gk acts on X j as follows

(g1, · · · , gk) ·
(

(x1
0, · · · , x

1
n1

), · · · , (x
j

0
, · · · , x

j
n j

)
)

=
(

(g1 · x
1
0, (g

a1
1,1

1
· · · g

a1
k,1

k
) · x1

1, · · · , (g
a1

1,n1

1
· · · g

a1
k,n1

k
) · x1

n1
), · · · ,

(g j · x
j

0
, (g

a
j

1,1

1
· · · g

a
j

k,1

k
) · x

j

1
, · · · , (g

a
j

1,n j

1
· · · g

a
j

k,n j

k
) · x

j
n j

)
)

We get a sequence M(A) = Bk

pk

−→ Bk−1 → · · · B1

p1

−−→ B0 = {pt} induced by the natural

projections of X j on X j−1 for j = 1, · · · , k.

Since A is of the form (2.7), the last k − j factors of Gk act trivially on X j so that the

Gk action reduces to a G j action on X j with X j/Gk ≃ X j/G j. Further, the last factor of G j

acts on the last factor of X j as scalar multiplication and trivially on other factors. It follows

that p j : B j = X j/G j → B j−1 = X j−1/G j−1 is the projectivization of a real vector bundle

ξ j over B j−1 associated to the principal G j−1-bundle X j−1 → X j−1/G j−1 = B j−1. In fact,

ξ j = (X j−1 × V j)/G j−1 where V j = R
n j+1 with the action of G j−1 given by

(g1, · · · , g j−1) · (x
j

0
, · · · , x

j
n j

)

=
(

x
j

0
, (g

a
j

1,1

1
· · · g

a
j

j−1,1

j−1
) · x

j

1
, · · · , (g

a
j

1,n j

1
· · · g

a
j

j−1,n j

j−1
) · x

j
n j

)

.

�

R 2.8. The statement of Proposition 2.7 above is also mentioned in [4, Remark

6.5].

Let N = Zn be the lattice with basis {u1
1
, · · · , u1

n1
, · · · , uk

1
, · · · , uk

nk
}. Define ui

0
= −(b1

i,1
·u1

1
+

· · · + b1
i,n1
· u1

n1
+ · · · + bk

i,1
· uk

1
+ · · · + bk

i,nk
· uk

nk
) for 1 ≤ i ≤ k where b

j

i,li
are entries from the

matrix (2.7). Let Σk be the fan in N consisting of cones generated by any sub-collection of

{u1
0
, · · · , u1

n1
, · · · , uk

0
, · · · , uk

nk
} that doesn’t contain {ui

0
, · · · , ui

ni
} for 1 ≤ i ≤ k.

Proposition 2.9. The generalized real Bott manifold Bk is the real toric variety associated

to the smooth projective fan Σk.

Proof. We proceed by induction on k. When k = 1 we have B1 = RP
n
1 which is

the real toric variety associated to the fan Σ1. Let N′ = Zn−nk be the lattice with basis

{(u1
1
)′, · · · , (u1

n1
)′, · · · , (uk−1

1
)′, · · · , (uk−1

nk−1
)′}. For 1 ≤ i ≤ k − 1 let

(ui
0)′ = −

(

b1
i,1 · (u

1
1)′ + · · · + bk−1

i,nk−1
· (uk−1

nk−1
)′
)

.

Consider the fan Σ′ in N′ consisting of cones generated by any sub-collection of

{(u1
0
)′, · · · , (u1

n1
)′, · · · , (uk−1

0
)′, · · · , (uk−1

nk−1
)′} that doesn’t contain {(ui

0
)′, · · · , (ui

ni
)′} for all 1 ≤

i ≤ k− 1. Then Σ′ is isomorphic to the fan Σk−1. By the induction hypothesis Bk−1 is the real

toric variety associated to the smooth projective fan Σk−1 ≃ Σ
′. Now Bk = P(1⊕L1⊕· · ·⊕Lnk

)

where L1, · · · , Lnk
are real line bundles over Bk−1. By Lemma 2.10 each Li for 1 ≤ i ≤ nk,

is isomorphic to a T -equivariant real algebraic line bundle L′
i

over Bk−1 where T = (R∗)n−nk .

Hence Bk is homeomorphic to P(1 ⊕ L′
1
⊕ · · · ⊕ L′nk

). Thus without loss of generality we can

assume that Li for 1 ≤ i ≤ nk is a T -equivariant real algebraic line bundle over Bk−1. Let

h1, · · · , hnk
be the support functions corresponding to L1, · · · , Lnk

respectively. In view of
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Remark 2.11,

(2.8) h j((u
i
li
)′) = 0 for 1 ≤ i ≤ k − 1 , 1 ≤ li ≤ ni

and let

(2.9) bk
i, j := h j((u

i
0)′) for 1 ≤ i ≤ k − 1.

Let N′′ = Znk with basis {(uk
1
)′′, · · · , (uk

nk
)′′}. Let (uk

0
)′′ := −((uk

1
)′′+· · ·+(uk

nk
)′′). Let Σ′′ de-

note the fan in N′′ consisting of cones generated by any proper subset of {(uk
0
)′′, · · · , (uk

nk
)′′}.

We get an exact sequence of fans

(2.10) 0→ (N′′,Σ′′)
φ′′

−−→ (N,Σk)
φ′

−→ (N′,Σ′)→ 0

where, φ′′((uk
lk

)′′) = uk
lk

for 1 ≤ lk ≤ nk and φ′(ui
li
) = (ui

li
)′ for 1 ≤ i ≤ k − 1 , 1 ≤ li ≤ ni and

φ′(uk
lk

) = 0 for 1 ≤ lk ≤ nk.

Define ψ : N′ ≃ Z
n−nk

2
→ Zn

2
≃ N by ψ(y) =

(

y,−h1(y), · · · ,−hnk
(y)
)

. Then by (2.8) ψ

gives a splitting of (2.10). That is N = N′ ⊕N′′. Further, if we let σ̃ denote the image of any

σ ∈ Σ′ under ψ then,

Σ̃ = {σ̃ : σ ∈ Σ′}

It can be seen that

Σk = {σ̃ + σ
′′ : σ ∈ Σ′ and σ′′ ∈ Σ′′}

Then from the real analogue of [18, Proposition 1.33] we have that Bk is the real toric variety

corresponding to the smooth projective fan Σk.

It also follows independently from [14, Section 4.1 and Section 4.2], that Bk is a small

cover over the product of simplices
∏k

i=1 ∆
ni . �

Lemma 2.10. Let XΣ be the real toric variety with dense torus (R∗)n, associated to the

smooth projective fan Σ in the lattice N ≃ Zn. Every real line bundle over XΣ is isomorphic

to an (R∗)n-equivariant algebraic real line bundle.

Proof. We know that XΣ =
⋃

σ∈ΣUσ where Uσ = Homsg(M ∩ σ∨,R) , σ∨ is the dual

cone of σ in the dual lattice M. Let {ρ j : 1 ≤ j ≤ d} be the edge vectors in Σ and let v j be

the primitive vector generating the edge ρ j for 1 ≤ j ≤ d. Let L j be the algebraic real line

bundle corresponding to the piecewise linear data {mσ}σ∈Σ (see [18, Proposition 2.1]) where

mσ ∈ M is defined as mσ = 0 if v j is not on an edge of σ and if v j is on an edge of σ then

−mσ is the element in the dual basis to the basis of N consisting of generators of σ such

that 〈−mσ, v j〉 = 1. Since mσ − mσ′ ∈ (σ ∩ σ′)⊥, we can define as in [18, p. 69], the real

(R∗)n-equivariant line bundle associated to {mσ} as follows :

L j =
⋃

σ∈Σ

Uσ × R/ ∼ where (x, r) ∼ (x, x(mσ − mσ′) · r) for x ∈ Uσ ∩ Uσ′

Then {L j : 1 ≤ j ≤ d} are the canonical real line bundles over XΣ. Each L j has an (R∗)n-

equivariant sections s j such that the zero locus of s j is the (R∗)n-invariant co-dimension 1

real subvariety V(ρ j) of XΣ (see [18, Proposition 2.1] and [1, Example 2.10.5]). Here V(ρ j)

is the closure of the orbit Oρ j
= Homgp(M ∩ ρ⊥

j
,R∗). Then, w1(L j) = [V(ρ j)] ∈ H1(XΣ;Z2),
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where [V(ρ j)] is the Poincaré dual to the homology class of V(ρ j). Now by [12, Theorem

4.3.1], as a Z2-vector space, H1(XΣ;Z2) is generated by [V(ρ j)] for 1 ≤ j ≤ d. Let L be a real

line bundle over XΣ. Since w1(L) ∈ H1(XΣ;Z2) we have w1(L) =
∑d

j=1 c j·[V(ρ j)] = w1(⊗L
c j

j
).

Thus L ≃ ⊗L
c j

j
([11, p. 250]). �

R 2.11. Since Σ is a smooth complete fan, we may assume without loss of gen-

erality that ρ1, · · · , ρn span a cone in Σ. Then {v1, · · · , vn} is a basis of N with dual basis

{v∗
1
, · · · , v∗n} of M. From [12, Theorem 4.3.1], for 1 ≤ i ≤ n we have the linear relations

∑d
j=1〈v

∗
i
, v j〉 · [V(ρ j)] so that H1(XΣ;Z2) = 〈[V(ρ j)] : n + 1 ≤ j ≤ d〉 ≃ Zd−n

2
. Therefore if

L is any real line bundle over XΣ then L ≃
⊗d

i=n+1
L

ci

i
=: Lh. Here Lh is the line bundle

corresponding to the support function given by h(vi) = −ci for n + 1 ≤ i ≤ d and h(vi) = 0

otherwise.

3. The fundamental group

3. The fundamental group
We begin this section by giving a presentation of π1(Bk) with generators and relations.

This is obtained by applying [19, Proposition 3.1]. Using the presentation we characterize

those Bk with abelian fundamental group. Again, using [19, Theorem 6.1] we show that Bk

is aspherical only when it is a real Bott manifold. In Section 3.2, we derive further group

theoretic properties of π1(Bk). In particular we prove that π1(Bk) is solvable and that π1(Bk)

is nilpotent if and only if it is abelian.

3.1. Presentation of π1(Bk).
3.1. Presentation of π1(Bk). Recall that we have an exact sequence

(3.1) 1→ π1(Bk)→ W(Σk)→ Zn
2 → 1

where W(Σk) is the right angled Coxeter group associated to Σk with the following presenta-

tion :

W = W(Σk) = 〈si,li : 1 ≤ i ≤ k , 0 ≤ li ≤ ni | s
2
i,li
= 1 , (si,li · s j,l′

j
)2 = 1 for i � j

and (si,li · si,l′
i
)2 = 1 ∀ i such that ni ≥ 2〉.

(3.2)

The last arrow in the above exact sequence is obtained by composing the natural abelianiza-

tion map from W to Zn+k
2

with the characteristic map λ from Zn+k
2

to Zn
2
. (Here λ is extended

by linearity from Definition 2.2)

For each 1 ≤ j ≤ k we define the reduced word

(3.3) α j := s j,0 · s
a1

j,1

1,1
· s

a1
j,2

1,2
· · · s

a1
j,n1

1,n1
· · · s

ak
j,1

k,1
· · · s

ak
j,nk

k,nk

in W.

For every ε = (ε1,1, · · · , ε1,n1
, · · · , εk,1, · · · , εk,nk

) ∈ Zn
2

we define the following :

(1) tε = s
ε1,1

1,1
· · · s

ε1,n1

1,n1
· · · s

εk,1

k,1
· · · s

εk,nk

k,nk
.

(2) Bp = (B
p

1,1
, · · · , B

p

1,n1
, · · · , B

p

k,1
, · · · , B

p

k,nk
) where B

p

i,li
= εi,li + ai

p,li
for 1 ≤ i, p ≤ k

and 1 ≤ li ≤ ni.

(3) Cp,q = (C
p,q

1,1
, · · · ,C

p,q

1,n1
, · · · ,C

p,q

k,1
, · · · ,C

p,q

k,nk
) where C

p,q

i,li
= εi,li + ai

p,li
+ ai

q,li
for 1 ≤

i, p, q ≤ k and 1 ≤ li ≤ ni.

From the relations in W we get,
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(3.4) tε · α j · tε =

{

α j , ε j,1 = 0 or n j ≥ 2

α−1
j
, otherwise

This can be seen as follows : if n j = 2 then s j,0 commutes with all si,li so that tε ·α j · tε = α j.

When n j = 1 we get

tε · α j · tε = s
ε j,1

j,1
· s j,0 · s

a1
j,1

1,1
· · · s

a1
j,n1

1,n1
· · · s

a
j

j,1

j,1
· · · s

ak
j,nk

k,nk
· s
ε j,1

j,1
=

{

α j , ε j,1 = 0

α−1
j
, ε j,1 = 1

where a
j

j,1
= 1 . Note that α2

j
= 1 when n j ≥ 2.

R 3.1. In view of Remark 2.6 we may assume that there exists an l ≤ k such that

n1, · · · , nl ≥ 2 and nl+1 = · · · = nk = 1. Let Ml be the real part of the toric variety associated

to the fan Σl. Note that if l = 0 then Bk is a real Bott manifold.

Theorem 3.2. The fundamental group of the generalized real Bott manifold Bk has a

presentation π1(Bk) = 〈 S |R 〉 with generators,

(3.5) S = {α j : 1 ≤ j ≤ k}

and relations,

R = {(αp αq)2 : 1 ≤ p < q ≤ l}
⋃

{α2
p : 1 ≤ p ≤ l}

⋃

{xp,q : l + 1 ≤ p < q ≤ k}
⋃

{x′p,q : 1 ≤ p ≤ l < q ≤ k}
(3.6)

where,

xp,q =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

αp αq α
−1
p α

−1
q , a

q

p,1
= 0

αp α
−1
q α

−1
p α

−1
q , a

q

p.1
= 1

and,

x′p,q =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

αp αq αp α
−1
q , a

q

p,1
= 0

(αp αq)2 , a
q

p,1
= 1

Proof. The proof uses [19, Theorem 3.2]. We can relate the above notations with those in

the proof of [19, Theorem 3.2] as follows :

y j,ε = tε · α j · tε

for 1 ≤ j ≤ k and ε ∈ Zn
2
. Thus y j,ε = α

±1
j

by (3.4). Then it can be seen that

yp,ε · yq,Bp · yp,Cp,q · yq,Bq = tε · αp · tap
αqtap

· taq+ap
αptaq+ap

· taq
αqtaq

· tε

=: Xεp,q

whenever 1 ≤ p, q ≤ k. By exchanging the rolls of p and q we get that Xεp,q is conjugate to

Xεq,p or (Xεq,p)−1 by an element from the free group generated by S . Thus we may assume

that p < q. We now look at the following cases :

(1) If p, q ≤ l then Xεp,q = tε · αp αq αp αq · tε = (αp αq)2 .

(2) If p ≤ l and q > l then
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Xεp,q =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tε · αp αq αp α
−1
q · tε , a

q

p,1
= 0

tε · (αp α
−1
q )2 · tε , a

q

p,1
= 1

(3) If p, q > l then

Xεp,q =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tε · αp αq α
−1
p α

−1
q · tε , a

q

p,1
= 0

tε · αp α
−1
q α

−1
p α

−1
q · tε , a

q

p,1
= 1

From (3.4) it is easy to see that Xεp,q in (2) is conjugate to either x′p,q or (x′p,q)−1 and Xεp,q in (3)

is conjugate to either xp,q or x−1
p,q by an element from the free group generated by S . Also by

definition of α j it is clear that α2
j
= 1 for 1 ≤ j ≤ l. Thus it follows that R gives a complete

set of relations of π1(Bk). Hence the theorem. �

R 3.3. Alternately, the presentation for π1(Bk) can be derived from (3.13).

Corollary 3.4. The fundamental group π1(Bk) is abelian if and only if Bk ≃ Ml × (S 1)k−l

for some 0 ≤ l ≤ k.

Proof. From Theorem 3.2 it is easy to see that π1(Bk) is abelian if and only if for all

1 ≤ p ≤ k , l + 1 ≤ q ≤ k and p < q , a
q

p,1
= 0, where l is as in Remark 3.1. Hence the

corollary follows. �

Lemma 3.5. Bk is an aspherical manifold if and only if it is a real Bott manifold.

Proof. We know from [19, Theorem 6.1] that a real toric variety is aspherical if and only

if the corresponding fan is flag-like. A fan is flag-like if and only if for every collection S of

edge vectors of the fan if 〈u, u′〉 spans a cone for all u, u′ ∈ S then S spans a cone. Now if

ni ≥ 2 for some i then the set of edge vectors {ui
li
}
ni

li=0
of Σk is such that 〈ui

li
, ui

l′
i

〉 spans a cone

in Σk but 〈ui
0
, · · · , ui

ni
〉 does not. Conversely, if ni = 1 for all i then it can be easily seen that

Σk is flag-like. The theorem follows. �

R 3.6. The Lemma 3.5 above also follows from the quotient construction (see Re-

mark 2.3) of Bk and the fact that some finite cover of Bk is a product of spheres and it is a

torus if and only if Bk is a real Bott manifold, in other words, a sphere of dimension greater

than 1 appears in the factor of the product unless Bk is a real Bott manifold.

Corollary 3.7. The group π1(Bk) is torsion free if and only if Bk is a real Bott manifold.

Proof. If Bk is a real Bott manifold then by Lemma 3.5 it is aspherical and hence π1(Bk)

is torsion free. Conversely, if ni � 1 for some i, then from Theorem 3.2, αi � 1 but α2
i
= 1,

so that αi is a torsion element. �

3.2. Further group theoretic properties of π1(Bk).
3.2. Further group theoretic properties of π1(Bk).

Proposition 3.8. The commutator subgroup [π1(Bk), π1(Bk)] is abelian. In particular

π1(Bk) is a solvable group.

Proof. By [19, Lemma 4.1] we know that [W,W] is abelian if and only if for each edge u

in the fan Σk, there is at most one edge u′ such that 〈u, u′〉 does not span a cone in Σk. We
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have 〈ui
li
, u

j

l′
j

〉 spans a cone in Σk whenever i � j or i = j , ni ≥ 2. When i = j and ni = 1

there are only two edge vectors ui
0

and ui
1

and they do not span a cone in Σk. Hence [W,W] is

abelian. Since π1(Bk) is a subgroup of W it follows that [π1(Bk), π1(Bk)] is abelian. Finally,

1 ≤ [π1, π1] ≤ π1(Bk) gives an abelian tower for π1(Bk) so that π1(Bk) is solvable. �

Let ᾱ j denote the image of α j under the canonical abelianization homomorphism

(3.7) π1(Bk)→ H1(Bk;Z) ≃ π1(Bk)/[π1(Bk), π1(Bk)].

We then have the following description of H1(Bk;Z).

Proposition 3.9. The group H1(Bk;Z) has a presentation with generators

(3.8) 〈ᾱ j : 1 ≤ j ≤ k〉

and relations as follows :

(3.9) ᾱp · ᾱq · ᾱp
−1 · ᾱq

−1

for 1 ≤ p, q ≤ k and

(3.10) ᾱq
2

for 1 ≤ q ≤ l and for those l < q ≤ k for which there exists a p < q such that a
q

p,1
= 1.

Thus additively we have an isomorphism H1(Bk;Z) ≃ Zk−r−l
⊕

Z
l+r
2

where r is the number

of l < q ≤ k as above.

Proof. The proof follows readily from (3.7) and (3.6). �

Proposition 3.10. The group π1(Bk) is nilpotent if and only if it is abelian.

Proof. Observe by (3.2) that

(3.11) α2
j = (s j,0 · s

a1
j,1

1,1
· s

a1
j,2

1,2
· · · s

a1
j,n1

1,n1
· · · s

ak
j,1

k,1
· · · s

ak
j,nk

k,nk
)2 = (s j,0 · s j,1)2

� 1

for j > l and α2
j
= 1 for j ≤ l. If π1(Bk) is not abelian then by Theorem 3.2, there ex-

ists a q > l and a p < q such that a
q

p,1
= 1. Then it follows from Proposition 3.9 that

α2
q ∈ [π1(Bk), π1(Bk)]. Further, by (3.6), αp α

−2
q α

−1
p α

2
q = (αp α

−1
q α

−1
p )2 α2

q = α
2
q α

2
q = α

4
q ∈

[π1(Bk), [π1(Bk), π1(Bk)]]. Proceeding similarly by induction we get that

αp α
−2m

q α−1
p α

2m

q = α
2m+1

q ∈ π1(Bk)(m).

Here π1(Bk)(1) := [π1(Bk), π1(Bk)] and π1(Bk)(m) := [π1(Bk), π1(Bk)(m−1)]. Finally, by (3.11)

and the fact that sq,0 · sq,1 is of infinite order in W, we have that α2m

q = (sq,0 · sq,1)2m

� 1 for

any m. The proposition follows. �

R 3.11. Here we mention that the fundamental group of a real toric variety is not in

general solvable. For example, the non-orientable surfaces of genus g are real toric varieties

(see for example [12, Section 4.5, Remark 4.5.2] and [19, Remark 3.3]), whose fundamental

groups contain free subgroups of rank g − 1 (see for example [2, p. 62, Section 4]). Thus

whenever g ≥ 3, these groups are not solvable.
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R 3.12. We wish to mention here that from [15, Corollary 3.7], if a small cover M

is aspherical and its fundamental group is virtually solvable (i.e., it has the structure of an

infra-solvmanifold), then M is homeomorphic to a real Bott manifold. On the other hand,

Proposition 3.8 in the present paper says that the fundamental group of a generalized real

Bott manifold Bk is always solvable and Lemma 3.5 says that if Bk is aspherical then it is a

real Bott manifold.

R 3.13. In view of Remark 3.12, it may be worthwhile to ask if a small cover

M (not necessarily aspherical) having a virtually solvable fundamental group is in fact a

generalized real Bott manifold.

3.3. Remark on higher homotopy groups.
3.3. Remark on higher homotopy groups.

Theorem 3.14. The higher homotopy groups π j(Bk) for j ≥ 2 are isomorphic to π j(P
n1)×

· · · × π j(P
nk ).

Proof. Note that the fibration Pnk
i
−֒→ Bk

pk

−→ Bk−1 induces a long exact sequence of

homotopy groups

(3.12) · · · → π j(P
nk )

i∗
−→ π j(Bk)

(pk)∗
−−−→ π j(Bk−1)

∂∗
−→ π j−1(Pnk )→ · · ·

Since Bk = P(1 ⊕ L1 ⊕ · · · ⊕ Lnk
) the zero sections of each Li → Bk−1 for 1 ≤ i ≤ nk

define a section of pk : Bk → Bk−1, namely the map sk : Bk−1 → Bk that sends any point

to [(1, 0, · · · , 0)] in the fiber above that point. The induced map, (sk)∗ : π j(Bk−1) → π j(Bk)

is a right inverse of (pk)∗. This in particular, makes all the maps (pk)∗ surjective so that the

maps ∂∗ are identically 0 and hence the maps i∗ are injective. Thus we have the split exact

sequence

(3.13) 0→ π j(P
nk )

i∗
−→ π j(Bk)

(pk)∗
−−−→ π j(Bk−1)→ 0.

Since π j(Bk) is abelian for j ≥ 2, by induction on k we get that π j(Bk) ≃ π j(P
n1) × · · · ×

π j(P
nk ). �

4. Orientability and Spin structure

4. Orientability and Spin structure
The results in this section extend those in [8, Section 3]. We begin by recalling the

presentation of the cohomology ring with Z2 coefficients of Bk. We then give a recursive

formula for the total Stiefel-Whitney class and closed formulae for the first and second

Stiefel-Whitney classes of Bk. We hence obtain necessary and sufficient conditions for ori-

entability and spin structure on Bk in terms of certain identities on the entries a
j

i,l j
of the

matrix A.

Proposition 4.1. Let  be the ring Z2[x10, · · · , x1n1
, · · · , xk0, · · · , xknk

] and let  denote

the ideal in  generated by the following set of elements

(4.1) {xi0 xi1 · · · xini
, xili +

i
∑

j=1

ai
jli

x j0 ∀ 1 ≤ i ≤ k , 1 ≤ li ≤ ni}.

As a graded Z2-algebra H∗(Bk;Z2) is isomorphic to /.
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Proof. Since Bk is the toric variety associated to the smooth projective fan Σk the result

follows from [12, Theorem 4.3.1]. Alternately, since Bk is the small cover over the polytope
∏k

i=1 ∆
ni with characteristic function λ, the result follows from [6, Theorem 4.14]. �

Let wp(Bk) denote the pth Stiefel-Whitney class of Bk for 0 ≤ p ≤ n with the understand-

ing that w0(Bk) = 1. Then w(Bk) = 1 + w1(Bk) + · · · + wn(Bk) is the total Stiefel-Whitney

class of Bk.

Theorem 4.2. The following holds in the Z2-algebra / :

(4.2) w(Bk) = w(Bk−1) ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

nk
∏

lk=1

(1 +

k
∑

j=1

ak
j,lk

x j0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· (1 + xk0).

Proof. From [6, Corollary 6.8] for Bk we have

(4.3) w(Bk) =

k
∏

i=1

ni
∏

li=0

(1 + xili).

Note that the defining matrix for Bk−1 is the (k − 1) × (n − nk) submatrix of A obtained by

deleting the kth row and the last nk columns of A. Moreover, via pullback along p∗
k
, where

pk is the map in (1.1), H∗(Bk−1;Z2) can be identified with the subring 
′/′ of / where


′ = Z2[x10, · · · , x1n1

, · · · , xk−1 0, · · · , xk−1 nk−1
] and 

′ is the ideal generated by the relations

(4.4) {xi0 xi1 · · · xini
, xili +

i
∑

j=1

ai
j,li
· x j0 for 1 ≤ i ≤ k − 1 , 1 ≤ li ≤ ni}.

Since Bk is a Pnk -bundle over Bk−1, we further have the following presentation of H∗(Bk;Z2)

as an algebra over H∗(Bk−1;Z2):

(4.5) H∗(Bk;Z2) ≃ H∗(Bk−1;Z2)[xk0, · · · , xknk
]/J

where J is the ideal generated by the relations

(4.6) xk0 xk1 · · · xknk
, xklk +

k
∑

j=1

ak
j,lk

x j0 for 1 ≤ lk ≤ nk.

Furthermore, via p∗
k

we can identify w(Bk−1) with the expression :

(4.7) w(Bk−1) =

k−1
∏

i=1

ni
∏

li=0

(1 + xili).

in 
′ where xili for 1 ≤ i ≤ k − 1 and 1 ≤ i ≤ ni satisfy the relations (4.4). Now by (4.3) and

(4.7), it follows that,

(4.8) w(Bk) = w(Bk−1) ·

nk
∏

lk=0

(1 + xklk ).

Using the relations in  we get (4.2). Hence the theorem. �
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Corollary 4.3. We have the following expression for w1(Bk) in / :

(4.9) w1(Bk) =

k
∑

j=1

(1 +

k
∑

i=1

ni
∑

li=1

ai
j,li

) · x j0.

Proof. Note that under the isomorphism of graded algebras H∗(Bk;Z2) and /, w1(Bk) ∈

H1(Bk;Z2) corresponds to a polynomial of degree 1 in xili , 1 ≤ i ≤ k, 1 ≤ li ≤ ni modulo .

Thus by comparing the degree 1-terms on either side of (4.2) and using induction on k the

lemma follows.

�

Corollary 4.4. We have the following expression for w2(Bk) in / :

(4.10) w2(Bk) =

l
∑

s=1

T ′s · x
2
s0 +

l
∑

r,s=1
r<s

T ′rs · xr0 · xs0 +
∑

1≤r≤k
l<s≤k
r<s

(T ′rs + as
r,1 · T

′
s) · xr0 · xs0

Where

(4.11) T ′s =
∑

1≤i≤k
1≤li≤ni

ai
s,li
+
∑

1≤i≤k
1≤li<l′

i
≤ni

ai
s,li

ai
s,l′

i
+
∑

1≤i< j≤k
1≤li≤ni

1≤l j≤n j

ai
s,li

a
j

s,l j

and

(4.12) T ′rs = 1 +
∑

1≤i≤k
1≤li≤ni

(ai
r,li
+ ai

s,li
) +

∑

1≤i≤k
1≤li,l

′
i
≤ni

li�l′
i

ai
r,li

ai
s,l′

i
+
∑

1≤i< j≤k
1≤li≤ni

1≤l j≤n j

ai
r,li

a
j

s,l j

Proof. Using the relations (4.1) in (4.3), w(Bk) can be identified with the class of the

following term in / :

(4.13)

k
∏

i=1

(1 + xi0) ·

k
∏

i=1

ni
∏

li=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

k
∑

j=1

ai
j,li
· x j0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(Here we note that ai
j,li
= 0 for j > i.) Since Proposition 4.1 gives an isomorphism of

graded Z2-algebras, the degree 2 term of w(Bk), namely w2(Bk) can be identified with the

degree 2 term of the expression (4.13) which is the class of the following term in / :

(4.14)

k
∑

s=1

T ′s · x2
s0 +

k
∑

r,s=1
r<s

T ′rs · xr0 · xs0

For l ≤ s ≤ k, we can use the relations in (4.1) to obtain,

(4.15) x2
s0 =

s−1
∑

j=1

as
j,1 · x j0 · xs0

Using (4.15) in (4.14) we get (4.10). Hence the corollary. �
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Theorem 4.5. The space Bk is orientable if and only if

(4.16)

k
∑

i=1

ni
∑

li=1

ai
j,li
≡ 1 mod 2 for all 1 ≤ j ≤ k.

Proof. Note that via the isomorphism in Theorem 4.1 of graded algebras / and

H∗(Bk;Z2), {x10, · · · , xk0} corresponds to a basis over Z2 of H1(Bk;Z2). Thus by (4.9) it

follows that w1(Bk) = 0 if and only if

(4.17)

k
∑

i=1

ni
∑

li=1

ai
j,li
≡ 1 mod 2 for all 1 ≤ j ≤ k.

Furthermore, since a necessary and sufficient condition for a compact connected differen-

tiable manifold M to be orientable is w1(M) = 0, the theorem follows. �

R 4.6. Note that Theorem 4.5 also follows as a direct consequence of [17, Theorem

1.7].

Theorem 4.7. Let

(4.18) Ts :=
∑

1≤i≤k
1≤li<l′

i
≤ni

ai
s,li

ai
s,l′

i
+
∑

1≤i< j≤k
1≤li≤ni

1≤l j≤n j

ai
s,li

a
j

s,l j

and

(4.19) Trs :=
∑

1≤i≤k
1≤li≤ni

ai
r,li

ai
s,li
.

The orientable generalized real Bott manifold Bk admits a spin structure if and only if the

following identities hold :

(4.20) Ts ≡ 1 mod 2 for 1 ≤ s ≤ l

(4.21) Trs ≡ 0 mod 2 for 1 ≤ r < s ≤ l

(4.22) Trs + as
r,1 · (1 + Ts) ≡ 0 mod 2 for 1 ≤ r ≤ k , l < s ≤ k.

Proof. Using (4.16) we can simplify T ′s and T ′rs from Corollary 4.4 as follows,

(4.23) T ′s = 1 +
∑

1≤i≤k
1≤li<l′

i
≤ni

ai
s,li

ai
s,l′

i
+
∑

1≤i< j≤k
1≤li≤ni

1≤l j≤n j

ai
s,li

a
j

s,l j
= 1 + Ts

T ′rs = 1 +
∑

1≤i≤k
1≤li,l

′
i
≤ni

li�l′
i

ai
r,li

ai
s,l′

i
+
∑

1≤i< j≤k
1≤li≤ni

1≤l j≤n j

ai
r,li

a
j

s,l j

= 1 +
∑

1≤i≤k
1≤li≤ni

ai
r,li
· (1 + ai

s,li
) = 1 + 1 + Trs = Trs

(4.24)
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Using (4.23), (4.24) in (4.10), w2(Bk) can be identified with the class of the following term

in / :

(4.25)

l
∑

s=1

(1 + Ts) · x
2
s0 +

l
∑

r,s=1
r<s

Trs · xr0 · xs0 +
∑

1≤r≤k
l<s≤k
r<s

(Trs + as
r,1 · (1 + Ts)) · xr0 · xs0

By Proposition 4.1, as a Z2-vector space, H2(Bk;Z2) is isomorphic to the subspace of /

generated by the classes of x2
s0

for 1 ≤ s ≤ k and xr0 · xs0 for 1 ≤ r < s ≤ k. Further, since Bk

is constructed as an iterated sequence of projective bundles, the mod 2 Poincaré polynomial

of Bk has the following expression

(4.26) Pt(Bk;Z2) =

k
∏

i=1

Pt(P
ni ;Z2) =

k
∏

i=1

(1 + t + · · · + tni).

It follows from (4.26) and (4.15) that H2(Bk;Z2) is freely generated by the classes of x2
s0

for

1 ≤ s ≤ l and xr0 · xs0 for 1 ≤ r < s ≤ k. Moreover, the necessary and sufficient condition for

an orientable manifold M to admit a spin structure is w2(M) = 0. Thus the theorem follows

from (4.25). �

4.1. The case of a real Bott manifold.
4.1. The case of a real Bott manifold.

Corollary 4.8. When l = 0, the orientable real Bott manifold Bk is Spin if and only if

(4.27) Trs + as
r,1 · (1 + Ts) ≡ 0 mod 2 for all 1 ≤ r < s ≤ k

where Trs and Ts are as in (4.19) and (4.18) respectively. Further, if we let C := A− I (where

A be the k × k upper triangular matrix associated to Bk and I is the k × k identity matrix)

then (4.27) is equivalent to

(4.28)

k
∑

p=1

cr,p cs,p + cr,s ·

k
∑

p,q=1
p<q

cr,p cs,q ≡ 0 mod 2 for all 1 ≤ r < s ≤ k

where ci, j are the entries of C. In particular, [8, Theorem 3.2] and, [9, Theorem 1.2] follow.

Proof. The first statement follows immediately from Theorem 4.7 by putting l = 0. The

left hand side of (4.27) is

(4.29)

k
∑

p=1

a
p

r,1
a

p

s,1
+ as

r,1 ·
(

1 +
∑

p,q=1
p<q

a
p

s,1
a

q

s,1

)

Since ci, j = a
j

i,1
when i � j and ci,i = ai

i,1
− 1 = 0, (4.29) reduces to,

k
∑

p=1
p�r,s

cr,p cs,p + ar
r,1 ar

s,1 + as
r,1 as

s,1 + cr,s ·
(

1 +

k
∑

p,q=1
p<q,p,q�s

cs,p cs,q + as
s,1 ·

k
∑

i=1
i�s

ai
s,1

)

.

Further, using (4.16) the above expression can be rewritten as
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k
∑

p=1
p�r,s

cr,p cs,p + 1 · 0 + cr,s · 1 + cr,s ·
(

1 +

k
∑

p,q=1
p<q,p,q�s

cs,p cs,q + 1 · (1 + as
s,1)
)

.

This further can be simplified to

k
∑

p=1

cr,p cs,p + cr,s ·

k
∑

p,q=1
p<q

cr,p cs,q.

Thus (4.27) is equivalent to (4.28). Hence [8, Theorem 3.2] follows. This also implies [9,

Theorem 1.2] by [8, Theorem 3.10, Corollary 3.11]. �

4.2. Digraph interpretation.
4.2. Digraph interpretation. Choi, Masuda and Suh in [3] associate an acyclic directed

graph to a real Bott manifold M(A) by viewing the associated matrix A as the adjacency

matrix of the digraph. In [3, Lemma 4.1], they give necessary and sufficient conditions on

the digraph for M(A) to be orientable and to admit a symplectic form. In [8, Theorem 4.5]

the authors give a necessary and sufficient condition on the digraph for M(A) to admit a spin

structure.

One can similarly associate a labeled multidigraph to a generalized real Bott manifold.

Let Bk be the generalized real Bott manifold associated to the vector matrix A from (2.7).

Define DBk
, as the graph with k vertices {w1, · · · , wk} and edges as follows : there is an edge

from wi to w j with label a
j

i,l j
∈ {0, 1}. Also for every i there are ni loops (edges beginning

and ending at the same vertex), each with label 1, based at wi. The out-degree of a vertex wi

is the number of edges with label 1 that begin at wi. It can be seen that Bk is orientable if

and only if every vertex in DBk
has odd out-degree. One can similarly make interpretations

on DBk
for Bk to admit a spin structure. The authors are trying to find such an interpretation

that generalizes the one for real Bott manifolds.

E 4.9.

(1) Let P = ∆2 ×∆1. The possible 2-step generalized Bott manifolds over P correspond

to the characteristic matrices given by

A =

(

a1
1,1

a1
1,2

a2
1,1

a1
2,1

a1
2,2

a2
2,1

)

=

(

1 1 a2
1,1

0 0 1

)

where a2
1,1
= 0 or 1. From Theorem 4.5 B2 = M(A) is orientable if and only if

a1
1,1
+a1

1,2
+a2

1,1
= 1+1+a2

1,1
≡ 1 mod 2 and a1

2,1
+a1

2,2
+a2

2,1
= 0+0+1 ≡ 1 mod 2.

Thus B2 is orientable if and only if a2
1,1
= 1.

Further, T1 = a1
1,1

a1
1,2
+ a1

1,1
a2

1,1
+ a1

1,2
a2

1,1
= 1 + 1 + 1 ≡ 1 mod 2 and

T12 + a2
1,1
· (1 + T2) = 1 + 1(1 + 0) ≡ 0 mod 2. So by Theorem 4.7 B2 is also spin if

and only if a2
1,1
= 1.

(2) Let P = ∆2 ×∆2. The possible 2-step generalized Bott manifolds over P correspond

to the characteristic matrices given by

A =

(

a1
1,1

a1
1,2

a2
1,1

a2
1,2

a1
2,1

a1
2,2

a2
2,1

a2
2,2

)

=

(

1 1 a2
1,1

a2
1,2

0 0 1 1

)
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where a2
1,1
, a2

1,2
∈ {0, 1}. B2 = M(A) is orientable if and only if a2

1,1
= 1 and a2

1,2
= 0

or a2
1,1
= 0 and a2

1,2
= 1. In both these cases T12 = a2

1,1
+ a2

1,2
≡ 1 mod 2 so that B2

is not spin.

(3) Let P = ∆2 × ∆1 × ∆1. The possible 3-step generalized Bott manifolds over P

correspond to the characteristic matrices given by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1
1,1

a1
1,2

a2
1,1

a3
1,1

a1
2,1

a1
2,2

a2
2,1

a3
2,1

a1
3,1

a1
3,2

a2
3,1

a3
3,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 a2
1,1

a3
1,1

0 0 1 a3
2,1

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where a2
1,1
, a3

1,1
, a3

2,1
∈ {0, 1}. Then B3 = M(A) is orientable if and only if

(a2
1,1
, a3

1,1
, a3

2,1
) = (1, 0, 0) or (a2

1,1
, a3

1,1
, a3

2,1
) = (0, 1, 0). In both cases we see

that T1 = 1 + a2
1,1
+ a3

1,1
+ a2

1,1
a3

1,1
≡ 0 mod 2 so that B3 is not spin.
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