```
(NASA-CE-134334) BESUITS CN EHE 2NO 374-28.533
FOFOLAIICN FEARORE SELECEICN ETOEIEN USING
FFORAEILIMY CF CCNGEC% CLASSIEICASICS AS
A CaITERICN (Houston Univ.) 14 p HC Unclas
$4.00 CSCZ 12A G3/19 43117
```

results on the two population feature selection problem USING PROBABILITY OF CORRECT CLASSIFICATION AS A CRITERION

BY B.CHARLES PETERS MAY 1974 REPORT \#32


PREPARED FOR
EARTH OBSERVATION DIVISION, JSC UNDER

## Report \# 32

# Results on the Two Population Feature Selection Problem Using Probability of Correct classification as a criterion 

 byB.C. Peters, Ir.<br>Mathematics Department<br>University of Houston<br>May, 1974<br>NAS-9-12717 MOD 1S

## ABSTRACT

We present the variational equations for maximizing the probability of correct classification as a function of a $1 \times n$ feature selection matrix $B$ for the two population problem. For the special case of equal covariance matrices the optimal $B$ is unique up to scalar multiples and rank one sufficient. For equal population means, the best $1 \times n \quad B$ is an elgenvector corresponding either to the largest or smallest elgenvalue of $\Sigma_{2}^{-1} \Sigma_{1}$, where $\Sigma_{1}$ and $\Sigma_{2}$ are the $n \times n$ covariance matrices of the two populations. The transformed probability of correct classification depends only on the eigenvalue. Finally, a procedure is proposed for constructing an optimal or nearly optimal $k \times n$ matrix of rank $k$ without solving the $k$-dimensional variational equation.

Results on the Two Population Feature
Selection Problem Using Probability of
Correct Classification as a Criterion
by

## B.C. Peters, Jr.

## 1. Introduction

Let $\pi_{1}$ and $\pi_{2}$ be n-variate normally distributed populations with conditional densities $P_{1}(x) \sim N\left(\mu_{1}, \Sigma_{1}\right)$ and $P_{2}(x) \sim N\left(\mu_{2}, \Sigma_{2}\right)$ and a priori probabilities $\alpha_{1}$ and $\alpha_{2}$ respectively. In this note we consider some special cases of the problem of selecting a $1 \times n$ nonzero vector $B$ which maximizes the transformed probability of correct classification

$$
h(B)=\int_{R} \max \left[\alpha_{1} P_{1}(y, B), \alpha_{2} P_{2}(y, B)\right] d y
$$

where $P_{i}(y, B) \sim N\left(B \mu_{i}, B \Sigma_{i} B^{T}\right)$ are the conditional densities of the variable $y=B x, i=1,2$. We assume the maximum likelihood classifier: assign $x$ to $\pi_{1}$ if $\alpha_{1} P_{1}(B x, B) \geq \alpha_{2} P_{2}(B x, B)$; otherwise, assign $x$ to $\Pi_{2}$.

It is shown in [2] that for the $B$ which maximizes $h(B)$, the Gateaux differential $\delta h(B ; C)=\lim _{s \rightarrow 0} \frac{h(B+s C)-h(B)}{s}$ exist for all $1 \times n$ vectors $C$ and
(1)

$$
\delta h(B ; C)=\alpha_{1} \int_{\mathrm{R}_{1}(B)} \delta P_{1}(y ; B ; C) d y+\alpha_{2} \int_{\mathrm{R}_{2}(B)} \delta \mathrm{P}_{2}(\mathrm{y} ; \mathrm{B} ; \mathrm{C}) \mathrm{dy} \text { where the }
$$

$R_{i}(B)$ are the Bayes regions

$$
\begin{aligned}
& R_{1}(B)=\left\{y \in R \mid \alpha_{1} P_{1}(y, B)>\alpha_{2} P_{2}(y, B)\right\} \\
& R_{2}(B)=\left\{y \in R \mid \alpha_{1} P_{1}(y, B)<\alpha_{2} P_{2}(y, B)\right\}
\end{aligned}
$$

Moreover, [1],

$$
\begin{equation*}
\delta P_{i}(y, B ; C)=P_{i}(y, B)\left\{\frac{C \Sigma_{i} B^{T}}{\left(B \Sigma_{i} B^{T}\right)^{2}}\left(y-\ddot{B \mu_{i}}\right)^{2}\right. \tag{2}
\end{equation*}
$$

$$
\left.+\frac{C \mu_{i}}{B \Sigma_{i} B^{T}}\left(y-B \mu_{i}\right)-\frac{C \Sigma_{i} B^{T}}{B \Sigma_{i} B^{T}}\right\}
$$

Substituting (2) into (1) and integrating by parts gives

$$
\begin{align*}
& \delta h(B ; C)=-\alpha_{1} P_{1}(y, B)  \tag{3}\\
&\left.\frac{C \Sigma_{1} B^{T}}{B \Sigma_{1} B^{T}}\left(y-B \mu_{1}\right)+C \mu_{1}\right]_{R_{1}(B)} \\
&\left.-\alpha_{2} P_{2}(y, B) \frac{C \Sigma_{2} B^{T}}{B \Sigma_{2} B^{T}}\left(y-B \mu_{2}\right)+C \mu_{2}\right]_{R_{2}(B)}
\end{align*}
$$

In order to determine $R_{1}(B)$ and $R_{2}(B)$ it is necessary to solve the
equation $\alpha_{1} P_{1}(y, B)=\alpha_{2} P_{2}(y, B)$ whose roots are those of the discriminant function

$$
H(y, B)=\alpha(B) y^{2}+2 \beta(B) y+\gamma(B),
$$

where

$$
\begin{aligned}
& \alpha(B)=B\left(\Sigma_{1}-\Sigma_{2}\right) B^{T} \\
& \beta(B)=\left(B \Sigma_{2} B^{T}\right) B \mu_{1}-\left(B \Sigma_{1} B^{T}\right) B \mu_{2} \\
& \gamma(B)=\left(B \Sigma_{1} B^{T}\right)\left(B \mu_{2}\right)^{2}-\left(B \Sigma_{2} B^{T}\right)\left(B \mu_{1}\right)^{2} \\
& +\left(B \Sigma_{1} B^{T}\right)\left(B \Sigma_{2} B^{T}\right)\left[\ln \frac{B \Sigma_{2} B^{T}}{B \Sigma_{1} B^{T}}+\ln \frac{\alpha_{1}}{\alpha_{2}}{ }^{2}\right] .
\end{aligned}
$$

We are not interested in the case where $H(y, B)=0$ has no real roots or holds identically, since in this case we always have $h(B)=\max \left\{\alpha_{1}, \alpha_{2}\right\}$, which is the minimum value that $h(B)$ can attain.
2. The Equal Covariance Case

$$
\begin{gathered}
\text { If } \Sigma_{1}=\Sigma_{2}=\Sigma, \text { then } \alpha(B)=0 \text { and } H(y, B)=0 \text { has the single root } \\
a=\frac{B\left(\mu_{1}+\mu_{2}\right)}{2}-\frac{B \sum B T_{1 n}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{2}}{2 B\left(\mu_{1}-\mu_{2}\right)}
\end{gathered}
$$

For either $R_{1}(B)=(-\infty, a)$ or $R_{2}(B)=(-\infty, a)$ substitution into equation (3) yields

$$
\delta h(B ; C)=C\left(\dot{\mu}_{1}-\mu_{2}\right)-\frac{C \Sigma B^{T}}{B E B^{T}} B\left(\mu_{1}-\mu_{2}\right)
$$

Thus, for the optimal B,

$$
\mu_{1}-\mu_{2}=\frac{\Sigma B^{T}}{B \Sigma B^{T}} B\left(\mu_{1}-\mu_{2}\right)
$$

which may be rewritten as

$$
\left.B^{T}=\frac{B E B^{T}}{B\left(\mu_{1}-\mu_{2}\right.}\right)^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

It is readily verified that

$$
B_{o}=\left(\dot{\mu_{1}}-\mu_{2}\right)^{T} \Sigma^{-1}
$$

satisfies this equation and that any other solution must be a scalar multiple of $B_{0}$. Since $h\left(\lambda B_{0}\right)=h\left(B_{0}\right)$ for $\lambda \neq 0, B_{0}$ maximizes $h(B)$. The corresponding probability of correct classification is

$$
h\left(B_{o}\right)=\operatorname{erf}\left(\frac{1}{2} \gamma\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)\right)
$$

A nonzero $l \times n$ vector $B$ is called sufficient if $h(B)=P C C$, where PCC is the untransformed probability of correct classification

$$
\begin{aligned}
& \text { PCC }=\max \left[\alpha_{1} P_{1}(x), \alpha_{2} P_{2}(x)\right] d x \\
&=\alpha_{R_{1}} \alpha_{1} P_{1}(x) d x+\alpha_{2} P_{2}(x) d x \\
& R_{2}
\end{aligned}
$$

$R_{1}$ and $R_{2}$ are the Bayes regions in $R^{n}$ :

$$
\begin{aligned}
& R_{1}=\left\{x \in R^{n} \mid \alpha_{1} P_{1}(x)>\alpha_{2} P_{2}(x)\right\} \\
& R_{2}=\left\{x \in \mathbb{R}^{n} \mid \alpha_{1} P_{1}(x)<\alpha_{2} P_{2}(x)\right\}
\end{aligned}
$$

It is shown in [3], that $B$ is sufficient if and only if $B^{-1}\left(R_{1}(B)\right)=R_{1}$ and $B^{-1}\left(R_{2}(B)\right)=R_{2}$ up to sets of measure zero. By a straightforward calculation ft follows that for $\mathrm{B}_{\mathrm{o}}=\left(\mu_{1}-\mu_{2}\right)^{T_{\Sigma}}{ }^{-1}$,

$$
B_{0}^{-1}\left(R_{1}\left(B_{o}\right)\right)=R_{1}
$$

and

$$
B_{o}^{-1}\left(R_{2}\left(B_{o}\right)\right)=R_{2}
$$

Thus $B_{o}$ is sufficient and

$$
\operatorname{PCC}=\operatorname{erf}\left(\frac{1}{2} \sqrt{ }\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)\right)
$$

## 3. The Equal Mean Case

$$
\begin{aligned}
& \text { If } \mu_{1}=\mu_{2}=0 \text {, the equation } H(y, B)=0 \text { reduces to } \\
& 0=B\left(\Sigma_{1}-\Sigma_{2}\right) B^{T} y^{2}+\left(B \Sigma_{1} B^{T}\right)\left(B \Sigma_{2} B^{T}\right)\left[\ln \frac{B \Sigma_{2} B^{T}}{B \Sigma_{1} B^{T}}+\ln \frac{\alpha_{1}}{\alpha_{2}}\right]
\end{aligned}
$$

In order to avoid complications we will assume throughout this section that $\alpha_{1}=\alpha_{2}=\frac{1}{2}$, although the results also hold for unequal apriori probabilities. Thus,

$$
0=B\left(\Sigma_{1}-\Sigma_{2}\right) B^{T} y^{2}+\left(B \Sigma_{1} B^{T}\right)\left(B \Sigma_{2} B^{T}\right) \ln \frac{B \Sigma_{2} B^{T}}{B \Sigma_{1} B^{T}}
$$

The roots of this equation are -a and a , where

$$
a=\frac{\left(B \Sigma_{1} B^{T}\right)\left(B \Sigma_{2} B^{T}\right.}{B \Sigma_{1} B^{T}-B \Sigma_{2} B^{T}} \ln \frac{B \Sigma_{1} B^{T}}{B \Sigma_{2} B^{T}}
$$

For either $R_{1}(B)=(-a, a)$ or $R_{2}(B)=(-a, a)$, substitution into equation (3) gives

$$
\delta h(B ; C)=\frac{C \Sigma_{1} B^{T}}{B \Sigma_{1} B^{T}}-\frac{C \Sigma_{2} B^{T}}{B \Sigma_{2} B^{T}} .
$$

Thus if $B$ maximizes $h(B)$, then

$$
\Sigma_{1} B^{T}=\frac{B \Sigma_{1} B^{T}}{B \Sigma_{2} B^{T}} \Sigma_{2} B^{T}
$$

which is satisfied if and only if ${ }_{B \Sigma_{1} B^{T}}^{T}$ is an eigenvector of $\Sigma_{2}^{-1} \Sigma_{1}$. The corresponding eigenvalue is $\lambda=\frac{B \Sigma_{1} B^{T}}{B \Sigma_{2} B^{T}}$. Note that $R_{1}(B)=(-a, a)$ if $\lambda<1$ and $R_{2}(B)=(-a, a)$ if $\lambda>1$. Assuming $R_{1}(B)=(-a, a)$, the transformed probability of correct classification is

$$
\begin{aligned}
h(B)= & \frac{1}{2} \int_{-\infty}^{-a} P_{2}(y, B) d y+\frac{1}{2} \int_{-a}^{a} P_{1}(y, B) d y \\
& +\frac{1}{2} \int_{a}^{\infty} P_{2}(y, B) d y \\
= & \frac{1}{2}+\operatorname{erf}\left(\frac{a}{\left(B \Sigma_{1} B^{T}\right)^{1 / 2}}\right)-\operatorname{erf}\left(\frac{a}{\left.B \Sigma_{2} B^{T}\right)^{1 / 2}}\right) \\
= & \frac{1}{2}+\operatorname{erf}(\sqrt{\lambda-1} \ln \lambda)-\operatorname{erf}\left(\sqrt{\frac{\lambda}{\lambda-1}} \ln \lambda\right) \\
& =f(\lambda),
\end{aligned}
$$

while if $R_{2}(B)=(-a, a)$, then

$$
h(B)=f\left(\frac{1}{\lambda}\right)=1-f(\lambda)
$$

It is easy to show that $f^{\prime}(\lambda)<0$ for $\lambda \in(0,1)$. Hence $h(B)$ is maximized when $\min \left\{\lambda, \frac{1}{\lambda}\right\}$ is as small as possible. - The result may be stated as follows. Theorem: Let $\pi_{1}$ and $\pi_{2}$ be normally distributed populations in $R^{n}$ with equal means and covariance matrices $\Sigma_{1}$ and $\Sigma_{2}$ respectively. Let $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ be
respectively the smallest and largest eigenvalues of $\Sigma_{2}^{-1} \Sigma_{1}$. If $\lambda_{\text {min }}<\frac{1}{\lambda_{\max }}$, then $h(B)$ is maximized for $B^{T}$ any eigenvector of $\Sigma_{2}^{-1} \Sigma_{1}$ corresponding to $\lambda_{\text {min }}$. Otherwise $h(B)$ is maximized for $B^{T}$ any eigenvector corresponding to $\lambda_{\text {max }}$ 。
4. Feature Reduction to $k>1$ Dimensions.

If $B$ is a rank $k \quad k \times n$ matrix, it is possible to derive an expression for $\delta h(B ; C)$, where $C$ is a $k \times n$ matrix. Unfortunately, the resulting variational equation involves integrals over the $k$-dimensional regions $R_{1}(B)$ and $R_{2}(B)$ which are difficult to evaluate. Thus, it would be desireable to have a procedure for constructing a $k \times_{n}$ matrix one row at a time which maximizes or nearly maximizes $h(B)$. ' If $Q$ is a nonsingular $k \times k$ matrix, then $h(Q B)=h(B)$. Thus, it can be assumed that the rows of $B$ are orthogonal, or in the two population case, that $B \Sigma_{1} B^{T}$ and $B \Sigma_{2} B^{T}$ are both diagonal matrices. The following procedures are immediately suggested. Choose a $1 \times n$ nonzero vector $B_{1}$ to maximize $h(B)$. Having constructed $B_{1}, \ldots, B_{\ell}$ $(\ell<n)$ choose a nonzero $1 \times n$ vector $B_{\ell+1}$ which maximizes $h(B)$ subject to the constraints

$$
{ }^{B_{\ell+1}} B_{i}^{T}=0 \quad i=1, \ldots, \ell
$$

or to $B_{\ell+1} \Sigma_{1} B_{i}^{T}=B_{\ell+1} \Sigma_{2} B_{i}^{T}=0 \quad i=1, \ldots, \ell$.
Let $B_{k}=\left(\begin{array}{c}B_{1} \\ \vdots \\ B_{k}\end{array}\right)$ be the feature selection matrix for reduction to $k$ dimen-
sion. Clearly $h\left(B_{1}\right) \leq h\left(B_{2}\right) \leq \ldots \leq h\left(B_{n}\right)=P C C$, since $B_{\ell}=\left(I_{e} \mid Z\right) B_{\ell+1}$,
where $I_{e}$ is the $\ell \times \ell$ identity matrix and $Z$ is an $\ell \times 1$ zero vector. In order to justify the use of either of these procedures it would be desireable to have a nonzero lower bound on $h\left(B_{\ell+1}\right)-h\left(B_{\ell}\right)$ when $B_{\ell}$ is not sufficient. The orthogonality constraint is computationally more attractive since it is easy to compute the projection onto the constraint space at each step and incorporate it into a steepest descent procedure. However, the other constraint leads to nice theoretical results when applied to the two population problem with equal population means.

Suppose $\mu_{1}=\mu_{2}=0$ and $B_{1}$ is chosen according to the theorem in the last section. If $B_{2}$ maximizes $h(B)$ subject to the constraints $B_{2} \Sigma_{1} B_{1}^{T}=B_{2} \Sigma_{2} B_{1}^{T}=0$, and $h$ is differentiable at $B_{2}$, then there are scalars $\lambda_{1}$ and $\lambda_{2}$ such that

$$
\frac{\Sigma_{1} B_{2}^{T}}{B_{2} \Sigma_{1} B_{2}^{T}}-\frac{\Sigma_{2} B_{2}^{T}}{B_{2} \Sigma_{2} B_{2}^{T}}=\lambda_{1} \Sigma_{1} B_{1}^{T}+\lambda_{2} \Sigma_{2} B_{2}^{T}
$$

Since $B_{1}^{T}$ is an eigenvector of $\sum_{2}^{-1} \Sigma_{1}$ corresponding to an eigenvalue $\beta$,

$$
\begin{aligned}
\frac{\Sigma_{1} B_{2}^{T}}{B_{2} \Sigma_{1} B_{2}^{T}}-\frac{\Sigma_{2} B_{2}^{T}}{B_{2} \Sigma_{2} B_{2}^{T}} & =\left(\lambda_{1} \beta+\lambda_{2}\right) \Sigma_{2} B_{1}^{T} \\
& =\beta^{\prime} \Sigma_{2} B_{1}^{T}
\end{aligned}
$$

The conditions $B_{1} \Sigma_{1} B_{2}^{T}=B_{1} \Sigma_{2} B_{2}^{T}=0$ lead to

$$
0=\beta^{\prime} B_{1} \Sigma_{2} B_{1}^{T}
$$

and $\beta^{\prime}=0$. But then $B_{2}^{T}$ is also an eigenvector of $\Sigma_{2}^{-1} \Sigma_{1}$. It can easily be shown that at the $(\ell+1)$ st step, the $1 \times_{n}$ vector $B_{\ell+1}$ maximizing $h(B)$ subject to the constraints $B_{\ell+1} \Sigma_{1} B_{i}^{T}=B_{\ell+1} \Sigma_{2} B_{i}^{T}, \quad 1=1, \ldots, \ell$ is an eigenvector of $\Sigma_{2}^{-1} \Sigma_{1}$. Thus the rows of $B_{k}$ are the $k$ eigenvectors corresponding to the largest or smallest eigenvalues of $\Sigma_{2}^{-1} \Sigma_{1}$.

## REFERENCES

1. Darcy, Louise Wilson, Linear feature selection and the probability of misclassification, Masters Thesis, Texas A\&M University. May, 1974.
2. Peters, B.C.,Jr., On differentfating the probability of error in the multipopulation feature selection problem, II, Report \#31, NAS-9-12777, University of Houston, Department of Mathematics, March, 1974.
3. Quirein, J.A., Sufficient statistics for divergence and probability of misclassification, Report $\# 14$, NAS-9-12777, University of Houston, Department of Mathematics, November, 1972
