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NBSTRACT

We present the variational equations for maximizing the probability of

correct classification as a function of a lXn feature selection matrix B

for the two population problem. For the special case of equal covariance

matrices the optimal B is unique up to scalar multiples and rank one

sufficient. For equal population means, the best ixn B is an eigenvector

-1corresponding either to the largest or smallest eigenvalue of Z2 1I, where

1 and Z2 are the nxn covariance matrices of the two populations. The

transformed probability of correct classification depends only on the eigen-

value. Finally, a procedure is proposed for constructing an optimal or

nearly optimal kxn matrix of rank k without solving the k-dimensional

variational equation.
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Results on the Two Population Feature

Selection Problem Using Probability of

Correct Classification as a Criterion

by

B.C. Peters, Jr.

1. Introduction

Let 1 and 7 2 be n-variate normally distributed populations with

conditional densities Pl(x) ~ N(p 1 1) and P2 (x) ~ N(p2,Z2 ) and a priori

probabilities al and a2 respectively. In this note we consider some

special cases of the problem of selecting.a lxn nonzero vector B which

maximizes the transformed probability of correct classification

h(B) = /max[alPl(y,B), a 2 P 2 (y,B)]dy,

R

where P (y,B) ~ N(Bpi , BEiBT) are the conditional densities of the variable

y = Bx, i = 1,2. We assume the maximum likelihood classifier: assign x to

T1 if a P 1 (Bx,B) a 2P2 (Bx,B); otherwise, assign x to H2"

It is shown in [2] that for the B which maximizes h(B), the

h(B+sC) - h(B)
Gateaux differential 6h(B;C) = lim exist for all lxn vectors

s+o s

C and
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(1) 6h(B;C) = ~ P 1(Yy,B;C)dy + a2 fP 2 (y,B;C)dy where the

R1 (B) R2 (B)

RI(B) are the Bayes regions

R1 (B) = {y E R I c 1P1 (y,B) > 2P2( B ) }

R2 (B) = {y E R I 1P1 (Y,B) < 2P2(, B ) }

Moreover, [1],

(2) 6PI(y,B;C) = Pi(y,B) i 2 (y - Bi)
I(BZiB )

T 
Ci C. B

+ (y - B.i) T
BEi B BE BT

Substituting (2) into (1) and integrating by parts gives

CE BT

(3) Sh(B;C) = -l P 1(y,B) (y - B1y) + C1iBIIBT 
i j i ( B )

T B.CE2B

-C 2P2(y,B) B2B T(y - By 2 ) + C12
2 J R2 (B)

In order to determine R 1 (B) and R2 (B) it is necessary to solve the
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equation a 1P(y,B) = 2P2 (y,B) whose roots are those of the discriminant

function

H(y,B) = a(B)y 2 + 2 (B)y + y(B),

where

a(B) = B(El - 2)B

(B) = (BE2B T)BI - (BE1BT)B 2

y(B) = (BE1BT)(B 2 ) 2 - (BE2BT)(Bp) 2

BE2 BT  a 2

+ (BE1BT)(BE 2 BT)[in + In - ].
BE1B  2

We are not interested in the case where H.(y,B) = 0 has no real roots or

holds identically, since in this case we always have h(B) = max{al,a2 ,

which is the minimum value that h(B) can attain.

2. The Equal Covariance Case

If 1 = 2 = E, then a(B) = 0 and H(y,B) = 0 has the single root

B( 1 + P2) BEBT ln2
a = 2 2B 1 -P 2 )

For either R1 (B) = (-m,a) or R2 (B) = (-o,a) substitution into equation

(3) yields
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6h(B;C) =C(p1  -1 2 ) TBT( 1  -

BEB

Thus, for the optimal B,

EBT

BEB

which may be rewritten as

T BEB -1
B (p 1_1 2) 1 2

It is readily verified thLat

Bo 2T -1

satisfies this equation and that any other solution must be a scalar multiple

of B .' Since h(B o) = h(B ) for X 0 0, B maximizes h(B). The

corresponding probability of correct classification is

h(Bo) = erf(1 2 T -

A nonzero Ixn vector B is called sufficient if h(B) = PCC, where

PCC is the untransformed probability of correct classification
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PCC = max[alPl(x), a2P2 (x)]dx

n

= lPl (x)dx + a2P2 (x)dx

R1  R2

R1 and R2  are the Bayes regions in Rn:

R = {x E Rn J lP 1 ) > 2P2 (x)}

R2 = {X E Rn 1P 1(x) < a2P2 (x)}.

-1
It is shown in [3], that B is sufficient if and only if B-1 (R1(B)) =R

-l
and B -1(R2 (B)) = R2 up to sets of measure zero. By a straightforward cal-

culation it follows that for B = ( 2 T -1

-1
Bo (R (Bo)) = R

and

-1
Bo (R2 (Bo)) = Ro 2 o 2

Thus B is sufficient and
0

PCC = erf(- /( 2)T - 1 2
(t AilP2) Ol1I2)).
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3. The Equal Mean Case

If P = 12 = 0, the equation H(y,B) = 0 reduces to

T
,B2BT 2

0 = B(Z-E 2)BT y2 + (BBT)(B2B T) [ --- 2 + In ].
BE1B 2

In order to avoid complications we will assume throughout this section that

1
al = a2 = 2, although the results also hold for unequal apriori probabilities.

Thus,

BC BT
0 = B(E-Z2)BT 2 + (BBT )(BE2BT) n  2

12 1 2 B BT

The roots of this equation are -a and a, where

(B 1 BT) (B2BY5 BE1BT

a= Rn
BE1BT - BE2BT BE2BT

For either R1 (B) = (-a,a) or R2 (B) = (-a,a), substitution into equation

(3) gives

T T
CEIB CZ2B

6h(B;C) =

1 2

Thus if B maximizes h(B), then

BZ B
T 1 T

Z1B B



which is satisfied if and only if B is an eigenvector of 1. The
.BE BT 2 1

corresponding eigenvalue is A = - . Note that R1 (B) = (-a,a) if.

BE2B
A < 1 and R2 (B) = (-a,a) if X > 1. Assuming R1 (B) - (-a,a), the

transformed probability of correct classification is

-a a

h(B) = P2(y,B)dy + Pl(y,B)dy
- -a

CO

+ P2(y,B)dy

a

1 a a1 + erf( a) - erf( a
2 (BE1BT 1/2 BE2BT 1/2

1 1 n A= + erf( _ 1n X) - erf(_- n X)X-1i X-

while if R2 (B) = (-a,a), then

h(B) = f() = 1 - f(A).

It is easy to show that f'(A) < 0 for A E (0,1). Hence h(B) is maximized

when min{A, - is as small as possible. -The result may be stated as follows.

Theorem: Let T1 and rr be normally distributed populations in Rn with equal

means and covariance matrices El and E2 respectively. Let min and m beand ovarancematices~ an mmmax
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-1 1

respectively the smallest and largest eigenvalues of E2 1 .f min 
max

then h(B) is maximized for B any eigenvector of E21 corresponding to

Smin* Otherwise h(B) is maximized for BT  any eigenvector corresponding to

max

4. Feature Reduction to k > 1 Dimensions.

If B is a rank k kxn matrix, it is possible to derive an expression

for 6h(B;C), where C is a kxn matrix. Unfortunately, the resulting

variational equation involves integrals over the k-dimensional regions R1(B)

and R2 (B) which are difficult to evaluate. Thus, it would be desireable

to have a procedure for constructing a kxn matrix one row at a time which

maximizes or nearly maximizes h(B). If Q is a nonsingular kxk matrix,

then h(Q B) = h(B). Thus, it can be assumed that the rows of B are orthogonal,

or in the two population case, that BE BT and BE2B are both diagonal

matrices. The following procedures are immediately suggested. Choose a ixn

nonzero vector B1 to maximize h(B). Having constructed B1,...,BP

(9 < n) choose a nonzero lxn vector B+ 1 which maximizes h(B) subject

to the constraints

B B i = 1,...,
Z+1 i

T T
or to B + B = B + B = 0 i = 1,...,£.

Let Bk = be the feature selection matrix for reduction to k dimen-

sion. Clearly 
h(B 

(n) PCC since
sion. Clearly h(B I )1 h(B 2 )2 ... - h(B n )

= PCC, since B = (Ie Z)BX+1 ,



9

where I is the £x identity matrix and Z is an 9xl zero vector. In

order to justify the use of either of these procedures it would be desireable

to have a nonzero lower bound on h(B+l) - h(B ) when BX is not sufficient.

The orthogonality constraint is computationally more attractive since it is

easy to compute the projection onto the constraint space at each step and

incorporate it into a steepest descent procedure. However, the other con-

straint leads to nice theoretical results when applied to the two population

problem with equal population means.

Suppose I =2 = 0 and B1  is chosen according to the theorem in the

last section. If B2 maximizes h(B) subject to the constraints

T T
B2E B  = B2E2B = 0, and h is differentiable at B2, then there are

scalars X1 and X2 such that

12 22 T T
B BT T 1 11 222
212 2B22

T -1
Since B1 is an eigenvector of E2 corresponding to an eigenvalue .,

T T
1B2 2B2 T

T T 1 2 21'
B2 12 2 2 2

2 E2B

T T
The conditions B Z1 B2 = B1 2B2 = 0 lead to

0 = B'B E2B
1 Bl
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T -1
and 8' = 0. But then B2  is also an eigenvector of E2 . It can easily

2 2 1

be shown that at the (+l)st step , the lxn vector B +1 maximizing h(B)

T T
subject to the constraints B+ 1 Bi B B2Bi, i = 1,..., is an eigen-

vector of 2 1E1. Thus the rows of Bk  are the k eigenvectors corresponding

to the largest or smallest eigenvalues of E-1 I.2 1
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